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Chapter 1

Introduction

\The biggest problem we face in econometrics is the uncertainty about
the correct speci�cation of our models." Davidson (2004)

The goal of econometrics is to describe a complex reality with a simple model.
The �rst step in an econometric analysis is to select a class of models that seems
best �tting for the particular data set at hand. For time series data a di�erent class
of models would be considered than for cross sectional data. Should the model
be linear or non linear, a state space model, should the variance be modelled
separately? Before even starting with her analysis a researcher usually decides
on all of these points a priori or with some pretesting of the data. Then, one
common approach to end this �rst part of reducing the universe of models, that
are deemed relevant, is to de�ne a class of models that only di�ers by one type
of parameter. Take, for example, the lag order in an autoregressive model. The
most �tting parametrization would then be decided on by one of a number of
available model selection criteria. The underlying idea of which is in essence to
�nd the \true" model speci�cation within the considered class. But Hansen (2005)
pointed out that this idea might be misguided. It is likely that there is not one
true underlying model that captures all the relevant explanatory variables. In this
thesis we consider two di�erent approaches to a more general idea of �nding useful
models, focused selection and model averaging.

Focused Selection Focused selection, as introduced by Claeskens and Hjort
(2003), puts the interest of the analysis in the foreground. Sometimes the re-
searcher is not interested in the basic parameters of the data generating process,
but only in a selection of these or even in a function of these. For example, in
an autoregressive analysis one might be interested only in the �rst autoregressive
parameter, or the impulse response at a speci�c horizon, which is a non linear func-
tion of the model parameters. And even if there was one true underlying model
for the observed data, the assumed functional relationship between the model’s
parameters and the actual parameter of interest might be wrong. This is why in
focused model selection not the model that best �ts the observed data, but the
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CHAPTER 1

model which is deemed to best estimate the parameter of interest is chosen. On
a technical side, the theory on focused parameters is based on the error of the
estimated parameter as measured by the asymptotic mean squared error, MSE.
Since models that do not include the regressors of the true DGP have a bias,
and this bias would diverge in an asymptotic framework, the theory around the
focused information criterion, FIC, uses a locally misspeci�ed setting in which all
models under consideration include at least the parameters up to the true order,
and some auxiliary parameters that shrink to zero asymptotically. It turns out
that in practice the division between these two di�erent sets of model parameters
is actually of no interest. This is shown in Remark 2.16. Chapter 2 extends the
theory of the FIC to stationary multivariate time series models.

In the locally misspeci�ed setting of Chapter 2 the auxiliary parameters shrink
to zero at the rate T�1=2 with T denoting the number of observations. This set-
ting is fundamentally di�erent from a setting where all parameters stay constant,
because the data generating process (DGP) is di�erent for di�erent T . Similar
sequences of so called local alternatives are considered for local power analysis of
hypothesis tests, cf. McManus (1991). In their rejoinder to Hjort and Claeskens
(2003a) Hjort and Claeskens (2003b) discuss the advantages of and the under-
lying ideas for considering locally misspeci�ed models, and a series of papers by
Leeb and P�otscher (2005) use such models to challenge some common ideas about
post-model-selection estimators. In Chapter 3 we assume a DGP with coe�cients
that are independent of T , and so one may wonder whether one of those di�erent
settings is more appropriate than the other, or the asymptotic theory for which
of these is more helpful. The answer is that the asymptotic results presented in
the econometrics literature are derived in the expectation that they may o�er a
good approximation to the �nite-sample behavior of certain estimators. Leeb and
P�otscher (2005) make this point very clear in the context of classifying model selec-
tion procedures as being consistent or conservative in their Section 2. This is why,
in the following chapters, methods based on shrinking as well as constant coe�-
cients are used alongside each other, and why simulations are included in Chapters
2 and 3 to illustrate the �nite-sample properties of the introduced estimators.

(Model) Averaging When one acknowledges the idea that there cannot be one
true statistical model, model averaging emerges as a natural extension of model
selection. Instead of settling to use one particular model for estimation, weights
are assigned to the di�erent models under consideration and an averaged estimate
of some type is used. A weight of 1 for one model and 0 for all the others leads
to a model selection estimator again. One of the earliest references on frequentist
model averaging is the paper by Bates and Granger (1969). When using averaging
estimators in the following, we remain within one class of models, so we will only
average over autoregressive models with di�erent lag orders. This also includes,
as is common in time series econometrics, that we only consider nested models.
But one might also want to average over di�erent classes of models. This case is
treated in Zhang et al. (2013), for example, who allow non-nested autoregressive
speci�cations to be included in the set of models to be averaged, and in forecast
combination, where it is not restricted how di�erent forecasters arrive at their

2



forecasts, cf. de Pooter et al. (2007). We want to mention that in model averaging
there is still a selection step, namely that of deciding which models to consider, but
this is not di�erent to carrying out model selection where, as described above, a
certain set of models is singled out for closer scrutiny, for which then model scores,
e.g. the AIC score, are being calculated. Consider for example a sequence of
general to speci�c tests on the lag order of an autoregressive model. The sequence
requires a starting point of some a priori chosen lag order. There are also mixtures
of selection and averaging methods, like the adaptive regression by mixing (ARM)
method applied in Yuan and Yang (2005). In the ARM, AIC and BIC scores are
computed for a large set of models and only a certain prespeci�ed number of the
lowest ranked models are kept for the subsequent combination step. In a Bayesian
framework model averaging is a well established concept. We do not treat Bayesian
model averaging in this book, however, but instead focus on frequentist methods,
just like the papers that generated the ideas to our research do, e.g. Hansen (2007),
Kilian (1998a).

There are (at least) two types of objects one can average over. The smoothed
model averaging estimators of type smoothed AIC (sAIC) combine the estimates
of the parameter of interest/focus parameter from the various models. In our
applications the parameter of interest is a particular impulse response coe�cient
(and in the FIC setting also allowed to be a set of those). So when we apply
smoothed estimators, the estimates of the focus parameter given by the di�erent
models are multiplied with the weights assigned to the respective model and added
up. The smoothed AIC (sAIC) and smoothed BIC (sBIC) estimators are used
throughout this thesis, and their theoretical properties are discussed in Chapter 3.
For this type of combination we suggest the term parameter averaging or estimate
averaging.

Another set of objects one might want to average over is that of the estimated
parameters of the various models. This is the averaging method used by e.g.
Hansen (2007) for Mallows model averaging, where it is shown that weight selection
by minimizing Mallow’s criterion will asymptotically lead to the lowest possible
squared error within a class of estimators. With this averaging method a new
model is created that consists of the other models’ combined parameters, where
the weight that had been assigned to each model is the weight that the parameter
receives in the combined model. The model average estimate of the parameter of
interest is then the parameter of interest from the combined model. The jackknife
model averaging estimator is calculated with this combination scheme. It is applied
to stationary autoregressions of in�nite order in Zhang et al. (2013), and will be
used throughout this thesis. We will use the term model averaging to refer to any of
those two combination methods, as this seems to be the term used in the literature
so far, but to be more speci�c the term model averaging or estimator averaging
should be reserved to this second type of combination. For our applications, more
often than not, the estimates were not very sensitive to the type of averaging.
So, combining the underlying models’ parameters with sAIC weights instead of
combining the estimates of the focus parameters lead to similar estimates. We do
not report these results but instead leave this statement to be thoroughly tested in
future research. Chapter 3 is dedicated to the smoothed model averaging versions

3



CHAPTER 1

of AIC and BIC model selection. There we show that their asymptotic properties
are similar to those of their selection counterparts.

Impulse Response Analysis in Structural VARs The central application of
this thesis are impulse response functions. A comprehensive discussion on impulse
response analysis can be found in Section 3.7 of L�utkepohl (2005). In a dynamic
system impulse responses describe the e�ect of an exogenous shock. In a multi-
variate system these e�ects are especially interesting for macroeconomists, who
want to analyze policy implications, as they illustrate the relationships between
the di�erent variables, cf. Christiano et al. (1999). The e�ects can be graphed
against time. In a stable or stationary system any shock e�ect will vanish in the
long run. We will refer to these time pro�les as impulse response functions and
typically call the e�ect after a certain number of periods an impulse response.

Impulse response analysis on economic data is conducted using structural VAR
(sVAR) models. Surveys on sVARs have been authored by Kilian (2013) and Kilian
and L�utkepohl (2017). Structural VAR models �rst appeared in econometrics in
the 1980s \as an alternative to traditional large-scale dynamic simultaneous equa-
tion models," cf. Kilian (2013). There are two di�erent important representations
of a VAR model, the structural and the reduced-form representation. In the former
the innovations are uncorrelated, so their covariance matrix is a diagonal matrix,
and no contemporaneous e�ects between the variables exist. This representation
allows an economic interpretation, e.g. the calculation of impulse response func-
tions. The underlying assumption is that the uncorrelated structural innovations
drive the system’s variables. But because not all of the parameters in the structural
VAR are identi�ed, estimation would not yield consistent estimates. This is why
for estimation the reduced-form representation is used. By reparametrizing the
model one representation can be obtained from the other. This reparametrization
has to rely on identifying assumptions stemming from, e.g., economic theory, and
the di�erent ways of going about this are even to date still a topic of research. The
three most commonly used types of using identifying assumptions are to impose
restrictions on the short-run, the long-run, or the (algebraic) sign of the responses
to structural shocks. We discuss recursive identi�cation and sign identi�cation in
the following paragraphs.

A straigthforward identi�cation scheme from the group of short-run identify-
ing restrictions that to date has commonly been used, cf. e.g. L�utkepohl et al.
(2015) and Belongia and Ireland (2015), consists of orthogonalizing impulse re-
sponses based on the Choleski decomposition of the estimated covariance matrix.
While the technical implementation of this method is easy, cf. Corollary 2.8 and
Section 3.2, it has to be noted that it implies a recursive ordering of the modelled
variables. This means for example, that a shock in the last structural innovation
contemporaneously only a�ects the economic variable that is ordered last in the
VAR. And it also means, that for di�erent orderings of the variables di�erent im-
pulse response functions are obtained. Criticism like this has lead to some of the
other identifying approaches becoming more important, cf. e.g. Uhlig (2005).

Uhlig (2005) suggests identi�cation by sign restrictions as a method of using as
few identifying assumptions as possible for identifying certain structural shocks.
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The paper treats the case of identifying monetary policy shocks, for which it is
suggested to use as few assumptions as possible. The argument is that the smaller
the number of identifying assumptions is, the more likely it is to have agreement
on them among economists. Also it should be tried not to inuence the results of
an econometric analysis too much by imposing too much structure on the model.
The assumptions are stated in terms of the algebraic sign of the responses to a con-
tractionary monetary policy shock: Increases in prices and nonborrowed reserves
and decreases in the federal funds rate a certain number of periods after the shock
are considered not to be consistent with a contractionary monetary policy shock.
What is still left to decide then, of course, is the exact number of periods for which
to check these conditions. Under this approach many di�erent reparametrizations
of the reduced-form model to a structural model are generated, and the result-
ing impulse responses are checked for meeting the identifying assumptions. Thus,
contrary to e.g. recursively identi�ed models, the researcher is left with not one,
but typically a set of di�erent structural models that meet the assumptions. Uhlig
(2005) illustrates this method with empirical data and compares it to the approach
of recursive identi�cation. He concludes that contractionary monetary shocks have
no clear e�ect on real GDP. We employ the same data set in Chapter 4.

The focus of this thesis is on the study of di�erent model selection and averaging
criteria. For this reason we keep one �xed parametrization throughout this thesis,
namely the Choleski orthogonalization. This is especially important since the
empirical data used in this thesis has been studied in other publications before, all
of which have used that same identifying approach, and we will make comparisons
between their results and ours. In Chapter 4 the criteria from Chapters 2 and
3 are used for estimating impulse response functions from empirical data. Their
usefulness for practical applications is demonstrated by comparing the results with
those obtained from the application of other commonly used model criteria.

Structure The following two chapters provide the theory for two di�erent classes
of model criteria, FIC - Chapter 2 - and smoothed averaging - Chapter 3 - while
Chapter 4 is an application of these and other criteria to empirical data. Through-
out the thesis we will compare the introduced model criteria to other well known
ones like AIC, BIC, HQ model selection, the speci�cs of which are mostly given in
the beginning sections of Chapters 3 and 4, and also jackknife model averaging.

In Chapter 2 we detail the idea of directing estimation towards a focus pa-
rameter, extending the theory of the FIC to stationary multivariate time series
models. The FIC concept leads us to de�ne a set of model selection, as well as
averaging estimators, with and without bias correction. We determine the asymp-
totic properties and elaborate on the role of the locally misspeci�ed parameters.
Monte Carlo simulations show that our Focused Information Criterion performs
comparably to both AIC and BIC selection procedures as well as model averaging
procedures based on their smoothed counterparts. In Chapter 3 we show that the
smoothed model averaging versions of AIC and BIC model selection, sAIC, sBIC,
have asymptotic properties similar to their selection counterparts. We explain that
there is actually a whole class of sAIC and sBIC estimators governed by a scal-
ing parameter, a fact that has not been clearly expressed in the literature so far.
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And we derive a bootstrap procedure for determining con�dence regions around
the averaging estimates. The theoretical results are illustrated with Monte Carlo
simulations that also show the estimators’ MSEs and e�ective coverages of the
constructed con�dence bands. Chapter 4 revisits three previous studies on policy
analysis and applies the criteria from the previous chapters along with some other
model criteria, that have not been routinely used on macroeconomic data so far, to
show their usefulness in practical applications. We elaborate on the e�ect of sam-
pling frequency and check the robustness of the conclusions drawn from impulse
response analyses with structural VAR models. Chapter 5 concludes.

Notation Our notation is largely based on Abadir and Magnus (2002). In par-

ticular
d�! and

p�! signify convergence in distribution and convergence in prob-
ability, respectively. T denotes the sample size of a time series.

6



Chapter 2

A Focused Information
Criterion for Locally
Misspeci�ed VARs

This chapter investigates the properties of the Focused Information Criterion (FIC)
as pioneered by Claeskens and Hjort (2003), and the plug-in average in (vector)
autoregressive models with local-to-zero misspeci�cation. The FIC method has the
advantage of focusing on a quantity of interest rather than aiming at overall model
�t. Any (su�ciently regular) function of the parameters can be used as a quantity
of interest. We determine the asymptotic properties and elaborate on the role of
the locally misspeci�ed parameters. In particular, we show that the inability to
consistently estimate locally misspeci�ed parameters translates into sub-optimal
selection and averaging. We apply this framework to impulse response analysis.
Monte Carlo simulations show that our Focused Information Criterion performs
comparably to both AIC and BIC selection procedures as well as model averaging
procedures based on their smoothed counterparts.1

2.1 Introduction

The motivation for this chapter stems from Hansen (2005). The author con-
siders a Gausssian ARMA(1,1) model approximated by AR(k) models with k 2
f0; 1; � � � ; kmaxg and is interested in the impulse responses. Table 1 of Hansen
(2005) shows that the MSE-minimizing AR order depends strongly on parameter
values and the impulse response horizon. An extreme case is the speci�cation
yt = 0:5yt�1 + �t � 0:9�t�1. The MSE-minimizing autoregressive orders equal 0
and 10 for the impulse responses at horizon 2 and 6, respectively. Ivanov and
Kilian (2005) report a similar issue in a VAR setting. They simulate VAR pro-
cesses similar to those often found in empirical work, and rank di�erent model

1This chapter is based on Lohmeyer et al. (2018).
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selection criteria (AIC, BIC, HQ and serial correlation tests) based on the MSE of
the estimated impulse responses implied by the selected model. A uniformly best
criterion was not found. This might be expected since information criteria like
AIC and BIC aim at global model �t and do not take into account the quantity
of interest (such as the impulse response at a particular horizon). The Focused
Information Criterion introduced by Claeskens and Hjort (2003) does take into
account the interest of the researcher. Hansen (2005) acknowledged the opportu-
nities for the FIC for the estimation of impulse responses when he remarked based
on simulation outcomes: \The message from Tables 2 and 3 is that the FIC is
an intriguing challenger to existing model selection methods and deserves atten-
tion and scrutiny". A theoretical justi�cation of these simulation results was not
provided.

We develop a theoretical framework starting from a vector autoregression where
part of the coe�cients are local-to-zero, i.e. declining to zero at a rate of T�1=2

with T denoting sample size. This setup is fundamentally di�erent from a static
one, because dynamic properties are also varying with sample size. It has the
advantage that the omitted variable bias for the local-to-zero parameters does not
diverge with increasing sample size, and thus it lends itself well to illustrating the
typical estimator bias-variance tradeo� in model selection, as Hjort and Claeskens
(2003b) argue in their rejoinder. The idea of de�ning such local-to-zero alterna-
tives is related to local power analysis for hypothesis testing, cf. McManus (1991)
for a brief discussion of its history. More recently Leeb and P�otscher (2005) have
used the setup of a linear regression model with two regressors, with the coe�-
cient of the second regressor declining to zero at rate T�1=2. They show that the
post-model-selection estimator’s �nite-sample distribution cannot be estimated
and that any estimator of its asymptotic distribution cannot be consistent uni-
formly. The authors have published several other papers to analyze post-model-
selection estimators within such local-to-zero settings. Dynamic models under
local-to-zero misspeci�cation were discussed in Claeskens et al. (2007) and Rohan
and Ramanathan (2011). Both papers �rst derive the asymptotic results in a set-
ting without local misspeci�cation and subsequently introduce the misspeci�cation
(see p. 363 of Claeskens et al. (2007) and Equation (8) on p. 221 of Rohan and
Ramanathan (2011)). The theoretical implications of this two-step procedure are
not completely clear.

Building on ideas from Claeskens and Hjort (2003), Claeskens and Hjort (2008)
and Liu (2015), we propose an estimator that can be used for both model selec-
tion and model averaging. This estimator is fairly general as it only requires the
parameters of interest to be a su�ciently smooth transformation of the model’s
parameters. The results are subsequently applied to the speci�c case of impulse
responses. A slight generalization of a theorem by Liu (2015) enables us to not
only construct con�dence intervals for a speci�c horizon, but to also construct
con�dence bands for multiple horizons. Additionally, we provide an in-depth dis-
cussion on the role of the local-to-zero parameters. These parameters cannot be
estimated consistently, and we show that as a consequence the FIC and plug-in
averages do not fully minimize the asymptotic mean squared error asymptotically.

The original ideas of Claeskens and Hjort (2003) are extended by Claeskens

8
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and Hjort (2008), and have been applied to various settings. Liu (2015) considers
the linear regression setup and derives asymptotically valid con�dence intervals.
DiTraglia (2016) provides results for generalized method of moments estimation.
Liu and Kuo (2016) consider predictive regressions.

The remainder of this chapter is organized as follows. Section 2.2 presents the
model framework, the estimation procedure, and the asymptotic properties of (1)
the parameter estimates, (2) the feasible FIC, and (3) the elements of the weight-
ing matrix. A discussion and illustration of the consequences of the inconsistent
estimation of the local-to-zero parameter follows. Our theoretical �ndings are sub-
sequently supported by various Monte Carlo simulations in Section 2.3. Section 2.4
concludes. The mathematical proofs are presented in the Appendix. The choice
of variable names is kept close to that of Liu (2015) to enhance comparability.

2.2 Theory

2.2.1 The Model Framework

Let the K-dimensional multiple time series
��
yT;t

	1
t=�1

	1
T=1

constitute a vector

triangular array generated by the vector autoregressive (VAR) processes

yT;t = B1yT;t�1 + : : :+Bp1yT;t�p1 +
�1p
T
yT;t�p1�1 + : : :+

�p2p
T
yT;t�p1�p2 + ut;

(2.1)
where Bi, i = 1; 2; : : : ; p1 and �i, i = 1; 2; : : : ; p2 are (K�K) coe�cient matrices.
Equation (2.1) di�ers in one important aspect from the usual VAR speci�cations,
namely some of the coe�cient matrices are premultiplied by T�1=2 with T denoting
sample size. This local-to-zero misspeci�cation causes di�erent dynamics for every
T . Mathematically, this decay rate will prove to be crucial for the development of
the asymptotic theory because it prevents the omitted variable bias from diverging
with increasing sample size. Intuitively, we could think of this model speci�cation
as expressing a degree of uncertainty concerning the true lag order. The VAR
process includes p := p1 + p2 lags for �nite T , yet asymptotically only a VAR(p1)
remains. This can be interpreted as exploring a shrinking neighborhood of the
VAR(p1) model.

