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Estimation of the biserial correlation
and its sampling variance for use in

meta-analysis
Perke Jacobsa* and Wolfgang Viechtbauerb

Meta-analyses are often used to synthesize the findings of studies examining the correlational relationship
between two continuous variables. When only dichotomous measurements are available for one of the two
variables, the biserial correlation coefficient can be used to estimate the product–moment correlation
between the two underlying continuous variables. Unlike the point-biserial correlation coefficient, biserial
correlation coefficients can therefore be integrated with product–moment correlation coefficients in the
same meta-analysis. The present article describes the estimation of the biserial correlation coefficient for
meta-analytic purposes and reports simulation results comparing different methods for estimating the
coefficient’s sampling variance. The findings indicate that commonly employed methods yield inconsistent
estimates of the sampling variance across a broad range of research situations. In contrast, consistent
estimates can be obtained using two methods that appear to be unknown in the meta-analytic literature.
A variance-stabilizing transformation for the biserial correlation coefficient is described that allows for the
construction of confidence intervals for individual coefficients with close to nominal coverage probabilities
in most of the examined conditions. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: biserial correlation; bias; sampling variance; variance-stabilizing transformation; confidence intervals;
meta-analysis

1. Introduction

Meta-analyses are frequently used to synthesize the results of studies that have examined the association
between two variables of interest (e.g., Cooper, 2009; Hunter and Schmidt, 2004; Rosenthal, 1991). When interest
lies in the (linear) relationship between two variables that reflect a continuum (e.g., depression and anxiety), the
strength and the direction of the relationship are usually expressed in terms of the Pearson product–moment
correlation coefficient (e.g., Borenstein, 2009; Fisher, 1915). A set of raw correlation coefficients extracted from a
collection of studies examining the same relationship can then be aggregated and contrasted with standard
meta-analytic procedures (e.g., Shadish and Haddock, 2009). Alternatively, the raw correlation coefficients can first
be transformed with Fisher’s r-to-z transformation (Fisher, 1921) before applying such procedures.

Ideally, all studies providing evidence about the association between the two variables of interest have
measured the two variables in their continuous form and reported the resulting sample Pearson product–moment
correlation coefficients, which can then be directly used for the meta-analysis. However, studies sometimes report
results with one or both variables of interest artificially dichotomized, despite known and frequently repeated
arguments against this practice (e.g., Cohen, 1983; MacCallum et al., 2002; Maxwell and Delaney, 1993). Such
dichotomization may occur as part of the measurement process, when a variable that reflects a continuum was
assessed dichotomously, or during the analysis stage, when a variable that was actually measured on a continuum
was dichotomized prior to the analysis. Dichotomization may be carried out “adaptively” (e.g., at a cutoff point
that depends on the particular sample observed, such as when dichotomizing a variable at the sample median)
or using a “hard” cutoff (e.g., at a predefined and absolute value that may be considered to be of clinical
and/or practical relevance).
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If both continuous variables have been dichotomized, study authors may report sufficient information such
that the counts for the resulting 2 × 2 table of cell frequencies can be reconstructed. One can then calculate
the tetrachoric correlation coefficient (Pearson, 1900, 1913), which provides an estimate of the true product–
moment correlation between the two underlying continuous variables, assuming that the continuous variables
follow a bivariate normal distribution.

If only one of the two continuous variables has been dichotomized, study authors are likely to report summary
statistics (i.e., means and standard deviations) for the continuous variable, stratified by the two levels of the
dichotomous variable. Based on this information, one can calculate the biserial correlation coefficient, which again
provides an estimate of the true underlying product–moment correlation between the two continuous variables
(Pearson, 1909a; Soper, 1914; Tate, 1955a, 1955b).

It is important to note that neither the phi coefficient (Boas, 1909; Pearson, 1900; Pearson, 1909b; Yule, 1912),
which can also be calculated based on the 2 × 2 table data, nor the point-biserial correlation coefficient (Lev, 1949;
Tate, 1954), which can also be calculated based on the stratified summary statistics, provides appropriate
estimates of the relationship between the two underlying continuous variables. These coefficients do not account
for the fact that one or both variables have been dichotomized artificially and therefore do not estimate the
correlation of the underlying bivariate normal distribution. Therefore, if information from these different study
types is to be combined in a single meta-analysis, only product–moment correlations, tetrachoric correlations,
and biserial correlations provide a set of coefficients that are inherently and logically comparable from a statistical
point of view.

Methods to calculate the tetrachoric correlation coefficient (and its associated sampling variance) have been
described in the literature in much detail. In particular, given the 2 × 2 table of cell frequencies, the maximum
likelihood estimate can be computed using iterative numerical procedures (e.g., Brown, 1977; Hamdan, 1970;
Olsson, 1979; Pearson, 1900; Pearson, 1913; Tallis, 1962). Alternatively, if only the odds ratio based on the 2 × 2
table is reported, one can use one of several approximations to estimate the tetrachoric correlation coefficient
(e.g., Becker and Clogg, 1988; Bonett and Price, 2005; Digby, 1983; Pearson, 1900).

In the present paper, our focus is on the biserial correlation coefficient and its associated sampling variance.
Despite the fact that the biserial correlation is occasionally described in the meta-analytic literature (Hunter and
Schmidt, 1990; Hunter and Schmidt, 2004; Lipsey and Wilson, 2001), its estimation based on stratified summary
statistics has not been fully explained in this context. Moreover, methods for estimating the sampling variance
of a biserial correlation coefficient presented in the literature rely on various simplifications or approximations that
may not be sufficiently accurate for practical use. At the same time, a derivation of the asymptotic sampling
variance of the biserial correlation coefficient (Soper, 1914) appears to have remained unnoticed in the
meta-analytic literature.

The goal of the present paper is to describe how the biserial correlation coefficient can be accurately estimated
based on the information that one would typically find reported when one of the two variables of interest has
been artificially dichotomized by the study authors. We then describe various methods for estimating the
sampling variance of the biserial correlation coefficient, which leads to a discussion of different methods for
constructing confidence intervals based on biserial data. The results of a Monte Carlo simulation study comparing
the accuracy of these different procedures will then be presented. Finally, the article concludes with an illustration
of a meta-analysis that combines information from studies providing product–moment correlation coefficients
and studies providing biserial and tetrachoric correlations and a discussion of some general considerations when
carrying out such a meta-analysis.

2. The biserial correlation coefficient

A large collection of methods for estimating population correlation coefficients has been described in the
statistical literature. Most famously, the Pearson product–moment correlation coefficient ρ between two
continuous variables, say X and Y, is defined as follows:

ρ ¼ σXY

σXσY
; (1)

where σXY denotes the population covariance between X and Y and σX and σY denote the respective population
standard deviations. In a sample of size n from the bivariate distribution of X and Y, the product–moment
correlation coefficient is estimated analogously by the sample correlation coefficient, given by

r ¼ cor x; yð Þ ¼ cov x; yð Þ
sxsy

; (2)

where cov(x, y) denotes the sample covariance between the observed x and y values and sx and sy denote their
respective sample standard deviations.
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For example, consider a population in which σXY = 9, σX = 9, and σY = 2, implying ρ = 0.5. Suppose a sample of
size n = 20 is taken from this population, yielding the data as shown in the columns labeled x and y in Table 1.
For these data, we find cov(x, y) = 6.347, sx = 9.446, and sy = 1.531. Based on this information, ρ is estimated to be
r ¼ 6:347

9:446�1:531 ¼ 0:44.
Estimation of ρ becomes more complicated when one of the observed variables, say x, has been dichotomized

at a certain cutoff (here denoted by c) to yield a dichotomous or binary variable xb, taking on one of only two
possible values, say 0 and 1. Data of this format essentially consist of the observed values of variable y within
the two groups defined by the levels of variable xb. Study authors are then likely to report summary statistics
(i.e., means and standard deviations) of variable y stratified by the group variable xb. Alternatively (or in addition),
authors may report the results from an independent sample t-test for the test of the null hypothesis H0: μ1 = μ0,
where μ1 and μ0 denote the true means of variable Y within the two levels of variable xb.

