Effectiveness and cost-effectiveness of a nurse-delivered intervention to improve adherence to treatment for HIV

Citation for published version (APA):

Document status and date:
Published: 01/06/2017

DOI:
10.1016/S1473-3099(16)30534-5

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

- A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
- The final author version and the galley proof are versions of the publication after peer review.
- The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 17 Sep. 2023
Effectiveness and cost-effectiveness of a nurse-delivered intervention to improve adherence to treatment for HIV: a pragmatic, multicentre, open-label, randomised clinical trial

Marian de Bruin, Edwin J M Oberjé, Wolfgang Viechtbauer, Hans-Erik Nobel, Mickael Hilligsmann, Cees van Nieuwkoop, Jan Veenstra, Frank J Pijnappel, Frank P Kroon, Laura van Zonneveld, Paul H P Groeneveld, Marjolein van Broekhuizen, Silvia M A A Evers, Jan M Prins

Summary
Background No high-quality trials have provided evidence of effectiveness and cost-effectiveness of HIV treatment adherence intervention strategies. We therefore examined the effectiveness and cost-effectiveness of the Adherence Improving Self-Management Strategy (AIMS) compared with treatment as usual.

Methods We did a pragmatic, multicentre, open-label, randomised controlled trial in seven HIV clinics at academic and non-academic hospitals in the Netherlands. Eligible participants were patients with HIV who were either treatment experienced (ie, with ≥9 months on combination antiretroviral therapy [ART] and at risk of viral rebound) or treatment-naive patients initiating their first combination ART regimen. We randomly assigned participants (1:1) to either AIMS or treatment as usual (ie, containing a range of common adherence intervention strategies) using a computer-generated randomisation table. Randomisation was stratified by treatment experience (experienced vs naive) and included block randomisation at nurse level with randomly ordered blocks of size four, six, and eight. 21 HIV nurses from the participating clinics received three training sessions of 6 h each (18 h in total) on AIMS and a 1·5 h booster training session at the clinic (two to three nurses per session) after each nurse had seen two to three patients. AIMS was delivered by nurses during routine clinic visits. We did mixed-effects, intent-to-treat analyses to examine treatment effects on the primary outcome of log, viral load collected at months 5, 10, and 15. The viral load results were exponentiated (with base 10) for easier interpretation. Using cohort data from 7347 Dutch patients with HIV to calculate the natural course of illness, we developed a lifetime Markov model to estimate the primary economic outcome of lifetime societal costs per quality-adjusted life-years (QALYs) gained. This trial is registered at ClinicalTrials.gov (number NCT01429142).

Findings We recruited participants between Sept 1, 2011, and April 2, 2013; the last patient completed the study on June 16, 2014. The intent-to-treat sample comprised 221 patients; 109 assigned to AIMS and 112 to treatment as usual. Across the three timepoints (months 5, 10, and 15), log viral load was 1·26 times higher (95% CI 1·04–1·52) in the treatment-as-usual group (estimated marginal mean 44·5 copies per mL [95% CI 35·5–55·5]) than in the AIMS group (estimated marginal mean 35·4 copies per mL [29·9–42·0]). Additionally, AIMS was cost-effective (ie, dominant: cheaper and more effective) since it reduced lifetime societal costs by €592 per patient and increased QALYs by 0·034 per patient.

Interpretation Findings from preparatory studies have shown that AIMS is acceptable, feasible to deliver in routine care, and has reproducible effects on medication adherence. In this study, AIMS reduced viral load, increased QALYs, and saved resources. Implementation of AIMS in routine clinical HIV care is therefore recommended.

Funding Netherlands Organisation for Health Research and Development.

Introduction Efficacious drugs for the treatment of HIV/AIDS have been widely available in high-income countries since 1996, and are becoming increasingly available in low-income countries. The life expectancy of people with HIV using antiretroviral therapy (ART) is now almost identical to that of people without HIV.1 Moreover, the risk of HIV transmission is reduced considerably for successfully treated patients.2 However, despite a marked reduction in side-effects and complexity of combination ART regimens over the past two decades, suboptimum intake of drugs (faulty execution) and premature discontinuation (non-persistence) of combination ART continue to compromise treatment effectiveness.3 Non-adherence can lead to poor patient outcomes, the development of drug-resistant virus, fewer treatment options because of drug resistance, and increased transmission risks of viral strains, including resistant ones.4,5 Hence, supporting patients’ adherence is an important objective from a patient and public health perspective, and essential for achieving the UNAIDS 90-90-90 targets.6 For the long-term success of combination ART and its consequent effect on the spread of HIV, suboptimal adherence has to be addressed before virological failure occurs. Although results from meta-regression analyses suggest that the quality of adherence support provided to patients has a large influence on viral suppression rates,7,8 little direct experimental evidence shows that...
Research in context

