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Abstract In the literature, various models of games with restricted cooperation can
be found. In those models, instead of allowing for all subsets of the set of players to
form, it is assumed that the set of feasible coalitions is a subset of the power set of the
set of players. In this paper, we consider such sets of feasible coalitions that follow
from a permission structure on the set of players, in which players need permission
to cooperate with other players. We assume the permission structure to be an oriented
tree. This means that there is one player at the top of the permission structure, and for
every other player, there is a unique directed path from the top player to this player.
We introduce a new solution for these games based on the idea of the Average Tree
value for cycle-free communication graph games. We provide two axiomatizations for
this new value and compare it with the conjunctive permission value.
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1 Introduction

A cooperative game with transferable utility, or simply a TU game, consists of a
finite set of players and for every coalition of players a worth representing the total
payoff that the coalition can obtain by cooperating. A value is a single-valued solution
that assigns to every TU game a payoff vector whose components are the individual
payoffs of the players. One of the most applied solutions for cooperative TU games is
the Shapley value (Shapley 1953), which is applied to economic allocation problems
in, e.g. Graham et al. (1990), Maniquet (2003), Chun (2006), Tauman and Watanabe
(2007), van den Brink et al. (2007), Bergantinõs and Lorenzo-Freire (2008), Ligett et
al. (2009), and Faigle and Grabisch (2012).

In its classical interpretation, a TU game describes a situation in which the players
of every subset of the set of players are able to cooperate to form a feasible coalition
and earn its worth. In the literature, various restrictions on coalition formation are
developed.1 For example, in Myerson (1977), a coalition is feasible if it is a connected
set in a given communication graph on the set of players. The Myerson value for such
so-called graph games is the Shapley value of the corresponding Myerson restricted
game in which the worth of any coalition is the sum of the worths of its maximally
connected subsets.

On the class of cycle-free graph games, the Average Tree value has been proposed
in Herings et al. (2008). Each player in a cycle-free graph game can be associated
with a particular payoff vector introduced in Demange (2004), called hierarchical
outcome. The Average Tree value assigns to any cycle-free graph game the average
of all its hierarchical outcomes. Both the Myerson value and the Average Tree value
are characterized by component efficiency and some kind of fairness. Fairness of
the Myerson value states that, after deleting a link between two players, the payoffs
of these two players change by the same amount, see Myerson (1977). Component
fairness of the Average Tree value states that deleting a link between two players in
a cycle-free graph game yields the same average change in payoff over the players in
the two resulting components, see Herings et al. (2008). Herings et al. (2010) extend
the definition of the Average Tree value to the entire class of graph games and thereby
also cover situations where the underlying communication graph is not cycle-free.

In van den Brink et al. (2011) games on union closed systems are considered. In such
games, the collection of feasible coalitions is closed under union, meaning that for any
pair of feasible coalitions also their union is feasible. This class of union closed systems
contains the class of antimatroids; games on antimatroids have been studied in Algaba
et al. (2004). An example of an antimatroid is a permission structure, where players
need permission from their superiors in a hierarchical structure, given by a directed

1 For a survey we refer to Bilbao (2000).
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graph, when they want to cooperate with other players. Games with a permission
structure are considered in Gilles et al. (1992), van den Brink and Gilles (1996), Gilles
and Owen (1994), and van der Brink (1997).2 In the first two papers, the conjunctive
approach, in which each player needs permission of all its predecessors, is investi-
gated, while in the latter two papers, the disjunctive approach is considered, in which
a player needs permission of at least one of its predecessors, if it has any. This leads to
the conjunctive restricted game and the disjunctive restricted game, in which the worth
of a coalition is set equal to the worth of its largest conjunctive and its largest disjunc-
tive feasible subcoalition, respectively. The corresponding conjunctive (disjunctive)
permission value is then the Shapley value of the induced conjunctive (disjunctive)
restricted game. We restrict ourselves to games with an oriented tree as permission
structure, i.e., there is a unique top player having no predecessors and for every other
player there is a unique path from the top player to this player, and simply call such a
situation a permission tree game. Since in a tree permission structure every player has at
most one predecessor, in this case the conjunctive and disjunctive approaches coincide.

In this paper, we define and axiomatize a new value for games with an oriented tree
as permission structure. Given a digraph we obtain the associated undirected graph by
replacing every directed link from one node to another by an undirected link between
the two nodes. When the digraph is an oriented tree, the associated undirected graph
is cycle-free. To define the new value, we first take the induced permission tree game
and then apply the Average Tree value to this permission tree game on the associated
undirected graph.

We provide two axiomatizations of this new solution for permission tree games,
one with and one without additivity. The first axiomatization uses axioms similar to
those that characterize the conjunctive permission value in van den Brink and Gilles
(1996), but adding a collusion neutrality axiom in the spirit of Haller (1994) and van
den Brink (2012a). The second one imposes a fairness property related to the one in
Herings et al. (2008) for cycle-free graph games.

By applying the Average Tree principle, we put some features of communication
into a solution for permission tree games, whereas Demange (2004) puts hierarchical
features into a solution for communication graph games by using hierarchical out-
comes. In van den Brink (2012b), a comparison of sets of feasible coalitions in games
with hierarchical and communication restrictions is made. Some other contributions
in the economic literature that combine communication with hierarchies are Bolton
and Dewatripont (1994) who describe a model where efficient (i.e., cost minimizing)
information processing in a communication network implies a hierarchical structure
in the sense that efficient networks take a pyramidal form, Chwe (2000) who studies
directed communication networks and shows that the minimal sufficient networks for
coordination can be seen as hierarchies, and Hart and Moore (2005) who consider
(optimal) hierarchical structures where some agents coordinate and others specialize.
Examples of asymmetric communication relations are given by Dewatripont and Tirole
(2005) and Dessein (2002). The first two authors consider communication as a ‘trans-
fer of knowledge’ between a sender and a receiver and they formulate a principal-agent

2 Other models of games with a hierarchy on the set of players are, for example, Faigle and Kern (1992)
and Li and Li (2011) or the more general model of Derks and Peters (1993).
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model to analyze communication as a moral hazard problem between the sender and
receiver. Dessein (2002) extends the model of Crawford and Sobel (1982) and studies
a principal-agent model of an organization where the principal can make a trade-off
between delegation (implying a loss of control) and communication (implying a loss
of information).

The paper is organized as follows. Section 2 is a preliminary section on cooperative
TU games, the Average Tree value for cycle-free communication graph games, and
games with a permission structure. Section 3 introduces the Average Tree permission
value for games with a permission tree structure and provides the first axiomatization.
A characterization with a fairness property is given in Sect. 4. A comparison with the
conjunctive permission value is made in Sect. 5, where we modify the two axiomati-
zations of the AT permission value to obtain new axiomatizations of the conjunctive
permission value. Section 6 contains concluding remarks.

2 Cooperative games and restricted cooperation

2.1 Transferable utility games

A cooperative game with transferable utility in characteristic function form, or TU
game, is a pair (N , v), where N ⊂ IN is a finite set of |N | players and v : 2N → IR
is a characteristic function, where v(∅) = 0. A subset S ∈ 2N is called a coalition.
For any coalition S, v(S) displays the worth of coalition S, which the members of
coalition S are able to divide among themselves when they decide to cooperate. For
given player set N , we denote the collection of all TU games on N by GN.

For T ∈ 2N \{∅}, the unanimity game (N , uT ) in GN is given by the characteristic
function uT (S) = 1 if T ⊂ S, and uT (S) = 0 otherwise. For any (N , v) ∈ GN , v

can be written in a unique way as a linear combination of the characteristic functions
uT , T ∈ 2N \{∅}, as v = ∑

T ∈2N \{∅}�v(T )uT , where the real numbers �v(T ) are
the Harsanyi dividends, see Harsanyi (1959).

