Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients

Citation for published version (APA):

Document status and date:
Published: 01/01/2003

DOI:
10.1034/j.1399-6576.2003.00057.x

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 17 Sep. 2023
Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients

1Department of Anaesthesia, Center of Head and Orthopaedics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; 2Department of Anaesthesia, Hope Hospital, Salford, UK; 3Eindhoven University of Technology, Eindhoven, the Netherlands; 4Department of Anaesthesia, Hillerød Hospital, Denmark; 5Department of Biostatistics, University of Copenhagen, Denmark; 6Department of Anaesthesia, Hospital Universitari Germans Triàs i Pujol, Barcelona; 7Brain & Behaviour Institute and Department of Psychiatry & Neuropsychology, Maastricht University, Limburg, Maastricht, the Netherlands; 8Department of Anaesthesiology, University Hospital of Iraklion, Crete, Greece; 9Departments of Anaesthesiology, Surgery and Geriatrics & Adult Development, Mount Sinai School of Medicine, New York, USA; 10Department of Anaesthesia, Hospital General Elche, Alicante, Spain; 11Department of Anaesthesia, Ullevaal University Hospital, Oslo, Norway; 12Department of Anaesthesia, Bispebjerg Hospital, Copenhagen, Denmark; 13University of Helsinki Department of Anaesthesia and Intensive Care, Helsinki, Finland; 14Department of Anaesthesia, Fundacion Hospital Alcorcon, Madrid, Spain; 15Department of Anaesthesia, South Cleveland Hospital, Middlesbrough, UK; and 16Department of Anaesthesia, Leicester General Hospital, Leicester, UK

Background: Postoperative cognitive dysfunction (POCD) is a common complication after cardiac and major non-cardiac surgery with general anaesthesia in the elderly. We hypothesized that the incidence of POCD would be less with regional anaesthesia than with general.

Methods: We included patients aged over 60 years undergoing major non-cardiac surgery. After giving written informed consent, patients were randomly allocated to general or regional anaesthesia. Cognitive function was assessed using four neuropsychological tests undertaken preoperatively and at 7 days and 3 months postoperatively. POCD was defined as a combined Z score >1.96 or a Z score >1.96 in two or more test parameters.

Results: At 7 days, POCD was found in 37/188 patients (19.7%, [14.3–26.1%]) after general anaesthesia and in 22/176 (12.5%, [8.0–18.3%]) after regional anaesthesia, P = 0.06. After 3 months, POCD was present in 25/175 patients (14.3%, [9.5–20.4%]) after general anaesthesia vs. 23/165 (13.9%, [9.0–20.2%]) after regional anaesthesia, P = 0.93.

The incidence of POCD after 1 week was significantly greater after general anaesthesia when we excluded patients who did not receive the allocated anaesthetic: 33/156 (21.2% [15.0–28.4%]) vs. 20/158 (12.7% [7.9–18.9%]) (P = 0.04). Mortality was significantly greater after general anaesthesia (4/217 vs. 0/211 (P < 0.05)).

Conclusion: No significant difference was found in the incidence of cognitive dysfunction 3 months after either general or regional anaesthesia in elderly patients. Thus, there seems to be no causative relationship between general anaesthesia and long-term POCD. Regional anaesthesia may decrease mortality and the incidence of POCD early after surgery.

Accepted for publication 21 October 2002

Key words: anaesthesia; cognitive function; complications; postoperative period; regional anaesthesia; surgery.

* ISPOCD2 Investigators listed at the end of the paper

POSTOPERATIVE cognitive dysfunction (POCD) is a common complication in elderly patients undergoing cardiac and non-cardiac surgery under general anaesthesia (1, 2). It has frequently been speculated that POCD might be avoided by performing appropriate surgical procedures under regional anaesthesia. Numerous comparative studies using neuropsychological testing have been conducted to test this hypothesis but no significant difference has yet been found (3–13). There are, however, limitations in several of these studies including low statistical
power, comparison of group means rather than
deterioration in individual test performance, failure
to account for practice effects and low sensitivity of
tests which may not be suitable for use in surgical
patients. These factors may also limit detection of
POCD beyond the first postoperative days after non-
cardiac surgery (4, 5, 7, 12, 14).