Evidence before this study

We searched for effectiveness and cost-effectiveness evidence from trials done in high-income countries, with at least 12 months follow-up including a clinical outcome that focused on adult HIV-infected patients. Interventions had to promote autonomous behaviour (ie, directly observed therapy interventions were excluded) and treatment simplification studies (eg, once-daily versus twice-daily medication) were excluded. For evidence on effectiveness of the interventions we searched MEDLINE, PsycINFO, and Embase with no language restrictions for articles published between January, 2013, and October, 2016, using the terms (“HIV” or “HAART” or “cART” or “Antiretroviral”) and (“adherence” or “compliance” or “persistence” or “concordance”) and (“viral load” or “virologic failure” or “CD4”) in the title or abstract, and (“random*” or “clinical trial”) in all text, and (“2013” or “2014” or “2015” or “2016”) in the year. We identified 529 unique titles, of which 27 assessed an adherence intervention. Only one was an eligible trial, assessing the Managed Problem Solving (MaPS) intervention, which noted that MaPS improved adherence. A particular strength of the trial was the high consent rate; possible weaknesses were differential attrition and a missing data imputation method that deemed missing data to equal treatment failure. No cost-effectiveness analysis was reported. For evidence on cost-effectiveness of adherence interventions, we searched the same databases and date range as above with the terms (“HIV” or “HAART” or “cART” or “Antiretroviral”) and (“adherence” or “compliance” or “persistence” or “concordance”) and (“Cost Analysis” or “Cost Effectiveness” or “Cost Benefit” or “Cost Utility” or “Cost Minimisation” or “Economic Evaluation”) in the title or abstract, and (“2013” or “2014” or “2015” or “2016”) in the year. We identified 137 unique titles and abstracts, of which only one was an eligible study that reported the cost-effectiveness of a computer-delivered intervention to promote adherence to HIV medication (FL, USA). This assessment was, however, based on effectiveness data from a subgroup analysis in a short-term intervention feasibility study. Further limitations were that the effectiveness data was derived from self-reported adherence and did not line up with the effectiveness input in the economic model. Thus, these searches did not identify any adherence interventions from high-quality, long-term trials, and economic assessment that provided evidence of effectiveness and cost-effectiveness.

Added value of this study

To our knowledge, this multicentre, randomised controlled trial and economic model is the first to show that our adherence intervention Adherence Improving self-Management Strategy (AIMS) produced meaningful effects on viral load and was cost-effective in a high-resource setting, compared with treatment as usual. The findings from the study showed that HIV treatment adherence interventions can increase quality-adjusted life-years (QALYs) while saving resources, even when compared with medium-to-high-quality treatment-as-usual adherence support. Moreover, AIMS required few resources because it has been adapted to fit in routine HIV clinic services, which should facilitate implementation in routine care.

Implications of all the available evidence

HIV treatment adherence interventions, such as AIMS, can benefit patients, even in high-resource settings, and lead to gains in QALYs while saving resources. AIMS seems at present to be the only adherence intervention for which the effects have been replicated in consecutive trials. The economic evaluation also provided robust evidence on cost-effectiveness. Implementation of AIMS in routine clinical care is therefore recommended.
important for policy makers, as well as for adherence intervention research generally, given the scant evidence of the economic benefits of adherence interventions.

Effective HIV treatment adherence interventions should benefit patient and public health, and reduce health-care expenditures; yet, experimental evidence of these benefits is scarce. This report describes findings from our study that assessed the effectiveness of AIMS, and the results of a Markov model assessing the cost-effectiveness of AIMS over a lifetime horizon.

Methods
Study design and participants
The protocol for this study has been published and a separate article has been published on the strategies used for reducing the risk of bias in this trial (the appendix includes a table summarising the risk of bias rationale in this article). We did a pragmatic, multicentre, open-label, randomised controlled trial in seven HIV clinics at academic and non-academic hospitals in the Netherlands.

