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Purpose: This study investigated an association of post-radiochemotherapy (RCT) PET radiomics with
local tumor control in head and neck squamous cell carcinoma (HNSCC) and evaluated the models against
two radiomics software implementations.
Materials and methods: 649 features, available in two radiomics implementations and based on the same
definitions, were extracted from HNSCC primary tumor region in 18F-FDG PET scans 3 months post
definitive RCT (training cohort n = 128, validation cohort n = 50) and compared using the intraclass cor-
relation coefficient (ICC). Local recurrence models were trained, separately for both implementations,
using principal component analysis (PCA) and the least absolute shrinkage and selection operator. The
reproducibility of the concordance indexes (CI) in univariable Cox regression for features preselected
in PCA and the final multivariable models was investigated using respective features from the other
implementation.
Results: Only 80 PET radiomic features yielded ICC > 0.8 in the comparison between the implementations.
The change of implementation caused high variability of CI in the univariable analysis. However, both
final multivariable models performed equally well in the training and validation cohorts (CI > 0.7) inde-
pendent of radiomics implementation.
Conclusion: The two post-RCT PET radiomic models, based on two different software implementations,
were prognostic for local tumor control in HNSCC. However, 88% of the features was not reproducible
between the implementations.

� 2017 Elsevier B.V. All rights reserved. Radiotherapy and Oncology 125 (2017) 385–391
Head and neck squamous cell carcinoma (HNSCC) is one of the
most common cancers worldwide with tobacco and alcohol con-
sumption as well as HPV infection being the important risk factors.
The standard of care for patients with locally advanced HNSCC is
definitive radiochemotherapy (RCT). The locoregional recurrence
rate is high, exceeding 50% in HPV negative oropharyngeal carci-
noma and non-oropharyngeal cancers [1,2]. A meta-analysis of
post-RCT 18F-fluorodeoxyglucose positron emission tomography
(18F-FDG PET) studies reported sensitivity and specificity of
around 80% with respect to detection of local tumor recurrence
or persistence in HNSCC [3]. Additionally, post-RCT FDG PET has
been shown to correlate with overall survival [4].
Radiomics, a high-throughput method for quantification of
medical images, has been shown a promising input for treatment
response modeling [5–11]. It is based on a comprehensive and
quantitative analysis of a region of interest performed on different
levels: shape, intensity, texture and filter-based analysis. Radio-
mics is a rapidly growing field of research. However, the studies
have been predominantly performed in independent single-
institution settings and consequently, the importance of workflow
standardization has been indicated [5,6].

Radiomics analysis requires several image pre-processing steps
such as region of interest segmentation and extraction as well as
image interpolation and discretization. These steps together with
image acquisition and reconstruction parameters may influence
radiomic features and therefore interchangeability of derived mod-
els (i.e. radiomic signatures) [12,13]. Many institutions use differ-
ent software packages for the analysis, which are often in-house
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developed. Although the implementations are based on the same
mathematical definitions, it is likely that they will produce differ-
ent results due to differences in implementation of algorithms as
well as pre-processing [13].

To base clinical decisions on a prognostic model, its validation is
required [14,15]. Several strategies, characterized by different
strength, can be used. A cross-validation is often implemented as
a first step, followed by temporal validation using data from the
same institution but from a different period. Finally, to achieve
an unbiased validation, an external validation in an independent
dataset should be performed [16]. Most of the radiomics studies
have used cross-validation to quantify model performance and so
far only one model has been validated in an external and indepen-
dent dataset [17,18]. Validation is usually performed by the same
research group, using the same tools and methodology. However,
radiomic features have been shown to vary with image acquisition
parameters, pre-processing and contouring [5,6,12] and (to our
knowledge) none of the previously published studies investigated
the reproducibility of a radiomics-based prognostic model in terms
of radiomics software implementation.

This study hypothesizes that the prognostic value of radiomic
features is software implementation dependent. First, we investi-
gated whether the 3 months post-RCT follow-up 18F-FDG PET
radiomics is prognostic for tumor recurrence in HNSCC. Two inde-
pendent models were trained using two independent radiomics
implementations and their performance was validated in a sepa-
rate dataset. Subsequently, the reproducibility of these models
was evaluated when their respective radiomic features were calcu-
lated with an independent software implementation.