For arbitrary K ⊂ IN, we denote IRK as the |K |-dimensional Euclidean space
with elements x ∈ IRK having components xi , i ∈ K . A payoff vector of a game
(N , v) ∈ GN is a vector x ∈ IRN giving a payoff xi ∈ IR to player i ∈ N . A value
for TU games is a single-valued solution f that assigns to every TU game (N , v) ∈
GN a payoff vector f (N , v) ∈ IRN . A solution f is efficient if

∑
i∈N fi (N , v) =

v(N ) for every (N , v) ∈ GN . The best-known efficient solution is the Shapley value,
denoted by Sh. This solution is efficient and is originally introduced by Shapley (1953)
as the solution in which each player receives its average marginal contribution to
the coalitions when all orders of entrance (permutations) of the players have equal
probability. In terms of Harsanyi dividends, the Shapley value is given by Shi (N , v) =∑

{T ∈2N |i∈T }�v(T )/|T |, i ∈ N , so the Harsanyi dividends �v(T ) are distributed
uniformly over the players in coalition T .

2.2 TU games with graph structure

A graph is a pair (N , L) where N is a set of nodes and L ⊂ {{i, j} ∈ 2N |i �= j} is
a set of unordered pairs of distinct elements of N . In this paper, the nodes represent
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The Average Tree permission value 103

the players in a game (N , v) and so we refer to them as players. The elements of L
are called links or edges. For j ∈ N , we denote N L( j) ⊂ N as the set of neighbors
of j in L , so N L( j) = {h ∈ N | { j, h} ∈ L}. The set of all graphs on N is denoted
by LN .

For given S ∈ 2N \{∅} and (N , L) ∈ LN , the graph (S, L(S))with L(S) = {{i, j} ∈
L|i, j ∈ S} is the subgraph of L on S. Notice that L(N ) = L . A sequence of k distinct
players (i1, . . . , ik) is a path in L(S) if {i�, i�+1} ∈ L(S) for � = 1, . . . , k − 1. Two
players i, j ∈ N are connected in (S, L(S)) if there is a path (i1, . . . , ik) in L(S)
with i1 = i and ik = j . A subgraph (S, L(S)) is connected, or shortly coalition S is
connected, if every two players in S are connected in (S, L(S)). A coalition K ⊂ S is a
component of (S, L(S)) if K is a maximally connected subset of S, i.e., K is connected
and for every i ∈ S\K the set K ∪ {i} is not connected. The set of components of
(S, L(S)) is denoted by �L(S), with �L = �L(N ). The graph (N , L) is cycle-free
if for every two different players i and j either i and j are not connected or there is
precisely one path in L connecting i and j . When (N , L) is connected and cycle-free,
then N is the unique component of (N , L) and (N , L) has precisely |N | − 1 links.
Following Béal et al. (2010) (see also Béal et al. 2012 for multi-choice forest games),
we call N as well as each of the two components in (N , L\{{i, j}}), {i, j} ∈ L ,
a cone when (N , L) is connected and cycle-free. Therefore, a connected cycle-free
graph (N , L) has 2(|N | − 1)+ 1 cones.

A TU game with graph structure, shortly graph game, is a triple (N , v, L) with
(N , v) ∈ GN and (N , L) ∈ LN . We denote the collection of all TU games with
graph structure and player set N by GN

L and the class of all cycle-free graph games
on N by GN

F . A solution f on a subclass G of GN
L assigns a unique payoff vector

f (N , v, L) ∈ IRN to every (N , v, L) ∈ G.
For a graph game (N , v, L), Myerson (1977) introduced the Myerson restricted

game (N , vL) ∈ GN , defined by vL(S) = ∑
T ∈�L (S) v(T ) for every S ∈ 2N . The

Myerson value, denoted by My, is defined as My(N , v, L) = Sh(N , vL), for every
(N , v, L) ∈ GN

L . The Myerson value is characterized by component efficiency and
fairness, where a solution f is component efficient if for any (N , v, L) ∈ GN

L it
holds that

∑
i∈K fi (N , v, L) = v(K ) for every K ∈ �L , and a solution f satisfies

fairness if for any (N , v, L) ∈ GN
L and any link {i, j} ∈ L it holds that fi (N , v, L)−

fi (N , v, L\{{i, j}}) = f j (N , v, L)− f j (N , v, L\{{i, j}}).
On the class GN

F of cycle-free graph games, Herings et al. (2008) introduce the
Average Tree value, denoted by AT. When the graph is connected, the AT value assigns
to each graph game (N , v, L) ∈ GN

F the average of |N | payoff vectors. Each of these
payoff vectors is associated with precisely one of the players, the so-called hierarchical
outcome for that player as introduced by Demange (2004). To define the hierarchical
outcome for a particular player i ∈ N , for each j ∈ N let C L

i ( j) be defined as

C L
i ( j) = {h ∈ N | the path in L from h to i contains j}.

Notice that C L
i (i) = N , and for j �= i, C L

i ( j) is the cone containing j that results
from deleting the first link of the unique path in L from j to i . The hierarchical outcome
associated with player i is the vector t i (N , v, L) ∈ IRN defined as
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104 R. van den Brink et al.

t i
j (N , v, L) = v

(
C L

i ( j)
)

−
∑

h∈C L
i ( j)∩N L ( j)

v
(

C L
i (h)

)
, j ∈ N . (2.1)

The payoff to player j in this vector is equal to the worth of the cone C L
i ( j) minus

the worths of the cones C L
i (h) for the neighbors h of j in C L

i ( j). Since t i
i (N , v, L) =

v(N )− ∑
h∈N L (i) v(C

L
i (h)), the hierarchical outcome t i (N , v, L) is efficient.

On the class of connected cycle-free graph games, the AT value is then defined as

AT(N , v, L) = 1

|N |
∑

i∈N

ti (N , v, L).

If (N , L) is connected, the AT value depends only on the worths of the 2(|N |− 1)+ 1
cones. When (N , L) is not connected, the AT value is applied to each of the components
in �L , i.e., on each component K the AT value is the average of |K | hierarchical
outcomes of length K associated with each of the players in K . This construction
defines the AT value on the class of cycle-free graph games GN

F .
On the class GN

F , the AT value is characterized by component efficiency and com-
ponent fairness. For (N , v, L) ∈ GN

F , take K ∈ �L and link {i, j} ∈ L(K ). Then
K consists of two components in the graph (N , L\{{i, j}}), obtained from (N , L) by
deleting the link {i, j}. Let K i j

h , h = i, j , denote the component of K that contains
player h after deleting the link {i, j}.3 Component fairness requires that, when delet-
ing link {i, j} in L(K ), the resulting average change in payoff to the players in K i j

i is

equal to the average change in payoff to the players in K i j
j .

Axiom 2.1 (Component Fairness)
A solution f on the class GN

F of cycle-free graph games satisfies component fairness
if, for every (N , v, L) ∈ GN

F and for any link {i, j} ∈ L , it holds that

∑
h∈K i j

i
[ fh(N , v, L)− fh(N , v, L\{{i, j}})]

|K i j
i |

=
∑

h∈K i j
j
[ fh(N , v, L)− fh(N , v, L\{{i, j}})]

|K i j
j |

.

Theorem 2.2 (Herings et al. 2008)
On the class GN

F of cycle-free graph games, the AT value is the unique solution that
satisfies component efficiency and component fairness.

Both the Myerson value and the AT value satisfy efficiency on the class of connected
cycle-free graph games.

3 When (N , L) is connected, then K i j
h , h = i, j , are the two cones in L that result from deleting {i, j}.
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2.3 TU games with permission structure

A permission structure on the set of players of a TU game describes a situation where
some players need permission from other players to cooperate within a coalition. A
permission structure is assumed to be described by a directed graph, shortly digraph,
(N , D) with the finite set of players of the game N as the set of nodes and with set of
arcs D ⊂ {(i, j) ∈ N × N |i �= j} a collection of ordered pairs of players in N . For a
digraph (N , D), the undirected graph (N , L D) on N associated with D is defined by
L D = {{i, j}| (i, j) ∈ D}. The digraph (N , D) is connected if (N , L D) is connected,
and a coalition K ∈ 2N \{∅} is a component of (N , D) if it is a component of (N , L D).

For a given digraph (N , D), node i is a predecessor of j and j is a successor of i
if (i, j) ∈ D. A directed path in (N , D) from i to j is a sequence of distinct nodes
(i1, . . . , im) such that i1 = i, im = j, and (ik, ik+1) ∈ D for k = 1, . . . ,m − 1. If
there is a directed path in (N , D) from node i to a different node j , then i is a superior
of j and j is a subordinate of i . A directed path from i to j is a cycle in (N , D) if
( j, i) ∈ D. The digraph (N , D) is acyclic if it does not contain cycles. An acyclic
digraph on a finite set has at least one top node, being a node that has no predecessors.
A digraph (N , D) is an oriented tree if it has only one top node and from the top node
to any other node there is precisely one directed path in the digraph. The collection of
all oriented trees on N is denoted by DN

T . The associated undirected graph (N , L D)

of an oriented tree (N , D) ∈ DN
T is both connected and cycle-free.