For the application considered here, interest lies in the underlying correlation between the non-dichotomized
variable X and variable Y, ρ, which is estimated by the biserial correlation coefficient. The steps to calculate the
biserial correlation from the stratified summary statistics are as follows:

First, we calculate the standardized mean difference between the two groups (i.e., Cohen’s d) using

d ¼ y1 � y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1�1ð Þs2

1þ n0�1ð Þs2
0

n1þn0�2

q ; (3)

where y1 and y0 denote the sample means of the two groups, s1 and s0 denote the sample standard deviations,
and n1 and n0 denote the group sizes. If only the group sizes and the test statistic for the independent samples t-
test, here denoted by t, are reported by the study authors, then the value of d can also be computed with

d ¼ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n0

r
: (4)

Consider again the data in Table 1. The column labeled as xb illustrates one possible way of dichotomizing
variable x, using a cutoff value of c = 15.5, corresponding to the median of variable x. Therefore, the groups are
of sizes n1 = n0 = 10. For these data, we find y1 ¼ 4:7, y0 ¼ 3:6, s1 = 1.337, and s0 = 1.578. The standardized mean
difference can then be computed with

d ¼ 4:7 � 3:6ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�1ð Þ1:3372þ 10�1ð Þ1:5782

10þ10�2

q ¼ 0:75:

The results from an independent samples t-test (i.e., t(df = 18) = 1.68, p = 0.11) can be used to compute the
same value with

Table 1. Example data.

No x y xb Summary statistics

1 20 3 1
2 31 3 1
3 18 4 1
4 22 5 1
5 30 6 1 y1 ¼ 4:7
6 16 4 1 s1 = 1.337
7 28 7 1 n1 = 10
8 24 6 1
9 23 5 1
10 27 4 1

11 1 3 0
12 4 5 0
13 8 1 0
14 15 5 0
15 9 2 0 y0 ¼ 3:6
16 11 4 0 s0 = 1.578
17 11 6 0 n0 = 10
18 6 4 0
19 8 2 0
20 4 4 0

r = 0.44 rb = 0.46 rpb = 0.37
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d ¼ 1:68

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10
þ 1

10

r
¼ 0:75:

In the next step, the standardized mean difference is transformed into the point-biserial correlation coefficient,
which is simply the value one would obtain when applying the equation for the product–moment correlation
coefficient to variables xb and y. Based on d, this value can be computed with

rpb ¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ h

p ; (5)

where h is defined as h ¼ m
n1

þ m
n0

and m = n1 + n0 � 2.
Alternatively, if the sample means of the two groups are given, but only sy, the standard deviation of the y

scores (i.e., not separately for the two groups), we can also directly calculate rpb with

rpb ¼ y1 � y0

sy

� � ffiffiffiffiffiffiffiffiffiffiffi
npq

n � 1

r
; (6)

where p and q are defined as p ¼ n1
n and q ¼ 1 � p ¼ n0

n , respectively. One can also directly convert the test statistic
for the independent samples t-test to the point-biserial correlation coefficient with

rpb ¼ tffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ m

p : (7)

For the example data, Equation [5] yields a point-biserial correlation coefficient of

rpb ¼ 0:75ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:752 þ 3:6

p ¼ 0:37:

This value is identical to

rpb ¼ 4:7 � 3:6

1:531

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20 0:5ð Þ 0:5ð Þ

20 � 1

r
¼ 0:37;

using Equation [6] and the fact that sy = 1.531. Similarly, Equation [7] yields the identical value of

rpb ¼ 1:68ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:682 þ 18

p ¼ 0:37:

One can also easily confirm that the exact same value is obtained when directly computing the product–moment
correlation coefficient based on variables xb and y (i.e., rpb = cor(xb, y) = 0.37) using Equation [2].1

It needs to be emphasized here that rpb does not estimate the correlation between the continuous variables X
and Y. In other words, the point-biserial correlation coefficient is not an estimate of ρ and therefore cannot be
directly compared with a product–moment correlation coefficient that is computed based on a non-dichotomized
x and the corresponding y variable. Consequently, combining r and rpb values in a single meta-analysis would not
be appropriate.

To obtain direct commensurability, the point-biserial correlation must first be transformed into the biserial
correlation coefficient, which can be accomplished with

rb ¼
ffiffiffiffiffi
pq

p
f zp

� � rpb; (8)

where f(zp) denotes the density of the standard normal distribution at value zp, which is the point for which
P(Z > zp) = p, with Z denoting a random variable following a standard normal distribution (see Figure 1 for an
example where p = 0.3). The point-biserial correlation coefficient is an estimate of the product-moment correlation
coefficient ρ and can be logically compared with estimates of ρ obtained directly from a non-dichotomized x
variable and the corresponding y variable.

Continuing with our example, recall that rpb = 0.37. In this example, p = q = 0.5, implying zp = 0 (i.e., 50% of the

area under a standard normal distribution falls above a z-score of 0), and consequently, f zp

� � ¼ 1=
ffiffiffiffiffiffi
2π

p
≈ 0:399.

The value of rb can then be computed using Equation [8], yielding

1The value of h in equation [5] is often approximated in the literature by h ≈ n
n1

þ n
n0

, which would be equal to 4 in this example and then
yields a value of rpb = 0.35. However, the exact value of h can be easily computed and is preferable, as it yields the actual value of the
point-biserial correlation coefficient and not just an approximation.
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rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ð Þ 0:5ð Þp
0:399

0:37 ¼ 0:46:

There is little difference between rb = 0.46 and r = 0.44 in this example, and each value provides an estimate of
ρ = 0.5. However, in practice, only rb would be available for inclusion in a meta-analysis if authors dichotomized
x and reported stratified summary statistics as described earlier.

3. Properties of the biserial correlation coefficient

Several properties can be noted about rb. First of all, assuming that X and Y follow a bivariate normal distribution,
rb is a consistent and asymptotically normally distributed estimator of ρ (Soper, 1914; Tate, 1955b). Moreover,
based on derivations by Soper (1914), rb should be unbiased for ρ = 0, but bias of order 1/n is expected as |ρ|
increases. Generally, the bias will be positive (away from 0) but can also be negative (towards 0) when the
dichotomization results in more unbalanced group sizes (i.e., as p either approaches 0 or 1). However, in practice,
the bias should typically be negligible (Soper, 1914).

The multiplicative factor in front of rpb in Equation [8] is always larger than 1, so that |rb| > |rpb|. Therefore, if |rpb| is
large to begin with, it can happen that |rb| is larger than 1 (Tate, 1955b). This is more likely to happen when p is
either close to 0 or 1 (i.e., when the group sizes are very unbalanced). Such a finding may be somewhat unsettling,
given that we know that ρ must lie somewhere between �1 and 1. Consequently, when reporting the results from
an individual study, one could consider constraining the value of rb to 1 or �1, depending on the sign of rb.
However, doing so would introduce some degree of negative bias into rb, although this should again be negligible.

It is also worth noting that rb described earlier is not the maximum likelihood estimator of ρ (Tate, 1955b).
Computation of the maximum likelihood estimator requires iterative methods and, more importantly, access to
the raw data for xb and y. Because raw data can be difficult to obtain for secondary analyses (Wicherts et al.,
2006), rb is often the only option for estimating ρ because it only requires access to the stratified summary
statistics (or the t-statistic), which are likely to be reported in research articles.2

In the example earlier, dichotomization was carried out by means of a method sometimes referred to as a
“median split,” in which the sample is ordered along variable x and then divided at the middlemost observation
into two groups of equal size (or approximately equal size when n is odd-numbered). This approach is in fact often
used for dichotomization, for example, in many branches of psychological research. We will refer to this practice as
dichotomization at an adaptive cutoff, as the cutoff point along the scale of X is not fixed a priori but depends on
the sample characteristics, in particular the value of the sample median. Note that the median is only one example
of a value that can be used as an adaptive cutoff. Although less common in applied research, cutoffs may also be
set at other percentiles of the sample distribution. For example, a cutoff at the 25th percentile would allocate the
lower 25% of the sample to one group and the upper 75% to the other.