Eligible participants were patients with HIV who were either treatment-experienced (≥9 months on combination ART and at risk of viral rebound), or treatment-naive patients initiating their first combination ART regimen. At risk of viral rebound was determined on the basis of having at least one detectable viral load during the previous 3 years and suboptimal adherence during 2 months baseline MEMS monitoring (<100% adherence for once-daily and ≤95% for twice-daily regimens). These criteria were based on analyses of data from a large HIV cohort including all registered HIV patients in the Netherlands, and from our previous trial. Exclusion criteria were: age less than 18 years, severe psychiatric disorders or other comorbidities precluding compliance with study procedures, pregnancy, plans to interrupt treatment in the next 14 months, life expectancy less than 1 year, not able to communicate in English or Dutch, viral resistance to three or more antiretroviral drug classes, and about to initiate hepatitis C treatment. Eligible patients were approached by their treating physician or HIV nurse, and given information about the study verbally and in writing. All patients gave written informed consent. The trial was approved by the medical ethics committee of all participating hospitals. Given the absence of any patient safety risks according to the medical ethics committee that approved the trial, there was no data and safety monitoring board.

Randomisation and masking
We randomly assigned consenting participants (1:1) to either AIMS or treatment as usual (ie, containing a range of common adherence intervention strategies) using a computer-generated randomisation table. The resulting risk of contamination was kept low because key intervention elements, such as MEMS feedback and all other intervention materials (panel) could only be accessed when a MEMS-cap of a patient in the intervention group was downloaded. Randomisation was stratified by treatment experience (experienced vs naive) and we used block randomisation (with randomly ordered blocks of size four, six, and eight to avoid predictability of assignment) to balance intervention and control patients over nurses. The randomisation table was computer-generated by a statistician and treatment assignment was done automatically by software after nurses entered the details of consenting patients on a study website. Because masking to treatment assignment was not possible given the nature of the intervention, we developed a distraction strategy for drawing the attention of patients and health-care providers away from the primary study aims. Specifically, we included a second research objective in the study (ie, to examine the content of, and patient satisfaction with, nursing care provided to patients treated for HIV), and the regular questionnaires that nurses and patients completed during the trial focused on this study aim, rather than on the comparison of AIMS versus treatment as usual. The statistician (WV) who did the analyses was masked to group assignment.

Procedures
21 HIV nurses from the seven participating clinics received three training sessions (6 h each, 18 h in total) on AIMS and on how to use the MEMS-caps and software. A 1·5-h booster session was delivered at each HIV clinic (two to three nurses per session) after each nurse had seen two to three patients. The first author (MdB) delivered the training and booster sessions. There was no additional support or advice in relation to the delivery of the intervention.

Details of patient demographic characteristics and treatment were obtained at baseline. Plasma viral load and CD4 cell counts were assessed at baseline and at approximately 5 months, 10 months, and 15 months as part of routine care. For treatment-initiating patients, the first follow-up measurement was planned slightly later at 6 months, to allow their viral load to become undetectable. Treatment-experienced patients followed the usual 4–5 months visit interval. The viral load assays used were COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 (Roche), Abbott m2000 RealTime HIV-1, and NucliSENS Easy Q HIV-1 v2.0 (Biomerieux), with lower detection limits varying from 20 to 75 copies per mL. The study was overpowered for detecting an effect on adherence. To avoid unnecessary study burden, we measured MEMS adherence in a randomly selected 50% of the control group patients. Since a subset of patients preferred using their own medication bottles over the MEMS-caps bottles (especially if MEMS-caps were used for monitoring only, as in the treatment-as-usual group) and because adherence was a secondary outcome, if randomised patients preferred further trial participation without MEMS monitoring, they were allowed to do so (appendix).

The quality and quantity of treatment as usual adherence support provided to control groups in
Panel: Treatment-as-usual strategy versus the Adherence Improving self-Management Strategy (AIMS)

Materials used
Treatment as usual
- Patient information leaflet
- A simple graph explaining how drug concentrations vary with adherence patterns, and affect treatment outcomes
- Seven example adherence reports from electronic monitors ranging from excellent to poor adherence
- A list with common reasons that other patients have given for achieving high adherence
- MEMS-cap to monitor own adherence and obtain printed personal adherence reports
- Templates for action plans and coping plans
- Drop-down lists with common reasons for non-adherence and effective solutions for dealing with these problems
- Ruler (1–10 scale) to score own confidence in improving adherence
- For treatment-initiating patients only: score sheet of five reasons for, and five concerns about, initiating treatment