For an oriented tree (N , D) ∈ DN
T every node j ∈ N , except the top node, has a

unique predecessor, denoted by pD( j). For i ∈ N , SD(i) = { j ∈ N | (i, j) ∈ D}
denotes the set of successors, ŜD(i) denotes the set of subordinates, and P̂D(i) denotes
the set of superiors of node i . Notice that in an oriented tree, the top node is a superior
of any other node and that any other node is a subordinate of the top node. Finally, for
T ∈ 2N , we denote ŜD(T ) = ∪i∈T ŜD(i) and P̂D(T ) = ∪i∈T P̂D(i).

A TU game with permission structure is a triple (N , v, D) with player set N , TU
game (N , v) ∈ GN , and digraph (N , D) on the set of players. A solution f on a class
of games with permission structure assigns a unique payoff vector f (N , v, D) ∈ IRN

to every (N , v, D) in the class. In a game with permission structure, it is assumed
that players need permission of their predecessors to cooperate with other players. In
the conjunctive approach as introduced in Gilles et al. (1992) and van den Brink and
Gilles (1996), it is assumed that a player needs permission from all its predecessors,
while in the disjunctive approach as considered in Gilles and Owen (1994) and van
der Brink (1997), it is assumed that a player needs permission of at least one of its
predecessors if it has any.

In this paper, we consider the class of games with permission tree structure, shortly
permission tree games and denote this collection of games by GN

T . Let (N , v, D) ∈ GN
T

and let i0 be the top node of (N , D). Since every player in a permission tree has at most
one predecessor, on the class of permission tree games the conjunctive and disjunctive
approaches coincide and a coalition S ∈ 2N is feasible if for every player j ∈ S\{i0},
its predecessor is a member of S. It follows that all its superiors, including the top
node player i0, are members of S. The smallest feasible coalition containing S is equal
to FD(S) = S ∪ P̂D(S). The set of feasible coalitions is given by
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�D =
{

S ∈ 2N |∀i ∈ S\{i0}, pD(i) ∈ S
}

= {S ∈ 2N |FD(S) = S}.

As shown by Algaba et al. (2004), the collection�D is an antimatroid and is therefore
union closed,4 i.e., for every two sets S, T ∈ �D it holds that S ∪T ∈ �D . Therefore,
for any S ∈ 2N , the largest feasible subset of S is uniquely defined and is equal to
σD(S) = ∪{T ∈�D |T ⊂S} T . The induced permission restricted game of a permission
tree game (N , v, D) ∈ GN

T is the game (N , vD) ∈ GN given by

vD(S) = v(σD(S)), S ∈ 2N , (2.2)

i.e., the permission restricted game assigns to each coalition S ∈ 2N the worth of the
largest feasible subset of S in the game (N , v). Note that (uT )D = uT ∪P̂D(T ) for all
T ∈ 2N \{∅} and D ∈ DN

T . The conjunctive permission value ϕ is the solution that
assigns to every game (N , v, D) ∈ GN

T the Shapley value of the permission restricted
game, ϕ(N , v, D) = Sh(N , vD).

Since the conjunctive and disjunctive permission values coincide for permission
tree games, we refer to this solution simply as the permission value.

3 The Average Tree permission value

In this section, we introduce a new value on the class of permission tree games and
characterize it by a set of six independent axioms. This new solution for permission
tree games has similarities with the idea behind the AT value as defined for graph
games. For permission tree game (N , v, D) we first take the permission restricted
game (N , vD) and then apply the Average Tree value to this game with (N , L D) as
the underlying graph. The solution we obtain in this way is called the AT permission
value. Thus, the AT permission value is obtained as the average of |N | marginal vectors
of vD .

Definition 3.1 (AT permission value) On the class GN
T of permission tree games, the

Average Tree (AT) permission value is the function ψ given by

ψ(N , v, D) = AT(N , vD, L D), (N , v, D) ∈ GN
T .

We remark that in the definition instead of the permission restricted game vD we
could also take the Myerson restriction of vD on graph L D or the permission restricted
game of the Myerson restriction vL D on L D , since all these games are the same as the
next proposition shows.

Proposition 3.2 For every (N , v, D) ∈ GN
T it holds that (vD)

L D = (vL D )D = vD.

4 A collection of feasible coalitions A ⊂ 2N is an antimatroid if, besides being union closed, it contains
the empty set and it satisfies accessibility meaning that S ∈ A implies that there is a player i ∈ S such that
S\{i} ∈ A, see Dilworth (1940) and Edelman and Jamison (1985).
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Proof Take any S ⊂ N . Then (vD)
L D (S) = ∑

T ∈�L D (S) vD(T ) = v(σD(S)), where
the last equality follows since (i) σD(T ) = ∅ if i0 �∈ T , (ii) there can be at most one
T ∈ �L D (S)with i0 ∈ T , and (iii)σD(S) = T if i0 ∈ T and T ∈ �L D (S). On the other
hand, (vL D )D(S) = vL D (σD(S)) = ∑

T ∈�L D (σD(S))
v(T ) = v(σD(S)), where the last

equality follows since σD(S) is connected in L D and thus �L D (σD(S)) = {σD(S)}.

�

Note that Proposition 3.2 also implies that My(N , vD, L D) = Sh(N , (vD)
L D ) =

Sh(N , vD) = ϕ(N , v, D). Another consequence of Proposition 3.2 is that the AT
permission value is core stable with respect to the permission restricted game.
It always assigns a payoff vector in core(N , vD) = {x ∈ IRN | ∑

i∈N xi =
vD(N ) and

∑
i∈S xi ≥ vD(S) for all S ⊂ N } if the game (N , v) is monotone,5 as

shown in the next proposition.

Proposition 3.3 For every (N , v, D) ∈ GN
T with v monotone, it holds that

ψ(N , v, D) ∈ core(N , vD).

Proof All hierarchical outcomes of a superadditive6 game with cycle-free graph struc-
ture belong to the core of its Myerson restricted game, see Demange (2004). Since
the core is convex, in case of a superadditive game also the AT value assigns a payoff
vector in this core, see Herings et al. (2008). By Theorem 4.6.(iv) of Gilles et al.
(1992), it follows that for permission tree games (N , v, D) with v a monotone game,
the permission restricted game vD is superadditive. Hence, AT(N , vD, L D) belongs
to core(N , vD) if v is monotone. 
�

The permission value, being the Shapley value of vD , need not be core sta-
ble, even when the underlying game is superadditive. For example, for N =
{1, 2, 3}, v = u{1,2}+u{1,3}−u{1,2,3} and D = {(1, 2), (1, 3)}, we haveψ(N , v, D) =
(1, 0, 0), ϕ(N , v, D) = ( 2

3 ,
1
6 ,

1
6 ), and core(N , vD) = {(1, 0, 0)}.7

Next, we give a first characterization of the AT permission value by means of six
independent axioms, some axioms being similar to axioms characterizing the con-
junctive permission value, and some axioms taken from the literature on the AT value
for games with a graph structure. The first three axioms are also used in van den Brink
and Gilles (1996) to characterize the conjunctive permission value. Efficiency states
that the total sum of payoffs equals the worth of the grand coalition.

Axiom 3.4 (Efficiency) For every (N , v, D) ∈ GN
T it holds that

∑
i∈N fi (N , v, D) =

v(N ).

Linearity is a straightforward generalization of the linearity axiom for TU games.

Axiom 3.5 (Linearity) For every pair (N , v, D), (N , w, D) ∈ GN
T and real numbers

α and β it holds that f (N , αv + βw, D) = α f (N , v, D)+ β f (N , w, D).