In contrast to an adaptive cutoff, a hard cutoff may be used and is more common in medical research. Here, the
cutoff point c is fixed before data collection (which often represents some commonly agreed upon value of clinical
and/or practical relevance) and those observations falling below this predefined cutoff are allocated to one and

2If study authors have actually measured x (i.e., non-dichotomously) before turning it into xb for the analyses, one could also ask the
authors for the value of the product–moment correlation r directly, instead of asking for the raw data.

Figure 1. Density of a standard normal distribution. The gray-shaded area corresponds to an area of p = 0.30 in the upper tail. The corresponding
z-value is zp = 0.52. The density at this z-value is equal to f(zp) = 0.348.
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those falling above to the other group. Consider, for example, the Beck Depression Inventory-II (Beck et al., 1996), a
diagnostic scale to detect depression that is widely used across clinical psychology. The scale yields a score that
ranges from 0 to 63, with higher scores indicating more severe levels of depression. Patients scoring 19 or below
on this scale are typically classified as minimally or mildly depressed, whereas those scoring 20 and above are
classified as moderately or severely depressed, so in essence, c = 19.5 would constitute the hard cutoff value when
adopting this guideline.

From a statistical point of view, the essential difference between the two approaches lies in how n1 and n0 (and
hence, h, p, q, zp, and f(zp)) should be treated. For a given total sample size n, an adaptive cutoff at a certain percentile
implies that each group’s sample size (i.e., n1 and n0) is a fixed constant (and, hence, so are the values calculated based
on the group sizes). For a hard cutoff, however, n1 and n0 are random variables because the number of individuals
falling into each group is not predetermined. We will return to the relevance of this point in the discussion.

4. Sampling distribution of the biserial correlation coefficient

Standard meta-analytic procedures (e.g., Shadish and Haddock, 2009) are based on two important assumptions,
namely, that the sampling distributions underlying the estimates are normal and that the sampling variances of
the estimates are known constants. In practice, these assumptions are hardly ever fully satisfied. For most effect
size or outcome measures used in meta-analyses (e.g., standardized mean differences, correlation coefficients,
and log odds ratios), we must rely on the asymptotic behavior of the effect size or outcome measure to assume
approximately normal sampling distributions and to obtain estimates of the sampling variances that can be
treated as known constants for practical purposes.

Consider first the product–moment correlation coefficient r. Assuming that X and Y follow a bivariate normal
distribution, the asymptotic sampling distribution of r is in fact normal with expected value ρ and variance

Var rð Þ¼∞ 1 � ρ2ð Þ2

n
(9)

(e.g., Hedges and Olkin, 1985). In practice, an estimate of the sampling variance of r is typically obtained by
replacing ρ with the observed value of r and using n � 1 in place of n (e.g., Borenstein, 2009), yielding

Var rð Þ ¼ 1 � r2ð Þ2

n � 1
: (10)

Returning to our example from the previous section, a value of r = 0.44 was found. We therefore find an

estimate for the sampling variance of r equal to Var rð Þ ¼ 1 � 0:442
� �2

= 20 � 1ð Þ ¼ 0:034.
Turning now to the biserial correlation coefficient and again assuming a bivariate normal distribution for X and

Y, it can again be shown that rb has a normal sampling distribution asymptotically with expected value ρ and
variance

Var rbð Þ¼∞ 1

n
ρ4 þ ρ2 PQz2

P

f zPð Þ2 þ P � Qð ÞzP

f zPð Þ � 5

2

 !
þ PQ

f zPð Þ2

 !
; (11)

where P, Q, zP, and f(zP) are the population counterparts to variables p, q, zp, and f(zp) as defined earlier (Soper,
1914; Tate, 1955b). An estimate of the sampling variance can be obtained with

Var rbð Þsop ¼ 1

n � 1
r4
b þ r2

b

pqz2
p

f zp

� �2 þ p � qð Þzp

f zp

� � � 5

2

 !
þ pq

f zp

� �2

 !
: (12)

Analogous to Equation [10], we have replaced n by n � 1 in Equation [12] as this appears to yield a more accurate
estimate of the sampling variance. We will return to this issue in the discussion.

We shall refer to Equation [12] as Soper’s exact method. Using this method, the sampling variance of rb in the
example earlier is estimated to be

Var rbð Þsop ¼ 1

20 � 1
0:464 þ 0:462 0 þ 0 � 5

2

� �
þ 0:5ð Þ 0:5ð Þ

0:3992

� �
¼ 0:057;

where the first two terms within the inner parentheses are equal to zero because zp = 0. Note that the estimated
variance of the biserial correlation is larger than that of the product moment correlation (by a factor of 0.057/
0.034 ≈ 1.68, that is, 68% larger), which reflects the loss of precision in estimating ρ because of the dichotomization
of one of the two variables.

When |rb| > 1, it can happen that Equation [12] yields a negative value, which falls outside of the parameter
space for a variance. Because Equation [12] is obtained by substituting rb for ρ in the equation of the asymptotic
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sampling variance of rb (cf. Tate, 1955b) and |ρ| ≤ 1, we therefore suggest truncating values of |rb| > 1 to 1 before
computing the sampling variance of rb. Equation [12] will then always yield a positive estimate of the sampling
variance, even when |rb| > 1, which properly reflects the fact that there is still some imprecision left in the estimate
of ρ, even in such an extreme situation.

To facilitate calculations, Soper (1914) proposed an approximation to Equation [12], given by

Var rbð Þapp ¼ 1

n � 1

ffiffiffiffiffi
pq

p
f zp

� �� r2
b

 !2

; (13)

which we shall refer to as Soper’s approximate method. Using this approach, the sampling variance of rb in the
example earlier is estimated to be

Var rbð Þapp ¼ 1

20 � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ð Þ 0:5ð Þp
0:399

� 0:462

 !2

¼ 0:057;

which happens to be identical to Var(rb)
sop = 0.057 (when rounded to three digits) in the present case. Again, we

suggest truncating values of |rb| > 1 to 1 before using Equation [13].
An alternative method for estimating the sampling variance of rb was described by Hunter and Schmidt (1990,

2004), who propose to estimate the sampling variance with

Var rbð Þhs ¼ pq

f zp

� �2

 !
1 � r2

pb

� �2

n � 1
; (14)

which we will refer to as the Hunter and Schmidt method. The method essentially uses Equation [10] to estimate
the variance of the point-biserial correlation coefficient and then corrects this estimate by the square of the factor
that converts the point-biserial into the biserial correlation (cf. Equation [8]). This method, applied to the example
earlier, yields an estimate of

Var rbð Þhs ¼ 0:5ð Þ 0:5ð Þ
0:3992

� �
1 � 0:372
� �2

20 � 1
¼ 0:062;

slightly larger than the values found based on Var(rb)
sop and Var(rb)

app.
Finally, some researchers may be inclined to use the equation for the sampling variance of the product–

moment correlation coefficient (i.e., Equation [10]) for calculating the sampling variance of the biserial correlation
coefficient. This is also what would happen if a biserial correlation is entered into meta-analytic software that then
treats this value as if it were a regular product–moment correlation coefficient. Thus, the sampling variance of rb
would then be estimated with

Var rbð Þr ¼ 1 � r2
b

� �2

n � 1
: (15)

We shall refer to this approach as the naive method, yielding an estimate of

Var rbð Þr ¼ 1 � 0:462
� �2

20 � 1
¼ 0:033

when applied to the example earlier, a value that is substantially smaller than any of the estimates obtained
earlier.