2.2.2 Parameter Estimation and Asymptotics

To simplify notation we collect all the parameters in the matrices

B = (B1;B2; � � � ;Bp1); CT = (�1;�2; � � � ;�p2)=
p
T = �=

p
T ;

9
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and de�ne �T = (B;CT ) of dimensions K �Kp. Similarly to L�utkepohl (2005)
we also stack the observations over time to obtain

YT := (yT;1;yT;2; : : : ;yT;T ) (K � T );

zT;t :=

0BBB@
yT;t
yT;t�1

...
yT;t�p+1

1CCCA (Kp� 1);

ZT := (zT;0; zT;1; : : : ;zT;T�1) (Kp� T );

U := (u1;u2; : : : ;uT ) (K � T ):

(2.2)

The model can now be expressed as YT = �TZT +U . A variety of approximating
models can be considered but we will restrict our attention to models that use
the same lag order in every equation (also see Remark 2.5 for further details).
Using the same lag order in the cross-section is common practice and will decrease
the notational burden. Selection matrices are used to relate all estimators to the
estimator using p lags. That is, for some integer m such that p1 � m � p we
de�ne

L := L(1) 
 IK , with L(1) =

�
Ip1

Op2�p1

�
(Kp�Kp1);

S0 := S(1)
0 
 IK , with S(1)

0 =

�
Op1�p2

Ip2

�
(Kp�Kp2); (2.3)

Sm := S(1)
m 
 IK , with S(1)

m =

�
Im

O(p�m)�m

�
(Kp�Km);

� 0m := � 0(1)
m 
 IK , with � 0(1)

m =

�
Im�p1

O(p�m)�(m�p1)

�
(Kp2 �K(m� p1)):

The Kronecker products with IK are a direct consequence of estimating all equa-
tions with the same lag order. The regressor matrix for the estimation of the
VAR(m) model is ZT;m = S0mZT . The implied OLS estimator of the (K �Km)
matrix �T;m = �TSm can be written as, cf. Equation (2.16),

�̂T;m = �T;m +CT (IKp2
�� 0m�m)S00ZTZ

0
T;m(ZT;mZ 0T;m)�1 (2.4)

+UZ 0T;m(ZT;mZ
0
T;m)�1:

Rearranging and multiplying by
p
T yields

p
T
�
�̂T;m ��T;m

�
=
p
TCT| {z }
�

�
IKp2

�� 0m�m

�
S00

�
1

T
ZTZ

0
T

�
Sm

�
�
S0m

�
1

T
ZTZ 0T

�
Sm
��1

+

�
1p
T
UZ 0T

�
Sm

�
S0m

�
1

T
ZTZ 0T

�
Sm
��1

; (2.5)

and it can be seen that the T 1=2-consistency of the estimator precisely matches
the decay rate of T�1=2 in the elements of the parameter matrix CT . As a �nal
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step we apply the vec operator to transform the parameter matrices into a single
parameter vector,

p
T
�
�̂T;m � �T;m

�
=

 �
S0m

�
1

T
ZTZ

0
T

�
Sm
��1

S0m

�
1

T
ZTZ

0
T

�
S0

�
IKp2

�� 0m�m

�

 IK

!
�

+

 �
S0m

�
1

T
ZTZ

0
T

�
Sm

��1

S0m 
 IK

!
1p
T

TX
t=1

vec
�
utz

0
T;t�1

�
; (2.6)

where �̂T;m = vec(�̂T;m), �T;m = vec(�T;m), and � = vec(�). Equation (2.6)
depends on (1) various selection matrices, (2) the random matrix 1

TZTZ
0
T =

1
T

PT
t=1 zT;t�1z0T;t�1, and (3) the random vector 1p

T

PT
t=1 vec

�
utz0T;t�1

�
. The

latter two rescaled sums are typically encountered in laws of large numbers and
central limit theorems, respectively. The following three assumptions guarantee
that such theorems are applicable.

Assumption 2.1. The sequence futg of random K-vectors is an independent and
identically distributed sequence with mean vector zero, a positive de�nite covariance
matrix E(utu0t) = �, and there exists a c > 0 such that E juitujtuktumtj < c <1
for i; j; k;m = 1; 2; : : : ;K.

Assumption 2.2. For all jzj � 1 and 8T 2 N:
det (BT (z)) = det

�
IKzp �B1z

p�1 � : : :�Bp1z
p2 � �1p

T
zp2�1 � : : :� �p2p

T

�
6= 0.

Assumption 2.3. det (B1(z)) = det
�
IKzp1 �B1z

p1�1 � : : :�Bp1

�
6= 0 for all

jzj � 1.

Assumption 2.1 provides moment bounds and independence between the inno-
vation ut and its past. This latter property is exploited to apply limit theorems
for martingale di�erences.2 Assumptions 2.2 and 2.3 require the vector autore-
gressive process to be stationary for every �nite T and also in the absence of local
misspeci�cation. The asymptotic properties of the OLS estimators are stated in
the following Theorem 2.4.

Theorem 2.4 (Asymptotic Normality of the Least Squares Estimator).
Let Assumptions 2.1 - 2.3 hold. Then

(a) In the limit T !1, we have for any m 2M = fp1; p1 + 1; : : : ; pg,
p
T
�
�̂T;m � �T;m

�
d�! Am� +

�
[S0m
Sm]

�1 S0m 
 IK
�
R

2The requirement of i.i.d. innovations can be relaxed to the assumption that futg is a
martingale di�erence sequence. Formally, let Ft = � (us;�1 < s � t) denote the sigma �eld
generated by the innovations up to and including time t. Our results remain valid if the condi-
tions E(ut) = 0 and E(utu0t) = � are replaced by E (utjFt�1) = 0 and E (utu0tjFt�1) = �,
respectively.

11
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� N
�
Am�; [S

0
m
Sm]

�1 
�
�
;

with 
 = plim 1
T

PT
t=1 zT;t�1z0T;t�1, R � N (0;
 
�), and Am =

[S0m
Sm]
�1 S0m
S0

�
IKp2

�� 0m�m

�

 IK .

(b) Let ûmT;t denote the OLS residuals from the estimation of a VAR(m). Con-
sider �̂m = 1

T

PT
t=1 û

m
T;tûm0T;t as an estimator for �. The result in part (a)

can be strengthened to joint asymptotic normality with the covariance matrix
estimator �̂m,24 pT ��̂T;m � �T;m�p

T vech
�
�̂m ��

�35 d�! N

��
Am

O

�
�;
�
[S0m
Sm]

�1 
� O
O �22

��
:

The matrix �22 is speci�ed in the Appendix.

(c) The estimator convergence as discussed in parts (a) and (b) of this the-
orem is also a joint convergence across di�erent m 2 M. That is, for
fi1; i2; : : : ; iMg 2 M, any m 2M, and i1 < i2 < : : : < iM , we have26666666664

p
T
�
�̂T;i1 � �i1

�
p
T
�
�̂T;i2 � �i2

�
...p

T
�
�̂T;iM � �iM

�
p
T vech

�
�̂m ��

�

37777777775
d�! N

0BBBBB@

2666664
Ai1

Ai2
...

AiM

O

3777775 �;
2666664
Vi1i1 Vi1i2 : : : Vi1iM O
Vi2i1 Vi2i2 : : : Vi2iM O

...
...

. . .
...

...
ViM i1 ViM i2 : : : ViM iM O

O O : : : O �22

3777775

1CCCCCA :

The matrices Vjk are given by Vjk =
�
S0j
Sj

��1 S0j
Sk [S0k
Sk]
�1 
�.

It su�ces to consider a single estimator for � because all the estimators are
asymptotically equivalent.

The matrix
 deserves further attention. It is de�ned as the probability limit of
the Gram matrix 1

TZTZ
0
T . The proof of Theorem 2.4 reveals that this probability

limit exists, and that it equals E(z1;tz01;t) where z1;t is de�ned as in Equations
(2.2) but being generated by the VAR without local misspeci�cation. As an exam-
ple consider the AR process de�ned by yT;t = �yT;t�1 + �1p

T
yT;t�2 + �2p

T
yT;t�2 +ut,

that is an AR model with p1 = 1, p2 = 2 and p = 3. In that case we obtain


 = �2

1��2

�
1 � �2

� 1 �

�2 � 1

�
.

Remark 2.5. The consequences of the local misspeci�cation framework are visible
in Theorem 2.4. Standard asymptotics will fail if relevant parameters are left out
since the omitted variable bias will dominate asymptotically.3 The local-to-zero

3Let us consider the data generating process yt = �1yt�1 + �2yt�2 + ut. Suppose that we
estimate an AR(1) model. The OLS parameter estimator of the �rst lag coe�cient, say �̂,

satis�es
p
T (�̂ � �1) =

p
T�2

1
T

PT
t=1 yt�1yt�2

1
T

PT
t=1 y

2
t�1

+
1p
T

PT
t=1 yt�1ut

1
T

PT
t=1 y

2
t�1

. The �rst term on the RHS

diverges at large T for �2 6= 0. The divergence rate is
p
T .

12
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rate of T�1=2 balances this diverging behavior such that a �nite asymptotic bias
remains. This reasoning applies to all models that contain all the �xed parameters
(i.e. the lag order should be no less than p1) and leave out arbitrary parameters
that are local-to-zero.

Remark 2.6. Assumption 2.2 is rather strict because it requires stationarity for
all T in the natural numbers. Is it even possible for any parameter combination
to satisfy this assumption? We can answer this question in the a�rmative for the
univariate case but the result does not generalize easily to the multivariate case.
For the univariate case the assumption is equivalent to bounding the modulus roots
of the polynomial

zp � �1z
p�1 � : : :� �p1z

p2 � �1p
T
zp2�1 � : : :� �p2p

T

at below 1. Fujiwara (1916) has shown that the largest modulus root of a polyno-
mial a(z) = a0z

p + a1z
p�1 + : : :+ ap�1z + ap is bounded above by

2 max
�
ja1=a0j; ja2=a0j1=2; : : : ; jap=a0j1=p

	
. The largest modulus root of the lag

polynomial �T is thus bounded by

2 max

(
j�1j; j�2j

1
2 ; : : : ; j�p1 j

1
p1 ;

���� �1pT
���� 1

p1+1

; : : : ;

���� �p2p
T

���� 1
p
)
: (2.7)

We deduce from Equation (2.7) that

2 max
n
j�1j; j�2j

1
2 ; : : : ; j�p1 j

1
p1 ; j�1j

1
p1+1 ; : : : ; j�p2 j

1
p

o
< 1

guarantees stationarity for all T .4

2.2.3 The Quantities of Interest

The Focused Information Criterion (FIC) introduced by Claeskens and Hjort
(2003) focusses on a quantity of interest rather than general model �t. Quan-
tities of interest could be a single parameter, several parameters, or parameter
transformations. Natural quantities of interest in the current dynamical setting
are the impulse responses. In general, let � : RK

2p+K(K+1)=2 ! Rl de�ne the
mapping from the model parameters to an l-dimensional focus quantity. The �rst
K2p arguments of the function � are reserved for the conditional mean parame-
ters, whereas the last K(K + 1)=2 arguments refer to the parameters in �. As

such we de�ne � = vech(�) and b� = vech( b�), and write �(�;�).5 We addi-
tionally assume that evaluating the quantity of interest at �((�T;m;0K2(p�m));�)
provides the quantity of interest in the model with m lags. Lemma 2.21 in the
Appendix shows that this is true for impulse responses. The next theorem follows
from Theorem 2.4 and the multivariate �rst order delta method.

4This condition is a su�cient but by no means a necessary condition. For p1 = 1 and p2 = 1,
the model yT;t = 0:7yT;t�1 + 0:75p

T
yT;t�2 + ut is stationary for all T but the parameters violate

the requirement based on Fujiwara’s bound.
5Theorem 2.4 showed that all the b�m are asymptotically equivalent. So we will omit the

superscript m from now on.
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Theorem 2.7 (Asymptotic Normality of the Quantities of Interest).

Let � : RK
2p+K(K+1)=2 ! Rl have a continuous �rst derivative at all points

(�T;m;0K2(p�m);�), with m 2M. Let �1 denote the parameters obtained by tak-
ing �T;p but setting �1 = �2 = : : : = �p2 = O, and de�ne the Jacobian matrices
D� = @�(�1;�)=@�0 and D� = @�(�1;�)=@�0. For D� and D� not having zero
rows, under Assumptions 2.1 - 2.3, and as T !1,

p
T
�
�
�
(�̂T;m;0K2(p�m)); �̂

�
� �(�T;p;�)

�
d�! N

 
D�Cm�;D�Pm(
 
�)PmD

0
� +D��22D

0
�

!
;

with Pm = Sm [S0m
Sm]
�1 S0m 
 IK , which is of size K2p�K2p, and

Cm =
�
Sm [S0m
Sm]

�1 S0m
 � IKp
�
S0 (IKp2 �� 0m�m)
 IK : K2p�K2p2:

We de�ne the impulse response at horizon h as the h’th coe�cient matrix of
the MA(1) representation yt =

P1
h=0�hut�h with �0 = IK , hence considering

its vectorized form � : RK
2p+K(K+1)=2 ! RK

2
. Theorem 2.7 can be applied

if the Jacobian matrices D� and D� are known. L�utkepohl (1990) lists these
Jacobian matrices for the impulse responses, the orthogonalized impulse responses,
the accumulated responses, the total accumulated responses, and the forecast error
variance decomposition. For applying his Proposition 1 in the following, we de�ne
the (K(K+1)=2�K2) elimination matrix LK and the commutation matrix KKK

such that for any (K �K) matrix G: vech(G) = LK vec(G), and KKK vec(G) =
vec(G0).

The speci�c case of the (orthogonalized) impulse responses is highlighted in
the following Corollary, which follows with Proposition 1 of L�utkepohl (1990).

Corollary 2.8 (An Application to Impulse Responses). Let A1 denote the
(Kp �Kp) companion matrix related to the process in which the misspeci�cation
coe�cients have been set to zero, J = (IK ;O; � � � ;O) a matrix of dimensions K�
Kp and the Choleski factors be given by � = PP 0. Then, under the assumptions
of Theorem 2.7,

(a) The asymptotic distribution of the estimated impulse response at horizon h,
�̂h, follows

p
T vec

�
�̂h ��h

�
d�! N (GhCm�; GhPm (
 
�)PmG0h) ;

where Gh = @ vec (�h) =@� =
Ph�1
j=0 J (A1)

h�1�j 
�j : K2 �K2p.

(b) The asymptotic distribution of the estimated orthogonalized impulse response
at horizon h, 	̂h, follows
p
T vec

�
	̂h � 	h

�
d�! N

�
FhCm�;FhPm (
 
�)PmF 0h + �Fh�22

�F 0h
�
;

where F0 = O and Fh = (P 0 
 IK)Gh for h > 0. We have �Fh = (IK 
�h)H
with H = @ vec(P )=@�0 = L0K [LK (IK2 +KKK) (P 
 IK)L0K ]�1 for all h.
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Remark 2.9. The �rst order delta method is invalid if either D� or D� has
zero rows. It is well-documented in the literature that D� can have zero rows for
speci�c parameter combinations when impulse responses are considered. We refer
to L�utkepohl (1990) and Benkwitz et al. (2000) for details.

Model Selection: The Focused Information Criterion (FIC)

The intuition behind the FIC of Claeskens and Hjort (2003) is most easily un-
derstood for a univariate quantity of interest, so we temporarily assume l = 1,
and will write � instead of �, for example, to signify scalars. The generaliza-
tion to multiple quantities is covered in Remark 2.10. Theorem 2.7 implies that
the asymptotic mean squared error of the focus quantity �

�
(�̂T;m;0K2(p�m)); �̂

�
,

AMSE
�
�
�
(�̂T;m;0K2(p�m)); �̂

��
is equal to

D� [Cm��
0C 0m + Pm(
 
�)Pm]D0� +D��22D0�:

There are three contributions to the AMSE, (1) the term D�Cm��
0C 0mD0� is an

asymptotic squared bias originating from the exclusion of local-to-zero parame-
ters, (2) the asymptotic variance contribution D�Pm(
 
�)PmD0�, and (3) the
contribution D��22D0� which does not depend on the lag order m. Overall we
face a bias-variance tradeo� when having to decide on m.

The FIC is an estimate of the AMSE. The quantities 
̂ = 1
T

PT
t=1 zT;tz

0
T;t

and �̂T;p provide consistent estimates for 
 and �T;p, repectively. In view of the
continuous mapping theorem,

P̂m = Sm
h
S0m
̂Sm

i�1

S0m 
 IK ; and

Ĉm =

�
Sm

h
S0m
̂Sm

i�1

S0m
̂ � IKp
�
S0 (IKp2 �� 0m�m)
 IK

are consistent estimators as well. A consistent estimator for � is not available due
to the adopted misspeci�cation framework. We follow the existing literature (see
Claeskens and Hjort (2003), Liu (2015), and Charkhi et al. (2015) among others)

and use �̂ =
p
T vec(�̂T;pS0) which satis�es6

�̂ d�! R� = � + (S00

�1 
 IK)R � N(�;S00


�1S0 
�): (2.8)

Asymptotically, we have E(�̂�̂0) = ��0+S00
�1S0
�. Using the asymptotically

unbiased estimate �̂�̂0�S00
̂�1S0
�̂ for ��0, the FIC for the approximating model
with m lags is de�ned as

[FICm = D�

h
Ĉm

�
�̂�̂0 � S00
̂�1S0 
 �̂

�
Ĉ 0m + P̂m(
̂ 
 �̂)P̂m

i
D0�+D��̂22D0�:

(2.9)
This estimate of the AMSE can be computed for every model, and the model

with the lowest [FICm is selected. We elaborate on implications of inconsistent
estimation of � in Section 2.2.4.

6�̂ =
p
T vec(�̂T;pS0) is the sample equivalent of � = vec(�) =

p
T vec(CT ) =p

T vec(�T;pS0).

15



CHAPTER 2

Remark 2.10. The same procedure can be followed when l > 1, but the AMSE be-
comes an (l� l) matrix. The trace or determinant are meaningful ways to describe
this AMSE matrix by a scalar (see Charkhi et al. (2015)).7 The trace is com-
putationally convenient because the overall FIC will be the sum of the individual
univariate FIC contributions.

Model Averaging: Plug-in Averaging

Liu (2015) proposed a model averaging approach along the lines of the FIC. It
was named plug-in averaging. We again begin by considering the case l = 1.
See Remark 2.12 for the generalization to higher dimensions. Part (b) from The-
orem 2.4 implies that linear combinations of the VAR parameter estimates are
also asymptotically normally distributed. Interpret the coe�cients in the linear
combination as weights, i.e. de�ne w = (wp1 ; wp1+1; : : : ; wp)

0 with w 2 H =n
w 2 [0; 1]p2+1 :

Pp
m=p1

wm = 1
o

.8 Theorem 2.11 details the asymptotic distri-

bution of the weighted estimator

��(w) =

pX
m=p1

wm�
�
(�̂T;m;0K2(p�m)); �̂

�
:

Theorem 2.11 (Asymptotic Normality of the Plug-In Estimator). Under
the Assumptions of Theorem 2.7 we have for T !1,

p
T
�

��(w)� �(�T;p;�)
�

d�!D�

pX
m=p1

wmCm� +D�

pX
m=p1

wmPmR+D�S

� N

 
D�

pX
m=p1

wmCm�;V +D��22D
0
�

!
;

with V =
Pp
m=p1

Pp
l=p1

wmwlD�Pm (
 
�)PlD
0
�, and S � N(0;�22).

As for the FIC, we compute the AMSE and �nd9

AMSE(��(w)) =

pX
m=p1

pX
l=p1

wmD�

�
Cm��

0C 0l + Pm (
 
�)Pl
�
D0�wl = w0	w;

with the ((p2 + 1) � (p2 + 1)) matrix 	 having the (m; l)’th element 	m;l =

D�

�
Cm��0C 0l + Pm (
 
�)Pl

�
D0�. The optimal weight vector that minimizes

the AMSE is given by w0 = arg minw2Hw0	w. But w0 depends on population
quantities, so by using the same estimates for population quantities as before we
compute feasible weights as

ŵ = arg minw2Hw
0	̂ jw; j 2 fBiased;Bias corg; (2.10)

7Any mapping from the AMSE matrix to a scalar can be used, e.g. matrix norms could be
used as well.

8We assume that we average over all the models in M = fp1; p1 + 1; : : : ; pg.
9The contribution D��22D

0
� does not depend on m, and is therefore inconsequential for the

analysis. This term will be omitted from the AMSE to allow for an easier presentation.
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with

	̂Biased
m;l = D�

�
Ĉm�̂�̂0Ĉ 0l + P̂m

�

̂ 
 �̂

�
P̂l
�
D0�;

	̂Bias cor
m;l = D�

�
Ĉm

�
�̂�̂0 � S00
̂�1S0 
 �̂

�
Ĉ 0l + P̂m

�

̂ 
 �̂

�
P̂l
�
D0�:

(2.11)

The sole di�erence between the matrix elements in Equation block (2.11) is an

asymptotic bias correction for �̂�̂0. For both versions Equation (2.10) describes
a quadratic programming problem with linear constraints. Solvers are readily
available (for example ‘quadprog’ in Matlab and ‘qprog’ in Gauss). The estimator
for � remains inconsistent and we again refer to Section 2.2.4 for a discussion of
the implications.