5 A TU game (N , v) is monotone if v(S) ≤ v(T ) whenever S ⊂ T .
6 A game (N , v) is superadditive if v(S)+ v(T ) ≤ v(S ∪ T ) for all S, T ⊂ N with S ∩ T = ∅.
7 Notice that also the Myerson value, being the Shapley value of the Myerson restricted game vL , need not
to be in the core of vL , even when v is superadditive and (N , L) is cycle-free.
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Player i ∈ N is a null player in (N , v) ∈ GN if for all T ⊂ N\{i} it holds that
v(T ∪ {i}) − v(T ) = 0. Player i ∈ N is an inessential player in the permission tree
game (N , v, D) ∈ GN

T if both i and all its subordinates in (N , D) are null players in
(N , v). The inessential player property states that inessential players earn zero payoff.8

Axiom 3.6 (Inessential player property) For every (N , v, D) ∈ GN
T it holds that if

player i ∈ N is an inessential player in (N , v, D), then fi (N , v, D) = 0.

Player i ∈ N is a necessary player in game (N , v) if v(S) = 0 for all S ⊂ N\{i}.9
Necessary players whose neighbors in L D also are all necessary can be considered
equally important in the permission tree game (N , v, D) since, although they are
needed to generate any nonzero contribution, they need all their neighbors to be able to
generate this contribution. Therefore, we require equal payoffs for necessary players
whose neighbors are all necessary in the game. We denote the set of all necessary
players in v by Nec(N , v) = {i ∈ N | v(S) = 0 for all S ⊂ N\{i}}.
Axiom 3.7 (Interior necessary player symmetry) For every (N , v, D) ∈ GN

T and
necessary players i, j ∈ Nec(N , v) satisfying N L D (i) ⊂ Nec(N , v) and N L D ( j) ⊂
Nec(N , v) it holds that fi (N , v, D) = f j (N , v, D).

The next axiom reflects domination of predecessors and states that the payoff dis-
tribution does not change if a predecessor i becomes necessary for its successor j in
the sense that the marginal contribution of player j to every coalition that does not
contain player i becomes zero. For game (N , v) and players i, j ∈ N we define the
game (N , vi

j ) by vi
j (S) = v(S\{ j}) for all S ⊂ N\{i}, and vi

j (S) = v(S) otherwise.

Axiom 3.8 (Predecessor necessity) For every (N , v, D) ∈ GN
T and i, j ∈ N such that

(i, j) ∈ D, it holds that f (N , v, D) = f (N , vi
j , D).

Interior necessary player symmetry and predecessor necessity are also satisfied by
the permission value. The next axiom is not satisfied by the permission value. For TU
games, Haller (1994) considers collusion neutrality properties, one of them stating
that when two players act together in the sense that either both players are together in
a coalition or both stay out of a coalition, then the sum of the payoffs of the two players
does not change. For a similar collusion neutrality property [introduced by Malawaski
(2002), but equivalent to those of Haller (1994) as shown by Casajus (2013)], van den
Brink (2012a) shows that there is no solution for TU games that satisfies efficiency,
collusion neutrality, and the null player property, while on the class of communication
graph games, all hierarchical outcomes and their convex combinations, and thus also
the AT value, do satisfy these three properties when only collusion is allowed among
neighbors. Here we restrict the axiom to any two players that are neighbors in the
permission structure. For a game (N , v) ∈ GN and two players i, j ∈ N , the game
in which players i and j act together is defined as the game (N , vi j ) ∈ GN given by
vi j (T ) = v(T \{i, j}) if {i, j} �⊂ T, and vi j (T ) = v(T ) otherwise.

8 It weakens the null player property, which states that a null player earns zero payoff.
9 In voting games necessary players are usually called veto players.
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Axiom 3.9 (Collusion neutrality) For every (N , v, D) ∈ GN
T and i, j ∈ N with

j ∈ N L D (i) it holds that fi (N , vi j , D)+ f j (N , vi j , D) = fi (N , v, D)+ f j (N , v, D).

The AT permission value is characterized by Axioms 3.4–3.9.

Theorem 3.10 On the class GN
T of permission tree games, the AT permission value is

the unique solution that satisfies efficiency, linearity, the inessential player property,
interior necessary player symmetry, predecessor necessity, and collusion neutrality.

Proof For notational convenience, in the proof we denote the cone C L D
i ( j) of player

j in the associated undirected graph (N , L D) of (N , D) with respect to i by C D
i ( j)

and the set of neighbors N L D ( j) of player j by N D( j).
We first verify that the AT permission value satisfies all six axioms. Take any

(N , v, D) ∈ GN
T .

1. Since (N , D) ∈ DN
T , the associated undirected graph (N , L D) is connected

and so every vector t i (N , vD, L D), i ∈ N , is efficient with respect to vD , thus∑
k∈N ti

k(N , vD, L D) = vD(N ). Also, since (N , D) ∈ DN
T , it holds that N ∈ �D ,

and thus vD(N ) = v(N ). It follows that ψ(N , v, D) is efficient.
2. Consider (N , v) and (N , w) in GN , real numbers α, β, and define z = αv + βw.

Since zD(S) = z(σD(S)) = αv(σD(S)) + βw(σD(S)) = αvD(S) + βwD(S)
for every S ∈ 2N , and, for every i ∈ N , t i is linear in its second argument,
it follows that t i (N , zD, L D) = t i (N , αvD + βwD, L D) = αt i (N , vD, L D) +
βt i (N , wD, L D). Since the AT permission value is the average over all vectors
t i , i ∈ N , it follows that ψ is linear.

3. Let j be an inessential player in (N , v, D). We distinguish two cases.

Case 1. When j is the unique top node in D, then all players are null players
and v(T ) = 0 for all T ∈ 2N . It follows that vD(T ) = 0 for every T ∈ 2N

and thus t i
j (N , vD, L D) = 0 for all i ∈ N . Taking the average over all i ∈ N

yields ψ j (N , v, D) = 0.
Case 2. Next we consider the case that j is not the top node of (N , D). Take an
arbitrary player i ∈ N and consider the vector t i (N , vD, L D). We show that
t i

j (N , vD, L D) = 0.

First, when i is a subordinate of j , then C D
i ( j) ∩ N D( j) contains the unique

predecessor of j , say h, while all other players in this set are successors of j . So,

t i
j (N , vD, L D) = vD

(
C D

i ( j)
)

− vD

(
C D

i (h)
)

−
∑

k∈C D
i ( j)∩SD( j)

vD

(
C D

i (k)
)
.

For every k ∈ C D
i ( j) ∩ SD( j), the set C D

i (k) is a set of subordinates of j and so
σD(C D

i (k)) = ∅. Further, since D is an oriented tree, both C D
i ( j) and C D

i (h) are
feasible in (N , v, D). Hence,

t i
j (N , vD, L D) = v

(
C D

i ( j)
)

− v
(

C D
i (h)

)
.
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Since C D
i (h) ⊂ C D

i ( j), C D
i ( j)\C D

i (h) ⊂ ŜD( j) ∪ { j} and j is inessential, it
follows that v(C D

i ( j)) = v(C D
i (h)), and thus t i

j (N , vD, L D) = 0.

Second, when i is not a subordinate of j and i �= j , then C D
i ( j) = ŜD( j)∪{ j} and

the neighbors of j within this set are his successors. So C D
i ( j)∩ N D

i ( j) = SD( j),
and thus

t i
j (N , vD, L D) = vD

(
C D

i ( j)
)

−
∑

h∈SD( j)

vD

(
C D

i (h)
)

= 0,

where the last equality follows from the fact that j is not the top node in (N , D),
and therefore σD(C D

i (k)) = ∅ for every k ∈ SD( j) ∪ { j}.10

Third, we consider i = j . Since j is not the top node in D, j has precisely one
predecessor, say player k. From C D

j (k) = N\(ŜD( j) ∪ { j}) it follows that

t j
j (N , vD, L D) = vD(N )− vD(N\(ŜD( j) ∪ { j}))−

∑

h∈SD( j)

vD

(
C D

j (h)
)

= v(N )− v(N\(ŜD( j) ∪ { j}))−
∑

h∈SD( j)

v(∅)

= 0,

where the last equality follows from the fact that j is inessential, so v(N\(ŜD( j)∪
{ j})) = v(N ). So, ψ satisfies the inessential player property.