Procedures
Treatment as usual
When the physician, nurse, and patient agreed that treatment should be initiated, typically the following activities were done to support adherence:
- Patients were given a verbal explanation of how the medication works and what the relation is between adherence, viral replication, and treatment outcomes. This explanation included risks (eg, viral resistance) and benefits (eg, a healthy immune system and being less infectious) of adherence and non-adherence. An information leaflet was provided.
- Patients were given an explanation of how to take the medication, how often, and at what dose.
- The nurse and patient discussed when it was best for each individual patient to take their medication (at what time and where, linking intake to daily routines or using reminder devices that can serve as cues)
- Patient were given a telephone number to call in case of difficulties (eg, occurrence of side-effects or difficulties with adherence)
- During follow-up visits:
 - Patient and nurse discussed self-reported adherence (and any problems) and tried to identify solutions that would work for that patient
 - The nurse or physician asked the patient about any side-effects and discussed how to deal with them (if severe, a change of regimen is considered)
 - Nurses provided feedback on viral load and CD4 cell counts. If results were positive, this finding served to reinforce adherence. If results were negative, adherence problems or other causes (eg, drug resistance or drug interactions) were explored (appendix)

Management of side effects, feedback of clinical outcomes, and receiving a telephone number in case of difficulties was also part of the routine care for AIMS patients.

AIMS
Here we explained AIMS for treatment-experienced patients. The intervention at the first visit was slightly different for treatment-naive patients (appendix).
Before the first AIMS intervention visit, patients used an electronic medication monitor for 4–8 weeks. Data were downloaded and a website guided patients and nurses through the steps below. Tailoring of the intervention to the needs and abilities of each individual patient was a core component of each step.
- Similar to step 1 for treatment as usual, except that material 1 was used to aid discussion and storage of information in long-term memory.
- Nurse explained seven exemplar MEMS-reports using material 2 while linking patterns of adherence and non-adherence to the adherence-outcome information discussed in step 1. The patient selected one adherence report reflecting how they would like to take their medication (desired adherence level) and the nurse asked the patient to explain why this is important to them personally and in the long run (material 3).
- Patients’ own MEMS-report was printed (actual adherence level; material 4) and compared with their desired adherence level. The nurse reinforced periods of good adherence and highlighted discrepancies (ie, where actual adherence was lower than desired).
- Patient MEMS-report was used to identify any non-adherence patterns, causes, and solutions. These were written down in coping plans (using an if…then... format; materials 5 and 6).
- Patient selected an adherence goal for the next visit using material 2 and scored their confidence in their ability to accomplish that goal (material 7). If confidence was low, the nurse explored whether important adherence barriers had been unaddressed or if their adherence goal should be approached incrementally.
- The patient was offered a MEMS-view cap with a display showing how often the bottle had been opened that day (to facilitate adherence self-monitoring; material 4). Patient was given their printed adherence report and coping plan.
- Subsequent intervention sessions were mainly repetitions of steps 3, 4, and 5. The aim was that patients reached their desired level of adherence during the first 5 months of the intervention, strived for behavioural maintenance during the next 5 months, followed by a follow-up of another 5 months. Patients with many adherence difficulties could be seen more frequently.

Both the treatment-as-usual strategy and AIMS were delivered as part of routine care by trained HIV/AIDS nurses. The panel summarises the materials used and procedures for both strategies. A more comprehensive table including the behavioural change objectives and techniques is in the appendix. MEMS=electronic medication monitors.
AIMS=Adherence Improving self-Management Strategy.
adherence trials varies between trials and impacts on effect sizes.[1,2] We developed a minimally intrusive method for collecting treatment as usual data from participating nurses,23 and noted that treatment as usual in participating clinics ranged from medium to high quality when compared with meta-analyses on this topic.[1,2] Treatment as usual was not standardised between clinics for the purpose of this trial, and reflected what patients receive in routine clinical care in the Netherlands. The panel shows details of the AIMS intervention and treatment as usual.

Outcomes

The primary effectiveness outcome was defined as log\textsubscript{10} transformed plasma viral load (copies per mL) across the three follow-up timepoints (5, 10, and 15 months). The secondary effectiveness outcome was percentage adherence. Post-hoc outcomes were (1) treatment failure, defined as having a detectable viral load on two consecutive follow-up measurements; (2) CD4 cell counts (cells per µL); and (3) detectable versus undetectable viral loads, which was to be used as the primary outcome instead of log\textsubscript{10} viral load if the skewed distribution of log\textsubscript{10} viral load data would lead to violation of statistical model assumptions. Because model assumptions were not violated, this analysis was reported as post hoc.

Using cohort data from 7347 Dutch patients with HIV to calculate the natural course of illness, we developed a lifetime Markov model to estimate the primary economic outcome of lifetime societal costs (including health-care costs, productivity loss, HIV transmission costs, and intervention cost) per quality-adjusted life-years (QALYs) of AIMS versus treatment as usual.19 A trial-based economic assessment, which examined the short-term economic outcomes observed during the follow-up of the trial and therefore has another primary outcome (same trial number as this study), will be published separately.

