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Abstract

We study a static model of principal-multiple agents with hidden actions (moral
hazard) and local positive production externalities between agents. Agents interact
through a given network of informal contacts, where links are interpreted as mutual
advise or peer e¤ect. Consequently, individual outputs will depend positively on own
e¤ort and nearest neighbors�e¤orts. As the principal only knows which kind of network
prevails, but ignores the exact position of each agent, an additional problem of adverse
selection arises. We restrict wages to be linear in individual output. Under risk
neutrality and absence of limited liability constraints, the principal achieves (almost)
the �rst best if either he observes e¤orts or knows the position of each agent in the
informal network. The combination of hidden e¤orts and asymmetric information,
though, yields ine¢ cient results. Analyzing some paradigmatic network structures,
we �nd that at the optimum the principal will o¤er a self selecting menu of contracts,
although there may be less than perfect revelation. Which and how many types the
principal will be able to distinguish depends heavily on the structure of the network
and the strength of peer e¤ects.
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1 Introduction

Agents working in the same organization or �rm are typically linked through some network
of informal contacts. This informal network determines the �ow of mutual advice and help
between the agents and, as such, largely determines how agents behave within the �rm. The
importance of informal relations in shaping the incentives of workers to provide e¤ort has
long been recognized by studies in management and organizational science. Cross, Prusak
and Parker (2002) from the Institute for Knowledge Based Organizations founded by IBM
write �...how work gets accomplished is increasingly reliant on the health of informal net-
works. While often these groups are not found on any formal organizational chart, they
frequently are the sources of both strategic and organizational success within an organiza-
tion.�Waldstrom (2001) summarizes the extensive literature in this �eld.1 Most of the
research done in Economics is empirical.2 Theoretical models have also incorporated these
concerns, although mostly have assumed global interactions, neglecting the �local�nature
of peer e¤ects.3 A thorough understanding of how informal networks shape incentives,
though, is important for developing a viable theory of organizations.
In this paper we introduce informal networks in a standard principal - multiple agents

framework. The set up is one where workers are paid by the contractor (the �principal�)
to produce some (observable) individual output. Workers and the principal are risk neutral
and there are no limited liability constraints. The main channel through which the informal
network a¤ects the agent�s incentives is that it creates e¤ort externalities, meaning that an
agent�s marginal productivity is increased if her neighbors in the informal network exert
higher e¤ort. The size of the e¤ort externality or strenght of peer e¤ects is tempered by
a �xed parameter.4 A basic di¢ culty of the principal is that - even if he might know the
kind of informal network he is facing - he does not know the position of each agent in the
network. The workers themselves though know their position and the position of others in
the informal network much better than the principal. Thus there is a problem of adverse
selection. A problem of moral hazard can arise in addition if the principal cannot observe
e¤orts. Following Ballester, Calvó-Armengol and Zenou (2006), our assumptions about
agents� production and cost functions imply that agents��rst best and ex ante e¢ cient
e¤orts are proportional to their Bonacich (1987) centrality in the network. This centrality

1Other references include but are not limited to Krackhardt and Hanson (1993), Ruef, Aldrich and
Carter (2003) or Di Maggio (2001).

2 Ichino and Maggi (2000) show that workplace peers have a measurable impact on shirking and produc-
tivity; Azoulay and Zivin (2005) estimate the magnitude of knowledge spillovers generated by highly cited
researchers in medicine; Mas and Moretti (2006) work tests Kandel and Laezer (1992) model (see footnote
4) and �nd evidence that social interactions a¤ect individuals� productivity. Gould and Winter (2006)
�nd evidence that peer e¤ects may be caused by technological considerations (more precisely, they �nd
that e¤ort externalities may be related to the underlying production functions rather than to psychological
considerations).; Bandiera, Barankay and Rasul (2007) �nd evidence of social concerns between workers
and Shvydko (2007) �nds evidence that such �social� peer e¤ects might be stronger within small �rms.
Experimental evidence of pure social concerns has been found in Falk and Ichino (2006), among others.

3For instance, Kandel and Lazear (1992) analyze how peer pressure may create incentives which solve
free riding problems within partnerships. Rotemberg (1994) develops a model of rational altruism, where
the variables controlled by the workers (e¤orts) are strategically linked. Rob and Zemsky (1999) propose
a dynamic principal-multiple agents model where agents are explicitly motivated by a combination of self-
interest and social concerns.

4Unlike in helping e¤ort models with global interactions (e.g. Drago and Garvey (1998) or Itoh (1991))
we do not allow an agent to choose two di¤erent levels of e¤ort (a private one and one directed to help
others). Instead we assume that agents choose one e¤ort level and that the externality is modulated by a
�xed parameter.
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measure thus provides a summary of the private information any agent has.
We focus on a class of wages that are linear in observable individual outputs. Borrow-

ing from Rob and Zemsky (1999) we call the marginal participation on individual output
incentive intensity, as it assesses the extent to which the rewards of workers are linked to
their measured performance. Whenever the incentive intensity is strictly positive, agents�
expected utilities display positive externalities with respect to neighbors�e¤orts and the
e¤orts of interacting agents are strategic complements.
Our results show that the structure of contracts depends critically on the shape of

the informal network. If the principal has full information about the network, i.e. only
faces a problem of moral hazard, he can achieve �rst-best allocations through personalized
contracts. Under asymmetric information only (adverse selection), the principal optimally
o¤ers a self-selecting menu of contracts, with wages conditioned on outputs and e¤orts.
He must pay informational rents to agents with a relative good position in the network,
but these rents can be reduced arbitrarily. The reason is that for perfect revelation it is
su¢ cient to o¤er to each �type�only a very small participation on her output conditional
on that she exerts a certain observable level of e¤ort. If the principal demands e¢ cient
e¤orts, he can get arbitrarily close to the �rst best as the incentive intensity gets smaller.
To summarize, when the principal faces the two problems separately, we �nd that (i)

the �rst best can be (almost) achieved and (ii) this can be done through a set of contracts
involving wages that are linear in individual productivity.
With respect to the generalized problem, we analyze two di¤erent situations. Firstly,

we assume that there is only one contract available (Akerlof (1970), cf. Bolton, 2005),
i.e. that the principal is ex ante constrained to o¤er the same contract to all agents. At
the optimum, all agents but those with the lowest centrality will be paid in expectation
participation rents. Through some simple examples, we �nd that the relation between the
strength of peer e¤ects and the optimal incentive intensity in the single contract is smooth
but non-monotone. We also �nd that the principal obtains a fraction of �rst best expected
pro�ts which is decreasing in the strength of peer e¤ects. For any given size of the e¤ort
externality, such relative ine¢ ciency is positively correlated to the density, the variability of
connections among agents and the average clustering of informal networks.5 Secondly, we
allow the principal to o¤er a menu of self-selecting contracts. Of course such a wage scheme
generally improves expected pro�ts of the principal over the single contract. However, there
might be institutional arrangements or administrative costs not modeled that prevent him
to o¤er di¤erent contracts. That�s why we think both problems are worthwhile studying.
When the principal o¤ers di¤erent contracts, for any given strength of peer e¤ects, he

�nds it optimal to o¤er discriminating wages with incentive intensities that are weakly
increasing in the Bonacich centralities of agents. However, in some cases there may be less
than perfect revelation as the principal pools some types and designs a common contract for
them. Which and how many types are pooled depends on the particular network and the
size of e¤ort externality. In some networks the principal�s pro�ts are highest - relative to
the �rst best case - if peer e¤ects are either very weak or very strong. The relation between
ine¢ ciency and size of the e¤ort externality is thus not generally monotone. Neither is it
always the case that a high variability in agents connections prevents the principal from
obtaining good results. Contrary to the case of single contracts, if peer e¤ects are strong,

5We use the following de�nition for the clustering coe¢ cient: the number of neighbors of any agent i
that are in turn connected relative to the number of di¤erent pairs of neighbors. Then, this is averaged
over all agents.
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the principal can sometimes be better o¤ if such variance is high.
Our model is closely related to the work of Ballester, Calvó-Armengol and Zenou (2006).6

They study a non-cooperative e¤ort game in a network with local payo¤ complementarrities
and show that Nash equilibrium e¤ort choices are proportional to the Bonacich (1987)
centrality of an agent in the network. Incentives in networks have also been studied in
Kleinberg and Raghavan (2005), where agents provide information in large query networks
and Bramoullé and Kranton (2007) where networked agents play a public good contribution
game. To our knowledge our paper is unique in studying a �traditional� principal agent
problem in networks.7

Naturally our paper is also related to vast literature on principal agent problems. Clas-
sical references include Mirrlees (1971, 1976), Grossman and Hart (1983), Guesnerie and
La¤ont (1984), Holmstrom (1979), Rogerson (1985) or Radner (1981). Most papers though
analyze either only the problem of moral hazard or only the problem of adverse selection.
The generalized problem, where both problems are present, has been studied by Riley
(1985), La¤ont and Tirole (1986), McAfee and McMillan (1987) or more recently Jullien,
Salanié and Salanié (2007) and Faynzilberg and Kumar (2000). Principal-multiple-agents
models have been proposed by Gupta and Romano (1998), Mookherjee (1984), Lockwood
(2000) or Ishiguro and Itoh (2001), among others. Explicit teams have been analyzed by
Andolfatto and Nosal (1997), Aoki (1994), Che and Yoo (2001), Groves (1973) or McAfee
and McMillan (1991). Usually in these models agents are heterogeneous with respect to
their skills or their costs of producing a certain level of e¤ort. In our model the heterogene-
ity arises only from the di¤erent position the agents have in the network, provided that
there are local positive production externalities.8 Abstracting from the informal network
agents are homogeneous in skills or ability. This di¤erence is not innocuous as our results
show. Our paper is also one of the few in this literature to study the generalized problem
with a �nite and relatively large number of types.
The paper is organized as follows. In Section 2 we present the model. We analyze its

results under observable e¤orts and full information (�rst best), and when each problem
appears separately. In Section 3 we present all the results regarding optimal single contracts
and self-selecting contracts in the generalized problem. Section 4 concludes. The proofs are
relegated to an appendix.

2 The Model

2.1 Description of the Model

There is a �nite set of agents N = f1; 2; :::; ng and one principal. Agents are identical with
respect to ability, education and tasks and have the same labor status according to the
formal chart of the organization. There exists, however, a hidden informal organization

6See also Ballester and Calvó-Armengol (2006), Calvó-Armengol and De Marti (2007) or Cabrales,
Calvó-Armengol and Zenou (2007).