5. Inference for ρ based on biserial data

A test of the null hypothesis H0: ρ = ρ0 could in principle be obtained by computing the Wald-type test statistic

z = (rb � ρ0)/SE(rb), where SE rbð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var rbð Þp

is estimated using any of the methods described earlier. The resulting
value of z can then be compared against the critical values of a standard normal distribution (e.g., ± 1.96 for α = 0.05,
two-sided). When Var(rb) is a consistent estimator of the sampling variance of rb, such a test should perform
nominally asymptotically but may not adequately control the Type I error rate in small samples.3

3Better control of the Type I error rate should be possible by substituting ρ0 for rb in the equations for Var(rb), so that the variance, and
hence the standard error, is estimated under H0 and therefore involves one less unknown quantity.
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However, a hypothesis test only provides a dichotomous decision about H0: ρ = ρ0. More interesting is the
question of how to obtain a confidence interval for ρ based on the biserial correlation coefficient. Applying the
same principle used to compute the test statistic earlier, the bounds of a 95% confidence interval could be
obtained with

rb ± 1:96 SE rbð Þ; (16)

where SE(rb) is again estimated using any of the methods described in the previous section. Asymptotically, such a
confidence interval should have nominal coverage probability if Var(rb) is a consistent estimator of the sampling
variance of rb.

Returning to the example and using Soper’s equations for estimating the sampling variance, we would obtain

the bounds 0:46 ± 1:96
ffiffiffiffiffiffiffiffiffiffiffiffi
0:057

p ¼ �0:01; 0:93ð Þ for a 95% confidence interval for ρ. On the other hand, using the

approach by Hunter and Schmidt, we would obtain 0:46 ± 1:96
ffiffiffiffiffiffiffiffiffiffiffiffi
0:062

p ¼ �0:03; 0:95ð Þ. Finally, the naive method

would yield the bounds 0:46 ± 1:96
ffiffiffiffiffiffiffiffiffiffiffiffi
0:033

p ¼ 0:10; 0:82ð Þ.
Alternatively, we suggest the use of a variance-stabilizing transformation analogous to the r-to-z transformation

for product–moment correlations.4 Starting with Equation [13] and applying the delta method, it can be shown that

zrb ¼ g rbð Þ ¼ a

2

� �
ln

1 þ arb

1 � arb

� �
(17)

follows asymptotically a normal distribution with expected value g(ρ) and variance 1/(n � 1), where a ¼ffiffiffiffiffiffiffiffiffiffiffi
f zp

� �q
=
ffiffiffiffiffi
pq4

p
. Then, 95% confidence interval bounds for g(ρ) can be computed with

zrb ±1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= n � 1ð Þ

p
; (18)

which can be back-transformed to bounds for ρ by means of the inverse transformation

rb ¼ g�1 zrbð Þ ¼ 1

a

� �
exp 2zrb =að Þ � 1

exp 2zrb =að Þ þ 1
: (19)

To avoid problems in computing [17] when |rb| > 1, we again suggest truncating such values to ± 1.

In the example, a ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
0:399

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ð Þ 0:5ð Þ4

p ¼ 0:893 , and the value of the transformed biserial correlation
coefficient is therefore

zrb ¼ 0:893

2

� �
ln

1 þ 0:893 0:46ð Þ
1 � 0:893 0:46ð Þ
� �

¼ 0:39:

We then obtain the bounds 0:39±1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 20 � 1ð Þp ¼ �0:06; 0:84ð Þ in the transformed metric. Finally, after

applying the inverse transformation function [19] to these bounds, we obtain a 95% confidence interval for ρ with
bounds (�0.08, 0.82). Note that this and all of the confidence intervals obtained earlier are very wide (in part
because of the small sample size of the example), reflecting large uncertainty about the value of ρ.

6. Monte Carlo simulation study

As described earlier, several different methods are available for estimating the sampling variance of the biserial
correlation coefficient. All of these methods are based on various simplifications and large-sample approximations,
and their accuracy in practice is largely unknown. A search of the literature revealed only two papers that have
examined the accuracy of Var(rb)

sop (Equation [12]) for practical purposes. Lord (1963) conducted a small simulation
study with n = 100, ρ ∈ {0.5, 0.9}, two different cutoff values (corresponding to P ∈ {0.10, 0.38}), and 500 iterations per
condition. The simulation study by Koopman (1983) based on n = 400, ρ ∈ {0, 0.05, 0.10, …, 0.95}, four different
cutoff values (corresponding to P ∈ {0.05, 0.10, 0.25, 0.50}), and 20,000 iterations was more comprehensive. Close
agreement between the actual variance of rb and the estimated sampling variance based on Equation [12] was
found, except when the groups become very unbalanced (i.e., P ≤ 0.10) and ρ is very large (|ρ| ≥ 0.90).

Results for smaller or larger values of n and for the other methods are currently not available. Moreover, the
derivation of the asymptotic sampling variance of the biserial correlation coefficient by Soper (1914) and the
simulation studies by Lord (1963) and Koopman (1983) were based on the use of hard cutoff values. It is unclear

4A simpler variance-stabilizing transformation for biserial correlations was derived by Tate (1955a), which is only applicable when p = 0.5.
A derivation of the transformation suggested here is given in the Supporting Information.
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whether Equations [12] and [13] provide appropriate estimates of the sampling variance when an adaptive cutoff
is used. Finally, the performance of the various methods for constructing confidence intervals for ρ based on the
biserial correlation coefficient has not been investigated to our knowledge.

We expect the naive method (i.e., Equation [15]) to underestimate the actual variance, as it treats biserial
correlations as if they were product–moment correlations and therefore ignores the loss of precision resulting
from the dichotomization. However, the extent of the underestimation is unclear. Also, the appropriateness of
the Hunter and Schmidt method has, to our knowledge, not been examined in prior work. We therefore
conducted a simulation study to examine the accuracy of the various approaches for estimating the sampling
variance of a biserial correlation coefficient and the performance of the various methods for constructing a
corresponding confidence interval.

The simulation study was programmed in R (R Core Team, 2014) and used a full factorial design with

• 6 different values for the population correlation: ρ ∈ {0.0, 0.1, 0.3, 0.5, 0.7, 0.9},
• 12 different values for the sample size: n ∈ {20, 30, 40, 60, 80, 100, 150, 200, 250, 300, 600, 1200}, and
• 5 different cutoff proportions: P ∈ {0.1, 0.2, 0.5, 0.8, 0.9},

resulting in a total of 360 different conditions. For each condition, 100,000 iterations were carried out. Even
though very large correlation coefficients and/or sample sizes are likely to be rare in practice (e.g., Bosco
et al., 2015; Meyer et al., 2001; Richard et al., 2003), our goal was to provide a comprehensive examination of
the statistical properties of the biserial correlation coefficient under a wide range of conditions. Moreover,
including also large values of n in the simulation provides information about the asymptotic behavior of the
coefficient.

The simulation proceeded in three stages. First, for a particular value of ρ, we used the function mvnorm() of
the MASS package (Venables and Ripley, 2002) to simulate n observed values of x and y from a bivariate normal
distribution (with μX = μY = 0 and σX = σY = 1, without loss of generality). At the second stage, variable x was
dichotomized — once using an adaptive cutoff value cA and once using a hard cutoff cH, yielding the
dichotomized variables xA and xH, respectively. Specifically, cA was calculated based on the sample such that a
predefined proportion P of observations in the sample distribution fell below the cutoff point, and cH was chosen
such that a proportion P of observations in the population distribution would fall below the cutoff point.
Therefore, for P = 0.5, the adaptive cutoff value cA was the sample median (i.e., 50th sample percentile), while
the hard cutoff value cH was 0 (i.e., the population median of the random variable X). For P = 0.2 and P = 0.8,
cA was set equal to the 20th and 80th sample percentile, respectively, while cH was set to �0.84 and 0.84,
respectively. Finally, for P = 0.1 and P = 0.9, the 10th and 90th sample percentiles were used for cA and values
of � 1.28 and 1.28 for cH.