Statistical analysis

The study was powered to detect an effect on plasma viral load, measured at three consecutive timepoints, while controlling for baseline viral load. A sample of 230 randomised patients was required to obtain 80% power to detect a significant intervention effect on viral load for at least one of three timepoints with \(\alpha = 0.05 \) (two-sided), using a Bonferroni correction and assuming a maximum dropout of 10%.

The primary intent-to-treat analysis for log\textsubscript{10} viral load used a mixed-effects (multilevel) model.24-26 A factor for timepoint (three levels, one for each follow-up measurement at months 5, 10, and 15), group (two levels), and their interaction (testing for a between-group change during follow-up) were the primary variables of interest. In the absence of a time-by-group interaction, the overall intervention effect can be estimated by a between-group (marginal) contrast across the three follow-up timepoints. Baseline viral load and the stratification variable (treatment-experienced vs treatment-naive) were added to the model as covariates; as well as a four-level factor for ethnic group (white, sub-Saharan African, Caribbean, and others), as this is an important prognostic covariate.[1,2] The viral load results were exponentiated (with base 10) for easier interpretation. Undetectable viral loads (eg, <40 copies per mL) were replaced by the corresponding detection limit.

We also did: (1) a mixed-effects logistic regression model,27 using detectable versus undetectable viral load (based on the detection limit of each respective clinic). The detection limit value of each viral load test was added as an additional covariate; (2) a mixed-effects logistic regression model examining treatment failure, using the same covariates; and (3) a mixed-effects model examining the effects of the intervention on CD4 cell count, using the same model as for the primary viral load analysis, but with viral load replaced by CD4 values. No statistical analyses were done for adherence, because of substantial differences in the uptake of the MEMS monitoring between the study arms (eg, 52 [91%] of 57 treatment-naive patients assigned to AIMS vs 15 [54%] of 28 assigned to treatment as usual started the use of MEMS after randomisation).

Based on the fitted models, we also obtained marginal estimates of the specific means for the AIMS and treatment-as-usual groups (viral load and CD4 cell count analyses) and risks (detectable viral load and treatment failure analyses), using the median value at baseline for continuous covariates (ie, baseline viral load and detection limit) and the observed proportions at baseline for categorical covariates (ie, treatment-experienced vs treatment-naive, ethnic group, and detection status at baseline).

Analyses were done in R (version 3.1.2) using the nlme package,27 and Stata (version 13.1) using functions mixed and meprobit. The appendix shows additional details on the sample size calculation and statistical analyses.

Our Markov model was based on the Dutch guideline for health economic evaluations and international guidelines for modelling (ISPOR-SMDM guidelines).28 In a Markov model, a cohort of patients is assumed to transit between health states. Based on the scientific literature[8-28] and input from clinicians in the participating clinics, 13 health states were identified: three CD4-cell count categories (0–200, 201–500, and >500 cells per µL) combined with four viral load categories (0–50, 51–200, 201–1000, and >1000 copies per mL), and death. These health states capture the key changes in viral load and CD4 cell count associated with changes in costs, HIV transmission risk, and quality of life. Patients could change between health states every 6 months. All transitions between health states are possible except when a patient died. Hence, the Markov model was a matrix of 13 rows (current health status) and 13 columns (the health state patients move to; appendix).

Next, we calculated the 6-month transition probabilities of patients on treatment as usual moving between these
health states (the natural course of illness), and the health-care consumption in each health state over a 6-month period. For this, we obtained a longitudinal dataset (2008–15) from the HIV Monitoring Foundation in the Netherlands. We used data from all registered Dutch HIV patients (n=7347) who were on treatment for at least 12 months, and had at least one detectable RNA viral load measurement (>50 copies per mL) in the past 3 years (excluding the first 12 months of treatment), to approximate the inclusion criteria for treatment-experienced patients in the trial. Excess mortality per health state was also derived from this cohort. Utility data (ie, quality of life) per health state were based on CD4 cell count and obtained from another cohort study. For the societal perspective, the model also included productivity losses per health state based on 600 questionnaires completed by 195 patients during the current trial. The appendix shows these transition probabilities, costs (health-care costs, HIV transmission costs, and productivity loss), and utilities per health state.

To assess the cost-effectiveness of AIMS, data were required on the intervention cost, as well as on the effects of AIMS on the transition probabilities during and after the intervention period. These effects were calculated from the trial data and expressed in relative risks (AIMS vs treatment as usual; appendix). For the AIMS intervention, these relative risks were then applied to the natural course of illness (appendix) over three 6-month cycles, which was the approximate duration of the trial. The cohort of patients receiving AIMS therefore had different probabilities of moving between health states than patients receiving treatment as usual, and therefore costs and outcomes were different.