Remark 2.12. As in Remark 2.10, we will obtain an (l � l) AMSE matrix for
multiple quantities of interest. This matrix has to be summarized by a scalar. The
trace again has computational bene�ts because the objective function will take the
form ŵ = arg minw2Hw0

�P
i 	̂

j
i

�
w with the matrix 	̂ ji corresponding to the i’th

focus quantity.

Remark 2.13. Two remarks related to Charkhi et al. (2015) are in place.

1. The weight vector ŵ is only uniquely determined when 	̂ j is positive de�nite.
As such, the bias subtraction may lead to non-unique weights.

2. Charkhi et al. (2015) consider a weighting scheme in which the weights sum
to one but are not necessarily positive. Simulation results have shown that
it is advisable to keep the positivity constraint in our autoregressive setup
because weights can otherwise become large in magnitude and rather unstable.

Remark 2.14. Autoregressive models of in�nite order have been considered by
Berk (1974) and Lewis and Reinsel (1985), among others. It is an intriguing ques-
tion whether the current framework can be extended to VAR(1) models. We argue
that the main di�culty is the estimation of the in�nitely many local-to-zero param-
eters. Let us consider the univariate model yT;t = �yT;t�1 +

P1
j=1

�
�jp
T

�
yT;t�1�j

+ ut as an illustration. We conjecture10 that the asymptotic distribution of the
approximating AR(1) model follows

p
T (�̂ � �)

d�! N
�P1

j=1 �j�
j ; 1� �2

�
. The

bias contribution to the AMSE now depends on in�nitely many �j. Their estima-
tion would require the lag order of the largest approximating model to grow with
sample size. Our proof of Theorem 2.4 does not easily allow for such an extension
since we currently rely on the �nite dimension of the companion matrix. A full
exploration of this topic is left for further research.

There is one �nal result that forces us to look at the case l > 1. Practitioners
are usually interested in the impulse responses for several horizons. Using a sep-
arate weight vector for every horizon may (1) create impulse responses that vary

10We can be more precise concerning our assumptions: Theorem 2.4 has shown that the asymp-
totic results are governed by the process with the local-to-zero parameters being set equal to zero.
We assume that this remains true when there are in�nitely many local-to-zero parameters.
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irregularly from one horizon to the next due to strong changes in the weights, and
(2) result in con�dence intervals that do not take into account the dependence
between the horizons. Theorem 2.15 below extends the result of Liu (2015) to
obtain asymptotically valid con�dence bands for several horizons.

Theorem 2.15 (Joint Con�dence Bands). Under the Assumptions of Theorem
2.7, if wm(�̂)

d�! wm(R�), and if D�

�

�1 
�

�
D0� +D��22D� � 0, then 

p
T
�

��(ŵ)��(�T;p;�)
�
�D�

pX
m=p1

ŵmĈm�̂

!0 
D�

�

̂�1 
 �̂

�
D0� +D��̂22D�

!�1

�

 
p
T
�

��(ŵ)� �(�T;p;�)
�
�D�

pX
m=p1

ŵmĈm�̂

!
d�! �2

l ;

where �2
l is a chi-squared distribution with l degrees of freedom.

Remark 2.16. There is one practical concern which has not been addressed,
namely the choices for p1 and p. p1 will turn out to be unimportant. To see this,
we consider the expression for [FICm (a similar reasoning applies to the plug-in
weights). The terms D�P̂m(
̂
�̂)P̂mD0� and D��̂22D0� in Equation (2.9) do not
depend on p1. So it remains to inspect the contribution D�Ĉm

�
�̂�̂0 � S00
̂�1S0


�̂
�
Ĉ 0mD0�. Using �̂ = (S00 
 IK)

p
T �̂T;p we can rewrite this contribution as

D�

�
Ĉm(S00 
 IK)

� h
(
p
T �̂T;p)(

p
T �̂T;p)0 � 
̂�1 
 �̂

i �
Ĉm(S00 
 IK)

�0
D0�:

By de�nition of Ĉm, we have

Ĉm(S00 
 IK) =

�
Sm

h
S0m
̂Sm

i�1

S0m
̂ � IKp
��
S0

�
IKp2

�� 0m�m

�
S00
�

 IK

=

�
Sm

h
S0m
̂Sm

i�1

S0m
̂ � IKp
���

O O
O IK(p�m)

�

 IK

�
| {z }

B

;

(2.12)

thereby showing that actually none of the contributions to [FICm depends on p1.
However, the zero pattern of the matrix B in Equation (2.12) will only cause a
non-diverging value for [FICm if models are chosen such that m 2M = fp1; p1 +
1; : : : ; pg. This supports the claim in Remark 2.5. The lag order of the full model,
that is p, might be chosen by AIC or set equal to an a priori selected pmax.

2.2.4 The E�ects of Inconsistently Estimating Delta

Equation (2.8) showed that �̂ converges to a normally distributed random vector
centered around �. How does this inuence the selection and averaging procedures?

Clearly, [FICm, 	̂Biased
m;l , and 	̂Bias cor

m;l will not converge in probability to the AMSE
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they are intended to estimate. The limiting distributions of these quantities are
highlighted in Theorems 2.17 and 2.18. The plug-in results are stated for 	̂Bias cor

m;l ,
but a simple omission of the bias correction term would give the corresponding
�ndings for 	̂Biased

m;l .

Theorem 2.17. The Asymptotic Behavior of dFICm.
Under the Assumptions of Theorem 2.7 we have for m 2M n p,

[FICm
d�!D�[Cm

�
R�R

0
� � (S00


�1S0 
�)
�
C 0m + Pm(
 
�)Pm]D0�

+D��22D
0
� := FIC1m

� am�2
noncentral

�
1; (D�Cm�)

2
=am

�
� am +D�Pm(

�)PmD0� +D��22D0�;

where am = D�Cm(S00
�1S0
�)C 0mD0�, and �2
noncentral(1; �) denotes a noncen-

tral chi-squared distributed random variable with 1 degree of freedom and noncen-
trality parameter �. It can be shown that E (FIC1m ) = AMSE

�
�(�̂T;m;0K2(p�m);

�̂)) and var(FIC1m ) = 2am(am + 2(D�Cm�)2). For the full model, m = p, we
have

[FICp
p�! FIC1p = D�(


�1 
�)D0� +D��22D
0
� = AMSE

�
�(�̂T;p; �̂)

�
:

Theorem 2.18. The Asymptotic Behavior of 	̂Biased
m;l and 	̂Bias cor

m;l .
Under the Assumptions of Theorem 2.7 we have for m; l 2M n p,

	̂Bias cor
m;l

d�! R0�C
0
mD

0
�D�ClR� +D�Pm(
 
�)PlD

0
�

�D�Cm(S00

�1S0 
�)C 0mD

0
� := 	Bias cor,1

m;l :

Two cases can be distinguished:

(a) If m = l, then 	Bias cor,1
m;m � am�2

noncentral

�
1; (D�Cm�)

2
=am

�
� am

+D�Pm(
 
�)PmD0�.

(b) De�ne A = S00
�1S0 
�, and consider the eigenvalue decomposition
1
2A

1=2(C 0mD�D
0
�Cl + C 0lD�D

0
�Cm)A1=2 =

P2
i=1 �iviv

0
i, where �i denotes

the eigenvalue corresponding to the eigenvector vi. If m 6= l, then

	Bias cor,1
m;l �

2X
i=1

�i�
2
noncentral

�
1;
�
v0iA�1=2�

�2
�

+D�Pm(
 
�)PlD
0
�

�D�Cm(S00

�1S0 
�)C 0mD

0
�:

If m = p and/or l = p, then 	̂Bias cor
m;l

p�! 	m;l.

Theorems 2.17 and 2.18 state the limiting distribution of the FIC and the
matrix elements that enter the weighting scheme. Based on the random limits of
these quantities, we might expect that our methods will not truly minimize the
AMSE among either model choices or model weights. We proceed with a small
illustration to stress the di�erence between knowing � and having an estimator �̂
that converges in distribution only.
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An Illustration

Consider the simpli�ed DGP yT;t = 0:5yT;t�1 + �p
T
yT;t�2 + ut, with var(ut) =

�2 = 1, and a focus on the impulse response at horizon 1 (i.e. D� = (1; 0)
and D� = 0). The model set is M = f1; 2g. This simpli�ed setting makes the
asymptotic behavior of the FIC and plug-in weights analytically tractable. Figure
2.1(a) depicts FIC11 and FIC12 as a function of �. Note that FIC11 converges
in distribution and has a nonzero probability to give an outcome below FIC12 .
This asymptotic selection probability of the model with m = 1 can be calculated
analytically using Theorem 2.17. Figure 2.1(b) shows that the FIC does not select
the model with the smallest AMSE with probability one.

Our simpli�ed model can also be used to examine the e�ect of �̂ on the plug-in
weights. We focus on the weights in the absence of bias correction.11 The (2� 2)
limiting matrix 	1 is

	1 =

�
a1�

2
noncentral

�
1; (D�C1�)2=a1

�
+ �2D�P1D0� �2D�P1D0�

�2D�P1D0� �2D�

�1D0�

�
;

where a1 = �2D�C1S00
S0C 01D0� (see Theorem 2.18). Let w� denote the asymp-
totically optimal plug-in weight for the model with m = 1. We have

Pr (w� � x) = Pr

�
�2
noncentral

�
1; (D�C1�)2=a1

�
� �2D�(


�1 � P1)D0� [1� x]

a1x

�
:

(2.13)
Figure 2.2 shows the area between the 5% and 95% quantiles of w� together with
the optimal weight for known delta. We see that the asymptotic distribution of w�

is located closer to zero than the optimal infeasible weights. This is unsurprising
because the lack of bias-correction causes (on average) an overestimation of the
AMSE of the model with m = 1.

Remark 2.19. The exposition in this section was based on a simpli�ed model. We
concluded that the absence of a consistent estimator for � translates into suboptimal
model selection and suboptimal model averaging. Also in more elaborate models the
FIC and the elements of the weighting matrix 	 will converge to random variables
(except for m = p). It is key to realize that the AMSE with estimated � will not
coincide with the AMSE that can be attained if � was either known or consistently
estimated. We conjecture that these considerations are equally relevant outside an
autoregressive framework, e.g. in the regression framework discussed in Liu (2015)
and the likelihood framework of Charkhi et al. (2015).

2.3 Simulations

This simulation section consists of three parts. In the �rst part we will verify our
derivations for the simpli�ed DGP, and see how the suboptimal selection/averaging

11There is a �nite probability for the matrix �1 to have a negative eigenvalue when the bias
correction is applied. This severely complicates the derivations, so we exclude this case from our
analysis. For the 	1 matrix without bias correction we will have 	1 � 0 ifD0�(
�1�P1)D� >
0. The latter requirement is equivalent to D0�

��!12
!11

�
6= 0.
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(a) (b)

Figure 2.1: (a) The asymptotic MSE of the models with one and two lags
(black broken and solid line, respectively). The area between the 5% and
95% quantiles of FIC11 is shaded gray. [FIC2 converges in probability
to the values of the black line. (b) The asymptotic selection probabilities
of the model with m = 1. The infeasible estimator (dotted line) takes a
binary decision based on whether the solid or broken line in graph (a) is
lowest. Model selection based on the Focused Information Criterion results
in a smoothed asymptotic selection probability because [FIC1 converges
in distribution.

Figure 2.2: The 5% and 95% quantiles of the asymptotic distribution of
the weights as a shaded gray area, see Equation (2.13). The dotted line
describes the asymptotically optimal weights which can only be obtained
if either � is known (infeasible) or a consistent estimator for � is available.

a�ects the �nite sample MSE. This section is followed by a study of the impulse
responses for di�erent horizons in a univariate and multivariate setting. All our
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graphs are made as a function of the scalar �. This scalar measures the amount of
misspeci�cation and the closeness to unit root.12 Any missing starting values in the
autoregressive recursion were replaced by zeros, and the �rst 100 data points were
omitted as a presample. All results are based on 100,000 Monte Carlo replications.

The performance of the various methods was assessed using the empirical mean
squared error. For model selection the featured methods are:

1. The Akaike information criterion (‘AIC’) and Bayesian information criterion
(‘BIC’), cf. e.g. section 4.3 of L�utkepohl (2005) and the original papers by
Akaike (1998) and Schwarz (1978).

2. The ‘FIC’ from Equation (2.9) with estimated �.

3. An infeasible version of the FIC abbreviated as ‘Infeas’. This information
criterion is based on population quantities, especially � is known.

For the model averaging setup we consider:

1. ‘sAIC’ and ‘sBIC’ as smoothed counterparts of the AIC and BIC, see Burn-
ham and Anderson (2002). To illustrate, let AIC(m) denote the AIC for
model m 2M. The smoothed AIC weight of model m is
exp

�
� 1

2AIC(m)
�
=
P
m2M exp

�
� 1

2AIC(m)
�
.

2. Three plug-in averages are reported. ‘Plug-in’ and ‘Plug-in Corr.’ are
computed from Equations (2.10) and (2.11), where only the second average

uses the bias correction on �̂�̂0. The plug-in average based on known � is
denoted ‘Infeas’.

3. The ‘Jackknife’ model averaging procedure detailed in Hansen and Racine
(2012) and Zhang et al. (2013).

4. The Stein combination shrinkage method used in the simulation section of
Hansen (2016) is abbreviated ‘SteinH’. This shrinkage method combines
VAR(1) through VAR(p) models as well as univariate AR(1) through AR(p)
models. Our DGP contains considerable interaction between the cross-
sectional units so we also consider a shrinkage method abbreviated ‘Stein’
which only combines the VAR(1) through VAR(p).

2.3.1 The Simpli�ed DGP

Figures 2.3 and 2.4 provide the �nite sample con�rmation of the intuition we
gained from the simpli�ed DGP.13 The wide spread in the empirical distribution

of [FIC1 shown in Figure 2.3(a) results indeed in a smoothed instead of binary

12Previous studies (e.g. Hansen (2007), Hansen (2008), Hansen and Racine (2012), Liu and
Okui (2013), Zhang et al. (2013) and Liu (2015)) show the performance as a function of the
population R2. This representation is inconvenient in our dynamic setup because it is unclear
when the boundary of the stationarity region is approached.

13In this section we have rescaled the empirical MSE by the sample size to make it comparable
to the asymptotic results of Figures 2.1 and 2.2, hence the label empirical asymptotic MSE.
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selection between the models (see Figure 2.3(b)). The performance of the feasible
FIC is therefore worse than that of the infeasible FIC that assumes � to be known.
At high j�j, we see that the probability to select the wrong model is small. The
feasible FIC therefore performs similarly to its infeasible counterpart for large
amounts of misspeci�cation only.

(a) (b)

(c)

Figure 2.3: (a) The empirical asymptotic MSE of the models with one
and two lags (black broken and solid line, respectively). The area between
the 5% and 95% empirical quantiles of [FIC1 and [FIC2 are shaded in dark
(larger area) and light gray. (b) The empirical selection probabilities of
the FIC. (c) The AMSE of the models with m = 1 and m = 2 together
with the empirical MSE of the feasible FIC (broken) and infeasible FIC
(dotted). This �gure was obtained for T = 100 and should be compared
with the asymptotic results in Figure 2.1.

In Figure 2.4, the three panels display results on the plug-in averages. The
quantiles of the weight distribution without bias correction should be compared
to those in Equation (2.13) and Figure 2.2. The results match. Figure 2.4(b)
shows the quantiles of the weight distribution with bias correction. As expected,

23



CHAPTER 2

(a) (b)

(c)

Figure 2.4: The 5% and 95% empirical quantiles of the weights dis-
tribution without bias correction (a) and with bias correction (b). The
infeasible weights are represented by the dotted line. The empirical MSE
of plug-in methods is shown in (c). The sample size is T = 100.

this distribution is shifted towards higher weights because the upward bias of the
AMSE of the model with m = 1 is removed. We can see in 2.4(c) that the plug-in
averages do not perform as well as the infeasible estimator. Unreported simulation
results at a sample size of T = 1000 con�rm that this e�ect does not disappear
with sample size. The inconsistent estimation of � again causes the feasible weights
to di�er from optimal weights.
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2.3.2 Simulation Results for an Autoregressive Model

Further simulations are based on the following model.14

yT;t = 0:5yT;t�1 +
�p
T
yT;t�2 +

�

2
p
T
yT;t�3 + ut; ut

i:i:d:� N (0; 1): (2.14)

The second and third lag are local-to-zero implying that M = f1; 2; 3g. The co-
e�cients in front of the misspeci�ed lags decline linearly as in Liu (2015), where
� governs the amount of misspeci�cation.The largest modulus eigenvalue of the
companion matrix is about 0.3 at � = �0:2 and increases monotonously to ap-
proximately 0.9 at the boundaries of the interval [�4; 2].

Remark 2.20. The AMSEs of the impulse response at horizon 1 are the same for
m = 2 and m = 3. The plug-in weights are not unique, also see Remark 2.13.

MSE Comparison

The empirical MSE of the various selection methods are shown in Figure 2.5 for
the impulse responses at horizon 1, 3, and 5. Due to the strong penalty on model
complexity, the BIC performs well for small amounts of misspeci�cation, but its
performance quickly deteriorates as j�j increases. The performance of the AIC and
the feasible version of the FIC are comparable for large areas of the parameter
space, with neither of these methods being preferred to the other. The infeasible
FIC is very frequently the preferred method.

Model averaging results are reported in Figure 2.6. The behavior of the
smoothed BIC procedure is similar to that of its selection counterpart, i.e. it
only performs well for small �. The same remark applies to the plug-in average
with bias correction. The Jackknife, smoothed AIC, and the plug-in average with-
out bias correction are close competitors, where the plug-in average is a better
candidate for large j�j. The performance of the plug-in average with known � is
best. It even performs uniformly best at the larger sample size of T = 1000.

What causes the superior performance of the infeasible estimators? Our sim-
ulation �ndings can be understood from the intuition that was gained from the
simpli�ed DGP. Panel (a) and (b) from Figure 2.7 show the empirical MSE of
the three models, m 2 f1; 2; 3g, together with the AMSE of these models. The
asymptotic approximation is close for T = 100 and improves further at T = 1000.
The selection probabilities in panels (c) and (d) reveal how the infeasible estimator
takes a binary decision with the lag length increasing with �. For the simpli�ed
DGP we have seen how the convergence in distribution of �̂ causes smeared out
selection probabilities instead of the binary decision. This e�ect is also observed
in the graphs, even at the large sample size of T = 1000. The panels (e) and (f)
tell the same story for the plug-in weights.

14We show in Section 2.A.1 in the appendix that the simpli�ed model with p1 = p2 = 1, i.e.
yT;t = �yT;t�1 + �p

T
yT;t�2 +ut, is special because the gradient vector has no inuence on model

selection and plug-in averaging. We extend the model with an additional lag to see the inuence
of the impulse response horizon.
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We also performed unreported simulations where we focused on several impulse
responses simultaneously, see Remarks 2.10 and 2.12. The trace is used to map
the AMSE matrix to a scalar. The simulation outcomes were qualitatively similar
to our results for the impulse responses at a single horizon.

Con�dence Intervals

Con�dence intervals/bands can be calculated based on Theorem 2.15. Simula-
tion results are provided in Tables 2.1 and 2.2. The desired nominal coverage
level is 90%. Table 2.1 shows that the empirical coverage of the individual con-
�dence intervals is consistently too low. At horizons 2 and 3 this under-coverage
is least severe and decreases with sample size. The coverage of the con�dence
level for horizon 6 varies strongly across � and can be very low. It is well-
established in the literature (e.g. Kilian (1998b) and Kilian (2001)) that inference
on impulse responses at higher horizons is inherently more di�cult because of
the increased nonlinearity in the parameters. This nonlinearity causes the delta
method approximation to perform poorly. Figure 2.8 shows the histograms ofp
T
�

��(ŵ) � �(�T ;�)
�
�D�

Pp1+p2
m=p1

ŵmĈm�̂ for the impulse responses at hori-

zons 2 and 6 (corresponding to the boxed numbers in Table 2.1). Note that the
con�dence intervals/bands de�ned in Theorem 2.15 are based on the asymptotic
normality of this expression. The sometimes severe under-coverage at horizon 6
should therefore not come as a surprise. This poor asymptotic approximation at
horizon 6 also inuences the empirical coverage of the con�dence bands as can be
seen in Table 2.2.