7 In computer science principal-agent models have been proposed to overcome the free-riding behavior
in peer-to-peer (P2P) systems. Feldman, Chuang, Stoica and Shenker (2005) study a problem of hidden
actions where the network is a line. The �principal� are the end nodes, who provide incentives to the
intermediate nodes.

8Lockwood (2000) proposes a multiple-agent framework where there are positive production externalities
between agents, as in ours. The di¤erence is that in his model all agents interact with each other and that
they have di¤ering cost-e¤ort functions.
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shaped by the social network of informal relationships. In this network two agents are
connected whenever they usually interact. Each link re�ects positive peer e¤ects that
improve both individuals�productivity. Agents in general di¤er with respect to the number
of agents they informally interact with, and this is the sole source of heterogeneity among
them.
The pattern of informal interactions is given by a network g. A convenient representation

of g is the adjacency matrixG, a symmetric n�n matrix with gij = 1(0) if link ij is present
(absent); by convention gii = 0. The set Ni (g) = fj 2 N : gij = 1g denotes the agents i
informally interacts with (�neighbors of i�), and ki (g) = jNi (g)j is the number of neighbors
of i or connectivity in the network g.
Each agent i produces an output yi 2 R+ by exerting an e¤ort ai 2 R+. Peer e¤ects

take the form of local externalities in production, i.e.an e¤ort ai simultaneously a¤ects i�s
and i�s neighbors�outputs. We assume the following explicit functions:

yi = xi ++"i

xi = (1 + �
P

j2Ni(g)

aj)ai

with � > 0 (positive externalities). Noise "i represents an endogenous idiosyncratic
shock with E ("i) = 0, E ("i"j) = 0 8i 6= j. It prevents the principal to know (ex post)
e¤orts from observable outputs. Each agent i bears the full cost of her e¤ort; the monetary
cost given by:

c (ai) =
a2i
2

The principal cares about total output Y =
P
i2N

yi and compensates agents. Denote by

wi the monetary wage o¤ered to agent i. Principal and agents are risk neutral, ex post
utility functions are respectively:

UP =
P
i2N

(yi � wi) ; Ui = wi �
a2i
2
; i = 1; 2; :::; n

Agent�s reservation utility is U = 0 and there are no limited liability constraints. The
risk neutrality of agents rules out insurance considerations. The absence of limited liability
constraints implies that contracts are to be ex ante individual rational, i.e. agents are
willing to participate if they obtain in expectation at least so much utility than in their
outside option.
The principal aims to provide incentives that induce each agent to exert some desired

level of e¤ort. The problem he faces is that e¤orts might not be observable and that
he might have imperfect information about the informal network. In particular, we will
assume that the principal knows which kind of network prevails, but he doesn�t know the
exact position of each agent. For instance, he might know that the network is a star, but
not who is the hub. We also assume that informal relations are relatively stable and that
agents have always perfect information about the whole network.
The timing of the model is as follows. First the principal designs the contracts and

o¤ers them to the agents. Contracts can be conditioned only on observable (and veri�able)
variables.9 A contract determines the wage each agent will earn after production takes

9We assume that when a variable is observable to the principal, it is also veri�able.
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place. We allow for two situations: (i) only one contract is available (single contract);
(ii) the principal proposes a self-selecting menu of contracts. Once contracts are o¤ered,
all agents decide simultaneously whether to accept or not (or in case (ii) which contract
to select). Provided that all agents accepted/selected a contract, they decide how much
e¤ort to exert. E¤ort choices are made non-cooperatively in the e¤ort network subgame.
Production takes place and contracts are ful�lled.
Note that given a set of bilateral contract o¤ers, there may be multiple equilibria in

the contract selection subgame (or contract acceptance game in case (i)). Whenever this
occurs, we assume that all agents coordinate on the most e¢ cient equilibrium. Under this
assumption there is no loss of generality in restricting attention to contract o¤ers such that
every agent i ends up accepting (or selecting) her contract (Bolton and Dewatripont, 2005);
Accepted (or selected) contracts are always enforceable. We also assume that side-payments
between agents are not allowed and that the renegotiation of contracts is not possible.
We restrict the set of possible wage functions to the set of wages of the form wi =

i + �iyi, with i; �i 2 R, �i � 0. Some variations, such as wi = i + �i(yi +
P

j2Ni(g)

yj) are

also considered.10 i and �i are taken as given by agent i. We call �i the incentive intensity.
It measures the extent to which compensations are linked to observable performance. The
�xed term i, whenever negative, has the interpretation of a �xed fee agent i has to pay to
the principal before production takes place.

2.2 Some Benchmark Cases

First Best
In the ��rst best� situation e¤orts are observable and the principal is fully informed

about the network. He asks each agent to exert the optimal e¤ort a�i that internalizes the
local externalities and extracts all the surplus up to the participation constraints. Denote
by �!a=(a1; a2; :::; an)T a vector of e¤orts,

�!
1 a n � 1 vector of ones and I the nth order

identity matrix.11 Recall that G is the adjacency matrix of a given network g; we de�ne
�G = max f�Gg to be the maximal eigenvalue of G.

Assumption 1 (A1) For any particular network g, � 2 (0; 1
2�G

).

De�nition (ex ante e¢ ciency) The vector of e¤orts �!a is (ex ante) e¢ cient if �!a 2
argmaxW = EUP +

P
i2N

EUi =
P
i2N

(xi � a2i
2 ).

Proposition 1 (�rst best) Assume A1. In the �rst best situation the principal o¤ers
to each agent i; w�i =

(a�i )
2

2 i¤ ai = a�i and w
�
i = 0 otherwise. The vector of optimal

and e¢ cient e¤orts is �!a � = (I� 2�G)�1�!1 . Expected utilities are EUi = 0 8i, EU�P =
1
2

�!
1 T (I� 2�G)�1�!1 . E¤orts and EU�P are increasing and convex functions of �.

Proof. In the Appendix.
Following Ballester, Calvó-Armengol and Zenou (2006) it is easy to see that �rst best

e¤orts are proportional (in our case equivalent) to the non-weighted Bonacich centrality
with parameter 2� of each agent in the network. Indeed (see their De�nition 1), provided

10Note that the last formulation is only possible if the principal knows exactly the network.
11Throughout the paper, vectors are column vectors. Supraindex T denotes transpose.
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that (I� 2�G)�1 is well de�ned and nonnegative, the vector of Bonacich centralities of
parameter 2� in g is

�!
b (g; 2�) = (I� 2�G)�1�!1 . Assumption 1 is necessary and su¢ cient

for (I� 2�G) to be inverse-positive. The Bonacich (1987) centrality basically measures
how many paths in the network start at a particular node i: The relative weight of longer
paths is scaled down by 2�. A1 amounts to saying that the payo¤ complementariness are
not too important compared with the concavity due to own e¤ort. This assumption seems
particularly sensible, as we deal with informal networks within an organization. Below
though we will see that even these relatively small network e¤ects can have large e¤ects on
the agent�s incentives and on the optimal contract.

Moral hazard

Suppose now that the principal is fully informed about the interaction structure but
cannot observe e¤orts. Then we face a pure problem of moral hazard. We show that
there are (at least) two contracts through which �rst best e¤orts can be enforced. In both,
wages are personalized to each agent. The di¤erence is that while in the �rst, wages are
only a function of agent�s i product, in the second they depend on neighbors� products
as well. Intuitively, the principal can induce agents to internalize local externalities either
through the incentive intensity �i or (more directly) by giving them marginal participation
on neighbors�outputs.

Proposition 2 (moral hazard) Assume A1 and that there is only a moral hazard prob-
lem. Then contracts which take one of these alternative forms,

wi = i + �iyi, with �i = 1 +
�
P

j2Ni(g)
a�j

1+�
P

j2Ni(g)
a�j
> 1 and i = ��ix�i +

(a�i )
2

2 ; or

wi = i + �i(yi +
P

j2Ni(g)

yj), with �i = 1 and i = �(x�i +
P

j2Ni(g)

x�j ) +
(a�i )

2

2 ,

8i 2 N allow the principal to attain �rst best (e¢ cient) allocations.

Proof. In the Appendix.

Remark 1 The �xed terms i here have a double role. They allow the principal to extract
all the surplus and at the same time guarantee that the allocation of total output is
feasible in expected terms.

Remark 2 Note that although both type of contracts yield the same outcome, the second is
more consistent with a setting where the principal only observes total output. Indeed,
it is easy to see that analogous results could be found if personalized wages of the
form wi = i + �iY were o¤ered (Y =

P
j2N

yj).12

12Best response functions would be the same as in case (ii) because even if agents are paid as a function
of all other agents�outputs, they would consider marginal incentives on yi +

P
j2Ni

yj . Hence with �i = 1

best �rst e¤orts can be induced. Naturally, �xed terms i would be di¤erent: i = �X� +
(a�i )

2

2
, where

X� is total expected output (when all agents exert �rst best e¤orts).
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Even if the principal doesn�t observe e¤orts, the perfect information about the network
is su¢ cient to estimate expected �rst best e¤orts and outputs. �i and i are parameters
taken as given by the agents, who subsequently choose non-cooperatively their e¤ort levels.
The principal then induces Nash equilibrium e¤orts which coincide with �rst best e¤orts.
This is possible essentially because agents are risk-neutral and the principal need not to
insure them for their participation. Contracts similar to the second type can be found in
McAfee and McMillan (1991) applied to teams. In the following we will focus uniquely on
individual incentives.

Adverse selection

The problem of adverse selection arises if the principal observes e¤orts but has partial
information about the network. In particular, we assume that the principal only knows
which kind of network prevails, but doesn�t know the exact position of agents. As �rst
best e¤orts are proportional to the vector of non-weighted Bonacich centralities in the
network g, this measure can be considered as the �type� of agent i. As we mentioned,
provided that 1 > 2��G,

�!a � = �!b (g; 2�) = (I� 2�G)�1�!1 is the n� 1 vector of Bonacich
(non-weighted) centrality of parameter 2� in the network g and bi (g; 2�) is its ith ele-
ment, the Bonacich index of agent i. Suppose that there are r � n di¤erent central-
ities. We partition the set of agents N into subsets N (t) of agents of the same type:

N (t) = fi 2 N : bi (g; 2�) = bt (g; 2�)g, N (t) \ N (t0) = ? 8t 6= t0,
r
[
t=1
N (t) = N . T de-

notes the set of types t, t = 1; ::; r and without loss of generality, we assume that indexes
are upward ordered, i.e. t < t0 if and only if bt (g; 2�) < bt0 (g; 2�). For instance, in a line of
�ve (5) agents, there are three types (for any � satisfying A1). End nodes are of the lowest
type, while the agent in the middle would be the highest type.
In this context, wages can depend on e¤orts, outputs or both observable variables. We

want to stress, however, that if the principal proposes a menu of self-selecting contracts,
wages must necessarily depend on outputs. Wages depending only on e¤orts are never
incentive compatible - unless the network is k-regular.13 The intuition for this is very simple.
In our setup the type of an agent is uniquely determined by her position in the network. The
di¤erent marginal productivities arise only from the positive e¤ort externalities. Agents do
not di¤er in their cost-functions for exerting e¤ort. But this of course immediately implies,
that if the principal pays only according to e¤ort, then all types will choose the same
contract and exert the same e¤ort.