To define the relative risks of AIMS, we did a base case and two additional scenarios. The base case (scenario 1) included all relative risks (AIMS vs treatment as usual) when at least five transitions occurred in the trial (appendix). Scenario 2 included all available relative risks irrespective of the number of transitions, whereas the more conservative scenario 3 included only relative risks with at least ten transitions. Within these three scenarios, we varied our assumptions about how long the effects of AIMS would last if delivery would be discontinued after the initial 18 months: (1) a linear decrease of the effects of AIMS to zero 18 months after intervention discontinuation; (2) no effect after AIMS discontinuation; and (3) AIMS effects fully sustained for another 18 months, and then to zero. A total of nine scenarios were therefore tested. We also did sensitivity analyses for a health-care perspective (ie, excluding productivity losses) and a time horizon of 10 years instead of lifetime.

For each scenario and sensitivity analysis, we estimated the societal costs and QALYs of AIMS compared with treatment as usual, and calculated the incremental cost-effectiveness ratio (ICER) between AIMS and treatment as usual. The ICER expresses the additional cost of AIMS compared with treatment as usual to obtain one additional QALY. When an intervention is more effective and less costly, the intervention is said to be cost-saving.

Figure: Trial profile

* Not all patients were willing to disclose a reason for refusal and patients could provide more than one reason for refusing participation.
This trial is registered at ClinicalTrials.gov (number NCT01429142).

Data sharing
The data for the effectiveness analyses are available online (https://osf.io/wk8vm/). The data for the cost-effectiveness analyses are in the appendix.

Role of the funding source
The funder of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility to submit for publication.

Results
Patient recruitment started on Sept 1, 2011, and was completed on April 2, 2013. The last patient completed the study on June 16, 2014. 224 patients were randomly assigned to treatment, which was slightly below the target of 230 but dropout was lower than anticipated (ten [4·5%] of 224 instead of 10%). The intent-to-treat sample was comprised of 221 patients, 109 assigned to AIMS and 112 to treatment as usual (figure). One patient who was not planning to start with combination ART was accidentally randomly assigned, and two eligible patients (one in each arm) did not provide any outcome data, because soon after randomisation one died of a cardiovascular event, and the other was incarcerated in another country. Because these reasons were unrelated to group assignment or the dependent variable, team members (MdB, WV, and JMP) masked to group assignment or the dependent variable, these patients were treated as dropouts.

Most of the intent-to-treat sample was male and white, with a mean age of 44 years (SD 10·9) and a low to medium educational level (table 1). About half the participants were treatment-experienced and of those, 37 (34%) of 109 had a detectable viral load at baseline, confirming that the at-risk selection criteria were useful (viral suppression rate in the general treatment-experienced population in the Netherlands is 91%). In a logistic regression analysis, study participation was associated with being treatment-naive (p=0·0001), but study participation could not be predicted by sex, age, ethnic group, CD4 cell count, or viral load (p>0·5 for all).

Mean follow-up was 14·6 months (SD 2·7). The mean number of visits was 3·2 (SD 1·6) for treatment as usual (figure). During follow-up, 270 days (76) versus 306 days (69) for the first visit. Because AIMS should reduce such non-persistence,3 most of the intent-to-treat sample was male and white, with a mean age of 44 years (SD 10·9) and a low to medium educational level (table 1). About half the participants were treatment-experienced and of those, 37 (34%) of 109 had a detectable viral load at baseline, confirming that the at-risk selection criteria were useful (viral suppression rate in the general treatment-experienced population in the Netherlands is 91%). In a logistic regression analysis, study participation was associated with being treatment-naive (p=0·0001), but study participation could not be predicted by sex, age, ethnic group, CD4 cell count, or viral load (p>0·5 for all).

Mean follow-up was 14·6 months (SD 2·7). The mean number of visits was 3·2 (SD 1·6) for treatment as usual and 3·2 (1·7) for AIMS. The mean number of days between randomisation and follow-up assessments for treatment-experienced versus treatment-naive patients were 125 days (SD 44) versus 177 days (54) for the first follow-up, 270 days (76) versus 306 days (69) for the second, and 447 days (87) versus 454 days (83) for the third visit.

The delivery of treatment as usual took on average 18·8 min; AIMS delivery took on average 29·1 min (a difference of 10·3 min per visit, with a total of 35 min during the entire follow-up), during which adherence support and also other treatment-as-usual activities were delivered.