4. Suppose that player j ∈ Nec(N , v) is a necessary player in (N , v)whose neighbors
in L D are all necessary players, i.e. N D( j) ⊂ Nec(N , v). Take an arbitrary player
i �= j . Then

t i
j (N , vD, L D) = vD(C

D
i ( j))−

∑

h∈C D
i ( j)∩N D( j)

vD

(
C D

i (h)
)
.

Since j �∈ C D
i (h) for all h ∈ C D

i ( j) ∩ N D( j) and the neighbor of j on the path
from j to i is not in C D

i ( j), whereas j and all its neighbors are necessary, the worth
of all these coalitions is equal to zero. Hence t i

j (N , vD, L D) = 0 for all i �= j .
Taking j itself as root of the tree, we obtain

t j
j (N , vD, L D) = vD(N )− vD(N\(ŜD( j) ∪ { j}))−

∑

h∈SD( j)

vD

(
C D

j (h)
)
,

where vD(N\(ŜD( j) ∪ { j})) = 0 and also vD(C D
j (h)) = 0 for all h ∈ SD( j),

since j itself is a necessary player who neither belongs to N\(ŜD( j)∪ { j}) nor to
any of the sets C D

j (h), h ∈ SD( j). So, t j
j (N , vD, L D) = vD(N ) = v(N ). Taking

the average over all i ∈ N , it follows that ψ j (N , v, D) = v(N )
|N | . Since this holds

10 Note that the last equality also follows because all players in ŜD( j) ∪ { j} are null players in (N , vD).
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for every j ∈ Nec(N , v) such that N D( j) ⊂ Nec(N , v), it follows that ψ satisfies
interior necessary player symmetry.

5. Consider T ⊂ N and i, j ∈ N with (i, j) ∈ D. Then
(i) (uT )ij = uT ∪{i} if j ∈ T ,

(ii) (uT )ij = uT ∪{i} = uT if j �∈ T and i ∈ T , and

(iii) (uT )ij = uT if {i, j} ∩ T = ∅.

In all cases ((uT )ij )D = (uT )D = uT ∪P̂D(T ), and thus ψ(N , uT , D) =
AT(N , (uT )D, L D) = AT(N , ((uT )ij )D, L D) = ψ(N , (uT )ij , D). By linearity
of ψ , it follows that this holds for any permission tree game, and thus, ψ satisfies
predecessor necessity.

6. Let j ∈ N D(i) and without loss of generality assume that i = pD( j). Let S ∈ 2N

be a set that contains both i and j . It holds that j ∈ σD(S) if and only if i ∈ σD(S).
Now, for some k ∈ N , consider tk(N , vD, L D).

Suppose that j ∈ C D
k (i). We define Oi = (C D

k (i) ∩ N D(i))\{ j} and O j = C D
k ( j) ∩

N D( j). Notice that i �∈ O j because j ∈ C D
k (i). It holds that

tk
i (N , vD, L D) = vD

(
C D

k (i)
)

− vD

(
C D

k ( j)
)

−
∑

h∈Oi

vD

(
C D

k (h)
)
,

tk
j (N , vD, L D) = vD

(
C D

k ( j)
)

−
∑

h∈O j

vD

(
C D

k (h)
)
.

We obtain that

tk
i (N , vD, L D)+ tk

j (N , vD, L D) = vD

(
C D

k (i)
)

−
∑

h∈Oi ∪O j

vD

(
C D

k (h)
)

= v(σD

(
C D

k (i))
)
−

∑

h∈Oi ∪O j

v
(
σD

(
C D

k (h)
))

= vi j
(
σD

(
C D

k (i)
))

−
∑

h∈Oi ∪O j

vi j
(
σD

(
C D

k (h)
))

= tk
i

(
N , (vi j )D, L D

)
+ tk

j

(
N , (vi j )D, L D

)
,

where the third equality follows because both i and j are in C D
k (i) and thus either

both are in σD(C D
k (i)) or both are not, and i and j are both not in C D

k (h) for every
h ∈ Oi ∪ O j and so also not in σD(C D

k (h)). Similarly, the same equality holds when
i ∈ C D

k ( j). By taking the average over all k ∈ N , it follows that ψ satisfies collusion
neutrality.

Next we prove that the six axioms determine a unique solution f . First, for the una-
nimity game (N , uN , D) it holds by efficiency and interior necessary player symmetry
that fi (N , uN , D) = 1/|N |, i ∈ N . Next we determine by induction the payoffs of
the unanimity games of all feasible sets.
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Take any t, 1 ≤ t < |N |, and assume that f (N , uT , D) is uniquely determined
for all T ∈ �D with |T | > t. Take any T ∈ �D with |T | = t . Since T is feasible,
for every i �∈ T it holds that all subordinates of i are not in T and so i is inessential
in (N , uT , D). Thus, for any i /∈ T, fi (N , uT , D) = 0 by the inessential player
property. To determine the payoffs of the players in T , for a player i ∈ T such that
SD(i)\T �= ∅, take a player j ∈ SD(i)\T . Since T is feasible, also T ′ = T ∪ { j}
is feasible and |T ′| = t + 1. Since j �∈ T, f j (N , uT , D) = 0. Applying collusion
neutrality to v = uT and observing that (uT )i j = uT ′

it follows that

fi (N , uT , D) = fi (N , uT , D)+ f j (N , uT , D)

= fi (N , (u
T )i j , D)+ f j (N , (u

T )i j , D)

= fi (N , uT ′
, D)+ f j (N , uT ′

, D).

By the induction hypothesis, fi (N , uT ′
, D) and f j (N , uT ′

, D) are uniquely deter-
mined, and therefore fi (N , uT , D) is uniquely determined. So, we are left to deter-
mine the payoffs of the players in the set T̂ = {h ∈ T |SD(h)\T = ∅}. For every
i ∈ T̂ it holds that N D(i) ⊂ T , because T is feasible and SD(i)\T = ∅. From interior
necessary player symmetry, it follows that all players in T̂ have equal payoff. These
payoffs then follow from efficiency. By induction, it is shown that f (N , uT , D) is
uniquely determined for every feasible T ∈ �D .

Take any T �∈ �D. Predecessor necessity implies f (N , uT , D)= f (N , uT ∪{pD( j)},
D) for every j ∈ T . Adding subsequently all players in P̂D(T )\T , we obtain that
f (N , uT , D) = f (N , uFD(T ), D) and so the payoffs for every unanimity game are
uniquely determined.

Finally, for any (N , v, D) ∈ GN
T , it holds that f (N , v, D) is uniquely determined

by linearity. 
�

Note that collusion between two neighbors in the permission restricted game is
not the same as taking the restricted game after two neighbors colluded.11 Con-
sider for example the game with permission structure (N , v, D) ∈ GN

T with N =
{1, 2, 3, 4}, v = u{1,3}, and D = {(1, 2), (2, 3), (2, 4)}. Taking S = {1, 2, 3}, we
see that (vD)

24(S) = vD({1, 3}) = v({1}) = 0, while (v24)D(S) = v24({1, 2, 3}) =
v({1, 3}) = 1.

Next, we show the logical independence of the six axioms of Theorem 3.10.

1. The permission value satisfies efficiency, linearity, the inessential player property,
interior necessary player symmetry, and predecessor necessity. It does not satisfy
collusion neutrality.

2. The solution f (N , v, D) = AT(N , v, L D) that applies the Average Tree value
to the original game v on the associated undirected graph L D satisfies efficiency,
linearity, the inessential player property, interior necessary player symmetry, and
collusion neutrality. It does not satisfy predecessor necessity.

11 Otherwise, collusion neutrality would follow immediately from van den Brink (2012a).
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3. The solution that assigns all worth v(N ) to the top node and zero to all other players
satisfies efficiency, linearity, the inessential player property, predecessor necessity,
and collusion neutrality. It does not satisfy interior necessary player symmetry.

4. The equal division solution given by fi (N , v, D) = v(N )/|N | for all i ∈ N satis-
fies efficiency, linearity, interior necessary player symmetry, predecessor necessity,
and collusion neutrality. It does not satisfy the inessential player property.

5. For (N , v, D) ∈ GN
T , let (N , v) ∈ GN be given by v = v(N )uN\I (N ,v,D), where

I (N , v, D) is the set of inessential players in (N , v, D). The solution f (N , v, D) =
ψ(N , v, D) satisfies efficiency, the inessential player property, interior necessary
player symmetry, predecessor necessity, and collusion neutrality. It does not satisfy
linearity.