Proposition 3 (adverse selection - wi(ai)) Assume A1 and that there is only adverse
selection. If wages depend only on e¤orts, then the optimal contract is a pooling contract:
w = ea2

2 , with ea = 1
1�2�k ; EUi = 0 8i 2 N ;

gEUP = n 12 1
1�2�k . If the network is k-regular,

the �rst best is achieved (ea = a�, gEUP = EU�P ), otherwise gEUP < EU�P .
Proof. In the Appendix.
The asymmetry of information is an obstacle for the principal as long as the network is

not regular. If the network is k-regular, the principal knows the common connectivity k and
can easily enforce �rst best e¤orts with a single contract, even if e¤orts are not observable,
as we will see in Section 3.
13g is a k-regular network () ki(g) = k 8i 2 N .
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Suppose now that the principal o¤ers wages depending on both observable variables.14

A contract intended to agents of type t prescribes a given level of e¤ort and the expected
wage associated to that e¤ort. Therefore, the principal takes into account the participation
and incentive compatibility constraints with respect to the contract choice, but e¤ort levels
are not constrained to be part of a Nash equilibrium of an e¤ort subgame. Thus when any
agent deviates the rest of players are still choosing the �right� contract and the �right�
e¤ort.15 In this sense the principal�s problem is isomorphic to a problem with one agent
that can be of di¤erent types. Following standard arguments, the principal will have to pay
informational rents, hence the �rst best cannot be achieved. However, as we show below,
under our assumptions the principal can come arbitrarily close to the �rst best. Denote
by x�t the expected output of type t in the �rst best situation, and ext!t�1 the expected
product of type t when exerting the e¤ort corresponding to type t� 1, given that everyone
else exerts a�t0 .

Proposition 4 (adverse selection - wi(ai; yi)) Assume A1 and that there is only ad-
verse selection. If the principal o¤ers contracts CT = f(t; �t) ; a�t gt=1;:::;r; s.t. wt(i) =
t + �tyi i¤ ai = a�t , with �t = " > 0 8t, 1 = �"x�1 +

(a�1)
2

2 , and t = t�1 � "(x�t �ext!t�1)+
(a�t )

2�(a�t�1)
2

2 8t � 2; he will be able to come arbitrarily close to �rst best expected
utility by choosing " arbitrarily small.

Proof. In the Appendix.

Remark 3 There are several similar contracts, we only propose one. What is needed is
that wages for t � 2 depend on outputs and that incentive intensities �t are arbitrarily
small. �t could be also di¤erent.

The intuition is simple. As long as wages depend on outputs, the principal can induce
agents to �reveal�their types. The value of the �xed terms t are such that any agent of
type t is indi¤erent between choosing contract ct and ct�1, as is standard in the literature.
In other words, local downward incentive compatibility conditions are binding. Given this,
no agent will have incentives to imitate other type, and agents with type t � 2 obtain
informational rents. However, such rents can be reduced arbitrarily by setting the incentive
intensity " very small, as for any " contracts are incentive compatible. What is crucial for
this result is that the principal observes e¤orts and outputs (thus contracts can depend
on both) and that agents are risk neutral. Interestingly, if there are only two types, as in
the star, the �rst best can be exactly achieved. The principal would o¤er two contracts,
c1 = ((1; �1) ; a1) = ((

(a�1)
2

2 ; 0); a�1)); c2 = ((2; �2) ; a2) = ((��2x�2 +
(a�2)

2

2 ; �2); a
�
2) and

there is no need to pay informational rent to the highest type.16

14Clearly, with wages only conditioned on outputs, the solution would coincide with that of the general
problem, Section 3. With such contracts, the principal would be throwing away important information he
has, namely the observable levels of e¤ort.
15When such deviation occurs, ex post wages of other agents can be a¤ected because their output may

be di¤erent, but their e¤orts do not change as in the general case.
16Use the same notation as in the proof of proposition 4. On the equilibrium path, expected outputs

are: x�1 = ��1a
�
1 and x

�
2 = ��2a

�
2 with �

�
2 � ��1 and a

�
2 � a�1. If an agent of type t = 1; 2 deviates to

t0 = 2; 1, ext!t0 = ��t a
�
t0 . Thus, if any agent chooses the right contract, EU1 = 1 �

(a�1)
2

2
= 0, EU2 =

2 + �2x
�
2 �

(a�2)
2

2
= 0. If type 1 imitates type 2, EU1!2 = 2 + �2�

�
1a
�
2 �

(a�2)
2

2
= ��2

�
��2 � ��1

�
a�2 < 0,

while type 2 is indi¤erent: EU2!1 = 1 �
(a�1)

2

2
= 0. It is easy to see that EUP;AI = EU�P . These results

are independent of the precise value of �2.
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3 Hidden e¤orts under asymmetric information

Provided that agents are risk-neutral, ine¢ ciency arises primarily due to the asymmetry of
information, although the principal can get approximately the �rst best would he observe
e¤orts. With hidden e¤orts and asymmetric information, contracts as proposed in Prop. 4
are not available, as wages cannot depend on e¤orts.
Still - also in the general problem - in any k-regular the �rst best e¤orts can be imple-

mented without additional costs with a single (pooling) contract (see Prop. 6 below). What
happens if the network is not regular? Interestingly, a "small" amount of heterogeneity suf-
�ces to yield very di¤erent results. Consider for example a circle network. It is regular and
the principal is able to implement �rst best e¤orts. Now assume that a pair of agents in the
circle are not linked. The network is now a line or chain and from the principal�s viewpoint
there are dn=2e �types�of agents. As we show below, there is no single contract (; �) that
allows the principal to implement �rst best e¤orts.
Remember that the general problem has three stages. First the principal proposes (i)

either a menu of contracts or (ii) a single contract. As we already mentioned, the set of
contracts CT is restricted to wages of the form w (t; yi) = t + �tyi. A contract ct for
individuals of type t (i.e. Bonacich centrality bt) is de�ned by the pair (t; �t). A single
contract is of course independent of t. Then agents simultaneously select (or accept) a con-
tract and �nally they make their e¤ort choices non-cooperatively. The principal�s problem
is thus constrained by both the contract choice subgame and the e¤ort choice subgames.
We solve the model by backward induction starting with the e¤ort choice subgame.
E¤ort network subgame: Our �rst result concerns the existence and uniqueness of

the Nash equilibrium in these subgames where we rely heavily on previous results from
Ballester, Calvó-Armengol and Zenou (2006). Suppose that the principal has o¤ered a
menu of contracts, i.e. a set of pairs (t; �t), from which in the intermediate subgame each
agent chooses one. Agents can choose from any particular pro�le of incentive intensities�!
d = (�1; :::; �n)

T , with each �i 2 f�tgt=1;:::;r. Di¤erent combinations induce di¤erent
network e¤ort subgames. Denote by � = max f�tg the maximum incentive intensity o¤ered
by the principal and let D be a diagonal matrix s.t. diag (D) =

�!
d .

Proposition 5 (e¤ort network subgame) Given any particular g and � satisfying A1.
If � 2 (0; 1

��G
) then an interior Nash equilibrium in the network e¤ort subgame (in pure

strategies) always exists and is unique for any pro�le
�!
d chosen by the agents. For each

�!
d ,

the equilibrium e¤ort pro�le is given by
�!ba = (I� �DG)�1�!d . Given two di¤erent pro�les

�!
d and

�!ed : �!ed 	 �!d =)
�!ea > �!a . E¤ort bai is strictly convex in �i.

Proof. In the Appendix.
E¤orts are proportional to the weighted Bonacich centrality of the agents. Given the

network g and the particular pro�le
�!
d , the vector of weighted Bonacich centralities is

�!
b d =

(I� �DG)�1�!d . Proposition 5 states a su¢ cient condition under which the equilibrium
e¤ort pro�le is interior and unique for any

�!
d chosen in the asymmetric information stage.

Equilibrium e¤orts increase along with the incentive intensities
�!
d . This implies that

when any agent is either o¤ered or chooses a higher �i, not only she but also all the agents
connected to her through some path will increase their e¤orts etc..... This "contagion"
e¤ect is modulated by �, the incentive intensity and the distance between any two agents.
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Fixing the others�marginal participations, the e¤ort of agent i can ex ante be interpreted
as a continuous, increasing and strictly convex function of �i.17

The asymmetric information stage: The principal wants to induce each agent of
type t to choose the contract ct = (t; �t). All agents must participate and the contracts
chosen must be part of a Nash equilibrium of this intermediate subgame. Strategies map
from Cn�1T ! CT a typical strategy being interpreted as a contract. Consider any agent i
of type t. She will participate and choose contract ct = (bt;b�t) if and only if:18

bt + b�txt(i)(bat(i)(b�t;b��i);ba�i)� ba2t(i)(b�t;b��i)
2 � 0 ; and (1)

bt + b�txt(i)(bat(i)(b�t;b��i);ba�i)� ba2t(i)(b�t;b��i)
2 �

t0 + �t0xt(i)(eat(i)(�t0 ;b��i);ea�i)� ea2t(i)(�t0 ;b��i)
2 ; 8t0 6= t

(2)

Condition (1) is the participation constraint (PC) and (2) de�nes the set of incentive
compatibility constraints (IC) for any agent i. Note that the expected output of the devia-
tion payo¤s includes not only another e¤ort for agent i but also for the rest of agents. The
multiple-agent dimension of the model implies that when any agent deviates, the e¤orts
of other agents do generally change. As deviations in the contract choice yield a di¤erent
pro�le of e¤orts, they constrain the principal�s problem (even if such deviations will not
occur on the equilibrium path of the full game).