2.3.3 Simulation Results for a Vector Autoregressive Model

Our simulation results are based on a bivariate VAR with DGP

yT;t =

�
0:5 0
0:5 0:5

�
yT;t�1 +

�p
T

�
1 0

0:5 1

�
yT;t�2 +

�

2
p
T

�
1 0

0:5 1

�
yT;t�3 + ut;

ut
i:i:d:� N (0;�) ; where � =

�
1 0:17

0:17 0:33

�
; (2.15)

which is similar to the VAR used in L�utkepohl et al. (2015) for impulse response
analysis. This process has the same roots as the univariate process of Equation
(2.14) but with double multiplicity. The parameter � governs the degree of mis-
speci�cation, and the value of �. For brevity, we only report MSE results of the
response of variable 1 to a structural shock in variable 1. Figures 2.9, and 2.10
show the results for horizons 2 and 6. Similarly to the univariate results, none of
the methods performs uniformly best. Only the infeasible methods get close to
dominating all other methods for the large sample size of T = 1000. The ragged
spike for ‘Infeas’ in Figure 2.9(a) is caused by an abrupt binary decision to switch
between models with di�erent lag lengths. Finally, it is interesting to note that
the Stein shrinkage methods perform well in comparison to the plug-in averaging
procedure.
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(a) h = 1, T = 100. (b) h = 1, T = 1000.

(c) h = 3, T = 100. (d) h = 3, T = 1000.

(e) h = 5, T = 100. (f) h = 5, T = 1000.

Figure 2.5: The empirical MSE for model selection. The DGP is yT;t =
0:5yT;t�1 + �p

T
yT;t�2 + �

2
p
T
yT;t�3 + ut.
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(a) h = 1, T = 100. (b) h = 1, T = 1000.

(c) h = 3, T = 100. (d) h = 3, T = 1000.

(e) h = 5, T = 100. (f) h = 5, T = 1000.

Figure 2.6: The empirical MSE for model averaging. The DGP is yT;t =
0:5yT;t�1 + �p

T
yT;t�2 + �

2
p
T
yT;t�3 + ut.
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2.3. SIMULATIONS

(a) h = 3, T = 100. (b) h = 3, T = 1000.

(c) h = 3, T = 100. (d) h = 3, T = 1000.

(e) h = 3, T = 100. (f) h = 3, T = 1000.

Figure 2.7: (a)-(b) The empirical MSE of the OLS estimator of the
model with 1 lag (OLS1), 2 lags (OLS2) and the full model with 3 lags
(OLS3). Gray lines show the asymptotic MSE approximations as provided
by the delta method. (c)-(d) The empirical selection probabilities (see
Figure 2.5 for the appropriate legend). (e)-(f) The empirical distribution
of the weights (see Figure 2.6 for the appropriate legend). The DGP is
yT;t = 0:5yT;t�1 + �p

T
yT;t�2 + �

2
p
T
yT;t�3 + ut for all graphs.
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2.4. CONCLUSIONS

(a) h = 2, T = 500. (b) h = 6, T = 500.

Figure 2.8: The con�dence intervals are based on the asymptotic nor-
mality of

p
T

�
�� (ŵ ) � � (� T ; � )

�
� D �

P p1+p2
m=p1

ŵmĈm �̂ (see Theorem
2.15). The displayed histograms are constructed for yT;t = 0:5yT;t�1 +
�p
T
yT;t�2 + �

2
p
T
yT;t�3 + ut with � = � 2 and T = 500, i.e. the boxed

entries in Table 2.1. The number of Monte Carlo replications is 100; 000.

2.4 Conclusions

In this chapter we study the issue of model selection and model averaging for
multivariate autoregressive processes in a locally drifting asymptotic framework.
Within this drifting framework we derive asymptotic normality of the least squares
estimators. This asymptotic normality is shown to carry over to su�ciently smooth
parameter transformations, e.g. impulse responses, by applying the multivariate
delta method. We de�ne the focused information criterion and plug-in averaging
estimator as the minimizers of the estimated asymptotic mean squared error of
the focus parameter estimator.

We highlight the role of the misspeci�cation parameter �. Both Liu (2015) and
DiTraglia (2016) mentioned that the feasible FIC remains random in the limit. We
provide the explicit expressions for the limiting distribution of the FIC values and
the elements of the weighting matrices, and illustrate that the feasible estimators
do not truly minimize the asymptotic mean squared error. This latter result might
encourage further research into di�erent ways to deal with the misspeci�cation
parameter. There are to the best of our knowledge two alternatives reported in
the literature. The recent paper by Kitagawa and Muris (2016) adopts a mixed
frequentist and Bayesian framework to alleviate the estimation of � in their study
of model averaging in semiparametric estimation of treatment e�ects. Hansen
(2016) similarly adopts a local-to-zero framework but minimizes a risk quantity
that does not require the direct estimation of �.

Our simulation study of univariate and multivariate autoregressive processes
clearly shows the role of �, because the infeasible estimator (the estimator that
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(a) h = 2, model selection. (b) h = 6, model selection.

(c) h = 2, model averaging. (d) h = 6, model averaging.

Figure 2.9: The empirical MSE of the impulse response estimator for
several selection and averaging methods. We have displayed the results
for the response of variable 1 to a structural shock in the variable 1 for
horizons 2 and 6. The DGP is given in Equation (2.15). The sample size
is T = 100.

uses the true � as if it was known to the researcher) frequently dominates the other
methods. The latter is especially the case at the larger sample size of T = 1000.
There is no clearly preferred method for feasible model selection/averaging.

A possible extension of this work is an application to forecasting. Such an
extension would complement (1) the predictive static regression setup discussed
in Liu and Kuo (2016), and (2) the prediction focused model selection of autore-
gressive models in Claeskens et al. (2007). Forecasts for autoregressive models
often start from the assumption that estimation and prediction are applied to
two independent processes with the same stochastic structure. The link to this
current chapter is that, under this independence assumption, the asymptotic co-
variance matrix of the forecast is a continuous transformation of the autoregressive
parameters, see section 3.5 of L�utkepohl (2005) for further details.
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2.A. APPENDIX

(a) h = 2, model selection. (b) h = 6, model selection.

(c) h = 2, model averaging. (d) h = 6, model averaging.

Figure 2.10: Identical to Figure 2.9, but for T = 1000.

2.A Appendix

As in Liu (2015) we �rst relate the parameters of the VAR(m) models to the
parameters of the VAR(p). With the aid of the selection matrices we have

�̂T;m = YTZ
0
T;m(ZT;mZ

0
T;m)�1 = (BL0ZT +CTS

0
0ZT +U)Z 0T;m(ZT;mZ

0
T;m)�1

= ((B;CT )SmS0mZT +CT (IKp2
�� 0m�m)S00ZT +U)Z 0T;m(ZT;mZ

0
T;m)�1

= (�T;mZT;m +CT (IKp2
�� 0m�m)S00ZT +U)Z 0T;m(ZT;mZ

0
T;m)�1 (2.16)

= �T;m +CT (IKp2
�� 0m�m)S00ZTZ

0
T;m(ZT;mZ

0
T;m)�1 +UZ 0T;m(ZT;mZ

0
T;m)�1:

Dimensions of a Matrix For convenience we list the dimensions of a matrix
used in the proofs.

S00

�1 : Kp2 �Kp
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2.A.1 No Gradient Dependence in Simpli�ed Model

For yt = �yt�1 + �p
T
yt�2 + ut we have 
 = �2

1��2

�
1 �
� 1

�
and 
�1 = 1

�2

�
1 ��
�� 1

�
.

The required selection matrices are S1 = ( 1
0 ), S0 = ( 0

1 ), and � 01�1 = O2�2.
Then

C1 =
�
S1 [S01
S1]

�1 S01
 � IKp
�
S0 (IKp2 �� 01�1)
 IK

=

��
1 �
0 0

�
� I2

��
0
1

�
=

�
�
�1

�
:= x;

and


�1 � P1 = 
�1 � S1 (S01
S1)
�1 S01

=
1

�2

�
1 ��
�� 1

�
� 1� �2

�2

�
1 0
0 0

�
=

1

�2

�
�2 ��
�� 1

�
=

1

�2

�
�
�1

��
�; �1

�
=

1

�2
xx0:

The elements of the weighting matrix are now given by:

	Biased
11 = D�

�
C1��

0C 01 + �2P1

�
D0� = �2(D�x)2 + �2D�P1D0�;

	Bias cor
11 = D�

�
C1(�� � �2S00


�1S0)0C 01 + �2P1

�
D0�

= (�2 � 1)(D�x)2 + �2D�P1D0�;

	12 = �2D�P1D0�;

	22 = �2D�(

�1 � P1)D0� + �2D�P1D0� = (D�x)2 + �2D�P1D0�:

The weights are determined from

w0 = arg min
w2H

w0	w = arg min
w2H

(D�x)2w0
�
(�2 � 1) 0

0 1

�
w + �2D�P1D0�

= arg min
0�w�1

(D�x)2
�
w2(�2 � 1) + (1� w)2

�
+ �2D�P1D0�

in the case of bias correction, and with �2 � 1 replaced by �2 in the case without.
This expression shows that the weights do not depend on the quantity of interest
because D� is no longer of importance for the optimal weight calculation.

2.A.2 Proof of Theorem 2.4

For proving Part (a) we prove a law of large numbers and a central limit theorem
in the following.

Law of Large Numbers. We start with the proof of plim 1
TZTZ

0
T = 
. The

process fyT;tg1t=�1 is stationary and ergodic for every �xed T in view of Assump-
tions 2.1 and 2.2 (cf. e.g. Theorem 3 on page 204 of Hannan (1970)). De�ne the
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companion matrix AT and innovation vector Et such that zT;t = ATzT;t�1 +Et,
i.e.

AT :=

26664
B1 B2 � � � Bp1�1 Bp1

C1p
T

C2p
T
� � � Cp2�1p

T

Cp2p
T

IK O � � � O O O O � � � O O
...

...
...

...
...

...
...

...
O O � � � O O O O � � � IK O

37775 : (Kp�Kp);

Et := (u0t;0
0; : : : ;00)

0
: (Kp� 1): (2.17)

From this extended VAR(1) form we conclude that

zT;tz
0
T;t = ATzT;t�1z

0
T;t�1A

0
T +ATzT;t�1E

0
t +Etz

0
T;t�1A

0
T +EtE

0
t;

zT;tz
0
T;t �ATzT;t�1z

0
T;t�1A

0
T = ATzT;t�1E

0
t +Etz

0
T;t�1A

0
T +EtE

0
t;

where the second line is merely a rearrangement of the �rst. From Rule (2) of
p.662 of L�utkepohl (2005) for the vec operator follows

vec(ATzT;t�1z0T;t�1A
0
T ) = (AT 
AT ) vec(zT;t�1z0T;t�1):

Now summing over t and taking the limit, because of stationarity we �nd

lim
T!1

�
IK2p2 �AT 
AT

�
plim
T!1

vec

 
1

T

TX
t=1

zT;t�1z
0
T;t�1

!
(2.18)

= plim
T!1

vec

 
1

T

TX
t=1

ATzT;t�1E
0
t

!
+ plim
T!1

vec

 
1

T

TX
t=1

Etz
0
T;t�1A

0
T

!

+ plim
T!1

vec

 
1

T

TX
t=1

EtE
0
t

!
:

We denote the limit of the nonrandom matrix AT for large T by A1. A1 is
thus obtained from AT by replacing the ratios Ci=

p
T with zero matrices for

i 2 f1; 2; : : : ; p2g. Note that the eigenvalues of A1 coincide with the roots of
the matrix polynomial B1(z) augmented with Kp2 additional zero eigenvalues.
Hence, Assumption 2.3 guarantees that the matrix IK2p2�A1
A1 is invertible.

We now consider the RHS of Equation (2.18). Let yT;t�j;k and ut;k de-
note the k’th component of yT;t�j and ut, respectively. If we can show that
1
T

PT
t=1 yT;t�j;kut;l

p�! 0 for all j 2 f1; 2; : : : ; pg and k; l 2 f1; 2; : : : ;Kg, then the
�rst two terms on the RHS of Equation (2.18) are op(1). To prove this we de�ne

the array Xjkl
T;t = yT;t�j;kut;l=T and the norming cT = 1=T . Xjkl

T;t is a martingale
di�erence (m.d.) array with respect to the �ltration Ft = �(us;�1 < s � t) and

EjXjkl
T;t=cT j4 = E jyT;t�j;kut;lj4 is �nite in view of Assumption 2.1. Theorem 12.10

from Davidson (1994) implies that jXjkl
T;t j2 is uniformly integrable and Theorem

19.7 from the same reference then gives 1
T

PT
t=1 yT;t�j;kut

L2! 0. The result for the
�rst two terms follows. The third term on the RHS of Equation (2.18) is a sam-
ple mean of an i.i.d. sequence. Khinchine’s Theorem (Theorem 23.5 of Davidson
(1994)) gives the probability limit. Combining all the results, we conclude that
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vec (
) :=plim
T!1

vec

 
1

T

TX
t=1

zT;t�1z
0
T;t�1

!
=
�
IK2p2 �A1 
A1

��1
vec (��)

+ op(1); (2.19)

where �� = e�e0 and e is the (Kp�K) matrix composed of the �rst K columns
of IKp. This shows that plimT!1

1
TZTZ

0
T = 
 exists. Ergodicity for every T

also provides the result (IK2p2 �AT 
AT ) vec(E(zT;t�1z0T;t�1)) = vec (��) such

that analogously 
 = limT!1 E(zT;t�1z0T;t�1) follows, because AT ! A1.

Central Limit Theorem. We rely on the Cram�er-Wold theorem (e.g. Result

25.5 from Davidson (1994)) to prove the convergence of 1p
T

PT
t=1 vec(utz0T;t�1) to

R � N (0;
 
�). Let � denote a �xed (K2p�1) vector. X�T;t = �0 vec(utz0T;t�1)
is a m.d. array with respect to Ft. We note that

�2
T;t : = E(X�2T;tjFt�1) = E(�0 vec(utz

0
T;t�1) vec(utz

0
T;t�1)0�jFt�1)

= E(�0((zT;t�1z0T;t�1)
 (utu0t))�jFt�1) = �0((zT;t�1z0T;t�1)
� )�;

and that X�2T;t is square integrable by Assumption 2.1. Moreover, from s2
T :=PT

t=1 E(X�2T;t) = T�0(E(zT;t�1z0T;t�1)
�)� we get

sup
T

T

s2
T

= sup
T

1

�0
�

E
�
zT;t�1z0T;t�1

�

�

�
�
<1; (2.20)

because the quadratic form in the denominator cannot be zero as both � and
E(zT;t�1z0T;t�1) are positive de�nite matrices: The positive de�niteness of � is
part of Assumption 2.1. For �nite T , E(zT;t�1z0T;t�1) there cannot exist a � 6= 0

such that �0 E(zT;t�1z0T;t�1)� = 0 as this is equal to E(�0zT;t�1)2 and this would
imply at least one component of zT;t�1 being zero for all t. But this would be
a contradiction to the process being random, i.e. to � being positive de�nite.
Also, for the case where T is not �nite such a � cannot exist as E(zT;t�1z0T;t�1)
tends to the positive de�nite 
. Hence, we have shown positive de�niteness. Now,
a generalization of Theorem 24.4 from Davidson (1994) to martingale di�erence
arrays shows that

1p
T

PT
t=1 �

0 vec
�
utz0T;t�1

�r
�0
�

E
�
zT;t�1z0T;t�1

�

�

�
�

d�! N (0; 1) : (2.21)

The expression under the square root is asymptotically equivalent to �0(

�)�.

The second result, 1p
T

PT
t=1 vec(utz0T;t�1)

d�! N (0;
 
�), follows according to

Cr�amer and Wold because � is arbitrary. The proof of part (a) is complete.
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Part (b). This is a joint convergence result of the parameter estimators with
the estimator for the covariance matrix. Let m 2M = fp1; p1 + 1; : : : ; pg. For the

estimated residual matrix ÛT;m of model m we have

ÛT;m = YT � �̂T;mZT;m = �TZT +U � �̂T;mS0mZT
= (�T;mS0m +CT (IKp2 �� 0m�m)S00)ZT +U � �̂T;mS0mZT :

And the estimated covariance matrix based on the residuals from the model with
m lags satis�es

�̂m =
1

T
ÛT;mÛ 0T;m (2.22)

=
1

T

h�
�T;m � �̂T;m

�
S0mZT +CT

�
IKp2

�� 0m�m

�
S00ZT +U

i
h�
�T;m � �̂T;m

�
S0mZT +CT

�
IKp2

�� 0m�m

�
S00ZT +U

i0
=
�
�T;m � �̂T;m

�
S0m

�
ZTZ 0T
T

�
Sm

�
�T;m � �̂T;m

�0
+CT

�
IKp2

�� 0m�m

�
S00

�
ZTZ 0T
T

�
S0

�
IKp2

�� 0m�m

�0C 0T
+
�
�T;m � �̂T;m

�
S0m

�
ZTZ 0T
T

�
S0

�
IKp2

�� 0m�m

�0C 0T
+
�
�T;m � �̂T;m

�
S0m

�
ZTU 0

T

�
+CT

�
IKp2

�� 0m�m

�
S00

�
ZTZ 0T
T

�
Sm

�
�T;m � �̂T;m

�0
+CT

�
IKp2

�� 0m�m

�
S00

�
ZTU 0

T

�
+

�
UZ 0T
T

�
Sm

�
�T;m � �̂T;m

�
+

�
UZT
T

�
S0

�
IKp2

�� 0m�m

�0C 0T +
1

T
UU 0:

The stochastic orders of the various terms in Equation (2.22) are known from

previous results. We have �T;m � �̂T;m = Op(T
�1=2), ZTZ 0T =T

p�! 
, CT =

O(T�1=2) and ZTU 0=T = Op(T
�1=2) by Equation (2.21). We conclude that �̂m =

1
TUU

0+ oP (1). This means that every covariance estimator (every in the sense of
for all m 2 M) has the same asymptotic distribution as the covariance estimator
based on the true innovations.

Joint asymptotic normality of the parameter estimates and the covariance esti-
mator can be obtained along the lines of the proof of Proposition 11.2 of Hamilton
(1994). That is, we de�ne

�t = vech

0BBB@
u2

1t � �11 u1tu2t � �12 : : : u1tuKt � �1K

u2tu1t � �21 u2
2t � �22 : : : u2tuKt � �2K

...
...

. . .
...

uKtu1t � �K1 uKtu2t � �K2 : : : u2
Kt � �KK

1CCCA :
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The sequence f�tg is i.i.d. and thus also a martingale di�erence sequence. One
can apply the Cramer-Wold Theorem to the extended martingale di�erence vector
(vec(utz0T;t�1)0;�0t)0 to show"

(1
p
T )
PT
t=1 vec(utz0T;t�1)

(1
p
T )
PT
t=1 �t

#
d�! N

��
0
0

�
;

�
�11 �12

�21 �22

��
: (2.23)

We already know that �11 = 
 
�. The elements in the covariance matrix �12

take the form limT!1 E(uk1tyT;t�j;k2(uk3tuk4t � �k3k4)). They are zero because
limT!1 E(yT;t�j;k2) = 0. Finally, �22 = E (�t�0t). The typical elements are
E((uitujt � �ij)(ultumt � �lm)).

Part (c). De�ne two independent random vectors: R � N (0;
 
�) and S �
N(0;�22) of length K2p and K(K + 1)=2, respectively. Consider three di�erent
models indexed by m1;m2;m3 2M. The proof is immediate, since26664
p
T
�
�̂T;m1 � �T;m1

�
p
T
�
�̂T;m2 � �T;m2

�
p
T vech

�
�̂m3
u ��u

�
37775 d�!

24Am1

Am2

O

35 �

+

2664
��
S0m1


Sm1

��1 S0m1

 IK

�
O��

S0m2

Sm2

��1 S0m2

 IK

�
O

O IK(K+1)=2

3775�RS
�
:

2.A.3 Other Proofs

The following Lemma states that we can obtain the smaller models’ impulse re-
sponse coe�cients by plugging zeros into the mapping de�ned for the full model.

Lemma 2.21. Consider the notation of Section 2.2.3 where � describes a partic-
ular impulse response coe�cient of the full model. Then �((�T;m;0K2(p�m));�)
is equivalent to that speci�c impulse response coe�cient of the model with m lags.

Proof. We use mathematical induction and consider the impulse responses of
the VAR(p) and VAR(p + 1) models. For p = 0 we are comparing a white noise
model with a VAR(1) with coe�cient matrix B. The impulse responses at horizon
h for these models are OK�K and Bh, respectively. The base case p = 0 holds.

We start the inductive step by de�ning the companion matrix of the VAR(p+1),

A(p+1) =

2666664
B1 B2 : : : Bp Bp+1

IK O : : : O O
O IK : : : O O
...

...
. . .

...
...

O O : : : IK O

3777775 : (2.24)
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This companion matrix is (K(p+ 1)�K(p+ 1)). For an arbitrary matrix of this
size, F , let [F ]ij denote its (i,j)’th block of dimension (K �K). In this notation
the impulse response of the VAR(p+1) at horizon h is simply [(Ap+1)h]11. Setting
Bp+1 = O provides K zero columns, and hence

[(A(p+1))
h]

11
=

p+1X
j1=1

� � �
p+1X

jh�1=1

[Ap+1]1j1 [Ap+1]j1j2 � � � [Ap+1]jh�11

=

pX
j1=1

[Ap+1]1j1

0@ p+1X
j2=1

� � �
p+1X

jh�1=1

[Ap+1]j1j2 � � � [Ap+1]jh�11

1A
= : : : =

pX
j1=1

� � �
pX

jh�1=1

[Ap]
1j1 [Ap]

j1j2 � � � [Ap]
jh�11 =

�
(Ap)

h
�11

;

where Ap is the companion matrix related to the VAR(p). This completes the
inductive step and the proof.