The ISPOCD study (2) demonstrated long-term
POCD in elderly patients undergoing non-cardiac
surgery. Using this established sensitive test battery,
we decided to compare the incidence of POCD in
elderly patients randomly assigned to general versus
regional anaesthesia in a multicentre study. We inves-
tigated early and late POCD as well as subjective rep-
ports of cognitive disturbance, testing the hypothesis
that POCD would be detected at a lesser incidence
after regional anaesthesia.

Materials and methods

Twelve hospitals in seven countries contributed
patients to the study, each using the same protocol.
All patients were aged over 60 years presenting for
major surgery where either regional or general anaes-
thesia was appropriate. We enrolled subjects with
an expected hospital stay of at least 4 days between
October 1998 and October 2000 with follow-up until
March 2001. The study received ethics committee
approval in all institutions and each participant gave
informed consent.

Exclusion criteria included diseases of the CNS.
After giving informed consent, patients were
randomly allocated to general or regional anaesthesia
using a centralized dedicated computer program
where allocation sequence was concealed. Blinding
of patients and data collectors was not considered
possible but group assignment was concealed
through data processing until the final analysis was
performed.

General anaesthesia was performed according to
usual anaesthetist and institution practice, however,
normocapnia was maintained and neuraxial blockade
or regional analgesia were not used.

In the regional anaesthesia group, spinal or epidural
anaesthesia was employed and postoperative epidural
analgesia was encouraged. Sedation with propofol
was permitted during regional anaesthesia at a level
compatible with prompt arousal to a verbal stimulus.

Cognitive function was assessed using neuro-
psychological testing preoperatively (baseline) and at
7 days and 3 months postoperatively; comparing the
changes between those at baseline with those after
surgery. The evaluation was based on the following
seven variables from the four neuropsychological
tests: cumulative number of words recalled in three
trials and the number of words at delayed recall from
the Visual Verbal Learning test (15); the time and
number of errors in part C of the Concept Shifting
Test (16); the time and error scores from the third part
of the Stroop Colour Word Interference Test (17) and
the number of correct answers from the Letter Digit
Coding Test (18).

We determined mood preoperatively and after
3 months using the Geriatric Depression Scale (GDS)
(19). Subjective assessment of cognitive decline was
evaluated after 3 months using the Subjective Cogni-
tive Functioning questionnaire (SCF) given to both
patients and relatives. Finally, the Instrument for
Activities of Daily Living (IADL) score was assessed.
The IADL-score was administered to patients as well
as relatives preoperatively and at 3 months postopera-
tively.

Statistical analysis

We calculated the changes in performance of the
seven test parameters and using previously collected
data from a group of 176 healthy controls (2), we
subtracted the average learning effect from these
changes and divided the result by the control group
SD to obtain a Z score for each individual test
outcome. Patients had cognitive dysfunction when
two out of seven Z scores in individual tests or the
combined Z score were 1.96 or more. The incidence of
POCD was compared using the intention to treat
approach with a chi-squared test.

The results of the questionnaires were compared
using Mann-Whitney rank sum test and we asses-
sed the relation between postoperative cognitive
dysfunction and the results of the questionnaires by
Spearman’s rank-correlation analysis on the composite
Z score. All data are reported with the 5–95
range or 95% confidence interval where appropriate.

We estimated that a sample size of 1400 (assuming
a drop-out rate of 20%) would allow us to detect
a difference in POCD after 3 months between 5%
after regional anaesthesia and 10% after general
anaesthesia with a power of 0.90 at the 0.05 signifi-
cance level.