The principal�s full problem: Even if the principal doesn�t know who is who in
the network, he knows the underlying graph of the network g. He can anticipate e¤orts,
expected outputs and expected utilities for each position. Write the expected output as
xi =

a2i
�i
. Then the principal�s expected utility can be written as EUP =

P
i2N

((1 � b�i)bxi �
bi) = P

i2N
(
(1�b�i)b�i ba2i � bi). In matrix form:19

EUP =
�!bd TQ�!bd ��!bh T�!1 (P)

with Q = ((I� �DG)T )�1
�
D�1 � I

�
(I� �DG)�1 and

�!bh being the vector of i�s on
the equilibrium path of the full game. Participation and incentive compatibility constraints
can also be simpli�ed by incorporating the binding Nash equilibrium conditions of the
network e¤ort subgames:

17That is, when at the �rst stage the principal chooses the set of contracts, he can consider e¤ort functions
as continuous in �. Once the optimal set of contracts is determined, these e¤ort functions are not continuous.
Each e¤ort function is a collection of points, one per each particular �t o¤ered.
18 Index �t(i)� denotes agent i of type t; index ��i�, all the agents but i. Recall that any deviation is

unilateral; only agent i deviates, while any other agent j 6= i (including those of the same type t) does not.
19On the equilibrium path of the full game:

P
i2N

�
1� b�i� bxi =

�!ba T (D�1 � I)
�!ba where

�!ba =

(I� �DG)�1
�!bd and diag(D) =

�!bd . It follows that
P
i2N

(1 � b�i)bxi =
�!bd TQ�!bd with Q =

((I� �DG)T )�1
�
D�1 � I

�
(I� �DG)�1, QT = Q. It is easy to see that Q is symmetric; for D is

diagonal and so it is
�
D�1 � I

�
.
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bt + ba2t(i)(b�t;b��i)2
� 0;8t (1�)

bt + ba2t(i)(b�t;b��i)2
� t0 +

ea2t(i)(�t0 ;b��i)
2

; 8t0 6= t (2�)

The principal�s expected pro�t and all the constraints are now functions of the elements
of the set of contract CT = f(t; �t)g t = 1; :::; r. Optimal contracts f(t; �t)g t = 1; :::; r
maximize EUP (P) subject to the set of constraints de�ned by (1�) and (2�).
We now discuss the solution in two alternative scenarios: 1) when there is only one

contract available (single contracts) and 2) when the principal o¤ers a set of self-selecting
contracts. In general, of course, the principal�s expected pro�ts rise whenever he o¤ers a set
of contracts instead of a single (pooling) contract. However, in many real life circumstances,
the principal is not allowed to o¤er di¤erent contracts and the pooling contract is the unique
alternative. We mostly rely on some simple numerical examples to show the e¤ect of
di¤erent pattern of connections and the size of the e¤ort externality � on optimal contracts
and principal�s expected pro�t.

3.1 Single contracts

Suppose that the principal o¤ers a single contract c = (; �) to all agents caring only about
their participation. Given the contract o¤ered, e¤orts are proportional to non-weighted
Bonacich centralities with parameter ��. The principal knows in advance that agents with
the minimum centrality will exert the minimum e¤ort and expected output. He chooses
the �xed term  such that these agents earn in expectation their reservation utility. The
rest of agents will receive participation rents. Denote by X (�) the total expected output
and by ba1(�) the e¤ort exerted by agents with the lowest centrality.
Proposition 6 (single contract) Under A1: If the principal o¤ers a single contract c =
(; �), such that wi =  + �yi 8i 2 N , then the optimal contract has b� satisfying b� =
1� 1

@X(b�)
@�

h
X(b�)� nba1(b�)@ba1(b�)@�

i
and b = �ba21(b�)

2 . E¤orts are
�!ba = b�(I� b��G)�1�!1 . When

the network is k - regular, b (k) = � 1
2(1�2k�)2 and

b� (k) = 1
1��k and the �rst best is achieved;

otherwise EUbP;SC < EU�P .
Proof. In the Appendix.
Agents�expected utility depends on their position in the network. Each agent i of type

t earns in expectation the increment in her e¤ort-cost with respect to the agents of lowest

centrality, type 1: EUt(i) =
ba2t (b�)
2 � ba21(b�)

2 � 0.20
How do the structure of the network and the size of the local externality � a¤ect the

incentive intensity b� and the expected utility of the principal? We will illustrate the relation
between b� and � for some paradigmatic networks. We measure the cost for the principal
in terms of his expected utility through the ratio

EUbP;SC
EU�

P
as a function of �, where EUbP;SC

20The expected utility of an agent i of type t is given by: EUt(i) = b + b�bxt(i)(b�) � ba2t(i)(b�)
2

= � ba21(b�)
2

+ba2t (b�)� ba2t (b�)
2
. Recall that from best responses in the e¤ort subgame, b�bxt(b�) = ba2t (b�).
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(EU�P ) is the principal�s expected utility under the single contract (�rst best). This ratio
allows us to compare di¤erent networks, as �rst best allocations change along with the
pattern of interactions. In all the networks discussed below n = 12, and with the exception
of the exclusive groups networks, all are connected.21

Given �, through a high-powered incentive b� the principal induces high e¤orts. There are
two e¤ects: 1) given the e¤orts of the neighbors of any agent, a higher marginal participation
on her output motivates her to exert a higher e¤ort (direct e¤ect); and 2) since � scales �,
network externalities are stronger (indirect e¤ect).
As in equilibrium b�bxt(i) = ba2t(i), the principal pays in expectation to each agent two

times her cost; while through the �xed term b, the principal recovers from each agent an
amount equivalent to the cost exerted by the agents with the lowest centrality. A high value
of b� increases total output, leaves the principal with a lower share, but at the same time
as ba1(b�) is larger, raises his �xed pro�ts; A low value of b� reduces total output and �xed
pro�ts, but augments the principal�s marginal participation.

(�gure 1)

Our examples show that the incentive intensity b� can be R 1, depending on the particular
network and interaction strength �. The relation between b� and � is in general non-
monotone, but smooth. With the exception of the exclusive group(s) networks (�gure 2),
the function b�(�) has a minimum. When peer e¤ects are weak (small �), the principal �nds
it optimal to increase his participation on total output (decreasing b�), at the cost of low
�xed returns. Network externalities are not so important, and the principal will not be able
to recover through the �xed terms his share on total output because agents with the lowest
centrality exert too little e¤ort. On the contrary, when � is su¢ ciently high (increasing

21The graphs are given in the Appendix.
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b�(�)), the principal gives a higher marginal participation to agents but obtains higher �xed
pro�ts.

Remark A more formal argument goes as follows: Consider the self-consistency condition
for b�, b� S 1 () X

n R x1+b��ba1	1.22 Here X
n is the average expected output, x1 the

expected output of type 1 and b��ba1	1 is the marginal increase in type 1�s output due
to indirect e¤ects (	1 =

P
j2N1(i)(g)

@a
t0(j)(b�)
@� , see footnote 22). When � is very small,

indirect e¤ects are negligible for any reasonable �, therefore X
n > x1 + b��ba1	1 andb� < 1. As long as � increases, by decreasing � he still induces an average output

higher than x1 + b��ba1	1. This continues until � is so high that it is optimal to set
� so that the inequality is reversed. Of course this e¤ect is more important when the
fraction of agents with lowest centrality is relatively large, as in the star or in the
interlinked stars (�gure 1-(a)). Only the hubs obtain participation rents and they
interact with all the other agents. Therefore, when � is relative high, the principal
gives a high share on outputs, so that the hubs�externalities are larger.

(�gure 2)

A special case is the exclusive group network EG1 (�gure 2). There are two separate
k�-regular components (� = 1; 2), with similar connectivity k1 < k2. Here, for any given �
and �, participation rents are paid to all agents in the larger component. However, as the
di¤erence k2 � k1 is small, such rents are small. For � small, it is optimal to give agents
an increasing share on their output, and the opposite when � is large. In EG2 and EG3,b� decreases monotonically along with �.
With respect to the principal�s bene�ts, note that in equilibrium, agents in di¤erent

positions exert e¤orts such that their ratio of marginal cost of e¤ort to marginal productivity

22Using best response functions,ba1(i)(b�) @ba1(i)(b�)@�
= x1(i)(b�) +b��ba1(i)(b�) P

j2N1(i)(g)

@a
t0(j)(b�)
@�

; simplifying notation and as for any agent of

type 1,
P

j2N1(i)(g)

@a
t0(j)(b�)
@�

takes the same value, ba1 @ba1@� = x1 + b��ba1	1 (note that 	1 > 0). From the

self-consistency condition for b�, b� S 1 () X(b�)
n

R ba1(b�) @ba1(b�)@�
= x1 + b��ba1	1.
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are all equal to b�.23 This constraints the possibilities for the principal to achieve the �rst
best, as such �rst best ratios are increasing along with the centrality.24 From our examples

we learn that the relative ine¢ ciency (measure by
EUbP;SC
EU�

P
) increases with � for any given

network.

(�gure 3)

Across networks, we would like to stress some observations. First, and quite intuitively,
the relative ine¢ ciency is in general larger when the variability of Bonacich centralities is
larger.25 Second, with respect to topological properties of the networks, when networks are
more densely connected, the ine¢ ciency is larger (for any �) than when networks are sparse.
(See for example the star vs. the interlinked stars, the core-periphery networks or the lines
and �modi�ed lines�). For networks with the same density and the same number of types,
the principal loses relatively more when the variance of the connectivity is higher. We show

this through the case of the trees with four types (�gure 3-(a)).26 The ratio
EUbP;SC
EU�

P
is also

23Marginal cost is MCt = bat(i), marginal productivity MPt = 1 + �
P
j2Ni(g) bat00(j); then b� = MCt

MPt
=

MCt0
MPt0

8t 6= t0.
24 Indeed, it is quite easy to see that such ratios are increasing along with the type in the �rst best case.

From contracts o¤ered under moral hazard (Prop. 2) that allow the principal to achieve the �rst best, and
using the same notation as in the proof of Prop. 4:

MCt
MPt

= �t(i) = 1 +
��t�1
��t

=
2��t�1
��t

MCt
MPt

� MCt0
MPt0

=
��t��

�
t0

��t�
�
t0

> 0 () t > t0.
25The latter can be measured as the standard deviation of �rst best e¤orts, for a given � in the range

s.t. all networks can be compared.
26The structure of each tree is similar. There are two agents interconnected, and each of them linked

to other (end) nodes, n1 and n2 respectively, with n1 < n2 and n1 + n2 = n � 2. In all of them,
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negatively correlated to the average clustering (see the core-periphery networks in �gure
1-(b)).