Note that the actual proportion of observations in the sample falling below cH may differ from P in any
particular iteration because of chance. As P is moved further away from 0.5 and n is small, it becomes increasingly
more likely that the group sizes become so unbalanced that n1 or n0 could be equal to 0 or 1 when using a hard
cutoff. The case where one of the groups is empty is degenerate because there is not even a way of estimating rb
in such a situation. When one of the groups consists of a single observation, one could in principle apply the
methods, but preliminarily simulations indicated that the methods simply break down in such an extreme case.
Therefore, in each iteration, the number of observations within each level of the dichotomized variable (i.e., the
sample sizes of the two groups) was checked. If either n1 or n0 was less than 2 when using a hard cutoff, the
iteration was discarded, and an additional iteration was run.5 We return to the implications of this decision in
the discussion section.

At the final stage, we computed the standardized mean difference of variable y based on the two groups
formed by the levels of variable xA using Equation [3]. This standardized mean difference was then converted into
the point-biserial correlation rpb using Equation [5], which was then further converted into the biserial correlation
using Equation [8]. We denote the point-biserial correlation and the biserial correlation based on the adaptive
cutoff as rA

pb and rA
b , respectively. The same procedure was then applied based on the dichotomized variable xH,

which yielded rH
pb and rH

b .

The sampling variances of rA
b and rH

b were then estimated in four different ways. First, Soper’s exact method
(i.e., Equation [12]) was used, producing Var rA

b

� �sop
and Var rH

b

� �sop
. Second, Soper’s approximate method

(i.e., Equation [13]) was used to compute Var rA
b

� �app
and Var rH

b

� �app
. Third, the Hunter and Schmidt method

(i.e., Equation [14]) was used, yielding Var rA
b

� �hs
and Var rH

b

� �hs
. Finally, the naive method (i.e., Equation [15])

was used to compute Var rA
b

� �r
and Var rH

b

� �r
.

Using rA
b and the four different estimates of Var rA

b

� �
, confidence intervals for ρ (i.e., based on Equation [16]). The

resulting confidence intervals are denoted CI rA
b

� �sop
, CI rA

b

� �app
, CI rA

b

� �hs
, CI rA

b

� �r
for Soper’s exact and approximate

5The probability of this occurring can be easily calculated based on the binomial distribution with parameters n and P. For example, for
n = 20, the probability of observing n0 ∈ {0, 1, n � 1, n} is less than 0.01% for P = 0.5, about 7% for P ∈ {0.2, 0.8}, and about 39% for
P ∈ {0.1, 0.9}. For n ≥ 80, all probabilities are below 1% and essentially negligible.
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methods, the method suggested by Hunter and Schmidt, and the naive method, respectively. In addition, a fifth
confidence interval, CI rA

b

� �vs
, was computed using the variance-stabilizing transformation as described by

Equations [17], [18], and [19]. Confidence intervals based on rH
b were obtained analogously.

The entire procedure was repeated for each of the 100,000 iterations in each of the 360 conditions. After the
100,000 iterations within a particular condition were completed, we recorded the means of the point-biserial
and biserial correlation coefficients (denoted by rA

pb, r
A
b, r

H
pb, and rH

b) and the observed variances of rA
b and rH

b (denoted
by s2

rA
b

and s2
rH
b
). We also computed the mean of the 100,000 sampling variance estimates for each of the estimators

described earlier (denoted, for example, by Var rA
b

� �sop
and the other values analogously). Finally, for each method

of constructing a confidence interval, we recorded in what percentage of iterations the computed confidence
interval contained the true value of ρ (i.e., the empirical coverage probability).

We then examined the absolute and relative bias in the rA
pb , rA

b , rH
pb , and rH

b values (e.g., Bias rA
b

� � ¼ rA
b � ρ and

Relative Bias rA
b

� � ¼ rA
b � ρ

� �
=ρ). In addition, to examine how well the various variance estimators approximate

the actual variance of the rA
b and rH

b values within a particular condition, we computed the ratio of the mean
sampling variance to the actually observed variance for a particular method (e.g., Var rA

b

� �sop
=s2

rA
b
). A ratio equal

to 1 indicates that a particular method provides an unbiased estimate of the actual variance. Values above 1
indicate that a method overestimates the actual sampling variance, while values below 1 indicate that the actual
sampling variance is underestimated on average. Finally, to assess the quality of the various methods for
constructing confidence intervals, we compared the empirical coverage probabilities of the various confidence
intervals to the nominal 95% rate. Confidence intervals that actually cover the true ρ in 95% of the cases show
nominal performance, whereas values above or below 95% indicate overcoverage or undercoverage, respectively.

7. Results

The results of the simulation study are displayed in Figures 2–5, and their description is structured in three parts.
The first part focuses on the bias of the estimators and illustrates the crucial distinction between the point-biserial
and the biserial correlation coefficient. In the second part, we assess the quality of the different methods for
estimating the sampling variance of the biserial correlation coefficient. Finally, the third part pertains to the
coverage accuracy of the different confidence intervals. As described earlier, the simulation study was conducted
with P ∈ {0.1, 0.2, 0.5, 0.8, 0.9}. A comparison of the results for P = 0.2 and P = 0.8 and for P = 0.1 and P = 0.9 showed
that they were virtually identical. For conciseness, the results are therefore discussed for P = 0.5, P = 0.2, and P = 0.1
only. In addition, an examination of the results showed that a sample size of 300 was typically sufficient to
establish the asymptotic behavior of the different estimators/methods. We therefore only show results for values
up to n = 300.

7.1. Bias of the estimators

Figure 2 shows the bias in the biserial and point-biserial correlation coefficient based on a hard and adaptive
cutoff (i.e., the bias of rH

b , rA
b , rH

pb , and rA
pb) as estimators for ρ when P = 0.5. Corresponding figures for P = 0.2 and

P = 0.1 are given as part of the Supporting Information as Figures S1 and S2, respectively. Overall, the biserial
correlation coefficient is largely free of bias, irrespective of whether a hard cutoff (black line with circles) or an
adaptive cutoff (gray line with circles) was used for dichotomization. Slight bias can be observed for large values
of ρ when sample sizes are small: When an adaptive cutoff is used, ρ is slightly underestimated, whereas slight
overestimation can usually be observed when a hard cutoff is used for the dichotomization. However, these biases
rapidly diminish as the sample size increases. For n ≥ 60, the bias is essentially negligible, as the biserial correlation
coefficient then deviates from ρ by less than 1% on average.

A different picture emerges for the performance of the (incorrectly used) point-biserial correlation coefficient,
displayed by the black and gray lines with squares in Figure 2 (and Figures S1 and S2). Except when ρ = 0, the
point-biserial correlation coefficient underestimates the population correlation markedly. This negative bias
increases for larger values of ρ and exists irrespective of how the sample was dichotomized. As ρ increases, so does
the absolute bias, albeit at different rates for different cutoff points. For example, ρ is persistently underestimated
by approximately 20% to 23% when dichotomization occurs at the median, but this relative bias exacerbates as
the cutoff point is moved away from the median: For P = 0.2, the relative bias falls approximately between 29%
and 32%, and for P = 0.1, between 32% and 44%. Importantly, the bias does not diminish as the sample size
increases, demonstrating the inconsistency of the point-biserial correlation in estimating the product–moment
correlation ρ.