Proof of Theorem 2.7. We �rst rewrite
p
T
�
�(�̂T;m;0K2(p�m); �̂)� �(�T;p;�)

�
(2.25)

=
p
T
�
�(�̂T;m;0K2(p�m); �̂)� �(�T;m;0K2(p�m);�)

�
�
p
T
�
�(�T;p;�)� �(�T;m;0K2(p�m);�)

�
:

The �rst term on the RHS of Equation (2.25) contains a parameter transformation
of the estimated parameters. The �rst order delta method can be applied to this
expression because the theorem explicitly assumes non-vanishing derivatives at the
necessary points. The second term is nonrandom. It is the di�erence of two terms
which only di�er in locally misspeci�ed coe�cients, which are set to zero in the
second term. We will use a Taylor expansion on this second contribution. The
result from the delta method together with Theorem 2.4 is

p
T

�
�(�̂T;m;0K2(p�m); �̂)� �(�T;m;0K2(p�m);�)

�
(2.26)

d�!
�
@�(�1;�)

@�0
(Sm 
 IK)

��
Am� +

�
[S0m
Sm]

�1 S0m 
 IK
�
R
�

+

�
@�(�1;�)

@�0

�
S;

where R and S are de�ned in the proof of Part (c) of Theorem 2.4. The result of
the Taylor expansion is

p
T
�
�(�T;p;�)� �(�T;m;0K2(p�m);�)

�
=
p
T�(�T;m;0K2(p�m);�) +

�
@�(�1;�)

@�0
(S0 
 IK)

��
(IKp2

�� 0m�m)
 IK
�
�
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+O(T�1=2)�
p
T�(�T;m;0K2(p�m);�)

=
@�(�1;�)

@�0
([S0(IKp2 �� 0m�m)]
 IK) � +O(T�1=2): (2.27)

The notation can be made a little lighter using the de�nitions of the Theorem:
D� = @�(�1;�)=@�0 and D� = @�(�1;�)=@�0. Equations (2.25), (2.26) and
(2.27) then combine to

p
T
�
�(�̂T;m;0K2(p�m); �̂)� �(�T;p;�)

�
d�!D� [(Sm 
 IK)Am � (S0 (IKp2 �� 0m�m))
 IK ] �

+D�

�
(Sm [S0m
Sm]

�1 S0m)
 IK
�
R+D�S:

(2.28)

With the de�nition of Am we have

(Sm 
 IK)Am � (S0 (IKp2 �� 0m�m))
 IK
= (Sm 
 IK) ([S0m
Sm]�1S0m
S0(IKp2 �� 0m�m)
 IK)

� (S0 (IKp2 �� 0m�m))
 IK
=[Sm[S0m
Sm]�1S0m
S0(IKp2 �� 0m�m)]
 IK)� (S0 (IKp2 �� 0m�m))
 IK

=
h�
Sm [S0m
Sm]

�1 S0m
 � IKp
�
S0

�
IKp2

�� 0m�m

�i

 IK :

Now, de�ning Pm := Sm [S0m
Sm]
�1 S0m
IK andCm := (Sm [S0m
Sm]

�1 S0m
�
IKp)S0(IKp2

�� 0m�m)
 IK we can write Equation (2.28) as

p
T
�
�(�̂T;m;0K2(p�m); �̂)� �(�T;p;�)

�
d�!D�Cm� +D�PmR+D�S

� N

 
D�Cm�;D�Pm (
 
�)PmD

0
� +D��22D

0
�

!
;

what was to be shown.

Proof of Theorem 2.11. By Theorem 2.7

p
T
�

��(w)� �(�T;p;�)
�

=

pX
m=p1

wm

hp
T
�
�(�̂T;m;0K2(p�m); �̂)� �(�T;p;�)

�i
d�!D�

pX
m=p1

wmCm� +D�

pX
m=p1

wmPmR+D�S:

The calculation of the mean vector and the asymptotic covariance matrix is straight-
forward.

Proof of Theorem 2.15. A valid con�dence interval for a scalar focus was
derived in Theorem 6 of Liu (2015). We follow the same reasoning. First, for the
selection matrices of zeros and ones, we �nd

IKp � S0S00 + S0� 0m�mS00
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=IKp �
�

O O
O IKp2

�
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0@OKp1�Kp1 O O
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O O O
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�
IKm O
O O

�
= SmS0m;

which we use to conclude
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So there is no dependence on model size m. Now, we use this expression and
Theorem 2.11 to obtain
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Next, by the convergence of �̂ to R�,
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:

The con�dence region is constructed from the standardized quadratic form with
population quantities replaced by their consistent estimates.
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Proof of Theorem 2.17 Consider m 6= p. We de�ne �m = C 0mD0�, A =
S00
�1S0 
 �, and introduce a standard normally distributed random vector
ZK2p2 � N(0; IK2p2) and random variable Z � N(0; 1). ThenR� = �+A1=2ZK2p2 ,
and

R0�C
0
mD

0
�D�CmR� =

�
�0m(� +A1=2ZK2p2)

�2
=
�0mA1=2

2
 
�0mA1=2ZK2p2�0mA1=2

 +
�0m��0mA1=2


!2

= (�0mA�m)
�
Z +�0m�=

p
�0mA�m

�2

� am�2
noncentral

�
1; (D�Cm�)

2
=am

�
;

where �0mA�m = am. See Chapter 29 of Johnson et al. (1994) for details and

moments. Finally, all quantities in [FICp = D�(
̂
�1 
 �̂)D0� + D��22D0� are

estimated consistently.

Proof of Theorem 2.18 If m = p and/or l = p, then there is no bias contribu-
tion and the matrix elements converge in probability. Now consider m; l 6= p, then
(a) For m = l the proof is identical to the proof of Theorem 2.17.

(b) Start by noting that for general x, x0Ax = x0(A+A0
2 )x. Hence, with the

de�nitions from the previous proof,

R0��m�
0
lR� =

�
A�1=2� +ZK2p2

�0 �
A1=2

�
�m�0l +�l�

0
m

2

�
A1=2

�
�
�
A�1=2� +ZK2p2

�
:

We subsequently use the transformation stated in Imhof (1961). The matrix in
square brackets is symmetric and has a rank of at most two. The eigenvalue
decomposition mentioned in Theorem 2.18 applies, and therefore

R0��m�
0
lR� =

2X
i=1

�i

�
v0iA�1=2� + Zi

�2

�
2X
i=1

�i�
2
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�
1;
�
v0iA�1=2�

�2
�
;

where the independence of the Zi follows from orthonormality of the eigenvectors.
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Chapter 3

Consistency of Averaged
Impulse Response
Estimators in VARs

We are concerned with model averaging estimators of impulse response coe�cients
for stationary VAR models of �nite lag order, speci�cally the smoothed AIC- and
BIC-based estimators (sAIC, sBIC). We show that there is not one unique way to
de�ne each of these estimators, but that instead there is a whole class of smoothed
AIC and smoothed BIC estimators de�ned by a weight scaling factor, and we
discuss its e�ect on the averaging weights. We extend results by Zhang (2015) for
a time series setting by showing root-T consistency of the estimators for speci�c
ranges of the scaling factors. We then propose a bootstrap method to estimate the
distributions of the averaging estimators. Using results of Bose (1988) we also show
its asymptotic validity. In simulations we show the bene�ts of using sAIC-based
instead of AIC-based estimators for estimating impulse response coe�cients.1

3.1 Introduction

Model averaging is an alternative to model selection when there is model uncer-
tainty. While in a Bayesian framework model averaging has been propagated and
used already some time ago to address model uncertainty, the theory for frequentist
settings is of more recent vintage, one important contribution of which is Hansen
(2007). Instead of putting all weight on the estimates from one model, several mod-
els’ parameter estimates are averaged. Hence, the number of possible estimates is
increased: Not just the weight vectors (1; 0; : : : ; 0); (0; 1; 0; : : : ; 0); : : : ; (0; : : : ; 0; 1)
are allowed, but also all of their convex combinations, cf. Section 3.3 below and
the de�nition of Hn in Liu (2015). This added freedom of model averaging can
lead to better performance, e.g. lower MSE, compared to that of model selection

1The paper that this chapter is based on was presented at the 2017 SNDE conference in Paris.
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estimators in �nite samples. Based on a VAR process designed to mimic data used
in Stock and Watson (2001) we give an example in Figure 3.13 below. Also for
forecasting it is well known that combinations often outperform forecasts that are
based on a single model, cf. Bates and Granger (1969).

Our contribution to theoretical econometrics of stationary time series is twofold.
While it has been known that using consistent model selection criteria leads to
consistent estimation of model parameters, we show that the averaged estimator
is also consistent. Secondly, we show the validity of a bootstrap procedure for
estimating the averaged estimator’s distribution.

The averaged estimator is a weighted average over models of di�erent orders
with weights calculated as e.g. smoothed BIC weights (sBIC), cf. Buckland et al.
(1997). We show that this estimator has the same asymptotic distribution as if
the researcher only used the true order VAR model for estimation, provided a
consistent criterion like BIC is used for calculating the weights. When using AIC
for this, the averaged estimator is still root-T consistent. It is not su�cient to show
that most weight will be given to the correct model, which follows from the results
for model selection. Additionally, we also need to deduce the rates of convergence
of the model weights and show that these are Op(T

�1=2), where T is the sample
size. Otherwise the asymptotic bias of the small models2 would lead to a biased
averaged estimator. Our results hold for multivariate, stationary, non-trending
VARs, extending the work of Zhang (2015), who treats the case of a non dynamic
linear regression model. Anderson (2003) and Paulsen (1984) prove to be useful
for this and we adapted their proof techniques. We assume that the true lag order
of the multivariate DGP is not known, but only an upper bound for it. The case
of a VAR(1) where the estimated lag order is allowed to increase with sample size
is not treated here. But our results could possibly also be extended to this setting
using Jirak (2012), who proves consistency of BIC selection when the lag order of
the autoregressive DGP is allowed to diverge with sample size.

We generalize the results of Zhang (2015) in another way by also treating func-
tions of the model parameters, instead of only considering estimates of the model
parameters themselves. This chapter is focused on estimation of impulse response
coe�cients, but the theoretical results still hold for other smooth functions of
model parameters. To be precise, the proofs will hold for any object that can be
expressed as a continuously di�erentiable function of the (estimates of the) au-
toregressive parameters B and covariance matrix �u de�ned in Section 3.2 below.
We have chosen impulse responses as an application because of their prominent
role in macroeconomics. An important example of the study of impulse response
functions is the seminal work of Stock and Watson (2001), on whose estimates we
base a set of simulations. We consider orthogonalized impulse responses based on
the Choleski decomposition of the estimated covariance matrix, cf. Chapter 1 for
a discussion of this choice, to not overly complicate this part of the analysis and
concentrate the discussion on our main contributions of showing estimator consis-
tency and bootstrap validity. This identi�cation scheme is also used by L�utkepohl
et al. (2015).

2In our setting we call those models (too) small which do not include the true DGP’s lag
order.
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Hansen (2005) makes the case that it might not be optimal to use the same
model for estimation across di�erent horizons of impulse responses. He presents
evidence that for the impulse response at horizon 2 a di�erent lag order may
minimize the estimator’s MSE than for the impulse response at horizon 6. His
results are obtained for the case of an ARMA(1,1) DGP that is being approximated
by AR models. We allow for using di�erent weights for di�erent horizons. All of
our results are conditional on the choice of one speci�c impulse response coe�cient,
so the response of one variable to an impulse in another after a certain number
of periods. With regard to applied econometrics we make a direct comparison
between the AIC-based and the sAIC-based estimator in a simulation study, and
�nd that in terms of the estimator’s mean squared error (MSE) the sAIC-based
estimator often performs better than its selection counterpart (in �nite samples).
At the same time we show that the sAIC-based estimator retains the corresponding
property of AIC selection of putting no weight on models, that are too small,
asymptotically. This is an important message for practitioners: By using sAIC
instead of AIC, estimation accuracy may improve while the asymptotic properties
of AIC are still retained.

Our second contribution is the proposal of a bootstrap procedure for estimating
the distribution of the averaged estimator and showing its asymptotic validity.
The proof of asymptotic validity relies on the rates of convergence derived in the
�rst part of the chapter, and on Bose (1988) and Kilian (1998b). Indeed, in
our simulation study we �nd the e�ective coverages of the estimated con�dence
intervals from the selection and averaging methods to be similar, but in most cases
those of the selection based estimator are closer to the nominal coverage level.
The averaging-based e�ective coverages tend to be lower than the selection-based
coverages. Hence, they might be valuable in settings where other methods tend to
have e�ective coverages which are too large. We calculate joint con�dence bands
with a method suggested by L�utkepohl et al. (2015), who use AIC-based selection
in a VAR setting to compare di�erent methods for obtaining joint con�dence bands
for impulse response functions. Kilian (2001) compares the e�ective coverages
of AIC, BIC and Hannan-Quinn model selection estimators of impulse response
coe�cients. He �nds that the coverage of the BIC method is rather poor, an
observation that we �nd still to hold in the averaging case.

Parts of the model averaging literature assume a local misspeci�cation frame-
work. Hjort and Claeskens (2003a)’s Theorem 4.1 shows that within that frame-
work the asymptotic distribution of the estimator will generally be a mixture of
normals with a nonzero bias term. We do not assume this type of local mis-
speci�cation, just like the following texts, in which properties of model averaging
estimators have been discussed. In Section 4.8 of Burnham and Anderson (2002)
an sAIC-based averaged estimator is used for prediction, which the authors sug-
gest to use instead of model selection when model uncertainty is large. Hansen
and Racine (2012) use jackknife weights for averaging across OLS estimators in a
regression setting, and show this method to outperform model selection methods.
Liang et al. (2011) consider averaging estimators, based on sAIC and sBIC, among
others, for a linear regression model. Hansen (2007)’s simulations show that using
sAIC yields lower risk (a lower mean squared error (MSE)) than AIC for esti-
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mating regression parameters. In a dependent data setting Zhang et al. (2013)
also document that model averaging methods yield a lower MSE than selection
methods, even though they do not compare AIC to its smoothed counterpart sAIC
directly.

The chapter is organized as follows. Section 3.2 �xes notation and assumptions.
Section 3.3 discusses consistency of the averaged estimator. Section 3.4 introduces
the bootstrap procedure, and shows its �rst order accuracy. Section 3.5 provides
simulation evidence on the performance of our methods. Section 3.6 concludes.
An appendix contains the proofs.

3.2 Model Setting

We are concerned with VAR models for the d-dimensional variable yt observed at
t = 1; : : : ; T , with T the sample size, of the form

yt = A1yt�1 +A2yt�2 + : : :+A�pyt��p + ut:

We assume that a �xed but unknown p0, p0 � �p is the lag order of the true DGP.
So Ap0 6= O, Ap0+1; : : : ;A�p = O. Here O is a matrix of conformable dimension
with only zeros. In later occurrences, when there is risk of confusion, we will add
a subscript indicating the dimension, i.e. write Od. We further assume that the
researcher only knows �p. She will average estimates across all models p 2 f1; : : : ; �pg
by assigning weights to the estimates from these di�erent models.3

For the DGP we assume ut � iid (0;�u); �u to be positive de�nite, and
u1 to have �nite moments up to the eighth order. Furthermore, each element
of (u1;u1u01), which is of dimension (d; d + 1), satis�es Cram�er’s condition. As
an example consider the case d = 2, u1 = (v; w)0. Then for the vector (v; vw)
Cram�er’s condition on its characteristic function reads: For every k > 0, there
exists a � > 0 such that

sup
l2R2:jjljj>k

jE exp(il0(v; vw)0)j � exp(��); (3.1)

with i denoting the imaginary unit. Compare Chapter 2 of Hall (1992) for a
detailed discussion of Cram�er’s condition. We also assume stability of the process:

det(Id �A1z � : : :�Ap0z
p0) 6= 0 for jzj � 1:

Here Id is the d-dimensional identity matrix. This implies weak stationarity. This
setting is the one of Kilian (1998b) and it is also covered by Bose (1988).

Note that we will show that the weights for larger models, so with p > p0, will
tend to 0 asymptotically, which is why most of the following notation will be given
in terms of p0 only. Analogously to L�utkepohl (2005) we de�ne

Y = (y1; : : : ;yT );

3We discuss a practical method that has been suggested for choosing �p large enough in prac-
tical applications in Section 3.5.
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B = (A1; : : : ;Ap0); � = vec(B);

Zt =

0BBB@
yt
yt�1

...
yt�p0+1

1CCCA ; Z = (Z0; : : : ;ZT�1);

U = (u1; : : : ;uT ); � = vech(�u):

This is the standard VAR model often used as a benchmark in macroeconomics,
cf. Christiano et al. (1999), Benkwitz et al. (2000), L�utkepohl et al. (2015). As the
workings of this model are well researched we use it as a basis for our analysis. For
the next section, which discusses the de�nition of the averaging weights and gives
the main results of this chapter, we also need the following observation, which is
a direct consequence of the stationarity of the process together with Lemma 3.1
of L�utkepohl (2005):

T�1ZZ 0 p�! 
; and T�1=2 vec(UZ 0) d�! N (0;
 
�u) (3.2)

hold with 
 positive de�nite. So it follows that the estimate bB of B will be
asymptotically normally distributed.

Our objects of interest are the orthogonalized impulse responses of the sys-
tem. The responses of the VAR(p0) system after h � 1 periods to reduced form
disturbances are described by the recursion

�h =

hX
j=1

�h�jAj ; where �0 = Id;Aj = Od for j > p0: (3.3)

Let P be the lower triangular matrix from the Cholesky decomposition�u = PP 0.
The orthogonalized impulse responses are then de�ned as

�h = �hP : (3.4)

We see that these are nonlinear functions of the coe�cient matrices and the inno-
vation covariance matrix, as we consider the recursive identi�cation scheme based
on the Cholesky decomposition of the latter. To be precise, in this chapter we will
be interested in one particular impulse response coe�cient, that is for given i; j; h,
where 1 � i; j � d, h � 1 we will be interested only in the (i; j) element of the �h

matrix. For example (�3)1;2 is the response of variable 1 to a shock in variable
2 which occurred 3 periods ago. Because all of our results are conditional on the
choice of i; j; h we will omit this in the notation and denote this object of interest
by � 2 R.

Instead of selecting one model we take averages over estimators from di�erent
models. First, for every p 2 f1; : : : ; �pg the researcher obtains an estimate b�p
of � as follows. OLS estimates bA1; : : : ; bAp and an estimate b�p of the residual
covariance matrix are calculated. Using Equations (3.3), (3.4), only replacing p0

by p and unknown terms by their estimates, b�p is then calculated. Then, given an
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estimated weight vector bwxIC = ( bwxIC;1; : : : ; bwxIC;�p), where xIC stands for AIC
or BIC, respectively, we de�ne the averaged estimator

b�( bwxIC) = bwxIC;1b�1 + bwxIC;2b�2 + : : :+ bwxIC;�pb��p:

In the next section the calculations of the weights will be detailed.

3.3 Consistency of the Averaged Estimator

Zhang (2015) shows consistency of the AIC- and BIC-based model average esti-
mators in a linear regression setting. We generalize this result for sAIC and sBIC
to the case of vector autoregressions and averages of estimated impulse response
coe�cients. For this we use methods of Paulsen (1984) and Anderson (2003). For
BIC-based averaging, since the BIC is a strongly consistent criterion, we will even
show bwBIC;p0 ! 1. So asymptotically only the true model will receive a positive
weight.

In the pth candidate model, p 2 f1; : : : ; �pg, the AIC, BIC score, and smoothed
weights are

AICp = T log j b�pj+ 2pd2;

BICp = T log j b�pj+ pd2 log(T );

bwxIC;p = exp(�xICp=2)=

�pX
p=1

exp(�xICp=2);

where here and in the following xIC stands for AIC or BIC, respectively. This
weights de�nition might be considered the standard case. It was suggested by
Buckland et al. (1997) in connection with the Bayes factor approximation of
Schwarz (1978) and has been used much since, among others in Zhang (2015),
and Claeskens and Hjort (2008).

For computational implementation it is advisable to subtract minp2f1;:::;�pgAICp
from the AIC scores, and the analogous number from the BIC scores, before cal-
culating the weights to avoid exceeding the computationally allowed number sizes,
cf. also Claeskens and Hjort (2008), Example 7.1. This transformation leaves the
weights unchanged. Another commonly used de�nition of the BIC can be obtained
by dividing the one given here by T . This scaling would not change anything in a
model selection setting. For our case of averaging, however, the estimated weights
would then converge to equal weights, bwxIC;p ! 1=�p, cf. 3.3.1 below.