6. The zero solution given by fi (N , v, D) = 0 for all i ∈ N satisfies linearity,
the inessential player property, interior necessary player symmetry, predecessor
necessity, and collusion neutrality. It does not satisfy efficiency.

4 An axiomatization using fairness

In this section, we characterize the AT permission value by modifying the component
fairness Axiom 2.1 to the framework of permission tree games.

We say that in a permission tree game (N , v, D) ∈ GN
T , some player i ∈ N is

enforcing power over a player j ∈ SD(i) when i vetoes any coalition that contains
j or any of its subordinates but does not contain player i . Since i is a predecessor
of j , and thus is a superior of every player in cone K i j

j , any h ∈ K i j
j has j as one

of its superiors and thus also needs permission of i. So, the players in K i j
j cannot

cooperate without permission of player i . It follows that σD(K
i j
j ) = ∅, i.e., in the

permission structure (N , D) the players in K i j
j earn worth zero without permission

from player i . On the other hand, neither player i nor any of the predecessors of player
i can force the players in K i j

j to cooperate. The corresponding game in which the

players in { j} ∪ ŜD( j) are not cooperating is the game (N , v−i j ) ∈ GN given by
v−i j (T ) = v(T \({ j} ∪ ŜD( j))) for all T ∈ 2N .

Applying a similar idea as component fairness, but now with respect to the enforce-
ment of permission power, we obtain the following axiom.

Axiom 4.1 (Permission Component Fairness) A solution f on the class GN
T of permis-

sion tree games satisfies permission component fairness if, for every (N , v, D) ∈ GN
T

and for any link (i, j) ∈ D, it holds that

∑
h∈K i j

i

[
fh(N , v, D)− fh

(
N , v−i j , D

)]

|K i j
i |

=
∑

h∈K i j
j

[
fh(N , v, D)− fh

(
N , v−i j , D

)]

|K i j
j |

.

The following theorem characterizes the AT permission value by efficiency, the
inessential player property, and permission component fairness.
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Theorem 4.2 On the class GN
T of permission tree games, the AT permission value

is the unique solution that satisfies efficiency, the inessential player property, and
permission component fairness.

Proof It follows from Theorem 3.10 that the AT permission value satisfies efficiency
and the inessential player property. To prove that the AT permission value satisfies
permission component fairness, take any arc (i, j) ∈ D. Then all players in K i j

j are

inessential in (N , v−i j , D), so

∑

h∈K i j
j

ψh

(
N , v−i j , D

)
= 0.

Since the AT permission value is efficient, we have that

∑

h∈K i j
i

ψh

(
N , v−i j , D

)
= v−i j (N )−

∑

h∈K i j
j

ψh

(
N , v−i j , D

)
= v

(
K i j

i

)
.

For permission component fairness to hold, we therefore have to show that

∑
h∈K i j

j
ψh(N , v, D)

|K i j
j |

=
∑

h∈K i j
i
ψh(N , v, D)− v

(
K i j

i

)

|K i j
i |

.

Recall that the AT permission value ψ is defined as the AT value applied to the cycle-
free graph game (N , vD, L D), so as the average of the |N | hierarchical outcomes of
the game (N , vD) on the graph (N , L D), each one is associated with precisely one of
the players. The hierarchical outcome associated with player k ∈ N gives to player
� ∈ N payoff

tk
� (N , vD, L D) = vD

(
C L D

k (�)
)

−
∑

h∈C
L D
k (�)∩N L D (�)

vD

(
C L D

k (h)
)
, � ∈ N .

Consider any arc (i, j) ∈ D. When k ∈ K i j
i , then C L D

k ( j) = K i j
j and so the total payoff

at vector tk(N , vD, L D) to the players in K i j
j is equal to vD(K

i j
j ). Since vD(K

i j
j ) = 0,

it follows that the players in K i j
j get total payoff equal to zero in |K i j

i | of the |N |
hierarchical outcomes. When k ∈ K i j

j , then C L D
k (i) = K i j

i and so the total payoff

at vector tk(N , vD, L D) to the players in K i j
i is equal to vD(K

i j
i ) = v(K i j

i ). From

efficiency, it follows that the players in K i j
j get total payoff equal to v(N )− v(K i j

i ).

This occurs in |K i j
j | of the |N | hierarchical outcomes. It follows that
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∑

h∈K i j
j

ψh(N , v, D) =
∣
∣
∣K

i j
j

∣
∣
∣
(
v
(

N
)

− v
(

K i j
i

))

|N | . (4.1)

From the reasoning above, it also follows that the players in K i j
i get total payoff equal

to v(K i j
i ) in |K i j

j | of the |N | hierarchical outcomes where k ∈ K i j
j , and they get total

payoff v(N ) in the |K i j
i | of the |N | hierarchical outcomes where k ∈ K i j

i . So,

∑

h∈K i j
i

ψh(N , v, D) =
∣
∣
∣K

i j
j

∣
∣
∣v

(
K i j

i

)
+

∣
∣
∣K

i j
i

∣
∣
∣v

(
N

)

|N | .

Substituting |K i j
j | = |N | − |K i j

i | in the latter equation yields

∑

h∈K i j
i

ψh

(
N , v, D

)
− v

(
K i j

i

)
=

∣
∣
∣K

i j
i

∣
∣
∣
(
v
(

N
)

− v
(

K i j
i

))

|N | . (4.2)

From Eqs. (4.1) and (4.2), it follows that ψ satisfies permission component fairness.
It remains to show that the three axioms characterize a unique solution. Let f be a

solution satisfying the three axioms. Then, efficiency requires that

∑

h∈N

fh(N , v, D) = v(N ) (4.3)

and permission component fairness requires

∑
h∈K i j

i

[
fh(N , v, D)− fh

(
N , v−i j , D

)]

|K i j
i |

=
∑

h∈K i j
j

[
fh(N , v, D)− fh

(
N , v−i j , D

)]

|K i j
j |

, (i, j) ∈ D.

All players in K i j
j are inessential in (N , v−i j , D), so by the inessential player property

∑

h∈K i j
j

fh

(
N , v−i j , D

)
= 0, (i, j) ∈ D.

Since f is efficient, we have that

∑

h∈K i j
i

fh

(
N , v−i j , D

)
=v−i j (N )−

∑

h∈K i j
j

fh

(
N , v−i j , D

)
=v

(
K i j

i

)
, (i, j) ∈ D.

123



116 R. van den Brink et al.

We find that

∑
h∈K i j

j
fh(N , v, D)

|K i j
j |

=
∑

h∈K i j
i

fh(N , v, D)− v
(

K i j
i

)

|K i j
i |

, (i, j) ∈ D. (4.4)

Since (N , D) ∈ DN
T , the number of arcs in D is equal to |N | − 1. So, the total

number of equations in (4.3) and (4.4) is |N |. Since all |N | equations are linearly
independent, the system in (4.3) and (4.4) has a unique solution in the |N | variables
fh(N , v, D), h ∈ N . 
�

The three axioms of Theorem 4.2 are logically independent. The equal division
solution satisfies efficiency and permission component fairness, but not the inessential
player property. The permission value satisfies efficiency and the inessential player
property, but not permission component fairness. Finally, the zero solution satisfies
the inessential player property and permission component fairness, but not efficiency.

5 Comparison with the permission value

In this section, we compare the Average Tree permission value with the permission
value defined in Sect. 2.3 As mentioned in the first case under logical independence
in Sect. 3, the permission value satisfies all axioms of Theorem 3.10 except collusion
neutrality. The permission value satisfies a stronger version of interior necessary player
symmetry, namely that all necessary players earn the same payoff.

Axiom 5.1 (Necessary player symmetry) For every (N , v, D) ∈ GN
T and necessary

players i, j ∈ Nec(N , v), it holds that fi (N , v, D) = f j (N , v, D).

It turns out that strengthening interior necessary player symmetry in this way, we
can delete collusion neutrality to obtain an axiomatization of the permission value.

Theorem 5.2 On the class GN
T of permission tree games the permission value is

the unique solution that satisfies efficiency, linearity, the inessential player property,
necessary player symmetry, and predecessor necessity.