3.2 Menu of contracts

In this subsection, we assume that the principal o¤ers a menu of contracts CT = f(t; �t)g; t =
1; :::; r, where contract ct = (t; �t) is directed towards agents of Bonacich type t. The op-
timal set CT solves the complete program de�ned by (P) and the set of constraints (1),
(2). Typically in these kind of models, the main di¢ culty resides in reducing the number of
constraints to a more tractable set. We have already relaxed the restrictions on the e¤ort
functions, since we know that Nash equilibria at that stage are unique and interior for each�!
d . With respect to the rest of constraints, we also know that the cost of the principal is
minimized if informational rents are minimized and that this occurs whenever any agent
of type t is exactly indi¤erent between contract ct and ct�1. Now the principal has r � 2
instruments to induce such behavior.
First, the principal will �nd it optimal to induce on-the-equilibrium-path e¤orts that

preserve the order of the non-weighted Bonacich centralities. In other words, agents�e¤orts
will be increasing in type. A su¢ cient condition is that incentive intensities �t are weakly
increasing along with types. It follows that if �t � �t0 () t � t0, necessarily, t � t0 , or
else agents of (lower) type t0 would �imitate�(higher) type t. Second, through the marginal
incentives the principal is able to induce (on- and o¤-the-equilibrium-path) e¤orts of agents
in di¤erent positions (types) such that agents reveal their types at the minimum cost for the
principal. As the e¤ort of any agent can be interpreted as an increasing and strictly convex
function of her incentive intensity (see Prop. 5), the principal can a¤ect e¤ort functions
by manipulating marginal participations. In Prop. 7 we assume that these relations are
induced, and show that the set of relevant constraints are the local downward incentive
compatibility and the participation constraint of the lowest type (t = 1). Contracts with
these features are incentive compatible and individual rational (all agents participate).
Agents of high centrality reveal their type if they are paid informational rents, and the
minimum rent is is such that any type t is exactly indi¤erent between contract ct and ct�1.
Prop. 7 state the su¢ cient conditions.

Proposition 7 (menu of contracts) Assume A1. If the principal o¤ers a set of con-
tracts CT = f(bt;b�t)g, t = 1; :::; r (wt(i) (yi) = bt + b�tyi) with b�t � b�t�1, bt � bt�1 8t
such that at(i)(�� ;b��i) � at0(j)(�� ;b��j) and at(i)(�� ;b��i)�at(i)(�� 0 ;b��i) � at0(j)(�� ;b��j)�
at0(j)(�� 0 ;b��j) 8t � t0;8�� ; �� 0 2 CT : �� � �� 0 , then the set of relevant constraints are
the local downward (IC)-conditions and the participation constraint of type 1: For any (non
regular) g, expected utilities are EUbP;MC 2 [EUbP;SC ; EU�P ) and EUt(i) � EUt�1(j).
Proof. In the Appendix.

k =
2(n1+n2+1)

n
= 2n�1

n
. The second moment is

P
i
k2i
n
= (n � 1) � 2n1

�
1� n1+2

n

�
. Then V ar(k)T1 >

V ar(k)T2 > V ar(k)T3 > V ar(k)T4.
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(�gure 4)

It should be clear that at(i)(�� ;b��i) is the equilibrium e¤ort of agent i of type t in the
subgame when all other agents choose the �right�contract and agent i chooses contract �� .
If �� = b�t; then at(i)(�� ;b��i) = at(i)(b�t;b��i) is i�s e¤ort on the equilibrium path of the full

game. On the other hand, at0(j)(�� ;b��j) is the e¤ort of any agent j of a lower type than i,
in the subgame where all the other agents are choosing the right contract, while j chooses
�� . We illustrate what Prop. 7 implies in �gure 4. The �gure depicts the case of a star of
n = 12 agents, for � = 0:12 (panel (a)) and � = 0:145 (panel (b)). The e¤ort of type 2,
the hub, is evaluated for all spokes choosing b�1, while e¤ort of type 1, any of the spokes, is
evaluated at all the n� 2 spokes choosing b�1 and the hub, b�2.
The principal sets �xed terms bt in terms of the incentive intensities so that total cost

is minimized. That is, b1 = �ba21(i)(b�1;b��i)
2 and bt = bt�1 � (ba2t(i)(b�t;b��i)2 � ea2t(i)(�t�1;b��i)

2 ).
We rely on the same numerical examples as in Section 3.1 to show more details of the

incentives�schemes for di¤erent networks. Proposition 7 doesn�t account for one important
result: Full separation among di¤erent types is not always optimal. Depending on the
particular network and the degree of interaction parametrized by �, the principal sometimes
obtains higher pro�ts if he o¤ers a set of contract CT with (almost) partial bunching of
types.27 Formally this occurs whenever some constraint b�t � b�t�1 almost binds. In these
27 In partial bunching contracts, two marginal incentives �t; �t0 are equal up to six (6) decimal places.
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cases, the principal o¤ers less contracts than there are types as some contracts are intended
for agents of di¤erent types.
We depict optimal marginal incentives, b�t(�) and expected utilities of agents (since

U = 0, EUt is equal to the informational rent type t receives). Again we measure the

principal�s losses with respect to the �rst best with the ratio
EU^

P;MC

EU�
P

and we show the
relation between the e¤ort induced by self-selecting contracts and the �rst best e¤ort for
each type t, bata�t .

(�gure 5)

Connected Networks Consider the connected networks with 2 types, star and inter-
linked stars and core-periphery networks. Single contracts are never optimal (unless � = 0)
and thus the principal always o¤ers two contracts. As long as � increases, the principal of-
fers an increasing share to agents with higher centrality. This continues until � is su¢ ciently
high where both marginal incentives start to converge (b�2 decreases and b�1 increases).The
di¤erence b�2 � b�1 is thus maximized for some intermediate �. The intuition isas follows.
When � is very small peer e¤ects are negligible, and e¤orts are bat ' b�t. Perfect revelation
is obtained at very small costs. On the other extreme, when interaction is intense, the
principal optimally sets the di¤erent incentive intensities such that when the high type (the
hubs in the stars or the centers in the core-periphery networks) imitates the low type, her
induced e¤ort is "almost" equal to the e¤ort of the low type on the equilibrium path.
However, while the principal doesn�t pay informational rents, the �rst best is not

achieved.28 See for example the ratio of principal�s utilities of the star (�gure 5). There

That�s why we add the term �almost.�
28Note that in all the networks where there are two types, the principal can choose di¤erent contracts

such that both types are left on their reservation utility. This is not optimal when � is low, because as
necessarily ea2(�1;b��i) ' ba1(b�1;b��j), the principal will have to set �1 at a very low value, and both types�
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are several �critical� values of � ranked as follows �1 < �2 < �3 < �4. �4 is the value
above which the principal doesn�t pay informational rents to the hub (and corresponds
roughly to the maximum incentive intensity o¤ered to these agents). Still the ratio of ex-
pected utilities is lower than 1 until � is at its upper bound. The reason is that even if the
principal doesn�t pay informational rents, he is distorting e¤orts. In the interval (�1; �3),
all agents are induced to exert lower e¤orts than in the �rst best. At the extremes, we
observe that the hubs �e¤orts are oversupplied. At last, for �2 the ine¢ ciency is maximal

(minimum
EU^

P;MC

EU�
P
). For the interlinked stars, the interval (�1; �3) is larger. In the case of

core-periphery networks, we observe that center nodes exert higher e¤orts than in the �rst
best only for � close to � (see in �gure 6 the ratio of e¤orts for CP1 and CP3).

(�gure 6)
Exclusive Group Networks In the exclusive groups network EG1 there are also two
types (�gure 7). This is the only example in which the single contract is optimal for a
range of � 2 [0; �0), �0 < �. The reason is that when � is relatively small, agents in
di¤erent groups have similar centralities. If the principal o¤ers a single contract, agents in
the larger group receive participation rents. It turns out that choosing the same marginal
participation �f1;2g for both types these rents are less than the informational rents that
the same agents would receive.29 Another characteristic of exclusive groups is that when
groups are complete subgraphs (as they are in our examples), the ratio batba�t is approximately
proportional to b�t. This is simply because when all k� agents within a group are of the
e¤orts will be exaggeratedly downward distorted.
29Recall that under the single contracts, any agent of type 2 receives EU2(i) =

ba22(b�)
2

� ba21(b�)
2
. With a

menu of contracts with b�2 > b�1, EU2(i) = ea22(�1;b��i)
2

� ba21(b�1;b��j)
2

. When � is relatively low, and since the

components are complete, when any agent of type 2 imitates type 1, her e¤ort ea22(�1;b��i) ' ba22(b�2;b��i),
unless b�1 is very low. But then, if b�1 is very low, the surplus of low types are low, and this a¤ects negatively
the principal�s pro�ts.
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same type, the e¤ort of any of them is bat = b�t
1�b�t�k� , while in the �rst best, a�t = 1

1�2�k� .

In all the networks where there are more than two types, we observe that there will be
bunching at the optimum. That is, the principal o¤ers some contracts which are intended for
more than one type. For a given network, which types will be pooled depend on the strength
of interaction �. For example, in EG2 (�gure 7), there are three complete components of
di¤erent connectivity. For any �, the principal o¤ers two contracts, one for low types, with
incentive intensity �f1;2g, the other for the agents in the largest component (t = 3). In EG3,
there are 4 positions, including one isolated agent. Unless � is large, the principal o¤ers
three contracts, pooling agents of types 2 and 3. When � is large, he o¤ers two contracts,
only discriminating agents in the largest component.

(�gure 7)

Tree Networks In general, the qualitative relation between the network structure,
peer e¤ect�s parameter � and contracts becomes more complicated as the number of types
increases. See for instance the tree networks with 4 types (�gure 8; for T1, not shown,
the contracts are similar to T2). As we mentioned before, these networks display the same
average connectivity but di¤erent dispersion. In the case of T3, the relation between the
incentive intensities and � is not always �smooth.�For � low, two contracts are o¤ered, one
for high types, the other for low types. As � increases, the principal o¤ers a di¤erent contract
for the highest type. But then, there is a higher value of � above which the principal pools
intermediate types. This last transition implies a dramatic change in marginal incentives
for all agents. For some interaction patterns, the degree of bunching decreases with �.
Consider, for example, the line (�gure 10). As long as � increases, the principal o¤ers more
contracts, separating progressively lower types, i.e. agents at the end of the line (t = 1),
agents connected to them (t = 2), and so on. In the case of ML2, the behavior is similar,
and it is the unique case with more than two types in which (for � high) full separation is
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optimal. Full separation can be also optimal for intermediate values of �, as it is shown in
�gure 9, for a tree with 4 types, but n = 8.

(�gure 8)

(�gure 9)

21



(�gure 10)

The principal�s pro�ts The principal improves his pro�ts compared to single con-

tracts. Given g, the relation between
EU^

P;MC

EU�
P

and � can be non-monotonous, specially
when there are two types. Across networks, the relation between some topological prop-

erties of g, � and the ratio
EU^

P;MC

EU�
P

may change. As an example consider again the tree
networks (�gure 8). Recall that when the principal o¤ers a single contract, for all �, he
loses more when the variance of connectivity is high. With the menu of contracts, this
relation depends on �. Compare the networks T1 and T4 (highest and lowest variance,
respectively). In practice, the �rst network is almost a star except for the agent connected
to one of the �spokes.�On the contrary, in T4 there are two hubs, one more connected than
the other. In the interval (0; �y), the principal obtains the maximum ratio for T4, above
�y, for T1.