Now note the following observations, which are the main ingredients to proving
the results in this section.

exp(�AICp=2) = exp

�
�T

2
log j b�pj

�
exp(�pd2) = j b�pj�T=2 exp(�pd2); (3.5)

exp(�BICp=2) = exp

�
�T

2
log j b�pj

�
exp

�
�pd

2

2
log(T )

�
= j b�pj�T=2T�pd

2=2;

(3.6)
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and the weights are from the unit interval,

bwxIC;p 2 [0; 1]; 1 � p � �p; (3.7)

and sum to 1. From the following Lemma and Eqn (3.7) it follows that only model

p0 will receive positive sBIC weight in the limit, bwBIC;p0

p�! 1.

Lemma 3.1. Under the assumptions of Section 3.2 the following stochastic bounds
hold for the estimated weights:

bwBIC;p = Op(c
T
1 T

(p0�p)d2=2); for p < p0;bwBIC;p = Op(T
(p0�p)d2=2); for p > p0;bwAIC;p = Op(c
T
2 ); for p < p0;

where c1; c2 2 (0; 1) are some generic constants.

Note that the last equation corresponds to the statement of Paulsen and
Tj�stheim (1985) for model selection:

lim
T!1

P (bpAIC < p0) = 0: (3.8)

This result is used by Kilian (1998a) to show bootstrap validity. Also like in model
selection, the smoothed AIC estimator is not consistent. Even in the limit positive
weight may be given to models that are too large. This, however, does not induce
a bias, it only costs e�ciency, because the estimates of the coe�cients larger than
p0 converge to 0. Even though small models yield a biased estimate, scaling byp
T does not destroy consistency, because the small models’ weights tend to 0 fast

enough. We state this as a theorem.

Theorem 3.2. Under the assumptions of Section 3.2,
p
T (b�( bwBIC)� �) =

p
T
�b�p0 � �

�
+Op(T

�1=2); (3.9)
p
T (b�( bwAIC)� �) = Op(1): (3.10)

The result for the BIC averaged estimator is stronger in the sense that it gives
the limiting distribution of the averaged estimator. It is stronger, because in our
setting BIC is a consistent criterion, while AIC is not. Zhang (2015) has shown
analogous results in a regression setting, but only for the parameter estimates of
the regression, not for functions thereof, as in our case. (Note that he de�nes �
di�erently.) Our proof is a generalization of his ideas.

3.3.1 Weight Scaling

The smoothed model averaging estimators, sAIC, sBIC, discussed above are ac-
tually representatives of a whole class of averaging methods. We use this section
to elaborate on this point, which has been raised for example in Chapter 7.2 of
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Claeskens and Hjort (2008), and in Liang et al. (2011), but is otherwise often not
mentioned when smoothed averaging estimators are being used.

Let � > 0 be a parameter. Above we de�ned the AIC score as

AICp =
T

�
log j b�pj+

2

�
pd2

with � = 1. This is a commonly used de�nition, see e.g. Claeskens and Hjort
(2008), Zhang (2015). It is also not uncommon to �nd the de�nition written down
with � equal to T , the sample size, see e.g. Juselius (2006), Kilian (2001). For
model selection the choice of � obviously is unimportant in �nite samples, since it
does not inuence the ranking of the models. For model averaging, however, the
choice of � becomes relevant, if, as above, we de�ne model weights as

bwxIC;p = exp(�xICp=2)=

�pX
p=1

exp(�xICp=2):

(Note that adding or subtracting constants to/from the expression of the xIC score
do not inuence either the selected model nor the averaging weights.) Claeskens
and Hjort (2008) pointed out that for small values of � the weights are more
concentrated on few models, with the averaging estimator becoming more similar
to the model selection estimator for � approaching 0. For diverging values of � the
weights become more spread out, the estimator becomes more similar to the equal
weights estimator. In a static regression framework Liang et al. (2011) develop a
method for choosing a set of parameters (� and other parameters) that minimizes
a certain risk quantity that is based on estimated MSE. As far as consistency of the
smoothed averaging estimators as described by Theorem 3.2 above is concerned,
we �nd (cf. Section 3.A.3) that it still holds as long as � � d2, with d the number
of variables of the VAR. For the simulations of the following section we stick to the
original de�nition of the smoothed AIC (and smoothed BIC) as given above, so
with � = 1, which was introduced by Buckland et al. (1997). We do this because
this de�nition is most often used in the literature to date, and the results may
thus be more interesting for practitioners.

3.4 Bootstrapping

To estimate the distribution of the averaged estimator we propose to use a boot-
strap procedure. The necessity of having such a procedure available is illustrated
by Figure 3.14, which is discussed in Section 3.5. For our setting the sieve boot-
strap is usually preferred over block bootstrap. L�utkepohl et al. (2015), for ex-
ample, �nd that among di�erent methods of estimating con�dence intervals the
sieve-based bootstrap methods usually perform well. The procedure we suggest is
based on the sieve bootstrap and similar to the one given in Kilian (1998a). We
present two di�erent versions, one with endogenous, and another one with exoge-
nous calculations of weights, referring to the cases of the averaging weights being
calculated for each bootstrap replication separately or together with estimating
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the lag order for bootstrap sample generation. Kilian (1998a) made the point that
the coverage of the former is expected to be better for the case of model selection.
As model selection and averaging criterion either AIC or BIC may be used. We
write xIC as a placeholder. Assume the setting de�ned above: The DGP is of
order p0 with p0 � �p.

Endogenous Weights Algorithm:

1. Fit VAR(p) models, 1 � p � �p to the data fytgTt=1,

yt = bA1yt�1 + bA2yt�2 + : : :+ bApyt�p + but:
Determine bp by the xIC.

2. Generate bootstrap replications fy�t gTt=1 based on the recursion

y�t = bA1y�t�1 + bA2y�t�2 + : : :+ bAbpy�t�bp + u�t ;

where the fu�t gTt=1 are obtained as follows: Draw randomly with replace-

ment from the but multiplied by
�

T
T�d�p�1

�1=2

(cf. Davidson and MacKinnon

(1999)). Demean the set of T draws.

For each sample of bootstrap replications fy�t gTt=1

3. Fit VAR(p) models, 1 � p � �p to the series, calculate corresponding impulse

response estimates b��1 ; : : : ; b���p, and bootstrap weights bw�xIC =
( bw�xIC;1; : : : ; bw�xIC;�p).

4. Calculate the averaged impulse response coe�cient

b��( bw�xIC) = bw�xIC;1b��1 + bw�xIC;2b��2 + : : :+ bw�xIC;�pb���p:
Note that b��( bw�xIC) depends on the estimated weights as well as on the estimates
for the VAR coe�cient matrices and the innovation covariance matrix from all
considered models. We can then obtain con�dence bands for a nominal coverage
of 1 � � by reading o� the �=2 and 1 � �=2 percentile interval endpoints of the

distribution of the bootstrap impulse response estimates b��( bw�xIC). Asympotic
validity of the procedure is proven in Appendix 3.A.5.

There are important variations of this boostrap algorithm. These are also
asymptotically valid: For the exogenous weights algorithm the weights are cal-
culated in Step 1 instead of in Step 3 and kept �xed across all bootstrap replica-
tions. The endogenous weights algorithm is designed to take the weights’ estima-
tion uncertainty into account and will be our algorithm of choice in this chapter.
We use it for our simulations. A case for endogenizing the estimation uncertainty
in the algorithm in this way is made in Kilian (1998a) in the setting of model
selection.

Secondly, instead of selecting a lag order based on information criteria, one
could simply estimate a VAR(�p), and use this to generate bootstrapped data.
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Analogously to the proof of asymptotic validity given in the appendix for the AIC
case, this method can also be shown to be valid. In a separate set of simulations,
whose results are not given in this chapter, we found that the conclusions for
coverages of bootstrapped estimates did not di�er between using AIC or �p for
generating the bootstrap samples. Thirdly, Kilian (1998b) suggests to bias correct
the � estimates based on expressions by Pope (1990). Since the bias estimate is
of order T�1 validity then still holds.

3.5 Simulation Study

In order to analyze the �nite sample performance of the averaged estimators we
carry out simulations in this section. We show results for two di�erent simulation
settings. To enable a direct comparison between results for model selection and
our suggested model averaging procedure we apply the averaging estimators to
the simulation setting that Kilian (2001) used for gauging the performance of
model selection estimators. For a second set of simulations we also give results
inspired by Stock and Watson (2001), which is a prototypical representative of the
literature on monetary structural VARs. These two settings are treated in separate
subsections in the following. We provide evidence for the theory developed in the
previous section by showing the selection frequencies for each criterion and lag
order, provide mean squared error, MSE, comparisons between the model selection
and model averaging estimators, and give results for the e�ective coverages of the
constructed con�dence intervals. In Chapter 4 we apply our methods to a wider
range of empirical macroeconomic data sets.

We will refer to the strategy that assumes the true lag order as known as the
true lag order method: The researcher always estimates a model with the true
lag order, which in the case of the data simulated by Kilian (2001) is a VAR(4).
We calculate the estimators’ MSE’s as the sum of squared di�erences to the true
impulse response (IR) function, which is calculated based on the true DGP, so
based on the true VAR coe�cients and covariance matrix.

The range of models that are considered for selection and averaging is de�ned
by a maximum lag order, �p. In applied work it is common to let such a maximum
lag increase with sample size, cf. L�utkepohl et al. (2015) who also posit a �nite
order DGP. In the in�nite order setting of Ing and Wei (2005) �p is allowed to
increase at a rate of

p
T . To be precise, in their simulation setting they choose �p

as the largest integer smaller than
p
T . This approach seems to have been taken

by Kilian (2001) as well who sets �p = 8 for T = 80, and we will do the same unless
otherwise noted, setting �p = 12 for T = 160 for example. Note that the results
of the following subsection are rather robust to the choice of �p. When we set
�p = 8 for T = 160 the results in Tables 3.1, 3.2, and Figure 3.3 remained virtually
unchanged.
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3.5.1 Simulation Setting of Kilian (2001)

To judge the �nite sample performance of the averaged estimators we simulate
data from a VAR(4) used in Kilian (2001), with coe�cient matrices

A1 =

�
0:6362 �0:0012
0:0190 0:5782

�
; A2 =

�
�0:0168 �0:0285
0:5211 �0:3041

�
A3 =

�
0:0273 �0:0028
0:1568 0:2229

�
; A4 =

�
0:1517 �0:0198
�0:7600 �0:3168

�
:

The largest root of this process is 0.8894. The innovation covariance matrix is

�u =

�
0:025 0:009
0:009 0:387

�
�10�3. We always plot the four impulse response functions

up to horizon 16. As in Kilian (2001) the number of simulations is Nsim = 1000,
and number of bootstrap replications 1000. We apply the small sample bias cor-
rection to the OLS estimates of the parameters in � as described in the appendix
of Kilian (2001). This particular process is designed to have impulse response
functions similar to those \often encountered in applied work". These are plotted
in Figure 3.1 together with the mean estimated impulse response functions of the
model with the true lag order, the VAR(4), for 1000 simulations.

Selection Frequencies, Average Weights, and MSE

Table 1 in Kilian (2001) shows how the true lag order gets selected more frequently
with sample size increasing from T = 80 to T = 160. Tables 3.1 and 3.2 below
amend this information with average smoothed weights for sAIC and sBIC averag-
ing. For every p = 1; : : : ; �p the selection frequency N�1

sim

PNsim
i=1 1fbp(i) = pg, and

average weight N�1
sim

PNsim
i=1 bwp(i) in percentages are reported. Here bp(i); bwp(i) are

the estimated lag order and estimated weights in simulation repetition i, respec-
tively. So the row sums in the table add up to 100 (approximately only because
of rounding imprecisions). For T = 80 the maximum lag is �p = 8, as explained
above, and for larger sample sizes the weights and selection frequencies for models
beyond lag 9 are smaller than 1%.

As predicted by the theory of Lemma 3.1, for large sample sizes sBIC will
assign all the weight to the true model, and sAIC will not assign any weight to
models that are too small. For our simulated process even the rates of convergence
towards zero correspond to the rates predicted in Lemma 3.1. The theoretical rate
for the decrease of sBIC weights of large models is hyperbolic. And indeed, for the
smallest shown sample size of T = 80 already the average weight given to these
models is zero. The second fastest rate is the exponential rate of decline of the
sAIC weights for small models. These become zero at a sample size of T = 200.
Lastly, the mixed bound of the weights given to small models by sBIC consists
of a hyperbolically increasing and an exponentially decreasing term, and it makes
these weights zero from a sample size as small as T = 400 already, hinting at the
asymptotic property of consistency already at a relatively small sample size.

Interestingly, the values for sBIC average weights and BIC selection frequencies
are more similar than the AIC counterparts. For example, 33% of the time p = 4
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Figure 3.1: True and mean estimated impulse response functions of the
VAR(4). The response of variable j to a shock in variable i is labeled
i > j. T = 80.

is being selected by the BIC at T = 160, and the average sBIC weight is also
33%, while for AIC the corresponding values of 84% and 72% are further apart.
This means that the sBIC estimator delivers weights that are more concentrated
on one model than the sAIC estimator weights, and also hints at the asymptotic
properties: While asymptotically the sBIC estimator concentrates all weight on
one model, the sAIC weights can still be dispersed among many.

Figures 3.2 and 3.3 show the MSE performance of the AIC-based methods (AIC
and sAIC) compared to the true lag order method. While for T = 80 for horizons
around h = 5, for example, the true lag method performs notably better than the
other estimators, for T = 160 such large di�erences have mostly disappeared. At
T = 160 the MSE of the selection and averaging methods are very similar. Judging
by Table 3.1 we do not expect these observations to change when increasing the
sample sizes beyond T = 160. The averaging method’s MSE is lower than that
of the selection method, a fact that we also observe for another simulation setting
below, cf. Figure 3.13, and that is in agreement with �ndings in other papers
named in the introduction.

Interestingly, for large horizons the impulse response 1 ! 1 in Figure 3.2 is
more accurately (in the MSE sense) estimated by the AIC-based methods than
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Tnp 1 2 3 4 5 6 7 8 9

AIC 80 11 8 1 62 9 4 2 1 �
160 0 1 0 84 9 3 1 1 0
200 0 0 0 85 9 3 1 1 0
300 0 0 0 86 9 3 1 1 0
400 0 0 0 87 9 2 1 0 0
500 0 0 0 88 8 2 1 0 0
5000 0 0 0 89 8 2 1 0 0

sAIC 80 11 10 3 52 13 6 3 2 �
160 0 1 0 72 16 5 2 1 1
200 0 0 0 74 16 5 2 1 0
300 0 0 0 76 16 5 2 1 0
5000 0 0 0 76 16 5 2 1 0

Table 3.1: AIC selection frequencies alongside sAIC average model
weights for di�erent sample sizes, both as percentages.

Tnp 1 2 3 4 5 6 7 8

BIC 80 87 8 0 5 0 0 0 0
160 57 10 0 33 0 0 0 0
200 36 8 0 56 0 0 0 0
300 5 2 0 93 0 0 0 0
400 0 0 0 99 0 0 0 0
500 0 0 0 100 0 0 0 0

sBIC 80 83 11 0 6 0 0 0 0
160 55 12 0 33 0 0 0 0
200 35 9 0 55 0 0 0 0
300 6 3 0 92 0 0 0 0
400 0 0 0 99 0 0 0 0
500 0 0 0 100 0 0 0 0

Table 3.2: BIC selection frequencies alongside sBIC average model
weights for di�erent sample sizes, both as percentages.

by the true lag method. Figure 3.4 shows the variances of the individual models
which explain this �nding. The sAIC method assigns positive weights to smaller
models with a much lower variance. We refer to Section 3.A.6 for details on the
MSE decomposition. There we show that the estimator’s variance explains most
of the MSE performance for the sAIC-based estimator, while for the sBIC-based
estimator the squared bias component also contributes signi�cantly to the MSE.

Even though the BIC-based methods are consistent, the AIC-based methods
perform better in our simulation study. This is the case because the overselec-
tion of the AIC-based methods is less of a problem than the underselection by
the BIC-based methods. Small models induce a bias while large models do not.
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Figure 3.2: MSE of impulse response coe�cient estimators. The re-
sponse of variable j to a shock in variable i is labeled i > j. The averaging
methods outperform the selection methods. T = 80.

The increased variance of the large models’ estimators seems to be less of a prob-
lem. The comparably bad performance of the BIC-based selection method for
constructing con�dence intervals is already documented in Kilian (2001): The
e�ective coverage of the BIC-based selection method lies below 10% for some im-
pulse response coe�cients, whereas the e�ective coverage of the AIC estimator is
always above 70%. For our averaging setting we obtain similar results. Figure 3.5
documents the comparably worse performance of the BIC-based methods in terms
of MSE. The maximal MSE of the BIC-based method for impulse response 2! 1
is 4 � 10�7 while it is at around 2 � 10�7 for the AIC-based methods, cf. Figure 3.3.
Also the di�erence to the MSE of the true lag order method is still comparably
large at T = 160. Based on the results of our simulations we recommend to rely
on the AIC-based methods instead of using the BIC-based methods. In this point
we agree with L�utkepohl et al. (2015), who also shortly discuss their decision to
apply AIC rather than other model selection criteria in their study.
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Figure 3.3: MSE of IR coe�cient estimators. The response of variable
j to a shock in variable i is labeled i > j. T = 160.

Coverage

Figures 3.6 and 3.7 show the e�ective coverages of the pointwise con�dence inter-
vals for a nominal coverage of 95%. Here the averaging method does not reach
a coverage closer to the nominal rate than the selection method does in general.
Instead we observe that often the sAIC-based e�ective coverage is lower than that
of the AIC-based method.

Based on the pointwise con�dence intervals we calculate joint con�dence bands
using a method termed adjusted Bonferroni by L�utkepohl et al. (2015). They
discuss di�erent methods of constructing joint bands based on asymptotics as well
as bootstrap methods. Bonferroni joint con�dence bands are obtained by joining
pointwise bands with a nominal coverage of 1��=H if the impact e�ect is restricted
to zero, and 1��=(H + 1) if it is not restricted to zero for this particular impulse
response function. Here H is the number of horizons considered. By dividing the
signi�cance level by H, Bonferroni bands become conservative by construction. So
L�utkepohl et al. (2015) suggest to use the adjusted Bonferroni method which they
�nd to perform well compared to all other tested methods when the underlying
time series is stationary. This method is aimed at minimizing the width of the
con�dence band while keeping a good coverage, and we will use it here.

Table 3.3 shows the e�ective coverages of the adjusted Bonferroni bands. It
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Figure 3.4: Empirical variances of the VAR(i) based impulse response
estimates, i = 1; : : : ; 8. The response of variable j to a shock in variable i
is labeled i > j. T=80.

is instructive to inspect Table 3.3 together with Figures 3.6, 3.7. For T = 80
the coverages of the pointwise AIC-based intervals are below those of the true lag
method. The same holds for the coverage of the con�dence bands. For IR 1! 1 for
example it is 87.3 for the true lag method, and 81.6 for the AIC-based method. For
sample size T = 160 we make the opposite observation: The AIC-based method
tends to have higher coverage than the true lag method. Also analogously to the
pointwise e�ective coverages the sAIC-based coverages of the adjusted Bonferroni
method tend to be lower than the corresponding AIC-based coverages. These two
observations still hold for the larger sample size of T = 500, such that analogously
to the evidence from Table 3.1 above, we suspect that these observations will still
hold for even larger sample sizes.

Except for the impulse responses 2! 1 at T = 160 and T = 500 the e�ective
coverage of the AIC-based con�dence band is closer to the nominal 95% than that
of the sAIC-based one. This is mild evidence that a researcher having to decide
between AIC-based and sAIC-based bands should apply the former. Compared
to the true lag method for a sample size of T = 160 the AIC-based methods have
better e�ective coverage even than the true lag method.

What Kilian (1998a) pointed out for the selection based estimator we also �nd
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Figure 3.5: MSE of BIC-based impulse response coe�cient estimators.
The response of variable j to a shock in variable i is labeled i > j. T = 160.

to hold true for the averaging based estimator: The exogenous weights bootstrap
method has worse coverage than the endogenous bootstrap. For T = 80 the
e�ective coverages of the adjusted Bonferroni method are below 85% for all four
impulse response coe�cients (results not shown).

Figure 3.8 shows the extraordinarily low coverage that results from choosing a
lag order that often is too low for generating the bootstrapped data. For this graph
the BIC-based methods were applied. This means that in two di�erent steps of
the algorithm small models are used too often even for T = 160, in the bootstrap
sample generation step and when estimating the impulse response coe�cients, cf.
our bootstrap algorithm above. This leads to the coverages of even the true lag
order method to decline to below 40% for impulse response 2 ! 2 for example.
Hence, with this evidence similar to Kilian (2001) we recommend to not use BIC
or sBIC in our setting, but use the AIC based estimators instead.