Proof It is known from van den Brink and Gilles (1996) that the permission value
satisfies efficiency, linearity, and the inessential player property, while necessary player
symmetry follows from linearity and the necessary player property.12 Predecessor
necessity follows similar as in the proof of Theorem 3.10 since there it is shown that
((uT )ij )D = (uT )D for all T ⊂ N and i, j ∈ N with (i, j) ∈ D, and thus by linearity
also ϕ satisfies predecessor necessity.

We are left to show uniqueness. Suppose that f satisfies the five axioms and con-
sider the unanimity game (N , uT , D), T ∈ �D . Similar as in the proof of Theorem

12 The necessary player property states that for monotone games, every necessary player earns at least
as much as any other player. This implies equal payoffs for the necessary players in monotone games.
Efficiency and the necessary player property imply that all players earn zero in the null game v0 on D
(given by v0(S) = 0 for all S ⊂ N ). With linearity it follows that necessary player symmetry is satisfied
for all games since ϕ(N , uT , D)+ ϕ(N ,−uT , D) = ϕ(N , v0, D) and uT is monotone.
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3.10, since T is feasible, for every i �∈ T it holds that also all subordinates of i
are not in T and so i is inessential in (N , uT , D). Thus, fi (N , uT , D) = 0 by the
inessential player property. From necessary player symmetry, it follows that all play-
ers in T have equal payoff. These payoffs then follow from efficiency. If T �∈ �D ,
then, similar as in the proof of Theorem 3.10, by predecessor necessity we have that
f (N , uT , D) = f (N , uFD(T ), D). Hence, for every unanimity game, the payoffs are
uniquely determined by efficiency, the inessential player property, necessary player
symmetry, and predecessor necessity. Finally, f (N , v, D) is uniquely determined by
linearity for every (N , v, D) ∈ GN

T . 
�
Theorems 3.10 and 5.2 show an important difference between the permission value

and AT permission value. By necessary player symmetry, in a unanimity permission
tree game (N , uT , D) the permission value treats all the players in T the same. Similar
to the AT value for cycle-free communication graph games, in the AT permission
value, the players in T who have neighbors outside T have some ‘responsibility’ or
‘representability’ for these players. Therefore, the interior players in T are treated
equally, but the other players in T , i.e., the ‘boundary’ players, earn a payoff that
depends on the substructure where they are the top player and that contains them and
their subordinates. This is taken care for by collusion neutrality which, at each step,
assigns some ‘joint payoff’ to a player and one of its successors when they collude.

This can also be seen when we express the AT permission value for unanimity
games on a permission tree, see Herings et al. (2008, Theorem 5.1) for an analogous
result for the AT value for cycle-free communication graph games.

Proposition 5.3 For T ∈ 2N \{∅} and (N , D) ∈ DN
T it holds that

ψi (N , uT , D) = 1 + pL D
FD(T )

(i)

|FD(T )| + ∑
j∈FD(T ) pL D

FD(T )
( j)

if i ∈ FD(T ),

and ψi (N , uT , D) = 0 otherwise, where pL
S ( j) = ∑

{h∈N\S|{ j,h}∈L} |K hj
h | for all

(N , L) ∈ LN
F , S ⊂ N and j ∈ S.

Proof Defining CL D as the set of connected coalitions in (N , L D), by applying The-
orem 5.1 of Herings et al. (2008) and the fact that (uT )D = uFD(T ) = (uFD(T ))L D , it
follows for every i ∈ FD(T ) that

ψi (N , uT , D) = ATi (N , (u
T )D, L D) = ATi (N , uFD(T ), L D)

=
∑

{S∈CL D |i∈S}

1 + pL D
S (i)

|S| + ∑
j∈S pL D

S ( j)
�uFD (T ) (S)

=
∑

{S∈�D |i∈S}

1 + pL D
S (i)

|S| + ∑
j∈S pL D

S ( j)
�uFD (T ) (S)

= 1 + pL D
FD(T )

(i)

|FD(T )| + ∑
j∈FD(T ) pL D

FD(T )
( j)
,
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where the fourth equality follows since �D ⊂ CL D and �uFD (T ) (S) = 0 when S ∈
CL D \�D . Furthermore, ψi (N , uT , D) = 0 if i ∈ N\FD(T ). 
�

For the permission value it holds that ϕi (N , uT , D) = 1
|FD(T )| for all i ∈ FD(T ),

and ψi (N , uT , D) = 0 otherwise. This also makes clear another important difference
between the AT permission value and the permission value, namely that the permission
value satisfies structural monotonicity (see van den Brink and Gilles 1996) while the
AT permission value does not. Structural monotonicity states that in a monotone game,
every player that has successors earns at least as much as its successors, i.e., if v is
monotone and (i, j) ∈ D, then fi (N , v, D) ≥ f j (N , v, D). Focussing on unanimity
games, the permission value treats players in the unanimity coalition and their supe-
riors equally. This follows from the necessary player property (which requires that
all players in the unanimity coalition earn at least as much as any other player) and
structural monotonicity (which implies that their superiors also earn this same payoff).
From Proposition 5.3, it is clear that, according to the AT permission value, the payoff
for a player depends on the number of players it ‘represents’ or is responsible for.
Therefore, such a player might get more payoff than some of its predecessors.

We illustrate some of the differences between the permission value and the AT
permission value by the following example.

Example 5.4 Consider the game (N , v, D)with player set N = {1, 2, 3, 4, 5}, charac-
teristic functionv = u{2,4} and permission structure D = {(1, 2), (1, 3), (3, 4), (3, 5)}.
The permission value assigns payoff vector ϕ(N , v, D) = (1/4, 1/4, 1/4, 1/4, 0)
and the AT permission value ψ(N , v, D) = (1/5, 1/5, 2/5, 1/5, 0). By prede-
cessor necessity, ψ(N , u{2,4}, D) = ψ(N , u{1,2,3,4}, D) and ϕ(N , u{2,4}, D) =
ϕ(N , u{1,2,3,4}, D). By the inessential player property, in both payoff vectors player 5
has payoff zero. By necessary player symmetry, in the permission value all other play-
ers earn 1/4. This is not the case for the AT permission value. By interior necessary
player symmetry, the players 1, 2, and 4 earn the same. By collusion neutrality, play-
ers 3 and 5 together earn the same as in ψ(N , uN , D) = (1/5, 1/5, 1/5, 1/5, 1/5).
Since ψ5(N , v, D) = 0, we obtain ψ3(N , v, D) = 2/5 and so ψ1(N , v, D) =
ψ2(N , v, D) = ψ4(N , v, D) = 1/5. Also we see that the AT permission value does
not satisfy structural monotonicity since player 3 earns more than its predecessor player
1. This is because player 3 also represents player 5, a feature that is taken into account
in the AT permission value but not in the permission value. In fact, by the necessary
player property of the permission value, player 3 earns at least as much as player 1,
while according to structural monotonicity player 1 earns at least as much as player 3,
yielding equality of the payoffs assigned to these two players by the permission value.

The next five solutions show that the five axioms of Theorem 5.2 are logically inde-
pendent. For each solution, we state the four axioms satisfied by the solution; conse-
quently, it does not satisfy the fifth axiom. The solution fi (N , v, D) = My(N , v, L D)

satisfies efficiency, linearity, the inessential player property, and necessary player sym-
metry. The AT permission value satisfies efficiency, linearity, the inessential player
property, and predecessor necessity. The equal division solution satisfies efficiency, lin-
earity, necessary player symmetry, and predecessor necessity. The solution f defined
at the end of Sect. 3 (as fifth alternative solution showing logical independence of
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the axioms in Theorem 3.10) satisfies efficiency, the inessential player property, nec-
essary player symmetry, and predecessor necessity. Finally, the zero solution given
by fi (N , v, D) = 0 for all i ∈ N satisfies linearity, the inessential player property,
necessary player symmetry, and predecessor necessity.

Next, we modify permission component fairness to get an axiomatization of the
permission value. Similar as in Sect. 4, consider an arc (i, j) ∈ D and suppose that
player i is enforcing its power over j in the sense that it does not allow player j and all
its subordinates to act. Then, player j and all its subordinates, i.e., the players in K i j

j ,

become null players. On the other hand, the players in K i j
j can refuse to cooperate

with the players in K i j
i . Applying a similar idea as Myerson’s fairness, but now with

respect to the enforcement of permission power, we obtain the following axiom.