30

In the last �gure (�gure 11) we show for some of the networks the ratio
EU^

P;SC

EU^
P;MC

, as

a measure of how costly is to o¤er a pooling contract instead of the set of contracts. A
small ratio implies a high cost in terms of utility. When peer e¤ects are important, for
some networks the single contract may be really counterproductive, as for the star or the
core-periphery network.31

30The relation among the ratios for the other two networks also changes. Indeed, for � low the order is the
same as with single contracts; then progressively, we observe how the order changes, until it is completely
reversed for high �.
31This result is in some sense related to Winter (2004). In a principal-multiple agents model with identical

agents, Winter �nds that optimal incentive mechanisms may require that agents be rewarded di¤erentially
even if they are identical and are induced to act the same. Discrimination is optimal if and only if the
technology has increasing returns to scale. In our model the technology has increasing returns to scale,
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(�gure 11)

In synthesis, when the principal o¤ers a set of contracts, highly central agents are given
high-powered incentives (high �t), while low types�marginal incentives are low-powered. If
there are more than two types, the principal may �nd it optimal to o¤er the same contract(s)
to agents in di¤erent positions (bunching). The structure of the network together with the
strength of peer e¤ects determine which types will be optimally pooled and shape the level
of the incentive intensity o¤ered to each type. Even if full separation is not always optimal,
some degree of discrimination may be preferable. When such discrimination is possible (i.e.
if the principal can o¤er di¤erent contracts) and peer e¤ects are strong, for some simple
networks as the star, the principal is able to reduce considerably his losses with respect
to the full information setting. Furthermore, always if peer e¤ects are important, some
topological properties of the networks may be valuable for the principal, as for instance, a
high variability in the agents�connectivity. Although the principal obtains higher pro�ts
than with a single contract, there may be additional administrative costs - not considered
here - associated to the menu of contracts. If the size of e¤ort externality is relatively
low, for some structures these additional costs can o¤set higher pro�ts. However, for some
networks, in particular those with high variability in the connections or with high clustering,
probably it would be still convenient to o¤er di¤erent contracts.

4 Conclusions

We have analyzed the e¤ect of informal networks on a static principal-multiple agents
model. Agents�interaction is shaped by the given network of informal contacts, where links
are interpreted as mutual advise or peer e¤ect. Thus individual outputs depend positively
on own e¤ort and nearest neighbors�e¤orts. The principal then should compensate agents
according to their position in the network. When e¤orts are not observable and the principal
has imperfect information about the informal network, he can induce agents to exert some
desired level of e¤orts through incentives. In particular, we assume wages that are linear in
individual outputs. The structure of the network together with the size of e¤ort externality
impinge on the structure of such incentives. Under risk neutrality and absence of limited

but agents are not induced to choose the same e¤ort. However, if we allow only for two levels of e¤orts,
high and low, and if the principal wants to induce all agents to choose the high e¤ort, we would have still
increasing returns to scale and o¤ering di¤erent wages would be better than a common wage.
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liability constraints, the principal can obtain the highest pro�ts (�rst best) if either he
observes e¤orts or knows the position of each agent in the social network. When both
problems, moral hazard and adverse selection, are present, the principal�s best alternative
is to o¤er a self-selecting menu of contracts. At the optimum, however, there may be less
than perfect revelation, as the principal may pool some types into the same contract. The
degree of bunching depends on the network and for each given network, on the strength of
peer e¤ects.
In our model, agents know exactly the whole network. The principal knows only the

underlying graph, thus ignores the exact position of each agent. Of course, other informa-
tional settings can be more realistic; in this sense, this work is a �rst step. When informal
networks are large and/or relationships are volatile, agents would have less than perfect in-
formation about the network. For example, if agents only know to whom they are connected
with, the e¤ort subgame would be interpreted as a Bayesian game where in practice, each
agent estimates her neighbors�externality as ki(g) times the expected e¤ort of a typical
neighboring agent.32 Consistently with this information, the principal would know only
the distribution of connectivity. If so, the problem becomes approximately isomorphic to
a principal-one agent model. This is not necessarily a disadvantage, inasmuch as on the
other hand, it would be possible to work with more complex networks than the ones we
presented here, and to infer more general conclusions about di¤erent topologies.

32See also Galeotti and Vega-Redondo (2005) and Galeotti et al (2006).
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A Appendix

The following results will be used in some of the proofs. Denote by G the adjacency matrix
of a network g with undirected and simple graph; �G its eigenvalues and �G = maxf�Gg.
Brouwer and Haemers (2003) (BH): (i) For any G, all �G are real. (ii) If G is not
connected, with separate connected components G�, the spectrum (the set of eigenvalues)
of G is the union of the spectra of G�. (iii) Each connected G has an unique �G > 0, with
j�Gj < �G. The function �G(G) decreases when vertices or links are removed from g. (iv)
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From (ii) and (iii) it follows that if G is not connected, there exists �G > 0 that is equal to
the maximum eigenvalue of the component of maximum size (with more nodes) and more
densely connected (with more links). If there are only one such large component, �G is
unique. (v) G is irreducible (or indecomposable) if and only if the graph is connected. (vi)
If G is irreducible (or indecomposable) then kmin < k < �G < kmax, where kmin, k, kmax
are the minimum, average and maximum connectivity (or degree); in particular if g is a
k-regular graph, �G = k. (vii) If G is not connected, k � �G � kmax, and if �G = kmax
we only know that G has a component k-regular, although there may be other non-regular
components. Debreu and Herstein (1953) (DH): (viii) For any G, (sI�G)�1 = 0
() s > �G (Theorem III*); if G is indecomposable (i.e. g is connected), (sI�G)�1 > 0
() s > �G (Theorem III). (ix) For any matrix A = 0 indecomposable, its maximum
eigenvalue increases when any element of A increases (Theorem I); if A = 0 is square, its
maximum eigenvalue doesn�t decrease when an element of A increases (Theorem I*).

Proof of Proposition 1

The principal�s problem is:

max
fai;wigi2N

EUP =
P
i2N

[(1 + �
P

j2Ni(g)

aj)ai � wi]; s:t:wi �
a2i
2
� 0; i = 1; :::; n

Denote by �i the Lagrangian multiplier associated to each individual�s participation

constraint. From �rst order conditions it follows that for i = 1; 2; :::; n and �i = 1, wi =
a2i
2 .

Solve the problem maxfaigi2N EUP =
P

i2N [(1 + �
P

j2Ni(g)
aj)ai � a2i

2 ], which in turn
implies that the solution (if it exists) is e¢ cient. First order conditions are 1+�

P
j2Ni(g)

aj+P
j2Ni(g)

�aj � ai = 0 =) ai = 1 + 2�
P

j2Ni(g)

aj . Rewrite the n equations in matrix form:

(I� 2�G)�!a = �!1 . By DH, Theorem III*, (I� 2�G)�1 = 0 () 1 > 2��G. Under A1,
the candidate is:

�!a � = (I� 2�G)�1�!1 (3)

Second order conditions. The matrix of second order derivatives H (of the relaxed
problem) has elements @2UP

@a2i
= �1 8ii and @2UP

@ai@aj
= 2� if j 6= i; j 2 Ni (g), @2UP

@ai@aj
= 0

otherwise. In compact form H = � (I� 2�G). Therefore �!a � = argmaxEUp () H is
negative de�nite () all its eigenvalues �H are negative (�H < 0). �H = (�1) (1� 2��G)
for all the eigenvalues of G, �G. If �G � 0 =) �H < 0. If �G > 0 under A1 2��G �
2��G < 1 =) �H < 0.33 To obtain EU�P note that in matrix form EUP = (

�!
1 +

�G�!a )T�!a � 1
2
�!a T�!a = �!1 T�!a � 1

2
�!a T (I� 2�G)�!a .

Finally, from 3, (I� 2�G) @�!a �

@� �2G
�!a � = �!0 =) @�!a �

@� = 2 (I� 2�G)�1G (I� 2�G)�1�!1 =
0; @

2�!a �

@�2
= 8 (I� 2�G)�1G (I� 2�G)�1G (I� 2�G)�1�!1 = 0; and as EU�P = 1

2

�!
1 T�!a � =)

@EU�
P

@� > 0 and @2EU�
P

@�2
> 0.34�

33The set of eigenvalues of (I� 2�G) is f(1� 2��G)g where �G are the eigenvalues of G. Then, by
eigenvalues�properties, as H = � (I� 2�G), �H = (�1)(1� 2��G).
34 @�!a �

@�
( @

2�!a �
@�2

) is the n � 1 vector of �rst (second) derivatives. If any agent i is isolated, a�i = 1, thus
@a�i
@�

= 0 and @2a�i
@�2

= 0, otherwise the e¤ort is a strictly increasing and strictly convex function of �. It

29



Proof of Proposition 2

Denote by
�!
d the n � 1 vector of marginal incentives �i and D a n diagonal matrix

s.t. D = diag(
�!
d ). Consider case (i), wi = i + �iyi. The payo¤s of the induced network

subgame are: EUi = i + �i(1 + �
P

j2Ni(g)

aj)ai � a2i
2 . Best response functions are: bai =

�i(1 + �
P

j2Ni(g)

baj); in matrix form:
�!ba = �!d + �DG�!ba (4)

Under case (ii), wi = i+�i(yi+
P

j2Ni(g)

yj), payo¤s are: EUi = i+�i[(1+�
P

j2Ni(g)

aj)ai+P
j2Ni(g)

(1+�
P

s2Nj(g)

as)aj ]� a2i
2 . Best response functions are: bai = �i(1+2� P

j2Ni(g)

baj); and
the system is:

�!ba = �!d + 2�DG�!ba (5)

Since contracts can be personalized in both cases, the principal is able to extract to
each agent her expected surplus. Therefore, in case (i): i = ��ibxi + ba2i

2 ; and case (ii):

i = ��i(bxi + P
j2Ni(g)

bxj) + ba2i
2 . All agents participate and in expected terms the allocation

of total output is feasible. Given these �xed terms, in both cases EUP =
P
i2N

(xi � wi) =P
i2N

(xi � a2i
2 ). We know that �rst best e¤orts a

�
i maximize this function. It follows that if

(i) �i =
1+2�

P
j2Ni

baj
1+�

P
j2Ni

baj = 1+
�
P
j2Ni

baj
1+�

P
j2Ni

baj , the RHS of (4) =)
�!
d + �DG

�!ba = �!1 +2�G�!ba =)

�!ba =
�!
1 + 2�G

�!ba =)
�!ba = �!a � as eq. (4) becomes eq. (3); and in case (ii) �i =

1 =)
�!ba =

�!
1 + 2�G

�!ba =)
�!ba = �!a � as eq. (5) becomes eq. (3). In both casesbai = a�i =) EUP = EU

�
P . Note that under A1 the equilibria in the e¤ort subgames are

interior and unique.�

Proof of Proposition 3

Suppose that the principal induce agents of di¤erent types to exert di¤erent levels of
e¤orts. Without loss of generality, assume they are increasing in type; i.e. bat � bat0 ()
t � t0. Then all agents participate if w (bat) � w (bat0). If the principal extracts all the surplus
to each agent, for any type t, w (bat) = ba2t

2 . Agents do no di¤er with respect to cost functions,
therefore given this set of wages (fw (bat) ;batgt=1;:::;r), all agents are indi¤erent among any
of them.35 Any combination is a priori equally likely, hence the principal cannot induce
one particular e¤ort pro�le and in expectation, anticipates that any agent chooses the same

follows that EU�P =
1
2

P
i2N a

�
i is also strictly increasing and convex wrt � unless all agents are isolated.