In summary our simulation evidence based on the setup of Kilian (2001) shows
that the theoretically derived rates of decline of the weights of Lemma 3.1 can be
observed for realistic sample sizes of relevant data already. As these rates corre-
spond to the selection frequencies of the corresponding model selection estimators
(AIC and BIC) it is not surprising to see that the performance of the smoothed
averaging estimators is similar to the selection estimators in terms of MSE and
e�ective coverage of the con�dence intervals. While the MSE of the averaging
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Figure 3.6: E�ective coverage (in percent) of the endogenous boot-
strapped impulse response coe�cients. The response of variable j to a
shock in variable i is labeled i > j. AIC is used for selecting the lag order
of the bootstrap process. The bias correction of Kilian (1998b) is applied
to the OLS estimates of � . T = 80.

estimators is found to be lower than that of the selection estimators, the ranking
of the estimators largely reverses for the e�ective coverages. These observations
seem to be robust across the simulation settings considered in this chapter, while
the reasons for these opposing behaviours are not obvious and remain a topic for
future research.

3.6 Conclusion

This chapter extends the theoretical basis for using averaging methods, and demon-
strates their usefulness. We show that certain properties of model selection estima-
tors carry over to their model averaging counterparts based on smoothed weights.
The sBIC-based estimator is still consistent and the sAIC-based estimator puts
no weight on small models asymptotically. Our setting is that of impulse response
coe�cients of multivariate stationary time series. But our results, which build on
Zhang (2015), hold analogously for other smooth functions of OLS estimators in
VARs. Our second contribution is to show asymptotic validity for a bootstrap
method to obtain con�dence invervals for the averaged estimators.
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Figure 3.7: E�ective coverage (in percent) of the endogenous boot-
strapped impulse response coe�cients. The response of variable j to a
shock in variable i is labeled i > j. AIC is used for selecting the lag order
of the bootstrap process. The bias correction of Kilian (1998b) is applied
to the OLS estimates of � . T = 160.

In empirically relevant VAR simulation settings we observe that model av-
eraging is superior to model selection for point estimation of impulse response
coe�cients in terms of mean squared error (MSE). A suggestion in this direction
was already made by Hansen (2007). We also �nd that for relatively small sample
sizes the sAIC-based method already behaves similarly to the selection method.
For the practicioner interested in point estimates this means that by using sAIC
instead of AIC she gains accuracy, while at the same time she may still rely on her
intuition for the behavior of AIC, because both methods become closer to each
other with increasing sample size.

In line with Kilian (2001) our simulations show that even though the BIC-based
selection and averaging methods are consistent, they are not useful for sample sizes
typical for macroeconomics. In our simulations even for a sample size of T = 160
the e�ective coverages of the sBIC-based estimator are remarkably low. Because
of the quicker convergence rate of the sAIC weights given in Lemma 3.1 for small
models on the other hand, the sAIC-based method has good risk and coverages
for sample sizes from T = 160 already. We also �nd that the e�ective coverage of
the AIC-based joint con�dence bands is better than that of the true lag method.
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method T n IR 1! 1 2! 1 1! 2 2! 2

true lag 80 87.3 95.2 95.8 75.7
160 90.2 93.9 91.3 86.9
500 91.3 93.4 91.1 88.9

AIC 80 81.6 90.5 85.6 71.6
160 90.5 95.8 94.8 89.9
500 92.9 96.7 95.6 92.3

sAIC 80 80.1 89.0 84.6 70.0
160 89.7 95.0 93.5 88.9
500 92.5 96.1 93.8 91.1

Table 3.3: E�ective coverage (in percent) of the nominal 95% adjusted
Bonferroni joint con�dence bands.

In Chapter 4 we will revisit some empirical studies and apply model averaging
methods of several model criteria to assess the applicability of averaging methods
more in detail.

3.A Appendix

For p < p0 we introduce the following notation. We partition B and Z, matrices
corresponding to the true DGP, into submatrices:

B = (B1;B2); with

B1 = (A1; : : : ;Ap);

B2 = (Ap+1; : : : ;Ap0); and

Z =

�
Z1

Z2

�
; with Z1 : dp� T;Z2 : d(p0 � p)� T:

With this notation adopted from Paulsen (1984), cf. the proof of Theorem 1, and
Anderson (2003) one has to keep in mind that the dimensions of the de�ned objects
depend on p. The OLS estimator of the model with the true lag order known isbB = Y Z 0(ZZ 0)�1, and for the model with p lags we de�ne bBp = Y Z 01(Z1Z 01)�1.

We de�ne bB1, and bB2 analogously to B1;B2 above, so that bB = ( bB1; bB2). Note

that in general bB1 6= bBp.

3.A.1 Proof of Lemma 3.1

We derive the rates of convergence to 0 for the weights of model p for the two
di�erent cases p < p0, and p0 < p.

Consider the case p < p0. We can write

ZZ 0 =

�
Z1Z 01 Z1Z 02
Z2Z 01 Z2Z 02

�
:
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Figure 3.8: E�ective coverage (in percent) of the endogenous boot-
strapped impulse response coe�cients. The response of variable j to a
shock in variable i is labeled i > j. BIC is used for selecting the lag or-
der of the bootstrap process. The bias correction is applied to the OLS
estimates. T = 160.

Then by rearranging the formula for the OLS estimator along with applying the
de�nitions above we get

( bB1Z1Z 01+ bB2Z2Z 01; bB1Z1Z 02 + bB2Z2Z 02) = bBZZ 0 = Y Z 0 = (Y Z 01;Y Z
0
2)

) bBp � bB1 = Y Z 01(Z1Z 01)�1 � Y Z 01(Z1Z 01)�1 + bB2Z2Z 01(Z1Z 01)�1

= bB2Z2Z 01(Z1Z 01)�1:

We can use this to write

Y �BZ = Y �B1Z1 �B2Z2� bBZ + bB1Z1 + bB2Z2| {z }
=0

(3.11)

= (Y � bBZ) + ( bB2 �B2)Z2 + ( bBp �B1)Z1 � ( bBp � bB1)Z1

= (Y � bBZ) + ( bB2 �B2)Z2 + ( bBp �B1)Z1 � bB2Z2Z 01(Z1Z 01)�1Z1

= (Y � bBZ) + ( bBp �B1)Z1 + bB2(Z2 �Z2Z 01(Z1Z 01)�1Z1)�B2Z2;

where the second equality is obtained by simply adding and subtracting a term,
so adding 0. Subtracting ( bBp �B1)Z1 �B2Z2 from both sides (second and last
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line) of Eqn (3.11) we get

(Y � bBZ) + bB2Z2 � ( bBp � bB1)Z1 = Y � bBpZ1 (3.12)

= (Y � bBZ) + bB2(Z2 �Z2Z 01(Z1Z 01)�1Z1):

(Y � bBZ) is orthogonal to bB2(Z2 �Z2Z 01(Z1Z 01)�1Z1): Since bBZ =

Y Z 0(ZZ 0)�1Z is the projection of Y into the Z-space, Y � bBZ is orthogonal
to the Z-space. But the second summand is an object of the Z-space. Because
of this orthogonality the cross-terms in the following equation are zero and the
estimated innovation covariance matrix that we obtain by using the small model
with p lags can now be written as

T b�p = (Y � bBpZ1)(Y � bBpZ1)0

= (Y � bBZ)(Y � bBZ)0

+ bB2(Z2 �Z2Z 01(Z1Z 01)�1Z1)(Z2 �Z2Z 01(Z1Z 01)�1Z1)0 bB02
= T b�p0 + bB2(Z2Z 02 �Z2Z 01(Z1Z 01)�1Z1Z 02) bB02: (3.13)

Both summands are positive de�nite symmetric matrices.
Since 
 is assumed positive de�nite (cf. Eqn (3.2)), it follows with

j
j =
�����
11 
12


21 
22

����� = j
11jj
22 �
21

�1
11 
12j

from Rao (1973), that j
22 �
21

�1
11 
12j > 0 for any decomposition of 
 into

submatrices 
11;
12;
21;
22. Applying the continuous mapping theorem this
shows that the second summand of the RHS of Eqn (3.13) converges to a positive
real number in probability.

We now look at the ratio of sBIC model weights. Use Eqn (3.6) to �nd

bwBIC;pbwBIC;p0

=

 
j b�p0 j
j b�pj

!T=2
T (p0�p)d2=2

=

 
j b�p0 j

j b�p0 + T�1 bB2(Z2Z 02 �Z2Z 01(Z1Z 01)�1Z1Z 02) bB02j
!T=2

T (p0�p)d2=2:

It is well known that j b�p0 j=j b�pj � 1 (cf. L�utkepohl (1990), p. 147), and the

probability limit is even strictly smaller than 1, as just discussed. So
bwBIC;p

bwBIC;p0
=

Op(c
TT (p0�p)d2=2) holds for some c 2 (0; 1), and since bwBIC;p 2 [0; 1] for all

p 2 f1; : : : ; �pg also

bwBIC;p = Op(c
T
1 T

(p0�p)d2=2); and by completely analogous argumentsbwAIC;p = Op(c
T
2 exp((p0 � p)d2=2)) = Op(c

T
2 )

for some c1; c2 2 (0; 1).
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Now consider the case p > p0. Quinn (1980) shows consistency of BIC:

Prob( bwBIC;p > bwBIC;p0) = Prob
�

bwBIC;p
bwBIC;p0

> 1
�
! 0. Then we can conclude,

bwBIC;pbwBIC;p0

=

 
j b�p0 j
j b�pj

!T=2
T (p0�p)d2=2 = Op(T

(p0�p)d2=2)

) bwBIC;p = Op(T
(p0�p)d2=2);

where the last claim follows with bwBIC;p0 2 [0; 1]. Note that no faster rate of

convergence of bwp can be established, because j b�p0 j=j b�pj � 1. �

3.A.2 Proof of Theorem 3.2

The distribution of the averaged estimator is given by
p
T (b�( bwxIC)� �) =

p
T ( bwxIC;1b�1 + bwxIC;2b�2 + : : :+ bwxIC;�pb��p � �)

=

p0�1X
p=1

p
T bwxIC;pb�p +

�pX
p=p0+2

p
T bwxIC;pb�p (3.14)

+ bwxIC;p0

p
T
�b�p0 � �

�
+ bwxIC;p0+1

p
T (b�p0+1 � �):

To show b�p = Op(1) for p < p0 we note that Z1Z 01, and ZZ 01 are submatrices of
ZZ 0, and writebBp = Y Z 01(Z1Z 01)�1 = BZZ 01(Z1Z 01)�1 +UZ 01(Z1Z 01)�1

= B
1

T
ZZ 01

�
1

T
Z 01Z1

��1

+
1p
T

1p
T
UZ 01

�
1

T
Z 01Z1

��1

:

Then the claim follows from the continuous mapping theorem and Equation (3.2).
Note that from Lemma 3.1 we have for the sBIC weights:bwBIC;p = Op(T

�1=2) for p = p0 + 1;bwBIC;p = Op(T
�2=2) for p = p0 + 2; etc.

So we know
p0�1X
p=1

p
T bwBIC;pb�p =

p0�1X
p=1

p
TOp(c

TT (p0�p)=2)Op(1) =
p
TOp(c

TT (p0�1)=2)

= Op(c
TT p0=2);

�pX
p=p0+2

p
T bwBIC;pb�p =

�pX
p=p0+2

p
TOp(T

(p0�p)=2)Op(1) =
p
TOp(T

�2=2) = Op(T
�1=2);

where c 2 (0; 1). By Slutsky’s Theorem we also know that for the last term of
Equation (3.14),

bwBIC;p0+1

p
T| {z }

Op(1)

(b�p0+1 � �)| {z }
Op(T�1=2)

= Op(T
�1=2):
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So together the claim follows:
p
T (b�( bwBIC)� �) =

p
T (b�p0 � �) +Op(T

�1=2):

The sAIC weights for the large models p > p0 do not tend to 0, but are bounded
at 1. Since the estimates b�p for p > p0 are unbiased, analogously to the above
argumentation we only obtain

p
T (b�( bwAIC)� �) = Op(1): �

3.A.3 Derivation of a Bound for �

The expression in the proof of Lemma 3.1, Section 3.A.1, for the case p > p0,
where p0 is the true lag order, becomes

bwBIC;pbwBIC;p0

=

 
j b�p0 j
j b�pj

!T=2�
T

(p0 � p)d2

2� ;

when we include the parameter � in the de�nition of the weights. In order for the
last term to be O(1=

p
T ) it must hold that � � d2.

Also note that for the property of sAIC of not giving weights to models with
fewer than p0 lags to hold, �=T ! 0 su�ces.

3.A.4 Relation of sAIC and sBIC Weights

For this section set � = 1. The following lemma states the obvious fact that the
sBIC assigns more weight to models with fewer lags than the sAIC for �p = 2. It
can be generalized to show thatbwBIC;pbwBIC;p0 > bwAIC;pbwAIC;p0 ;
for any p; p0 2 f1; : : : ; �pg with p < p0,

Lemma 3.3. Let �p = 2, j b�pj�T=2 > 0 for p = 1; 2, and T d
2=2 > exp(d2). Then

bwBIC;1 > bwAIC;1; bwBIC;2 < bwAIC;2:
Note that the assumption on the choice of d and T is no real constraint in

empirical applications as it already holds for the case d = 14 and T = 8.
Proof. De�ne ap := j b�pj�T=2, and SxIC :=

P�p
p=1 exp(�xICp=2). Starting

from the assumption of the lemma, we get:

T d
2=2 > exp(d2)

, T�d
2=2

T�d2 >
exp(�d2)

exp(�2d2)

,
bwBIC;1 SBIC

a1bwBIC;2 SBIC
a2

>
bwAIC;1 SAIC

a1bwAIC;2 SAIC
a2
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, bwBIC;1bwBIC;2 > bwAIC;1bwAIC;2
, 1� bwBIC;2bwBIC;2 >

1� bwAIC;2bwAIC;2
, 1bwBIC;2 � 1 >

1bwAIC;2 � 1;

since the weights sum to one. Then the result follows.

3.A.5 Asymptotic Validity of the Bootstrap Procedure

We will now establish the asymptotic validity of the bootstrap of Section 3.4 by
using arguments of Bose (1988), Kilian (1998a,b), and L�utkepohl (1990), which
we only have to adjust slightly for the model averaging case.

Note that as mentioned in Section III.A of Kilian (1998b) the proof shows
validity for the studentized estimator only. This means that when the estimator’s
bootstrapped variance is di�erent from the true variance, the method may still
perform poorly in small samples, for example.

First, assume that the true lag order p0 is known. For this case Kilian (1998b)
shows asymptotic validity, and we reiterate the arguments in this paragraph. Esti-
mates of � are obtained via OLS. Then we can use Bose (1988) who shows that the

di�erence between the Edgeworth expansion for the bootstrapped estimate b�� and
a comparable expansion for b� is o(T�1=2) almost surely: Let �b� = 
�1 
�u be

the asymptotic variance of b�, and de�ne �b�� , �b�, and �b�� analogously. Terms

like ��1=2
b�

denote the Choleski factors of the inverse of those variances. Then, for

almost every sequence fytg,

sup
x

���P � �pT��1=2
b��

(b�� � b�) � x
�
� P

�p
T��1=2

b�
(b� � �) � x

���� = o(T�1=2);

(here x 2 Rd
2p0) and by an analogous argument,

sup
x

���P � �pT��1=2
b�� (b�� � b�) � x

�
� P

�p
T��1=2

b� (b� � �) � x
���� = o(T�1=2);

(here x 2 Rd(d+1)=2). Further, it is well known that

p
T

� b� � �b� � �
�

d�! N
�

0;

�
�b� O

O �b�

��
: (3.15)

To make the dependence of the impulse response coe�cient on the underlying
model parameters explicit we will write �(�;�) in the next few lines for this
continuously di�erentiable function. Then its gradient r�(�;�) is a continuous
function in its arguments �;�. Now, by the Delta method we know

p
T (�(b�; b�)� �(�;�))

d�! N
�

0;r�(�;�)0
�
�b� O

O �b�

�
r�(�;�)| {z }

=: �2
b�

�
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)
p
T��1

b�
(�(b�; b�)� �(�;�))

d�! N (0; 1); (3.16)

The same arguments hold in the bootstrap world so that Equation (3.16) analo-
gously holds for the bootstrapped estimator.

Thus we have shown that the bootstrap yields an asymptotically valid approx-
imation of the estimate of �, if the true lag order p0 is known. So reintroducing
p0 as a subscript with the obvious notations we have shown:

sup
x

����P ��pT��1
b��p0

(b��p0
� b�p0) � x

�
� P

�p
T��1

b�p0
(b�p0 � �) � x

����� = O(T�1=2):

(3.17)

These have been the arguments of Kilian (1998b) proving validity for the case of
a known lag order.

Now we consider the model averaging case with sBIC weights. To shorten
notation we will use b� = b�( bwBIC), b�� = b��( bw�BIC). De�ne random variables

b = j
p
T (b� � �)�pT (b�p0 � �)j; (3.18)b� = j
p
T (b�� � b�)�pT (b��p0

� b�p0)j:

Then by Theorem 3.2 for any � > 0:

P (b > �)! 0; (3.19)

P �(b� > �)! 0: (3.20)

Here the second statement holds if Theorem 3.2 also holds for the bootstrapped
quantitities. This is essentially the case when Equation (3.2) also holds for the
bootstrapped quantitities, as this is the main assumption needed. By Bose (1988)’s
Remark 3.10, Equation (3.11) this can be seen to be the case.

Denote by �b� and �b�� the variances of b�; b�� respectively. These are �nite. Now
let T 2 N. In the following we divide the probability space into the sets b > T�1,b� > T�1 and their complements, and write,

sup
x

���P � �pT��1
b��

(b�� � b�) � x�� P �pT��1
b�

(b� � �) � x���� (3.21)

= sup
x

���P � �pT��1
b��

(b�� � b�) � x; b� � T�1
�

+ P �
�p

T��1
b��

(b�� � b�) � x; b� > T�1
�

�P
�p

T��1
b�

(b� � �) � x; b � T�1
�
� P

�p
T��1

b�
(b� � �) � x; b > T�1

����
= sup

x

���P � �pT��1
b��

(b�� � b�) � x; b� � T�1
�

+P �
�p

T��1
b��

(b�� � b�) � xjb� > T�1
�
P �(b� > T�1)

�P
�p

T��1
b�

(b� � �) � x; b � T�1
�

�P
�p

T��1
b�

(b� � �) � xjb > T�1
�
P (b > T�1)

��� ;
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where the last equality simply follows by the de�nition of conditional probabilities.
By the triangle inequality we continue

� sup
x

���P � �pT��1
b��

(b�� � b�) � x; b� � T�1
�
� P

�p
T��1

b�
(b� � �) � x; b � T�1

����
+ sup

x

���P � �pT��1
b��

(b�� � b�) � xjb� > T�1
�
P �(b� > T�1)

���
+ sup

x

���P �pT��1
b�

(b� � �) � xjb > T�1
�
P (b > T�1)

���
= sup

x

���P � �pT��1
b��

(b�� � b�) � x; b� � T�1
�
� P

�p
T��1

b�
(b� � �) � x; b � T�1

����
+ sup

x

���P � �pT��1
b��

(b�� � b�) � xjb� > T�1
����P � �b� > T�1

�| {z }
!0 by Eqn (3:20)

+ sup
x

���P �pT��1
b�

(b� � �) � xjb > T�1
���� P �b > T�1

�| {z }
!0 by Eqn (3:19)

;

where the last two lines converge to 0 since probabilities are bounded. So in the
limit we are left with

lim
T!1

sup
x

���P � �pT��1
b��

(b�� � b�) � x; b� � T�1
�

�P
�p

T��1
b�

(b� � �) � x; b � T�1
����

= sup
x

��� lim
T!1

P �
�p

T��1
b��

(b�� � b�) � x; b� � T�1
�

� lim
T!1

P
�p

T��1
b�

(b� � �) � x; b � T�1
����

= sup
x

����P ��pT��1
b��p0

(b��p0
� b�p0) � x

�
� P

�p
T��1

b�p0
(b�p0 � �) � x

����� ;
because \

T2N

np
T��1

b�
(b� � �) � x; jpT (b� � �)�pT (b�p0 � �)j � T�1

o
=

�p
T��1

b�p0
(b�p0 � �) � x

�
;

an analogous statement for the bootstrapped quantities holds, and because prob-
ability measures are antitonic continuous. Now, this is the expression that we
bounded in probability in Equation (3.17). Thus, expression (3.21) is bounded.
So we have shown asymptotic validity of the sBIC averaged estimator for both,
the endogenous and exogenous bootstrap.