AIMS patients received on average 85% of all planned intervention visits, during which 65% of all the intervention elements were delivered (recorded on the intervention website). The main reason recorded for not delivering all intervention elements was adherence having improved during follow-up sessions, without additional issues to address, or because the action or coping plans made during the previous intervention session remained relevant and did not need to be completed again.

There were 634 (95·6%) of 663 completed follow-up viral load measurements and 29 (4·4%) of 663 missing values, which were not associated with group assignment or viral load values at other timepoints in logistic regression models. Missing data were assumed to be missing at random, except for two patients who dropped out of care, discontinued medication after the second follow-up visit, and did not provide a viral load at the third visit. Because AIMS should reduce such non-persistence,3 and non-persistence affects the dependent variable, these

<table>
<thead>
<tr>
<th>Ethnic origin</th>
<th>AIMS group (n=109)</th>
<th>Treatment-as-usual group (n=112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>81 (74%)</td>
<td>62 (55%)</td>
</tr>
<tr>
<td>Sub-Saharan African</td>
<td>16 (15%)</td>
<td>21 (19%)</td>
</tr>
<tr>
<td>Caribbean*</td>
<td>9 (8%)</td>
<td>21 (19%)</td>
</tr>
<tr>
<td>Other</td>
<td>3 (3%)</td>
<td>8 (7%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education†</th>
<th>AIMS group (n=109)</th>
<th>Treatment-as-usual group (n=112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than or equivalent of primary education, lower secondary education</td>
<td>47 (43%)</td>
<td>45 (40%)</td>
</tr>
<tr>
<td>Higher secondary education, lower vocational education</td>
<td>40 (37%)</td>
<td>39 (35%)</td>
</tr>
<tr>
<td>Higher vocational education, university</td>
<td>22 (20%)</td>
<td>28 (25%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment status</th>
<th>AIMS group (n=109)</th>
<th>Treatment-as-usual group (n=112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-experienced</td>
<td>52 (48%)</td>
<td>57 (51%)</td>
</tr>
<tr>
<td>Treatment-naive</td>
<td>57 (53%)</td>
<td>55 (49%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CD4 cell count (cells per µL)</th>
<th>AIMS group (n=109)</th>
<th>Treatment-as-usual group (n=112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-experienced patients</td>
<td>520·6 (212·9)</td>
<td>535·1 (226·4)</td>
</tr>
<tr>
<td>Treatment-naive patients</td>
<td>379·1 (239·5)</td>
<td>431·8 (200·5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasma HIV-RNA (copies per ml, mean [SD])</th>
<th>AIMS group (n=109)</th>
<th>Treatment-as-usual group (n=112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment-experienced patients</td>
<td>1·74 (0·61)</td>
<td>1·83 (0·83)</td>
</tr>
<tr>
<td>Treatment-naive patients</td>
<td>4·83 (0·71)</td>
<td>4·30 (1·01)</td>
</tr>
</tbody>
</table>

Data are n (%) unless otherwise specified. AIMS=Adherence Improving self-Management Strategy. *Surinamese, Latin American, and Antillean. †Categorisation based on the Dutch education system.

Table 1: Baseline characteristics of the intention-to-treat population
The main treatment effects are described here (the results on the covariates and exploratory subgroup analyses are in the appendix). The three-level mixed-effects regression model showed that there was no indication of a change in the intervention effect across the three follow-up timepoints (time-by-group interaction $F_{(2,409)}=0.75$, $p=0.47$). We could therefore examine the between-group contrast across the three follow-up time points, which showed that the intervention was effective ($F_{(1,196)}=6.40$, $p=0.012$), while controlling for baseline viral load, treatment experience, and ethnic group. Across the three timepoints (months 5, 10, and 15), log viral load was 1.26 times higher (95% CI $1.04–1.52$) in the treatment-as-usual group (estimated marginal mean 44.5 copies per mL [95% CI $35.5–55.9$]) than in the AIMS group (estimated marginal mean 35.4 copies per mL [29.9–42.0]). There was no significant variability of the treatment effect across nurses ($p=0.14$).

The three-level mixed-effects logistic regression model with detectable versus undetectable viral loads showed the same pattern ($\chi^2 [df=1] 3.66$, $p=0.056$). Overall, patients in the treatment-as-usual group had a 1.89 times higher odds of a detectable viral load across the three timepoints, although this was not significant (95% CI $0.98–3.65$). The two-level logistic regression model of treatment failure indicated a significant group difference ($\chi^2 [df=1] 5.61$, $p=0.012$). The odds of treatment failure were 2.99 times higher in treatment as usual (95% CI $1.21–7.38$).