Materials and methods

Imaging protocol and studied population

This retrospective analysis was approved by the local ethics
commission. HNSCC patients treated with definitive
radiochemotherapy were enrolled in the study (128 patients in
the training and 50 patients in the validation cohort). The valida-
tion cohort consisted of patients treated in an institutional phase
II prospective study (NCT01435252) with a standardized imaging
protocol (the same slice thickness and reconstruction algorithm).
Table 1
Detailed characteristic of studied cohorts.

Training cohort

Total number of patients 128
Median follow-up (months) 46 (3–156)
Number of local recurrences 38 (30%)

Tumor stage T1/T2 43 (34%)
T3/T4 85 (66%)

HPV status Positive 31 (24%)
Negative 36 (28%)
Unknown 61 (48%)

Tumor site Oropharynx 91 (71%)
Hypopharynx 22 (17%)
Larynx 11 (9%)
Oral cavity 4 (3%)

Treatment Radiotherapy On average 70 Gy
(68–72 Gy)

Chemotherapy Cisplatin (40 mg/m2, u
cetuximab (loading do
by 250 mg/m2 weekly)

PET scanners GE Discovery STE 64 (50%)
GE Discovery 690 10 (8%)
GE Discovery RX 23 (18%)
GE Discovery HR 15 (12%)
GE Discovery LS 16 (12%)
Surgery or induction chemotherapy were exclusion criteria (biopsy
allowed). The characteristic of the studied cohorts is presented in
Table 1. All patients underwent 18F-FDG PET/CT imaging prior to
the treatment and 3 months after the end of the treatment as a
standard follow-up examination. Depending on patient’s body
weight, an activity of 170–470 MBq of 18F-FDG was injected intra-
venously after the measurement of blood sugar level. The PET
acquisition was preformed 60 min after 18F-FDG injection with a
3 min scanning time and 15 cm axial field-of-view at each bed
position. Total acquisition time of the PET was 12–18 min. Images
were reconstructed with an iterative algorithm (2D or 3D recon-
struction in the training cohort and 3D reconstruction in the vali-
dation cohort) with an in-plane pixel size and the slice thickness
of 2.73–5.47 mm and 3.27–4.25 mm, respectively. All data were
acquired in the same center.

Image pre-processing and radiomics analysis

Tumors were semi-automatically segmented in the pre-
treatment PET scans using a gradient-based method implemented
in MIMVISTA (MIM Software Inc., Cleveland, OH, USA). The pre-
treatment and post-treatment scans were rigidly registered and
contours were transferred to post-treatment scans. To account
for differences in image reconstruction grid all scans were rescaled
to 5.5 mm cubic voxels using linear interpolation. This corresponds
to the worst resolution in the studied dataset.

The pre-processed images were shared between the institu-
tions. Post-RCT metabolic heterogeneity was studied in the region
of the primary tumor (Fig. 1). Two independent software imple-
mentations were used: implementation from the University Hospi-
tal Zurich (USZ) and the MAASTRO clinic (MAASTRO). In total 649
features, which were based on the same definition and available in
both implementations, were extracted:

� Shape (n = 8)
� Intensity-based (n = 17)
� Texture: the Gray Level Co-occurrence Matrix (GLCM; n = 24),

the Neighborhood Gray Tone Difference Matrix (NGLTDM; n =
4), the Gray-Level Size Zone Matrix (GLSZM; n = 14), the Gray-
Level Run Length Matrix (GLRLM; n = 14).

� Filter-based: Wavelet coiflet (n = 568).
Validation cohort

50
16 (3–28)
13 (26%)

6 (12%)
44 (88%)

22 (44%)
28 (66%)
0 (0%)

29 (58%)
7 (14%)
7 (14%)
7 (14%)

70 Gy

p to 7 cycles) or
se 400 mg/m2 followed

Cisplatin/cetuximab (weekly same doses as in
training cohort) with or without consolidation
cetuximab (500 mg/m2 biweekly � 6)

39 (78%)
6 (12%)
5 (10%)



Fig. 1. Scheme of the reproducibility analysis of the local tumor control models using two independent radiomics implementation.
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The full list of the extracted features is presented in the Supple-
mental material. A bin size of 0.5 SUV was used for image intensity
discretization. The consistency of radiomic features calculated in
two different implementations was studied using the two-way
mixed single measures intraclass correlation coefficient (ICC).
Features preselection and comparison of the features’ prognostic
power between the radiomics implementations

The following feature selection procedure was used. First, a
principal component analysis (PCA) was performed to account
for inter-feature correlations. The number of retained components
was adjusted to represent 95% of data variance. Next, for each prin-
cipal component one feature was selected to represent it. To that
end we determined the feature that correlated the most (the lar-
gest Pearson correlation coefficient) with the principal component.