7.2. Variance of the estimators

Figure 3 shows Var rA
b

� �r
=s2

rA
b
, that is, the ratio of the mean of the sampling variance estimates using the naive

method (i.e., Equation [15]) to the actually observed variance in the biserial correlation coefficients as a function
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of n for ρ = 0 (black lines) and ρ = 0.9 (gray lines) when using an adaptive cutoff. For ρ = 0, the true variance is
already underestimated by 37% to 46% for P = 0.5, by 52% to 60% for P = 0.2, and by 67% to 74% for P = 0.1. As
ρ increases, the underestimation becomes even more severe, eventually growing to 94% (for ρ = 0.9, n = 300,
and P = 0.1; see the gray line with triangles). This poor performance is comparable when a hard instead of an
adaptive cutoff is used and shows no considerable improvement as the sample size increases.

Leaving aside the naive estimator of the sampling variance, Figure 4 shows the performance of the other
estimators for P = 0.5 (Figures S3 and S4 show the results for P = 0.2 and P = 0.1, respectively). For ρ = 0, the figures
show that all methods tend to underestimate the actual sampling variance of the biserial correlation at low
sample sizes. However, all estimation methods produce consistent estimates that converge to the actual sampling
variance as the sample size increases. Thus, for n ≥ 100, all of the methods produce estimates that deviate on
average by no more than four percent from the actual sampling variance when ρ = 0.

Figure 2. Absolute bias of the biserial and point-biserial correlation as a function of n for different values of ρ with P = 0.5.
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Beyond ρ = 0, however, only the two estimation methods suggested by Soper appear to provide consistent
estimates across most conditions. In particular, neither the exact nor the approximate method (lines with circles
and squares, respectively) yields variance estimates that deviate by more than 5% from the actual variance for
n ≥ 80, the only exception being conditions with ρ = 0.9 and P = 0.1 (Figure S4).

Both methods typically underestimate the true sampling variance at smaller sample sizes, but some
overestimation occurs in a few cases, especially when ρ is very large. In fact, the largest deviation is found for
the extreme situation of n = 20, ρ = 0.9, and P = 0.1, where the estimated sampling variance of biserial correlations
based on an adaptive cutoff is, on average, 1.52 times larger than its actual value when using the approximate
method. Overall, discernible differences between the exact and the approximate method are only found when
ρ is large and n is small, whereas they are negligible in most other conditions.

In contrast, the method suggested by Hunter and Schmidt yields consistent estimates only for very small
population correlations (lines with triangles in Figures 4, S3, S4). For ρ ≥ 0.3, however, the method increasingly
begins to produce values that overestimate the sampling variance and do not converge to the actual variance
as the sample size increases. The degree of overestimation increases with ρ and can grow alarmingly high,
yielding estimates that are, on average, more than twice as large as the actual variance (Figure S4).

7.3. Coverage probability of the confidence intervals

For biserial correlation coefficients computed based on an adaptive cutoff, Figure 5 displays the empirical
coverage probabilities of the various methods for constructing confidence intervals described earlier when
P = 0.5 (results for P = 0.2 and P = 0.1 are shown in Figures S5 and S6, respectively). Results based on the naive
method have been left out because of the extremely poor performance. Results for confidence intervals based
on a hard cutoff were similar and hence are not shown.

For the two methods based on Soper (black and gray lines with circles) and the variance-stabilizing
transformation (black line with squares), we observe convergence to the nominal coverage level of 95% as the
sample size increases, irrespective of the population correlation (note that the lines for the confidence intervals
based on Soper’s exact and approximate method are often indistinguishable). The speed of convergence
decreases slightly as ρ rises, although for n ≥ 100, all three methods achieve coverage probabilities that deviate
from 95% by less than two percentage points in all conditions. For n ≥ 200, all deviations are less than one
percentage point.

When sample sizes are smaller, all three methods yield confidence intervals that usually undercover, except for
the confidence intervals based on the variance-stabilizing transformation, which have higher than nominal
coverage when ρ = 0.9 and sample sizes are small. Considering all conditions together, the variance-stabilizing
method yields confidence intervals with the closest to nominal performance in the largest number of cases.

The errors of the Hunter and Schmidt and the naive methods in estimating the sampling variance result in
analogous deficiencies in the confidence intervals based on these methods. In particular, except when ρ is low,

Figure 3. Ratio of the average estimated variance based on the naive method to the actually observed variance (i.e., Var rA
b

� �r
=s2

rA
b
) as a function of

n for different values of ρ and P.
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the Hunter and Schmidt method typically overestimates the sampling variance and in turn tends to produce
confidence intervals that are too wide on average (black lines with triangles in Figures 5, S5, S6). Moreover, for
ρ ≥ 0.5, the method produces confidence intervals whose coverage rate does not appear to converge to the
nominal confidence level. In contrast, the naive method underestimates the sampling variance, and the resulting
confidence intervals are too narrow and undercover in all conditions (with coverage probabilities that never
exceeded 88% and that were as low as 34% in some conditions).

8. Discussion

Dichotomization of continuous variables is a common occurrence in empirical research and poses a challenge to
meta-analysts wishing to integrate measures of association based on artificially dichotomized data with those

Figure 4. Ratio of the average estimated to observed variance as a function of n for different values of ρ with P = 0.5.
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based on continuous data. Meeting this challenge requires the meta-analyst to select an appropriate (1) estimator,
(2) measure of the estimator’s sampling variance, (3) approach for drawing inferences about individual studies,
and (4) approach for integrating the results of the entire collection of studies. In this section, we use the results
of the simulation study to examine how each of these steps is affected by the presence of studies in which one
or both variables of interest have been artificially dichotomized.

8.1. Choice of estimator

In situations in which one of two continuous variables is measured dichotomously while the other is measured
continuously, the biserial correlation coefficient can be computed to estimate the strength of the association

Figure 5. Empirical coverage probability of 95% confidence intervals for different levels of ρ with P = 0.5 and dichotomization at adaptive cutoff.

P. JACOBS AND W. VIECHTBAUER

Copyright © 2016 John Wiley & Sons, Ltd. Res. Syn. Meth. 2017, 8 161–180

1
7
4



between the two underlying continuous variables. Unlike the point-biserial correlation coefficient, the biserial
correlation can be logically compared with product–moment correlation coefficients obtained from data of two
variables that were measured on a continuum.

In the present study, we have illustrated this crucial distinction between the biserial and the point-biserial
correlations by means of a Monte Carlo simulation. As expected, the results demonstrate a strong negative bias
of the point-biserial correlation in estimating the underlying population correlation, whereas the biserial
correlation coefficient was largely free of bias. Therefore, the biserial correlation coefficient should be used when
correlations based on one continuous variable and one artificially dichotomized variable are to be integrated with
correlations based on two continuous variables. In contrast, the point-biserial correlation coefficient should only
be used when the dichotomous variable represents a natural/true dichotomy and not an underlying continuous
construct.6

Similarly, in case both variables are measured dichotomously and the resulting 2 × 2 table of cell frequencies (or
the corresponding odds ratio) is reported, the tetrachoric correlation coefficient can be computed (or
approximated), which estimates the association between the underlying continuous variables (Pearson, 1900,
1913), whereas the phi coefficient is only appropriate when both dichotomous variables represent natural/true
dichotomies. Therefore, only tetrachoric, biserial, and product–moment correlation coefficients can be logically
compared with one another.

8.2. Sampling variance

In order to incorporate a biserial correlation coefficient into a meta-analysis based on standard meta-analytic
methods (e.g., Shadish and Haddock, 2009), we must be able to estimate the sampling variance of the coefficient.
The present simulation study examined the adequacy of several methods for estimating the sampling variance of
the biserial correlation coefficient and found that the exact and approximate methods developed by Soper (1914)
offered the best overall performance. Already at moderate sample sizes, the estimates provided by both methods
deviate on average only slightly from the observed sampling variance and appear to be asymptotically accurate.
Interestingly, only very minor differences were found between the exact and the approximate methods, yielding
the latter as a feasible alternative for practical use. One exception to this appears to be the case where P is close to
0 (or 1) and ρ is very large, in which case the exact method typically provides better estimates.