35As is standard in this literature, incentive compatible contracts can be such that some types are
indi¤erent between two contracts, but at least one type must strictly prefer the contract featured for her.
Thus for example, if there are two types, high and low, the high type�s contract leaves high type indi¤erent
between that contract and the contract o¤ered to the low type; but the low type has strictly no incentives
to imitate high type.
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e¤ort level. On the other hand, following standard arguments, suppose that the principal
pays informational rents to agents of high types. In this case, because agents do not di¤er
with respect to their cost functions, they all would choose the same contract that leaves
agents with the higher informational rent. Wages depending only on e¤orts are not incentive
compatible. The best the principal can do is to o¤er a common wage in exchange for the
same level of e¤ort to all agents and extract all the surplus: w = a2

2 . The principal�s relaxed

problem would be maxaEUP = Ef
P

i2N [(1 + �kia) a + "i � a2

2 ]g = n[
�
1 + �ka

�
a � a2

2 ],
where ki (g) is the number of neighbors i has (degree or connectivity) and k is the average
connectivity of network g.36 Optimal e¤ort would be (solve FOC): ea = 1

1�2�k . Under

A1, ea > 0 because k � �G (by BH). Second order condition is @2EUP
@a2 = 2�k > 0. Givenea, gEUP = n 12

1
1�2�k .

gEUP is obtained maximizing the same function as in the �rst best
situation plus the constraint ai = a 8i 2 N , therefore,gEUP � EU�P and only if the network
is k-regular =) k = k =) ea = 1

1�2�k = a
� and gEUP = EU�P , otherwise gEUP < EU�P .�

Proof of Proposition 4

Given the set of contracts, each agent i of type t participates and chooses contract ct if

t+�tx
�
t(i)�

(a�t(i))
2

2 � 0 and t+�tx�t(i)�
(a�t(i))

2

2 � t0+�t0ext(i)!t0�
(a�
t0(i))

2

2 ;8t0 6= t. As �rst
best e¤orts are proportional to Bonacich centralities, a�t � a�t0 and x

�
t � x�t0 () t � t0.

For any agent i of type t, x�t(i) = x�t = (1 + �
P

j2Ni(g)

a�t0(j))a
�
t(i). For simplicity, denote

by ��t = (1 + �
P

j2Ni(g)

a�t0(j)), the factor that depends on neighbors��rst best e¤orts, thus

x�t = �
�
ta
�
t . Note that �

�
t � ��t0 () t � t0; and that when any agent of type t deviates

unilaterally to another type t0, ext!t0 = ��ta
�
t0 as the rest of agents are choosing the right

contract.37 Now consider the contracts proposed. Assume that �t = " > 0. We show
that the relevant constraints are the local downward incentive constraints (LDIC) and the
participation constraint of type 1. Su¢ ciency of local incentive compatibility conditions:
Consider three types t + 1; t; t � 1. From the set of IC constraints, the following relations
should hold in equilibrium:

"��t
�
a�t � a�t�1

�
� (a�t )

2�(a�t�1)
2

2 � t�1 � t
� "��t�1

�
a�t � a�t�1

�
� (a�t )

2�(a�t�1)
2

2

(6)

"��t+1
�
a�t+1 � a�t

�
� (a

�
t+1)

2�(a�t )
2

2 � t � t+1
� "��t

�
a�t+1 � a�t

�
� (a

�
t+1)

2�(a�t )
2

2

(7)

"��t+1
�
a�t+1 � a�t�1

�
� (a

�
t+1)

2�(a�t�1)
2

2 � t�1 � t+1
� "��t�1

�
a�t+1 � a�t�1

�
� (a

�
t+1)

2�(a�t�1)
2

2

(8)

36Strictly speaking, this average takes into account all the possible positions an agent would have given
a particular network g; since any of these isomorphic structures arises with equal probability, it turns out

that k can be directly calculated from any typical g as the mean k =
P
i2N ki(g)

n
.

37For simplicity we drop the subindex i.
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It is easy to see that the three relations de�ne non-empty ranges for the di¤erences of
�xed terms. (6) and (7) are local incentive compatibility conditions. Suppose that both are
satis�ed and sum them:

"��t
�
a�t � a�t�1

�
+ "��t+1

�
a�t+1 � a�t

�
� (a

�
t+1)

2�(a�t�1)
2

2
� t�1 � t+1

� "��t�1
�
a�t � a�t�1

�
+ "��t

�
a�t+1 � a�t

�
� (a

�
t+1)

2�(a�t�1)
2

2

(9)

Compare (9) and (8). LHS (8) � LHS (9):

["��t+1
�
a�t+1 � a�t�1

�
� (a

�
t+1)

2�(a�t�1)
2

2 ]

�["��t
�
a�t � a�t�1

�
+ "��t+1

�
a�t+1 � a�t

�
� (a

�
t+1)

2�(a�t�1)
2

2 ]
= "

�
��t+1 � ��t

� �
a�t � a�t�1

�
� 0

RHS (9) � RHS (8):

["��t�1
�
a�t � a�t�1

�
+ "��t

�
a�t+1 � a�t

�
� (a

�
t+1)

2�(a�t�1)
2

2 ]

�["��t�1
�
a�t+1 � a�t�1

�
� (a

�
t+1)

2�(a�t�1)
2

2 ]
= "

�
��t � ��t�1

� �
a�t+1 � a�t

�
� 0

Then both local IC imply the non local one. Local downward incentive constraints
(LDIC) bind at the optimum: Consider all the LDIC�s and assume that for some type t it is

not binding: t+"�
�
ta
�
t�

(a�t )
2

2 > t�1+"�
�
ta
�
t�1�

(a�t�1)
2

2 . Then, the principal can adapt the
incentives�scheme by raising the absolute value of all �xed payments of types t0 � t by the
same amount so as to make the preceding constraint binding. This would leave una¤ected
all the other LDIC�s while improving the maximand. Participation constraints and LUIC:
Finally, note that if LDICs are binding on the equilibrium EUt � EUt�1, as t + "��ta�t �
(a�t )

2

2 = t�1+"�
�
ta
�
t�1�

(a�t�1)
2

2 � t�1+"��t�1a�t�1�
(a�t�1)

2

2 , hence the unique participation

constraint that binds is that of type 1 =) 1 = �"��1a�1 +
(a�1)

2

2 . It also implies that
local upward incentive constraints (LUIC) can be omitted. From LDIC EUt = EUt!t�1,

t = t�1 � "��t
�
a�t � a�t�1

�
+

(a�t )
2�(a�t�1)

2

2 . Replace in the LUIC EUt�1 �EUt�1!t =)

t�1+"�
�
t�1a

�
t�1�

(a�t�1)
2

2 �t�"��t�1a�t +
(a�t )

2

2 = "
�
��t � ��t�1

� �
a�t � a�t�1

�
� 0. For any

" > 0, agents will participate and reveal their types. Now we show that the expected utility
of the principal comes close to the �rst best for " very small. Denote by nt = jN (t)j. Fixed

terms can be written as: 1 = �"��1a�1 +
(a�1)

2

2 ; t = �"
tP

�=1
���a

�
� + "

tP
�=2

���a
�
��1 +

(a�t )
2

2 ,

8t � 2. The expected utility of type t when selecting contract ct: EU1 = 0; EUt =

t+"�
�
ta
�
t�

(a�t )
2

2 = "
tP

�=2
a���1

�
��� � ����1

�
> 0, 8t � 2. Note that EUt is the informational

rent that the principal pays to agents of type t. The principal�s expected pro�t:
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EUP;AI =
rP
t=1
nt(x

�
t (1� ")� t)

=
rP
t=1
nt(x

�
t �

(a�t )
2

2
)| {z }

EU�
P

� "
rP
t=1
nt

tP
�=2

a���1
�
��� � ����1

�
| {z }

rents

As for " very small contracts are still incentive compatible, the principal can obtain
EUP;AI � EU�P .�
Proof of Proposition 5

Assume any particular network g, choose � 2 (0; 1
2�G

) and consider a particular pro�le
�!
d = f�igi2N chosen by agents in the previous stage. Provided that all participate, the
expected payo¤s of the induced e¤ort subgame are:38

EUi = i + �i(1 + �
P

j2Ni(g)

aj)ai �
a2i
2

Agents�strategies are mappings from Rn�1+ ! R+. That is, for any given pro�le of e¤orts
chosen by agents in Nn fig, individual i chooses her e¤ort ai. The Nash equilibrium of the
e¤ort subgame is an e¤ort pro�le (bai)i2N such that for 8i : EUi (bai;ba�i) � EUi (ai;ba�i)
8ai 6= bai =) bai 2 argmaxai EUi (ai;ba�i) (where as usual ba�i stands for the equilibrium
choices of agents in Nn fig). Best response functions in matrix form are (I� �DG)

�!ba = �!d .
The existence and uniqueness of the NE of the e¤ort network subgame requires that I��DG
be inverse-positive, that requires (see the proof of Prop. 1) that 1 > �max f�DGg, where
�DG range over all the eigenvalues of DG. However, max f�DGg doesn�t decrease when any
element of DG increases (DH Theorem I*). Hence consider another pro�le

�!ed 	 �!d where
at least one of its elements increases (i.e. simply assume that agent j changes its choice e�j >
�j). Then, all the elements of row j of eDG have increased and max

�
� eDG	 � max f�DGg.