Axiom 5.5 (Permission Fairness) A solution f on the class GN
T of permission tree

games satisfies permission fairness if, for every (N , v, D) ∈ GN
T and for any pair

i, j ∈ N with (i, j) ∈ D, it holds that

fi (N , v, D)− fi

(
N , v−i j , D

)
= f j (N , v, D)− f j

(
N , v−i j , D

)
.

Replacing in Theorem 4.2 permission component fairness by this permission fair-
ness characterizes the permission value.

Theorem 5.6 On the class GN
T of permission tree games, the permission value is the

unique solution that satisfies efficiency, the inessential player property, and permission
fairness.

Proof It is known that the permission value ϕ satisfies efficiency and the inessential
player property. To show permission fairness, consider any (N , v, D) ∈ GN

T and
(i, j) ∈ D. According to Proposition 2.3 in van den Brink and Gilles (1996), it
follows by applying the dividend formula of the Shapley value that

ϕi (N , v, D) =
∑

{T ∈2N |i∈FD(T )}
�v(T )/|FD(T )|, i ∈ N .

We therefore have that

ϕi (N , v, D)− ϕi (N , v
−i j , D)

=
∑

{T ∈2N |i∈FD(T )}

�v(T )

|FD(T )| −
∑

{T ∈2N |i∈FD(T )}

�v−i j (T )

|FD(T )|

=
∑

{T ∈2N |i∈FD(T )}

�v(T )

|FD(T )| −
∑

{T ∈2N |i∈FD(T ), j �∈FD(T )}

�v(T )

|FD(T )|

=
∑

{T ∈2N |{i, j}⊂FD(T )}

�v(T )

|FD(T )| =
∑

{T ∈2N | j∈FD(T )}

�v(T )

|FD(T )| = ϕ j (N , v, D),
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where the second equality follows since �v−i j (T ) = �v(T ) if j �∈ FD(T ), and
�v−i j (T ) = 0 otherwise, and the fourth equality follows since j ∈ FD(T ) implies
that i ∈ FD(T ) for all T ∈ 2N . Since ϕ j (N , v−i j , D) = 0 by the inessential player
property, it follows that ϕ satisfies permission fairness.

We show uniqueness by induction on the cardinality of the set I (N , v, D) of
inessential players. Let (N , v, D) ∈ GN

T and i0 ∈ N be the top player in (N , D).
If |I (N , v, D)| = |N |, i.e., all players are inessential, then the inessential player prop-
erty implies that fi (N , v, D) = 0 for all i ∈ N . If |I (N , v, D)| = |N | − 1 then
all players in N\{i0} are inessential players, and thus the inessential player property
implies that fi (N , v, D) = 0 for all i ∈ N\{i0}. Efficiency then determines that
fi0(N , v, D) = v(N ).

Proceeding by induction, assume that f (N , v′, D) is determined when |I (N , v′, D)|
= k, 1 ≤ k ≤ |N | − 1, and suppose that |I (N , v, D)| = k − 1. The inessen-
tial player property implies that fi (N , v, D) = 0 for all i ∈ I (N , v, D). For every
j ∈ N\(I (N , v, D) ∪ {i0}) and i = pD( j), permission fairness requires that

fi (N , v, D)− fi (N , v
−i j , D) = f j (N , v, D)− f j (N , v

−i j , D). (5.1)

Since the payoffs fi (N , v−i j , D) and f j (N , v−i j , D) are determined by the induction
hypothesis and (N , D) is an oriented tree, this yields |N | − |I (N , v, D)| − 1 linear
equations. Together with the efficiency condition

∑

h∈N

fh(N , v, D) = v(N ), (5.2)

the total number of equations is |N |− |I (N , v, D)|. Since these equations are linearly
independent, the system of |N | − |I (N , v, D)| equations (5.1) and (5.2) has a unique
solution in the |N | − |I (N , v, D)| variables fh(N , v, D), h ∈ N\I (N , v, D). 
�

The three axioms of Theorem 5.6 are logically independent. The equal division
solution satisfies efficiency and permission fairness, but not the inessential player
property. The AT permission value satisfies efficiency and the inessential player prop-
erty, but not permission fairness. Finally, the zero solution satisfies the inessential
player property and permission fairness, but not efficiency.

6 Concluding remarks

In this paper, we have studied games with an oriented tree as permission structure.
Since in such games players can only generate a surplus if they get permission to
collaborate from all their superiors, only coalitions containing the superiors of all
players involved in the coalition can form. In van den Brink and Gilles (1996), the
conjunctive permission value for this class of games is axiomatized.

We show that the axioms of efficiency, linearity, the inessential player property,
predecessor necessity, interior necessary player symmetry, and collusion neutrality
characterize a unique value, the AT permission value. The AT permission value can
also be axiomatized by efficiency, the inessential player property, and permission
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component fairness. The AT permission value can be easily computed as the average of
n hierarchical outcomes, where n is the number of players. Each hierarchical outcome
is an n-dimensional payoff vector, whose values can be found by the evaluation of n
simple and explicit linear expressions.

We also evaluate the connection between the AT permission value and the per-
mission value for permission tree games. If we strengthen the interior necessary
player symmetry axiom to necessary player symmetry and drop the collusion neu-
trality axiom, we obtain a new axiomatization for the permission value. When we
replace permission component fairness by permission fairness, we obtain another new
axiomatization of the permission value.

Several games in the economic literature turn out to be the conjunctive restricted
game on an appropriate digraph, such as the auction games of Graham et al. (1990),
the so-called DR-polluted river game of Ni and Wang (2007) and its generalization in
Dong et al. (2012), and the dual of the airport game of Littlechild and Owen (1973), see
also Brânzei et al. (2002). These papers study the Shapley value of the corresponding
game which is a special case of the conjunctive permission value. As an alternative,
the AT permission value can be studied for these applications.

As an example, we consider the polluted river problem, as introduced by Ni and
Wang (2007). Such a problem is given by a pair (N , c), where N = {1, . . . n} is a
finite set of agents located along a river, numbered successively from upstream to
downstream, and c = (c1, . . . , cn) ∈ IRN+ is a pollution cost vector with ci the cost
incurred by agent i ∈ N for cleaning the river. A cost allocation of a polluted river
problem (N , c) is a vector x ∈ IRN+ , where xi is the cost to be paid by agent i ∈ N in
the total joint cleaning cost

∑n
j=1 c j . Two solutions proposed in Ni and Wang (2007)

are the Local Responsibility Sharing method given by xLRS(c) = c, i.e., each agent
pays his own cost to clean its territory, and the Upstream Equal Sharing method given
by xUES

i (c) = ∑n
j=i c j/j, i = 1, . . . , n, i.e., for any agent its costs are distributed

equally among itself and all its upstream agents. The LRS outcome reflects that each
agent is responsible for its own cleaning costs, while the UES outcome reflects that
upstream agents are held responsible for downstream pollution and thus that every
agent upstream of some agent should share in the pollution costs of this agent.

The associated LR polluted river game (N , v) introduced by Ni and Wang (2007)
is given by v(S) = ∑

i∈S ci , S ⊂ N . It holds that xLRS(c) = Sh(N , v). Taking the
directed tree D = {(i, i + 1) | i ∈ {1, . . . , n − 1}}, where agents are ordered from
upstream to downstream, it follows that xUES(c) = Sh(N , vD) = ϕ(N , v, D), i.e., the
permission value on D yields the UES outcome. Applying the AT permission value
yields the cost allocation

ψi (N , v, D) = (n − i + 1)ci

n
+

n∑

j=i+1

c j

n
, i = 1, . . . , n.

So, according to this value, each agent pays a fraction in its own cost that is proportional
to the number of its downstream agents (including itself), while it pays a share equal
to 1

n in the cost of its downstream agents. Similar to the LRS method, every agent is
the highest contributor in its own cost, but not as extreme as in the LRS method where
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an agent fully pays its own cost. Similar to the UES method, also the upstream agents
contribute an equal share in the cost of an agent, but this uniform share is determined
by the number of agents along the river instead of the number of upstream agents. In
all three methods, the cost of any agent is shared between this agent and its upstream
agents, with the AT permission value being a mixture of the other two extreme values.
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