In contrast, applying the equation for the sampling variance of the product–moment correlation to biserial
correlations has proven inexpedient. Such a naive approach (as we would call it) produces estimates that
considerably underestimate the actual sampling variance. Given that an underestimated sampling variance would
lead to inflated Type I error rates and overly narrow confidence intervals, we strongly advise against this practice.

In addition, the present study also examined the accuracy of the method suggested by Hunter and Schmidt
(2004) for estimating the sampling variance of biserial correlations. The simulation results show that this method
is not consistent when ρ ≠ 0. In particular, it tends to overestimate the sampling variance — in extreme cases by a
factor of more than two. To understand this poor performance, we can compare their proposed method with
Soper’s approximate method, Equation [13], which can be rearranged to

Var rbð Þapp ¼ pq

f zp

� �2

 ! 1 �
ffiffiffiffiffi
pq

p
f zp

� � r2
pb

� �2

n � 1
: (20)

Comparing this with Equation [14] shows that the only difference between Soper’s approximate method and
the method by Hunter and Schmidt is the multiplicative factor

ffiffiffiffiffi
pq

p
=f zp

� �
within the second set of parentheses,

which is always larger than 1 (except for the degenerate case where p = 0 or 1, but in which case, rpb and rb cannot
be computed in the first place). Therefore, the amount subtracted from 1 is always larger in Soper’s approximate
method, so that Var(rb)

hs will typically be larger than Var(rb)
app.7 Consequently, the method by Hunter and Schmidt

usually overestimates the sampling variance, leading to overly conservative results. Therefore, we advise against
the use of this method in the vast majority of research situations.

As mentioned earlier, when using Soper’s exact and approximate methods for estimating the sampling
variance of the biserial correlation, we suggest using n � 1 in the denominator of the equations (cf. Equations
[12] and [13]). In part, this mirrors how the sampling variance of the product–moment correlation coefficient is

6Whether a dichotomous variable can be considered to reflect an underlying continuum may be debatable in certain situations, as
demonstrated by the now famous Pearson–Yule debate (Pearson, 1900; Pearson and Heron, 1913; Yule, 1912).

7However, when
ffiffiffiffiffiffi
pq

p
=f zp

� �þ 1
� �

r2
pb > 2, the amount subtracted from 1 becomes so large that the squared term becomes larger with

Soper’s approximate method, so that Var(rb)
app

> Var(rb)
hs

. With p = 0.5, this would happen if |rpb| > 0.9421. With p = 0.2 or 0.8, |rpb| >
0.9074 would lead to such a case. Finally, for p = 0.1 or 0.9, Soper’s approximate method would lead to a larger variance estimate if |
rpb| > 0.8592. However, in practice, one is unlikely to encounter such extreme values of rpb. A more detailed treatment of this issue is
given in the Supporting Information.
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typically estimated (cf. Equations [9] and [10]). More importantly, as the results show (Figures 4, S3, S4), the
equations based on Soper (1914) typically lead to some underestimation of the actual variance, especially when
n is small. Using n in the denominator would result in more severe underestimation, or in other words, using
n � 1 in the denominator helps to reduce the underestimation slightly.

On the other hand, for very large values of ρ, Soper’s equations usually lead to overestimation of the sampling
variance to some degree when n is small. Using n � 1 exacerbates this overestimation. However, this problem only
becomes apparent for ρ = 0.9, which makes it less likely to be relevant for practice than the underestimation
when ρ is small. These findings also indicate that there is no simple correction that could be used to make
Soper’s equations more accurate when n is small, as the amount of overestimation/underestimation depends
on ρ and also on p.

8.3. Inference about individual studies

Forest plots are frequently used in meta-analyses to present the findings of the individual studies (Schild and
Voracek, 2013). For each study, the plot shows the observed value of the outcome measure of interest (e.g.,
correlation coefficient) and the corresponding confidence interval (usually 95%) for the study’s true outcome
(Lewis and Clarke, 2001).

In the present simulation study, we examined various methods for constructing confidence intervals for ρ
based on the biserial correlation coefficient. The results on the coverage probability of confidence intervals further
illustrate the consequences of (in)accurately estimating the sampling variance. In particular, we found that Wald-
type confidence intervals based on the exact and the approximate methods by Soper (1914) offered more
accurate overall performance than those based on the naive method and the method suggested by Hunter
and Schmidt (2004).

In addition to those four methods, we derived and examined a variance-stabilizing transformation for the
biserial correlation coefficient. Analogous to Fisher’s r-to-z transformation for product–moment correlation
coefficients (Fisher, 1921), confidence intervals for ρ are then obtained by first transforming the estimated biserial
correlation using Equation [17], calculating confidence intervals in the transformed metric using Equation [18],
and then back-transforming the bounds using Equation [19]. The simulation study showed that the confidence
intervals for ρ based on this method are more accurate (i.e., have closer to nominal coverage) than confidence
intervals calculated directly from the biserial correlation and its estimated sampling variance. Thus, we suggest
the use of this transformation when making inferences based on biserial correlation coefficients for individual
studies.

8.4. Integrating the findings

While the variance-stabilizing transformation is useful for inferential purposes when examining individual studies,
it generally cannot be used when aggregating multiple coefficients in a meta-analysis. First of all, when
integrating coefficients from studies using different types of correlation coefficients, the respective
transformations are different, invalidating any direct comparisons of the transformed coefficients. In particular,
the variance-stabilizing transformation for the biserial correlation coefficient differs from Fisher’s r-to-z
transformation for the product–moment correlation, so that transformed product–moment correlations cannot
be directly compared with transformed biserial correlations (however, see Pustejovsky, 2014, who suggests an
approach for applying Fisher’s r-to-z transformation also to biserial correlations).

Even in the unlikely case where we are only integrating a set of biserial correlation coefficients,
comparing and aggregating their transformed values would be inappropriate as the transformations depend
on the value of a, which is a function of p (cf. Equation [17]), which in turn is likely to differ across studies.
Hence, even if the value of ρ is homogeneous across studies, the transformed true correlations (i.e., the g(ρ)
values) are then necessarily heterogeneous. Moreover, back-transforming the results from such a meta-
analysis into the correlation metric for easier interpretation by means of Equation [19] is problematic,
because a value for a (or rather, p) would have to be chosen and there is no obvious way of doing so when
p differs across studies.

Consequently, a meta-analysis involving product–moment and biserial correlation coefficients needs to be
based on the raw coefficients. Similarly, tetrachoric correlation coefficients could be added to such a mix
without difficulties. All of these coefficients are logically comparable and estimate the same underlying
parameter. However, it is possible that the true strength of the relationship (i.e., ρ) differs systematically
between studies reporting different types of information/coefficients. Hence, when conducting a meta-analysis
based on different types of correlation coefficients, we recommend to record the type of coefficient that was
obtained from each study. This variable then allows for an examination of systematic differences across
different types of correlation coefficients. This examination can take the form of a descriptive inspection or
can be integrated within a more extensive moderator analysis with appropriate meta-regression models
(e.g., Raudenbush, 2009).
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8.5. Illustrative example

As an illustration, we collected data for a meta-analysis on the association between anxiety and depression among
persons with sleep difficulties. Table 2 provides the information obtained from eight studies examining this
association. The first six studies assessed the association directly using product–moment correlations, while
studies 7 and 8 dichotomized one or two of the variables, respectively. Hence, for the first six studies, the estimate
of the association is simply the reported product–moment correlation, whose sampling variance can be estimated
with Equation [10]. These values are given in the first six rows of the columns denoted by yi and vi, respectively.