The prognostic power of radiomic features selected in different
implementations was investigated in an univariable Cox regres-
sion. The models were fitted separately for the USZ and MAASTRO
implementations. To quantify the discriminative power of different
models the concordance indexes (CI) were calculated and com-
pared between the implementations. The p-value from Cox regres-
sion was corrected for the multiple testing using false discovery
rate (FDR) < 10% and the number of features defined in the PCA.
The statistical analysis was performed in R (v. 3.2.3).
Prediction of local tumor recurrence and model reproducibility
between the implementations

To train a final model for the association of the radiomic fea-
tures derived from post-RCT PET with the likelihood of tumor
recurrence, the least absolute shrinkage and selection operator
(LASSO) (100 times 5-fold cross-validated) was used for variable
selection in multivariable Cox regression. Only the features prese-
lected in the PCA were used in the multivariable analysis. A ran-
dom sampling with replacement was used to create a different
training set in each of the LASSO iterations. In the final model we
included only radiomic features with selection rate higher than
70% among all random training sets. Patients were stratified into
low- and high-risk of recurrence groups based on a threshold from
the receiver operating characteristic curve for local recurrence at
18 months. The threshold was selected to equate the level of sen-
sitivity and specificity. The groups were compared using G-rho test
(p-value < 0.05). Two models were trained separately, one on the
USZ and one on the MAASTRO feature set. Both models were vali-
dated in the independent cohort of patients.

Each trained model, based on the features calculated in one
implementation, was later evaluated by calculating its respective
features with the other independent implementation (Fig. 1). The
regression coefficients of the Cox model and the stratification
threshold were then fixed. Model performance was quantified
using the concordance index (CI). Additionally, the calibration of
the models was investigated by calculation of the calibration slope
based on the prognostic index [19]. The calibration slope equals 1
evidences the same level of discrimination in the training and val-
idation datasets. Finally, the correlation of hazards obtained with
two implementations and the reproducibility of the patients risk
group assignments were investigated.
Results

Radiomic features reproducibility between the two implementations

The intraclass correlation coefficient was used to investigate
features reproducibility. Out of 649 features, 46 and 80 were char-
acterized by an ICC greater than 0.9 and 0.8, respectively. These
were mostly histogram-based (92% of the features in the studied
group based on the ICC > 0.8) and texture-based (68%) features cal-
culated on the non-transformed images. The shape features
showed intermediate reproducibility (50%), whereas the biggest
discrepancy was observed for the wavelet features (Supplement
Fig. 1S). The wavelet features where high-pass filter was applied
more than once were the least reproducible. A translation of the
0.5 SUV bin size to the wavelet coefficients was different between
the implementations (see Supplement section Wavelet). It resulted
in a different number of analyzed gray levels in the wavelet maps
(Supplement Fig. 3S). Additionally, the MAASTRO implementation
uses an undecimated transform, whereas the USZ implementation
uses the decimated one. This influenced the resolution of the ana-
lyzed maps.
Comparison of the features’ prognostic power between the radiomics
implementations

In the principal component analysis, 31 and 33 components
retained the 95% of data variance in the USZ and MAASTRO imple-
mentation, respectively. We found only 6 representative features
based on the principal components analysis to be the same for both
implementations. In a univariable Cox regression, 9 features in USZ
and 12 features in MAASTRO implementation yielded a FDR < 10%.
Among those features, more than 50% was not significant in the
univariable Cox regression when calculated with secondary imple-
mentation (Fig. 2). Even if the feature was significant in both
implementations, a substantial difference in CI was observed. The
features were grouped according to their FDR in the secondary
implementation (FDR < 10% or FDR � 10%). No significant differ-
ence in the ICC values between those groups was observed (Wil-
coxon test p-value > 0.05).