Results

When patient enrolment had to be stopped, 438
patients had been included and 428 underwent ran-
domization. The characteristics shown in Tables 1 and
2 were similar in the two groups. The first postoperative test was omitted in 74 patients (16.9\%\%) and the second postoperative test in 98 (22.4\%\%) (Fig. 1).

There was no significant difference between the groups in the proportion of patients who were missing either the first or second postoperative test data: 29/217 (general) vs. 35/211 (regional), \(P = 0.35\) for the first test and 42/217 (regional) vs. 46/211 (general), \(P = 0.53\) for the second. The patients who omitted the 3 months’ test had significantly lower preoperative scores in the time variable of the Stroop Colour Word Interference Test and in the Letter Digit Coding Test (\(P\)-value adjusted with Bonferroni correction) but age and education were not significantly different (Table 3).

The incidence of POCD at 1 week after general anaesthesia was 37/188 (19.7\%, [14.3–26.1\%]) and after regional anaesthesia it was 22/176 (12.5\%, [8.0–18.3\%]), \(P = 0.06\). After 3 months POCD was found in 25/175 (14.3\%, [9.5–20.4\%]) vs. 23/165 (13.9\%, [9.0–20.2\%]), \(P = 0.93\).

Regional anaesthesia was unsuccessful in 24 patients allocated to regional anaesthesia in whom general anaesthesia was therefore necessary. Also, 35 patients allocated to general anaesthesia actually
received spinal or epidural anaesthesia. Not all these 59 patients completed the study, but when excluded in a per protocol analysis, the incidence of POCD after general vs. regional anaesthesia after 1 week is 33/156 (21.2% [15.0—28.4%]) vs. 20/158 (12.7% [7.9—18.9%]), \(P = 0.04 \) and after 3 months 19/145 (13.1% [8.1—19.7%]) vs. 21/147 (14.3% [9.1—21.0%]), \(P = 0.93 \).

In the regional anaesthesia group, 37% received propofol sedation. The incidence of POCD in these patients was not significantly different from the incidence in the patients in this group who were not sedated (12.7% vs. 12.4% after 1 week and 10.3% vs. 15.9% after 3 months).

No difference was found between general and regional anaesthesia with regard to the GDS, SCF or IADL.

Mortality was significantly greater after general anaesthesia, 4/217 (1.8% [0.5—4.7%]), vs. 0/211 [0—1.7%]) (Table 4). All four patients received the allocated type of anaesthesia. Pulmonary embolism caused death in two patients at five and 29 days after joint replacement. One patient died 2 days after surgery due to heart failure and cause of death was unknown in one patient who died at home 3 months after surgery. The other postoperative complications were not significantly different between the groups (Table 4).

Discussion

Postoperative cognitive dysfunction was detected in 10—20% of our patients, both at 1 week and after 3 months with no significant difference between general and regional anaesthesia using the intention to treat approach (\(P = 0.06 \) at 1 week). If, however, a per protocol approach is used, then POCD is significantly less common after regional anaesthesia at 1 week (\(P = 0.04 \)). A major problem during this study was the poor recruitment rate. Many patients were unwilling to participate because of the random allocation to treatment group, although it was emphasized that both were accepted treatments. We did not record how many patients were asked for consent but it is our estimate that approximately half of all patients refused participation. We did not record how many patients were asked for consent but it is our estimate that approximately half of all patients refused participation. In our opinion, the low recruitment was a price that had to be paid for randomization of patients. The slow recruitment necessitated a substantial prolongation of the study period, but due to expiration of funding, we had to stop the inclusion when less than half of the calculated sample size was obtained. Having a sample size of 340 after 3 months, the statistical power is approximately 50% if we were aiming at detecting a difference in the incidence of POCD between 5% and 10% (significance level 5%).