In study 7, Lancee et al. (2013) measured depression using the Center of Epidemiological Studies-Depression
scale (Radloff, 1977) and anxiety using the Hospital Anxiety and Depression Scale (Zigmond and Snaith, 1983)
in a sample of 479 insomnia patients but reported only stratified summary statistics of the anxiety scores after
dichotomization of the depression variable, using a cutoff of 15.5 on the Center of Epidemiological Studies-
Depression scale to create two groups with low (n0 = 198) versus mild/high (n1 = 281) amounts of depression.8

Using Equations [3], [5], and [8], the biserial correlation coefficient can then be computed based on the
information provided. The resulting coefficient of rb = 0.703 provides this study’s estimate of the association
between the underlying continuous variables and can be integrated with the product–moment correlations of
studies 1–6. In addition, the coefficient’s variance was computed using Soper’s exact Equation [12], which yields
0.0012. These values are entered for columns yi and vi in row 7 of Table 2.

Finally, Jansson and Linton (2006) report the results of a general population survey among 1936 participants,
identifying 212 individuals with insomnia. Depression and anxiety were measured with the Hospital Anxiety
and Depression Scale, using a cutoff of 7.5 to dichotomize both variables. The cell frequencies of the resulting
2 × 2 table (with ai, bi, ci, and di denoting the respective cell frequencies) are given in Table 2. Based on this
information, the tetrachoric correlation coefficient and its (asymptotic) variance can be computed using known
methods (e.g., Brown, 1977; Hamdan, 1970; Olsson, 1979; Tallis, 1962), which yields rtet = 0.576 with corresponding
sampling variance equal to 0.0074. Because the tetrachoric correlation coefficient is an estimate of the product–
moment correlation of the underlying continuous variables, it can be integrated with the estimates of studies 1–7,
and hence, we enter the estimate and its corresponding sampling variance in row 8 for columns yi and vi,
respectively.

A forest plot of the findings of the eight studies is shown in Figure 6. Note that the confidence intervals for the
individual studies were computed in different ways, depending on the type of measure used. For studies 1–6, the
confidence intervals were constructed based on Fisher’s r-to-z transformation (i.e., using the equation

tanh arctanh ri½ � ± 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= ni � 3ð Þp	 


, where tanh is the hyperbolic tangent function and arctanh its inverse).
For study 7, which yields a biserial correlation coefficient, we used the variance-stabilizing transformation derived
in the present paper (i.e., using Equations [17], [18], and [19]) to construct the confidence interval. Finally, for study
8, we computed a simple Wald-type confidence interval based on the tetrachoric correlation coefficient and its
estimated sampling variance (i.e., using the equation yi ± 1:96

ffiffiffiffi
vi

p
).

The findings of the individual studies can be integrated using standard meta-analytic methods (e.g., Shadish
and Haddock, 2009). Applying a random-effects model to the various correlation coefficients (yi) together with
their corresponding sampling variances (vi) yields an estimated average correlation of μ̂ ¼ 0:61 with 95%
confidence interval (0.56, 0.67). These results are displayed at the bottom of the forest plot in Figure 6. For
comparison purposes, we also added the estimate when only including studies 1–6 in the meta-analysis (i.e., when

Table 2. Example data for a meta-analysis with studies of different types.

No Study ID

Continuous
data

Group
summary statistics 2 × 2 table Estimates

ri ni y1;i s1,i n1,i y0;i s0,i n0,i ai bi ci di yi vi

1 Sivertsen et al. (2012), HUNT2 0.606 2427 0.606 0.0002

2 Sivertsen et al. (2012), HUNT3 0.568 2844 0.568 0.0002

3 Inocente et al. (2014) 0.342 81 0.342 0.0098

4 Taylor et al. (2005) 0.726 150 0.726 0.0015

5 Taylor et al. (2013) 0.627 93 0.627 0.0040

6 Taylor et al. (2016) 0.607 814 0.607 0.0005

7 Lancee et al. (2013) 9.46 3.73 281 4.91 2.74 198 0.703 0.0012

8 Jansson and Linton (2006) 55 13 61 83 0.576 0.0074

8To be precise, results were stratified based on three levels of depression (i.e., low, mild, and high), but we collapsed the mild and high
groups to obtain an example of a study with a dichotomized variable. Based on the three levels of depression, one could also compute
the polyserial correlation coefficient (Bedrick and Breslin, 1996; Olsson et al., 1982), the extension of the biserial correlation to more than
two groups, but discussion of this is beyond the scope of the present paper.
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excluding the two studies not directly reporting a Pearson product–moment correlation coefficient). While the
estimate itself is changed very little, some efficiency is lost, leading to a slightly wider confidence interval.

As part of the Supporting Information, we provide the R code to reproduce the results of this illustrative
example, using the metafor package for the meta-analysis (Viechtbauer, 2010).

8.6. Final issues

One of the issues discussed earlier is the type of cutoff used for the dichotomization. With only few exceptions,
neither the estimates nor their sampling variances were considerably affected by the type of cutoff used in
dichotomizing the sample. Thus, although Pearson (1909a) and Soper (1914) derived the biserial correlation
coefficient and its sampling variance assuming dichotomization at a hard cutoff, the present study suggests their
validity in situations when the cutoff is based on sample percentiles. Conversely, the variance-stabilizing
transformation suggested here was derived for the case of an adaptive cutoff point, treating p, q, and f(zp) as
constants. The present results, however, suggest that the transformation can still be applied even when the
dichotomization is based on a previously fixed cutoff value rather than a sample percentile.

Instead of using percentiles to define the cutoff for dichotomization, researchers could also decide to
dichotomize at c ¼ x or c ¼ x ± zsx , that is, at the sample mean or a certain number (z) of standard deviations
above or below the sample mean. This approach would represent a hybrid of a hard and an adaptive cutoff, as
the cutoff value is then defined ex-post based on sample statistics, but does not fix group sizes in finite samples.
However, given that the type of cutoff used had only a minor influence on the results, we would not expect
qualitatively different results if such an approach were to be used.

One aspect of the simulation study calls for some further discussion. As described earlier, we decided to omit
(and replace) iterations where either n1 or n0 was less than two, which can happen when a hard cutoff value is
used. In practice, dichotomization at a hard cutoff would probably be abandoned as a sensible option when doing
so would lead to one of the groups including no observations. It is also unlikely that researchers would report
“summary statistics” for a “group” that consists of a single observation. Therefore, cases where there are fewer
than two observations in one of the groups are unlikely to be seen in practice in the first place. However, it needs
to be kept in mind that the results given are conditional on this case not occurring.

Moreover, it needs to be emphasized that the results given are only applicable when X and Y follow a bivariate
normal distribution. In practice, however, one of the marginal distributions may be far from normal (for some
empirical evidence that univariate distributions are often non-normal, see Micceri, 1989), this being the very
reason why a researcher decides to dichotomize that specific variable in the first place (leaving aside whether this
is necessary or the best way to handle the data). Because the marginal distributions of a bivariate normal
distribution must also be normal, this would then be an indication that the joint distribution is in fact not bivariate
normal. In that case, the biserial correlation coefficient may no longer be (approximately) unbiased, and its
sampling variance may be estimated much more inaccurately. The influence of non-normality on the biserial
correlation coefficient remains subject to further investigation.

Finally, it is important to emphasize that other statistical artifacts besides artificial dichotomization may be
present in a given dataset. For example, measurement error and range restriction in one or both variables of
interest will lead to correlation coefficients that are diluted to some extent, requiring other corrections to
disattenuate the reported values (for example, Hunter and Schmidt, 2004). Additional work will be needed to
develop appropriate methods to estimate the underlying (disattenuated) correlation coefficient of the continuous
variables (and its sampling variance) when the results of a study are affected not only by artificial dichotomization
but also by additional artifacts.

Figure 6. Forest plot based on the data in Table 2.
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