It follows that if all agents choose the same contract, namely the one with the maximum �,
max f�DGg � max f�DGg for any other

�!
d . If �i = �8i 2 N , I� �DG = I� ��G, and the

DH condition would imply that 1 > ���G.

Now, consider two di¤erent pro�les
�!
d and

�!ed ; recall that assumption � 2 (0; 1
��G

) is

su¢ cient to have the two interior solutions.39 De�ne
�!ed =

�!
d + �!z : zi = e�i � �i � 0 with

at least one inequality strict and eD = D + Z : diag(Z) = �!z . Use (I� � (D+ Z)G)
�!ea =

�!
d +�!z and (I� �DG)�!a = �!d :

(I� � (D+ Z)G)
�!ea = �!d +�!z

(I� �DG)
�!ea � �ZG�!ea = (I� �DG)�!a +�!z

�!ea ��!a = (I� �DG)�1 (�!z + �ZG�!ea ) > 0:
38As we will see participation is modulated by �xed terms i. It is obvious that for some combination of

contracts chosen, some agent at the end would reject to participate. However, at this stage we do not need
to care about that. Since i is a �xed term, it does not a¤ect optimal e¤ort choices under some particular

pro�le
�!
d . Naturally, if under such pro�le some agent doesn�t obtain her reservation utility, then such

�!
d

will not be part of the equilibrium of the full game.
39Both pro�les belong to the same set o¤ered by the principal, where � is the maximum of all �t available.
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Finally, given any pro�le
�!
d , use Cramer�s rule to write down the equilibrium e¤ort

(of the correspondent subgame) of agent i. The denominator is jI� �DGj,40 develop
it by cofactors of row i: then jI� �DGj = Aii � �i�

P
j2Ni

Aij , where Aii = (�1)2iMii

and Aij = (�1)i+jMij ; Mii is the principal minor i and Mij are the complementary
minors of elements ij. Neither Mii nor Mij�s depend on �i. Since I � �DG is inverse
positive, jI� �DGj > 0 and (I� �DG)�1 = 1

jI��DGjAdj (I� �DG) =) Aii and all Aij
are positive (Aii and Aij are elements of Adj (I� �DG)). Next, develop the numerator
by cofactors of column i =) �iAii +

P
j 6=i
�jAji. Cofactors Aji and Aij are related as

follows: Aji = �i
�j
Aij . Replacing, we can write �iAii +

P
j 6=i
�jAji = �iAii +

P
j 6=i
�j

�i
�j
Aij =

�i(Aii +
P
j 6=i
Aij) = �i(Aii +

P
j2Ni

Aij +
P

j 6=i:j =2Ni

Aij). (Note that none of these cofactors

depend on �i, and recall that Aij � 0). It follows that the e¤ort of agent i for a given
pro�le e��i can be written as a continuous function of �i:

ai(�i;e��i) = �i Aii+
P
j2Ni

Aij+
P

j 6=i:j =2Ni

Aij

Aii��i�
P

j2Ni
Aij

;

@ai(�i;e��i)
@�i

> 0; @2ai(�i;e��i)
@�2i

> 0.�

Proof of Proposition 6

Given the common wage o¤ered, (; �), and assuming that all agents participate, the

payo¤s of the induced network subgame are: EUi =  + �(1 + �
P
j2Ni

aj)ai � a2i
2 . Thus best

response functions are �(1+�
P
j2Ni

aj)�ai = 0 =) bai = �(1+� P
j2Ni

baj). Compare to �rst
best e¤orts which satisfy a�i = (1 + 2�

P
j2Ni

a�j ). Trivially there is not � such that bai = a�i
for all i simultaneously. On the other hand, for � > 0, the equilibrium e¤ort chosen by i is
proportional to her Bonacich centrality and satisfy a2i = �xi =) ai > aj () xi > xj .
The principal is able to know in advance that given � > 0, there will be some agent(s)
with the minimum Bonacich centrality that will produce the lowest (i.e. type t = 1).
These are the agents from which the principal is able to extract all the surplus through :
EU1 =  + �bx1 � ba21(�)

2 = 0 =)  =
ba21(�)
2 � �bx1, use bx1 = ba21

� =)  = �ba21(�)
2 . The

principal�s problem is then to choose � to maximize (1� �)X (�) + nba21(�)2 , with X (�) =

(
�!
1 + �G

�!ba )T�!ba , and �!ba = � (I� ��G)�1�!1 . First order condition is given by:
�X (�) + (1� �) @X (�)

@�
+ nba1 (�) @ba1(�)

@�
= 0

with @X(�)
@� = (

�!
1 + 2�G

�!ba )T @�!ba@� ; from which the self-consistency condition for b� is
obtained. If the network is k-regular, in equilibrium all agents exert the same e¤ort bai =ba = �

1���k ; X(�) = n (1 + �kba)ba and the principal extracts all the surplus to all agents,
 = �ba2

2 . The optimal marginal participation is
b� (k) = 1

1��k =) ba = a� and EUP;SC =
40Matrix I � �DG has its diagonal elements equal to 1, and any element ij is equal to ���i if gij = 1

or zero if gij = 0 - it is not symmetric since if gij = gji = 1, element ji will be equal to ���j .
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EU�P =
1
2

n
1�2�k . Observation: the value of

b� depends on the particular network and �, as
it is shown in the text.�

Proof of Proposition 7

Notation: bat = bat(i)(b�t;b��i), e¤ort of agent of type t on the equilibrium path. eat!t0 =eat(i)(�t0 ;b��i), e¤ort when an agent of type t deviates unilaterally and chooses contract
t0. In the �rst best, the ratio of marginal cost to marginal productivity MCt

MPt
of agents

increases with type (footnotes 23,24 and notation of proof Prop. 4). By o¤ering the menu
of contracts, on the equilibrium path, b�t = MCt

MPt
; therefore the principal will improve his

pro�ts with respect to the case of single contracts if he induces the same tendency of MCt
MPt

as in the �rst best and b�t � b�t0 () t � t0. Weakly increasing marginal incentives imply
that equilibrium e¤orts are increasing in type. (Recall that even if marginal incentives
are equal, e¤orts are increasing in type). By Prop. 5 the e¤ort of any agent is (ceteris
paribus) increasing and strictly convex in her marginal participation, hence any unilateral
deviation yields higher e¤ort when imitating higher types and viceversa. It follows that ifb�t � b�t0 () t � t0, then bt0 � bt. Suppose not, bt0 < bt. Then bt0+ ba2

t0
2 < bt+ ea2

t0!t

2 since

by Prop. 5 ea2
t0!t

2 >
ba2
t0
2 , i.e. agents would imitate higher types. We therefore assume thatb�t � b�t0 () t � t0 (thus bt0 � bt) and that the other givens hold and follow the same steps

as in the proof of Prop. 4. We show that the relevant constraints are such that any agent
of type t left indi¤erent between contract t and t � 1, provided that all participate. This
minimizes the informational rents. Su¢ ciency of local incentive compatibility conditions:
Consider three types t+ 1; t; t� 1. From the set of IC constraints (use formulation (2�) of
the text), the following relations should hold in equilibrium:

ba2t
2
�
ea2t!t�1
2

� t�1 � t �
ea2t�1!t

2
�
ba2t�1
2

(10)

ba2t+1
2

�
ea2t+1!t

2
� t � t+1 �

ea2t!t+1

2
� ba2t
2

(11)

ba2t+1
2

�
ea2t+1!t�1

2
� t�1 � t+1 �

ea2t�1!t+1

2
� ba2t
2

(12)

(10) and (11) are local incentive compatibility conditions. Suppose that both are satis-
�ed and sum them:

ba2t
2 �

ea2t!t�1
2 +

ba2t+1
2 � ea2t+1!t

2 � t�1 � t+1ea2t�1!t

2 � ba2t�1
2 +

ea2t!t+1

2 � ba2t
2

(13)

(13) =) (12) if LHS (12) � LHS (13) and RHS (13) � RHS (12), which hold as

LHS (12) � LHS (13) =
ea2t+1!t�ea2t+1!t�1

2 � ba2t�ea2t!t�1
2 � 0 and RHS (13) � RHS (12)

=
ea2t!t+1�ba2t

2 � ea2t�1!t+1�ea2t�1!t

2 � 0. Then both local IC imply the non local one. Local
downward incentive constraints (LDIC) bind at the optimum: Consider all the LDIC�s and

assume that for some type t it is not binding: t+
ba2t
2 > t�1+

ea2t!t�1
2 . Then, the principal

can adapt the incentives� scheme by raising all the absolute values of �xed payments of
types t0 � t by the same amount so as to make the preceding constraint binding. This
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would leave una¤ected all the other LDIC�s while reducing his cost, as �xed terms t
are positive transfers that the principal receive from agents. Participation constraints and
LUIC: If LDICs are binding, the unique participation constraint that binds if that of type

1 as t +
ba2t
2 = t�1 +

ea2t!t�1
2 � t�1 +

ba2t�1
2 =) 1 = �ba21

2 and local upward incentive

constraints (LUIC) can be omitted: t+
ba2t
2 = t�1+

ea2t!t�1
2 =) t = t�1+

ea2t!t�1
2 � ba2t

2 .

Replace in the LUIC: t�1+
ba2t�1
2 �(t+

ea2t�1!t

2 ) � 0 =) ba2t�ea2t!t�1
2 � ea2t�1!t�ba2t�1

2 � 0. At
last notice that the single contract is always a possible solution of the principal�s problem.
Therefore, EUbP;MC � EUbP;SC . On the other hand, if some separation occurs, then the
principal pays informational rents and EUbP;MC < EU

�
P .�

Networks
(Labels in the graphs denote �type.�)

Maximum eigenvalues, �G: �star = (n� 1)
1
2 ; �IL2S = 1

2 +
(8n�15)

1
2

2 ; �IL3S = 1+ (3n�
8)

1
2 ; �CP1 = n�4

8 + ((n�48 )2 + 3)
1
2 , n

4 integer; �CP2 =
n�3
6 + ((n�36 )2 + 2)

1
2 , n

3 integer;
�CP3 =

n�2
4 + ((n�24 )2 + 1)

1
2 , n2 integer; �Tj = (

n�1
2 + ((n�12 )2 � n1n2)

1
2 )

1
2 , j = 1; 2; 3; 4,

n = n1 + n2 + 2, n1,n2 are �end�nodes, i.e. n1 = jN (1)j ; n2 = jN (2)j; �EGj = nc � 1,
j = 1; 2; 3, nc: maximum component size; �line = �2 cos

�
� n
n+1

�
; �ML1 = 2:247 (for

n = 12); �ML2 = 2:7531 (for n = 12).|
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