Fig. 2. Comparison of the features’ prognostic power in the univariable Cox regression between the radiomics implementations. The fit was considered non-significant if false
discovery rate (FDR) > 10%. The concordance indexes for the same feature varied between the radiomics implementations and this effect did not depend on the feature’s
intraclass correlation (ICC) from the implementations comparison. The LLL, LLH, LHL, LHH, HHH, HHL, HLH, HLL – denote the combination of wavelet filters in 3D (L – low-
pass, H – high-pass).
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Prediction of local tumor recurrence and comparison between the
implementations

In the multivariable analysis, GLCM difference entropy was
found to be prognostic in the USZ implementation, whereas the
histogram range was selected from the MAASTRO implementation.
Radiomic features in the final local tumor recurrence models
showed high level of reproducibility between the radiomics imple-
mentations (ICC > 0.9). A strong correlation (r > 0.9) between GLCM
difference entropy and histogram range was observed independent
of the implementation. There was a weak, significant correlation
between selected radiomic features and tumor volume (r < 0.5).
Table 2
Performance of PET radiomics models for prediction of local tumor control and the
stability of radiomic features between two radiomics implementations (USZ and
MAASTRO).

Model developed using radiomic
features from

MAASTRO USZ

Radiomic features Histogram range GLCM difference
entropy

Intraclass correlation 0.97 0.93

Concordance index
MAASTRO features Training 0.76 0.75

Validation 0.73 0.73

USZ features Training 0.75 0.74

Validation 0.71 0.72

Calibration slope
MAASTRO features 1.20 (0.39–2.02)* 1.04 (0.27–1.95)*

USZ features 1.13 (0.39–1.88)*
1.02 (0.20–1.83)*

Underlined values indicates results where the same implementation was used for
the training of the model and model performance evaluation.

* 95% confidence interval.
Both models showed similar prognostic power in the training
(5-fold cross-validation) and validation cohorts with CI ranging
between 0.70 and 0.76 (Table 2) and allowed for a significant risk
group stratification (Fig. 3). In the validation cohort, the calibration
slope was not significantly different from 1, indicating the preser-
vation of model discriminative power (Table 2). Additionally, the
models were prognostic in the group of HPV negative patients
(Supplement Fig. 4S). In both models, tumors with higher risk of
recurrence were characterized by a higher post-treatment meta-
bolic heterogeneity (Supplement Fig. 5S).

The main research question asked in this work was to investi-
gate the model performance when an independent radiomics
implementation was used to calculate the hazards. Also in this
case, the studied PET radiomics models achieved a very similar
performance in terms of the concordance index as well as similar
calibration slope (Table 2). It showed that the general discrimina-
tive power of the models was not affected by the change of the
implementation. On the patient level, a strong correlation was
observed between patient rankings based on the features from
both implementations (r > 0.9). Most of the patients (around 90%)
were correctly classified into low- or high-risk of recurrence group
when the independent implementation was used (Fig. 4).
Discussion

This study investigated the prognostic value of post-RCT PET
radiomics in head and neck squamous cell carcinoma and tested
the reproducibility of prognostic models between independent
radiomics implementations (USZ or MAASTRO). Independent of
the radiomics implementation used for model training, the prog-
nostic model for local tumor control showed a good discriminative
power with a concordance index higher than 0.7 in both training
and validation cohorts. Both models significantly stratified patients
into low- and high-risk of recurrence groups. Furthermore, the



Fig. 3. PET radiomics-based local tumor recurrence models: (a) USZ implementation, (b) MAASTRO implementation. Local control rate curves split significantly (G-rho test p-
value < 0.05) in both training and validation cohorts based on the optimal sensitivity–specificity thresholds at 18 months.
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validation of the models using an independent radiomics imple-
mentation resulted in a similar concordance indexes. However, it
is important to note that the reproducibility of the models is a con-
sequence of the high ICC between the implementations for the
selected features. In the modeling process we have observed that
the discriminative power of single radiomic features preselected
for the multivariable analysis depended on the radiomics
implementation.