The model examining the effects on CD4 cell count revealed a significant time-by-group interaction ($F_{(2,398)}=3.09$, $p=0.047$). We therefore examined the group difference for each follow-up timepoint separately. At the first follow-up visit, there was a non-significant increase in CD4 cell count in AIMS compared with treatment as usual (31 cells per µL, 95% CI $–8.37$ to 70.37); at the second follow-up visit the treatment-as-usual group caught up (6.55 cells per µL, 95% CI $–46.01$ to 32.92); and at the third follow-up visit CD4 cell counts continued to rise in AIMS but not in treatment as usual, with a significant difference (39.39 cells per µL, 95% CI $0.10–78.67$). Marginal group means and risks for these analyses are in table 2.

In the base-case cost-effectiveness analysis, the Markov model estimated that AIMS reduced lifetime societal costs by €592 per patient and increased QALYs by €0.034 per patient. AIMS was therefore cost-saving (ie, more QALYs and less costs) in the base case. Results were similar for the other scenarios and for the sensitivity analyses with a health-care perspective, and a 10-year time horizon (table 3).

Discussion

To our knowledge, this is the first randomised controlled trial of an HIV treatment adherence intervention that showed a clinically meaningful effect on viral load as well as cost-effectiveness. The economic model showed that AIMS is dominant to treatment as usual, both cheaper and more effective, regardless of the time horizon (table 3).
Articles

The cumulative results of our multicentre trial and the previous pilot study and single-centre trial show that AIMS requires few resources, is feasible to deliver in routine care, and is acceptable to health-care providers and patients (although more patient-friendly electronic monitoring devices are desirable). Moreover, they showed relevant and replicable effects of AIMS on adherence (in the pilot study and single-centre trial) and viral load (in the single-centre and multicentre trials). On average patients receiving treatment as usual had a 1.26 higher log viral load than AIMS patients, and AIMS reduced the risk of treatment failure (two consecutive detectable viral loads) by 61% (22.8% vs 9.0%). These effects were similar for treatment-naive and treatment-experienced patients at-risk for viral rebound (appendix), and despite some risk of contamination and the medium-to-high-quality treatment-as-usual adherence support provided to the control group. The economic analysis showed that AIMS is dominant and that when the intervention is provided to 10 000 patients over a period of 18 months, the approximate savings would be €5920 000 while 340 QALYs would be gained. Because these results have been obtained in a heterogeneous sample of patients and clinics, we would expect at least similar effects if AIMS was rolled out nationally in the Netherlands, and in other countries where HIV care is organised in a similar manner (ie, western Europe). Nationwide training of health-care professionals, reimbursement of electronic monitors, and adoption of AIMS in national HIV-treatment guidelines in the Netherlands is currently being negotiated as a first step.

In conclusion, our pragmatic, randomised controlled trial and economic model showed that AIMS was feasible to deliver in routine care, reduced viral load, increased QALYs, and saved resources. To our knowledge, this is the first HIV treatment adherence intervention for which such an evidence base has been established. The AIMS intervention should be scalable and the results generalisable to the wider population of patients and HIV clinics—at least in high-income settings. Implementation of AIMS in routine HIV clinical care is therefore strongly recommended.
Articles

Contributors
MdB, JMP, SMAAE, and WV designed the study and obtained project funding. All authors were involved in defining inclusion or exclusion criteria, measures to protect against bias, and data collection procedures. All authors except WV and SMAAE were involved in data collection for the effectiveness or cost-effectiveness analyses. MdB, EJMO, JMP, and WV were mainly responsible for the effectiveness analyses. MH, EJMO, and MdB were mainly responsible for the cost-effectiveness analyses. All other authors critically examined the analyses and findings. MdB, EJMO, JMP, and MH drafted the report. All other authors critically read and commented on draft versions of the report, and approved the final version.

Declaration of interests
We declare no competing interests.

Acknowledgments
This trial was funded from public money by the Netherlands Organisation for Health Research and Development (ZonMW; grant number 17000208). Aarden provided support on the development of the study website. We thank all the HIV nurses and physicians from the seven HIV clinics involved in the AIMS study for their input and collaboration (Academic Medical Centre, Slotervaart hospital, and St. Lucas-andreas hospital, all in Amsterdam; the Leiden University Medical Centre, Leiden; HAGA hospital, The Hague; Erasmus Medical Centre, Rotterdam; and Isala clinic, Zwolle), the study participants, and the Stichting HIV Monitoring (SHM) for their support in accessing the SHM database for identifying patient inclusion criteria and developing the Markov model. Finally, we thank and remember Herman Schaalma (deceased) for his contribution to the study design and grant application.

References