We were disappointed that some surgeons and anaesthetists did not adhere to the allocated anaesthetic

Table 3

<table>
<thead>
<tr>
<th>Patient characteristics and preoperative test result in patients who completed and patients who dropped out.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed ((n = 340))</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>Education</td>
</tr>
<tr>
<td>Less than high school</td>
</tr>
<tr>
<td>High school</td>
</tr>
<tr>
<td>More than high school</td>
</tr>
<tr>
<td>Visual Verbal Learning, cumulated recall (number of words)</td>
</tr>
<tr>
<td>Visual Verbal Learning, delayed recall (number of words)</td>
</tr>
<tr>
<td>Concept Shifting Test, Time for part C (s)</td>
</tr>
<tr>
<td>Concept Shifting Test, number of errors in part C</td>
</tr>
<tr>
<td>Stroop Colour Word Test, Time for part 3 (s)</td>
</tr>
<tr>
<td>Stroop Colour Word Test, number of errors in part 3</td>
</tr>
<tr>
<td>Letter-Digit Coding, score</td>
</tr>
</tbody>
</table>

Median (5—95% range) except for education.

*\(P < 0.05 \).
but insisted on either general or regional. This resulted in a substantial drop-out rate and failure to deliver the allocated treatment. If when comparing two treatments, a proportion of patients received the treatment opposite to that allocated, it is not surprising that a genuine difference between the treatments may be obscured. In this study 14% of patients received the opposite treatment to that allocated and, by excluding these patients, a significant difference became apparent at 1 week postoperatively.

The results should be applied with caution to the general surgical population due to the possible bias, for example we could have selected patients who had less education and whom we have previously demonstrated are more vulnerable to early POCD (2). On the other hand, the present study included nearly twice the number of patients included in the largest previous study of this issue (13). Several studies have compared general and regional anaesthesia and in only one of them has a significant difference been reported in mental function (3–13, 20). However, no neuropsychological testing was applied in that study (20). Neuropsychological test results can be compared in several ways. Examples are group means in postoperative raw scores or changes in raw scores. These approaches tend to overlook a possible difference, because it assumes that a general and uniform deterioration occurs (14). The ability of our testing to pick out a difference between general anaesthesia and regional anaesthesia at 1 week confirms its sensitivity in this patient group. The clinical importance of a neuropsychological deficit can be questioned but our cut-off at a Z-score of 2 is corresponding to a profound deterioration in the neuropsychological test performance, as illustrated in Table 5.

The etiology of POCD is likely to be multifactorial. Our observation of early cognitive impairment in the general anaesthesia group (after per protocol analysis) suggests a negative effect of either the general anaesthetic agents or the postoperative analgesic regimen. Other factors such as inflammatory or metabolic endocrine stress response associated with major surgery may be responsible for the later changes that occurred in both groups.

This study was not designed to assess the incidence of uncommon postoperative complications but we found a significantly greater mortality after general anaesthesia. This may be an incidental finding but we noted also that postoperative respiratory complications and the need for prolonged intensive care occurred only after general anaesthesia. Lower morbidity has been reported with regional anaesthesia, and beneficial effects of regional anaesthesia include lower blood loss and lower risk of postoperative thromboembolic complications (21–23). This is

<table>
<thead>
<tr>
<th>Table 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postoperative complications.</td>
</tr>
<tr>
<td>General anaesthesia (n = 217)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Respiratory</td>
</tr>
<tr>
<td>Cardiac</td>
</tr>
<tr>
<td>Delirium</td>
</tr>
<tr>
<td>Second operation</td>
</tr>
<tr>
<td>Infectious</td>
</tr>
<tr>
<td>Intensive Care stay for >24 h</td>
</tr>
<tr>
<td>Death*</td>
</tr>
</tbody>
</table>

*P < 0.05.