The value of post-treatment FDG-PET imaging for assessment of
residual disease is currently unclear [3]. Recently, it has been
shown in a prospective study that the positive findings on 3
months post-treatment FDG PET are a prognostic factor for overall
survival and cancer-specific survival [4]. Additionally, our work
shows that the heterogeneity of 3 months post-RCT FDG activity
in the region of primary tumor is related to the risk of tumor recur-
rence. Higher histogram range (range of SUV in the region of pri-
mary tumor) and higher GLCM difference entropy corresponded
to higher risk of tumor recurrence. We have further shown that
these radiomics models can also significantly stratify the HPV neg-
ative patients, who belong to a group with a generally bad progno-
sis. Another study found that a pre-treatment FDG PET radiomics
has a similar prognostic power to our post-treatment model [20].

Our prognostic models were trained on a heterogeneous data-
set, different PET scanners and reconstruction algorithms were
used. However, we were able to validate obtained results on a
dataset with a standardized imaging protocol (the same slice thick-
ness and reconstruction algorithm). Our findings should be further
validated in datasets from other centers as the lack of calibration
between different PET scanners can affect the performance of the
models [21]. Additionally, we have defined our region on interest
based on the pre-treatment PET images and propagated it to the
post-treatment scan. The model reproducibility should be tested
against different registration methods for propagation of the delin-
eated tumor volume.

The two radiomics implementations used in this study are
based on the same mathematical definition of radiomic features.
Additionally, the image pre-processing (image and region of
interest resizing) was performed independent of the radiomics
implementation and the same bin size was used for image dis-
cretization [22]. Nevertheless, a relevant variability in radiomic
features value was observed, mostly for the shape and wavelet
features. It was most probably caused by differences in mask
construction and wavelet transform workflow: especially in
the translation of the bin size to the wavelet transformed
images and the type of transform (decimated vs undecimated).
For more details see Supplement sections Contours mapping
and Wavelet. Variations in contour masks constructed from
the same DICOM files is also a well-known issue in different
treatment planning systems [23]. The comparison of the num-
ber of analyzed voxels, as well as minimum, maximum and
mean value in the GTV between two radiomics implementations
is shown in Fig. 2S. The GTV constructed with USZ implemen-
tation was always larger then in MAASTRO implementation
and consequently the minimum SUV in USZ implementation
was always lower. Regarding wavelet transform, the two imple-
mentations transferred differently the bin size of 0.5 SUV into
the wavelet coefficients space, which resulted in different num-
ber of analyzed gray levels (Fig. S3). A separate study investi-
gating a discriminative power of wavelet features obtained
with the two gray level discretization methods could be con-
ducted to clarify which method is more informative in the con-
text of medical image analysis. This study points out differences
in radiomics workflow steps, which are rarely described in
radiomics studies. Therefore, clear guidelines, such as the Image
Biomarker Standardization Initiative [24], providing detailed
description of radiomics workflow and implementation are
needed. For a workflow comparison purpose, we are also open
to share our source code upon request. Nonetheless, we showed
that the majority of histogram and texture features was repro-
ducible (i.e. high ICC values) despite the existing differences in
contours mask construction. This result suggests that the mask
construction is only a minor concern in the standardization
aiming for the reproducibility of patients ranking and model
prognostic power.

Our final prognostic models for local tumor recurrence were
reproducible when the features from the independent radiomics
implementation were used, which can be explained by the fact that
both models consisted of radiomic features with a high ICC in the
comparison between the implementations (ICC > 0.9). Most of the
available radiomic features showed a much lower agreement in



Fig. 4. Local control rate curves for low- and high-risk of recurrence groups based on the two PET radiomic models. The curves split significantly independent of the
implementation (G-rho test p-value < 0.05).
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this comparison. A large variation in concordance indexes was
observed for the radiomic features preselected in the principal
component analysis. Most of the features preselected in one imple-
mentation were not significantly associated with local tumor
recurrence in the other implementation in the univariable analysis.
This shows, for the first time on a clinically relevant model and
dataset, that a model developed by one institution should not be
directly transferred to another center, which uses a different radio-
mics implementation, without rigorous comparison. We recom-
mend that each model, additionally to a detailed description of
the radiomics implementation, should be published with a sample
dataset and corresponding radiomics signature, such as a recently
published digital phantom [25]. This will allow for a comparison of
results obtained from a model, before it will be used in a prospec-
tive cohort.

In conclusion, this study shows the potential of post-RCT
FDG-PET radiomics for early identification of patients with a
high risk of local tumor recurrence. It also raises an awareness
of the impact of radiomics software implementation on model
reproducibility.
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