<table>
<thead>
<tr>
<th>Table 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Importance of postoperative deterioration in cognitive function.</td>
</tr>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Visual Verbal Learning, deterioration in cumulated recall (no. of words)</td>
</tr>
<tr>
<td>Visual Verbal Learning, deterioration in delayed recall (no. of words)</td>
</tr>
<tr>
<td>Concept Shifting Test, slowing for part C</td>
</tr>
<tr>
<td>Concept Shifting Test, increase in number of errors in part C</td>
</tr>
<tr>
<td>Stroop Colour Word Test, slowing for part 3</td>
</tr>
<tr>
<td>Stroop Colour Word Test, increase in number of errors in part 3</td>
</tr>
<tr>
<td>Letter-Digit Coding, deterioration in score</td>
</tr>
</tbody>
</table>

For the neuropsychological tests used in the study, we have calculated the deterioration required to obtain a Z score of 2.
compatible with our study’s finding of two postoperative deaths in the general anaesthesia group caused by pulmonary embolism. Other factors may therefore also support the choice of regional anaesthesia.

In conclusion, we found no significant difference in the incidence of cognitive dysfunction 3 months after either general or regional anaesthesia. Accordingly, there is no evidence to suggest any causative relationship between general anaesthesia and long-term POCD. We suggest that the choice of anaesthetic, when several options exist, should be based on an open discussion of patients’ preference, general postoperative complications, and the experience of the anaesthetist.

Participants in the Second International Study of Postoperative Cognitive Dysfunction

Steering Committee for ISPOCD-2:
L. S. Rasmussen, C. D. Hanning, H. M. Kuipers, J. Jolles and J. T. Moller (Chairman of the ISPOCD group)

Data collection centres:
Denmark: L. S. Rasmussen, H. Abildstrom, J. T. Moller, G. Blom, B. Burgdorf (Copenhagen); D. Kristensen, E. Hjortso (Hillerød); I. K. Nielsen (Bispebjerg)
Finland, Helsinki: K. Korttila, A. Yli-Hankala, E. Castejon
Greece, Iraklion: H. Askitopoulou, A. Papaioannou, O. Fraidakis, F. Haniotaki
Norway, Oslo: J. Raeder, B. Grimsmo
Spain: P. Vila, J. Canet, B. Ysamat, R. Garcia Guasch, R. Llasera, A. Chamero (Barcelona); M. T. Iban˜ez, J. A. Bonal, I. Navarro, P. Santos, M. Ramirez (Alicante); L. Munoz (Madrid)
UK: T. Johnson, M. Howarth, D. Fines (Salford), Chris Dodds (Middlesbrough)
USA, New York: J. H. Silverstein, J. A. Jalees, R. Cherkezian

Neuropsychology evaluation and monitoring:
J. Jolles, P. Houx, Maastricht, the Netherlands

Statistical support:
V. D. Siersma, L. T. Skovgaard, Copenhagen, Denmark

Data Management Center:
H. Kuipers, H. J. A. vd Meerendonk, G. J. A. vd Boomen, M. Manders, M. Quist, P. J. M. Cluitmans, Eindhoven, the Netherlands

Acknowledgements

The collaborative parts of the project were funded by a European Union Biomed 2 grant No BMH4-98-3335. Individual centres received funding from (Denmark) Forskningsstyrrelsen, Danish Research Agency, H.S Forskningsfond, Rigshospitalets Jubilæumsfond, Direktør Jacob Madsen og hustrus Olga MadSENS Fond, Oberstinde Jersa La Cours Fond, Forskningsfonden for Frederiksborg Amt; (Finland) HUS-EVO grants TYH 0051 and TYH 0324; (Great Britain) Research into Ageing and BUPA Foundation; (Greece) Greek Ministry of Health; (Spain) Barcelona: Fondo de Investigaciones Sanitarias (FIS) Spain, Fundación per a la Recerca Biomédica Germans Trias i Pujol.

References

Address:
Dr L. S. Rasmussen
Department of Anaesthesia
Section 4231
Copenhagen University Hospital
Rigshospitalet
DK-2100 Copenhagen
Denmark
e-mail: lsr@rh.dk