Now consider the case of using AIC. This case we cannot directly relate to the
case of selecting the true lag order, because the sAIC-based averaged estimator
has a larger variance. But by Equation (3.8), asymptotically AIC does not under-
select, and in the large models the VAR coe�cient estimates for p > p0 tend to
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zero: Ap
p�! O. This means that the bootstrapped data will adequately reect

the observed data. Hence, covariances up to order �p, E(yty0t��p), will be boot-
strapped correctly. The sAIC-based averaged estimator will not assign any weight
to models that are too small, thus is bounded in the limit, cf. Theorem 3.2, and
its distribution gets bootstrapped correctly.

3.A.6 Additional Simulation Results

Figure 3.9 amends Figure 3.13 by showing results for all impulse response func-
tions’ estimates from the setting of Section 3.A.7.

Figures 3.10 and 3.11 supplement the results of Figures 3.2 and 3.5, respec-
tively. They show the MSE alongside the squared bias, which, together with an
estimator’s variance, sums to the former. We see that while the performance of the
sAIC-based estimator is virtually only governed by the estimator’s variance, for
the sBIC-based estimator the squared bias contribution is much more important.

This is why to explain the sAIC-based estimator’s MSE performance, we in-
spect variances in Figure 3.12. The estimator labeled fw is the �xed weight esti-
mator employing the weight vector (0.11, 0.10, 0.3, 0.52, 0.13, 0.6, 0.3, 0.2). These
are the observed weights of the sAIC estimator of Table 3.1. Consequently, the
�xed weight estimator in this case is the counterpart to the sAIC estimator but
without estimation uncertainty of the weights. The e�ects of added variability
and covariability (between weights and impulse response estimates) from estimat-
ing the weights appears to be strictly positive in total: The yellow line always lies
below the blue broken line. The MSE plots for VAR(4) and the sAIC estimator
of Figure 3.2 are very similar to the variance plots. We believe that the fact that
the AIC- and sAIC- based estimators give an importance (selection frequency and
weight, respectively, cf. Table 3.1) of around 10% to the models with 1 and 2
lags, and these models in turn have a much lower variance than the models with
more lags, explains most of the MSE behavior of impulse response 1! 1 at large
horizons in Figure 3.2.

3.A.7 Simulation Setting Imitating Stock and Watson (2001)
Data

In order to check our results with a second type of process we simulate data based
on the estimates of Stock and Watson (2001). Note that we discuss this data set
more in detail in Chapter 4. Stock and Watson (2001) estimate a VAR(4) for three
macroeconomic variables: The unemployment rate, the federal funds rate, and the
ination rate. The frequency is quarterly, the largest estimated root is 0.97 at a
sample size of 160. Based on the estimates that we acquire from this speci�cation
we simulate 1000 Monte Carlo repetitions. In this Monte Carlo setting p0 = 4 is
the true lag order. Again we allow models up to �p = 12, the largest integer smaller
than

p
T , to be estimated. Di�erently from the MSE graphs of the previous

subsection, here we divide the MSE of the AIC-based impulse response estimators
by the MSE of the true lag method to obtain a sort of normalization making
more evident the di�erences in MSE. This is similar to the normalization used
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Figure 3.10: MSE and squared bias of sAIC-based estimator. The re-
sponse of variable j to a shock in variable i is labeled i > j. T=80.

by Hansen (2007) for plotting. Figure 3.13 shows the normalized MSE of these
di�erent impulse response coe�cient estimators. The sAIC-based estimator has
a lower MSE than the AIC-based selection estimator. The same holds true for
the other impulse response coe�cient estimates, which are shown in the appendix,
Figure 3.9.

Figure 3.14 shows estimated impulse response functions for one particular sim-
ulation run together with their bootstrapped con�dence intervals. While AIC
suggests a lag of 6, the sAIC based estimator divides the weights across all avail-
able lags. As a consequence the resulting impulse response functions are di�erent
from each other, and we see that the 66% con�dence interval around the AIC-
based function barely contains the sAIC-based function at horizon 6. For lower
signi�cance levels the sAIC function might not be included in the intervals at all,
while it is one desired property of con�dence intervals to contain the estimate.
This illustrates the natural requirement of con�dence intervals which take into
account the nature of the averaging estimator. We de�ne such a procedure in
Section 3.4 and prove its validity.

Figure 3.15 shows the coverage of the selection and averaging methods’ point-
wise con�dence intervals, con�rming the results of the previous section that both
estimates lie close together. From these pointwise con�dence intervals joint con-
�dence bands of the adjusted Bonferroni method have been calculated and their
e�ective coverages displayed in Table 3.4. From the table we see that none of ei-
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Figure 3.11: MSE and squared bias of sBIC-based estimator. The re-
sponse of variable j to a shock in variable i is labeled i > j. T=160.

ther method uniformly outperforms the other in terms of having a coverage closer
to the intended nominal coverage. The estimates on the Stock and Watson (2001)
inspired data set hence con�rm the observations on the MSE and e�ective coverage
performance made in Section 3.5.1.
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Figure 3.12: Empirical variances of the sAIC-based and the �xed weight
estimator with weights equal to the average sAIC weights. The response
of variable j to a shock in variable i is labeled i > j. T=80.
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Figure 3.13: MSE of impulse response coe�cient estimators normalized
by the MSE of the impulse response estimator of the VAR(4), the true
lag order. Black line: VAR(4). Gray solid: AIC. Gray broken: sAIC. The
averaging method outperforms the selection method. The DGP is based
on Stock and Watson (2001) estimates.

3.A.8 Simulation Setting Based on L�utkepohl et al. (2015)

In this section we consider a DGP where the larger of two sensible models is hard
to detect. Such a setting might favour model averaging methods. We use the DGP
de�ned in L�utkepohl et al. (2015), and amend it by a second coe�cient matrix
with only one non zero coe�cient. With the notation of Section 3.2 above, let the
VAR(2) DGP be de�ned by

A1 =

�
a 0

0:5 0:5

�
;A2 =

�
b 0
0 0

�
;�u =

�
1 0:3

0:3 1

�
: (3.22)

We vary a and b between -1 and 1 under the constraint that the process remains
stationary. Figures 3.16 - 3.19 show MSE results for some of these parameter
combinations. Table 3.5 shows the e�ective coverage of the adjusted Bonferroni
methods. We note that the averaging method outperforms the selection method
in terms of MSE but not in terms of e�ective coverage. This goes in line with the
observations that we made in the main text. Also, the e�ective coverage of the
sAIC method is consistently lower than that of the AIC method. This brings the
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Figure 3.14: Impulse response of ination to a shock in ination. AIC-
and sAIC-based estimates together with their 66% bootstrapped (point-
wise) con�dence intervals. The DGP is based on Stock and Watson (2001)
estimates. T = 80.

Figure 3.15: Coverage of impulse response coe�cient estimators. Black
line: VAR(4). Gray solid: AIC. Gray broken: sAIC. The DGP is based
on Stock and Watson (2001) estimates.
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�p cov mthdnIR 1! 1 2! 1 3! 1 1! 2 2! 2 3! 2 1! 3 2! 3 3! 3

12 95 true lag 87.7 92.9 92.5 92.0 83.1 94.6 91.2 90.2 88.4
AIC 86.2 94.0 91.7 92.0 82.1 94.7 91.2 89.2 86.7
sAIC 85.7 93.6 90.9 91.7 81.6 94.4 90.6 89.8 86.5

9 66 true lag 60.5 67.3 64.5 64.0 53.0 64.5 64.8 63.8 54.0
AIC 57.3 65.8 65.5 65.0 53.3 66.0 64.5 62.3 53.5
sAIC 57.3 66.8 66.0 65.3 53.0 65.5 64.8 61.0 54.5

Table 3.4: E�ective coverage (in percent) of the adjusted Bonferroni
joint con�dence bands for di�erent estimators (methods/mthd). T = 160.
Top panel: �p = 12, nominal coverage (cov): 95%. Bottom panel: �p = 9,
nominal coverage (cov): 66%.

e�ective coverage of the former compared to the latter closer to the desired 95%
coverage for the estimation of the response of variable 2 to a shock in variable
1 with H = 16 horizons, a = 0; b = 0:05, for example, but further away for
a = 0; b = 0:95.

Figure 3.16: MSE of impulse response coe�cient estimators. The re-
sponse of variable j to a shock in variable i is labeled i > j. The DGP is
de�ned by Equations 3.22 with a = 0:5; b = 0:45, T = 80. The averaging
method outperforms the selection method.
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Figure 3.17: MSE of impulse response coe�cient estimators. The re-
sponse of variable j to a shock in variable i is labeled i > j. The DGP is
de�ned by Equations 3.22 with a = 0:0; b = 0:05, T = 80. The averaging
method outperforms the selection method.

H method T a b n IR 1! 1 2! 1 1! 2 2! 2

16 AIC 80 0.5 0.45 61.6 98.0 65.0 91.2
AIC 80 0.0 0.05 96.2 99.6 97.1 93.1
AIC 80 0.0 0.95 63.4 98.6 58.7 90.2

16 sAIC 80 0.5 0.45 59.5 97.6 62.9 89.5
sAIC 80 0.0 0.05 95.6 99.6 96.1 91.5
sAIC 80 0.0 0.95 61.6 98.1 56.9 88.9

10 AIC 100 0.0 0.05 92.2 99.0 92.6 93.3
sAIC 100 0.0 0.05 90.7 98.8 90.4 92.2

Table 3.5: E�ective coverage (in percent) of the nominal 95% adjusted
Bonferroni joint con�dence bands. H denotes the number of horizons of
the estimated impulse response function, T the sample size, a and b denote
parameter values of the simulated DGP.
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Figure 3.18: MSE of impulse response coe�cient estimators. The re-
sponse of variable j to a shock in variable i is labeled i > j. The DGP is
de�ned by Equations 3.22 with a = 0:0; b = 0:95, T = 80. The averaging
method outperforms the selection method.

Figure 3.19: Like Figure 3.18, but with a = 0:0; b = 0:05, T = 100.
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Chapter 4

An Application of Model
Averaging in Structural
VARs

Structural VAR models are a central tool in macroeconomic and monetary pol-
icy analysis. We make suggestions on modelling choices by revisiting previous
empirical studies using VAR models and applying model selection and model av-
eraging criteria, that have not been previously applied in this setting. Among
other things we �nd that AIC-based model averaging yields smoother and more
precise estimates of impulse response functions than AIC-based model selection,
and that sampling data at a higher frequency (monthly) leads to higher precision
than sampling at lower frequencies. At the same time, the results drawn from
lower frequency (quarterly) data are more robust to the choice of model selection
method.

4.1 Introduction

All the estimators that were presented in the previous chapters together with their
theoretical properties, are applicable in structural VAR modeling. The question
that follows is how do they perform with empirical data? This chapter answers
this question by revisiting three empirical studies that use VARs for analyzing
monetary policy. The chapter gives guidance on the use of these estimators to em-
pirical researchers who amend their toolbox with these. Additionally to applying
the estimators from the previous chapters, we use the opportunity of applying the
jackknife model averaging estimator, that is relatively new and has not been as
widely used in this setting, and the equal weights average estimator, to empirical
data, the latter of which interestingly performs similarly to the studies’ benchmark
estimates for quarterly data. We also add some other commonly used model selec-
tion criteria. Hence, we end up with a host of di�erent model selection and model
averaging estimators whose estimates we compare. This also serves as a kind of
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robustness check, as discussed in the following paragraph, answering the question
of how robust the results drawn from our sVAR analyses are to the concrete choice
of model selection or model averaging method. The analysis of the performance
of the above-mentioned estimators in empirical macroeconomic modelling forms
the main contribution of this chapter. The three studies we revisit are Christiano
et al. (1999), Stock and Watson (2001), and Uhlig (2005), which have been care-
fully selected for their similar analyses. They all estimate exogenous monetary
shocks for US data sets of similar time periods, and apply the same structural
parametrization for identifying impulse response functions. But the data sets do
di�er in sampling frequency and number of variables, and this, additionally to
our above-mentioned contribution, allows us to compare the performance of the
estimators across the di�erent sampling frequencies of the data sets and to make
suggestions on sampling frequency based on a comparison of estimator precision
across the di�erent data sets.

Robustness checks on econometric results are important, because a researcher
setting up a structural VAR analysis is confronted with model uncertainty at
various stages. Consider the case of frequentist model selection. Here, after having
decided on a set of variables to model, she needs to decide on a model size, i.e.
lag order of the VAR, but before making this choice she �rst needs to settle on a
method of choosing that model size (and a set of models to consider for selection).
Out of a large set of such methods some typically used examples are model selection
by minimizing some model selection criterion, and series of tests like likelihood
ratio tests. In the case of model averaging the problem remains in essence the same.
We will not treat the related Bayesian methods like Bayesian model averaging, as
the previous studies, that we discuss in this chapter, as well as the results of the
previous chapters, also rely on frequentist methods for estimation. Frequentist
model selection and model averaging methods assign weights to the estimators of
certain parameters of interest that result from using the di�erent models in the
set of models considered for selection or averaging. In the case of selection these
weights are binary, either 0 or 1, and only the estimates of one of the models
receive weight 1. In the case of averaging the weights are typically restricted to lie
between 0 and 1 and sum to 1. So we can think of the term estimator weighting
methods to refer to both, model selection and model averaging methods. We
check the robustness of the results of the three classical monetary sVAR studies
by applying new model selection methods and model averaging methods that had
not been as well researched or even known when those studies were authored. We
compare the results to the ones in the original studies, and analyze what type of
estimates the additional methods deliver.

Our idea is similar to that of Ivanov and Kilian (2005), who run a simula-
tion study of di�erent VAR models to identify suitable model selection criteria
for di�erent types of macroeconomic data (e.g. di�erent frequencies of observa-
tions). Next to the model selection criteria AIC, BIC and HQ (Hannan-Quinn)
they also include the methods of sequential likelihood ratio tests with and with-
out bias correction, and sequential Lagrange multiplier tests. Ivanov and Kilian
(2005) conclude that the lowest MSE of estimated impulse response functions can
be achieved when using the model selection methods instead of sequential tests.
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Speci�cally they recommend using the AIC for monthly macroeconomic data, and
the HQ for quarterly data. Their results are an extension of Kilian (2001), who
compares impulse responses’ MSE’s in a bivariate setting for a few di�erent model
selection criteria.

One of the new model selection criteria that we add to the analyses is the
focused information criterion (FIC) that was pioneered by Claeskens and Hjort
(2003). It has been used in a time series setting by Hansen (2005), Claeskens et al.
(2007) and rigorously de�ned in Chapter 2. While many common information cri-
teria are geared towards measuring the ability of a model to explain the observed
data, the focused information criterion allows to measure the �t of (almost) any
arbitrary parameter that is a function of the assumed model. We want to inves-
tigate whether this di�erence in object of interest leads to qualitatively di�erent
estimation results. Another set of methods that we add are frequentist model aver-
aging methods. Model averaging has been advocated in Hansen (2005) as a means
to ease the problem of model uncertainty. While Bayesian model averaging, which
we do not make use of 1, is an established estimation method, frequentist model
averaging is a newer concept and has not been as widely applied yet. We show
in Chapter 3 that the smooth averaging estimators based on AIC and BIC, sAIC,
sBIC, do converge to their model selection counterparts. By sAICb we denote the
sAIC estimator with the weight scaling parameter �, described in Section 3.3.1
above and Section 4.2 below, set equal to d2, with d being the number of variables
in the VAR. Hjort and Claeskens (2003a) establish properties of frequentist model
averaging. We �nd that the sAICb method delivers results that are similar to,
but more intuitive than those of the commonly used AIC method, and that one
of the FIC averaging methods, in turn, performs similarly to the sAICb method.
In terms of robustness we �nd that for the quarterly data the concrete choice of
estimator weighting method is less important than for the monthly data.

In structural VAR analyses, additionally to the size of the model another choice
to make is that of the orthogonalization of the impulse responses, which is a choice
of parametrization from a class of empirically equivalent models, cf. Chapter 9
of L�utkepohl (2005). As in the previous chapters of this thesis and in the sVAR
studies that we will discuss and use here, we use a recursive identi�cation scheme,
cf. Chapter 1. As the di�erent available identi�cation schemes of structural VARs
are not the center of our analysis and in order to be able to compare our �ndings
with those of the studies under consideration, we apply the same orderings of
the variables as chosen in the studies. As alluded to above, the data sets di�er
in sampling frequency. While Uhlig (2005) uses a monthly data set, the other
two articles rely on quarterly data. This o�ers an interesting opportunity for
studying the impact that sampling macroeconomic data at di�erent frequencies
has on precision, i.e. the mean squared error. The data sets also di�er in number of
variables that are being modelled. We �nd that including more variables seems to
worsen estimator precision. To quantify precision we use bootstrapped con�dence
bands and we �nd that sampling data at higher frequency increases estimator
precision. The articles are �rst treated separately in Section 4.3, their results are

1We do apply the Bayesian information criterion, BIC, but within frequentist type model
selection and averaging.
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then discussed in the subsequent part. All of this is preluded by a presentation of
the methods that we apply.

In terms of notation p stands for the minimum, and p for the maximum consid-
ered number of lags used in the estimated VAR model, whose number of variables
is denoted by d. We consider the model set of VAR(p) models with p 2 fp; : : : ; pg.
Unless noted otherwise we have chosen p = 1. In the following T denotes the e�ec-
tive sample size, so the number of observations that remains when deducting the
�rst p observations. We will often simply write responses when we mean estimated
impulse responses.

4.2 Estimation Methods

VAR Modelling As mentioned in Chapter 1 and in Section 4.1 above, all three
studies we consider here use a recursive ordering of the variables in the VAR to
ensure identi�ability of the impulse responses. Interestingly one of these, namely
Uhlig (2005), contrasts two di�erent approaches to identify the VAR’s structural
innovations, the second one of which is identi�cation by sign restrictions. We do
not discuss this concept in detail here, but give a brief summary of it in Chapter 1.

We do �nd a largest absolute value of the lag polynomial’s root close to 1 for all
three speci�cations from these studies. And while it is also often conjectured in the
literature that interest rate time series like the federal funds rate are not stationary,
we follow the original authors in using the same data transformations even if the
resulting estimates imply nonstationarity. So we assume that the VARs are stable.
We do this to be able to directly compare our results with theirs. Speci�cally, the
authors of the three studies do not mention having imposed any unit roots. We
leave it for future research to elaborate on the e�ect of imposing a unit root in
the speci�cations. Note that Paulsen (1984) shows that the BIC and the HQ
information criterion remain consistent in the presence of unit roots.

Model Selection and Averaging Apart from plotting the impulse response
estimates implied by the original authors’ chosen lag order we use a host of di�erent
model selection and model averaging procedures to obtain estimates. We use
methods that are already commonly applied, as well as more recent methods, that
have not been as widely applied in structural VAR analyses. The new theoretical
results for the FIC methods of Chapter 2 for example, demand an application to
empirical data and a comparison with the �ndings for alternative models.

First of all we select models based on the well known Akaike and the Bayesian
information criterion, AIC and BIC. These are described in Chapter 3 above to-
gether with their smoothed model averaging counterparts, sAIC and sBIC. The
smoothed estimators depend on a weight scaling parameter �. For � = 1 we obtain
the case of the smoothed estimators as described in the literature to date, but for
any � with 0 < � � d2, where d is the number of variables in the VAR, we have
shown in Section 3.3 above that the asymptotic properties typical for the AIC
and the BIC estimator still hold. In our graphs we plot the sAIC estimators with
� = 1; d2 and label these with sAICa, sAICb respectively. The former has more
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concentrated weights and is more similar to the AIC model selection estimator, cf.
Section 3.3.1, while the latter has more spread out weights and is more similar to
the averaging estimator that assigns equal weight of 1=p to each model, the equal
weights estimator, labeled EW. Hansen (2008) calls this simple averaging in the
context of forecast combinations. One might also be tempted to put the averaging
estimator with � = T , the sample size, to the test, as this estimator results from
calculating smoothed weights from another commonly encountered de�nition of
the AIC score, as discussed in Section 3.3.1. This averaging estimator delivers
results very similar to the equal weights estimator. In fact, only for the data set
of Christiano et al. (1999) are the estimated impulse response functions di�erent
between the equal weights estimator and the smoothed weights estimator with
� = T . But also for that case do they lie closely together and have very similar
shapes.

Another model selection criterion that we include in our analysis because of
its close relation to the AIC and the BIC is the Hannan-Quinn criterion, labeled
HQ in the following. For the pth candidate model, p 2 fp; : : : ; pg, the HQ score is
de�ned as

HQp = T log j b�pj+ 2pd2 log(log(T ));

cf. Equation (4.19) of Juselius (2006). Here b�p is an estimate of the covariance
matrix of the disturbances in a model with p lags. The Hannan-Quinn estimator
is the one that selects the model with the lowest HQ score.

We will discuss the estimated impulse response functions for the di�erent data
sets and estimation procedures in detail in the coming sections, but provide Figure
4.1 here already as a �rst illustration. It shows the estimated impulse response of
ination to a shock in the federal funds rate resulting from using a VAR(4) and
the other model selection and averaging methods discussed here for estimation.
The green line shows the estimate resulting from employing BIC model selection.
When using sBIC model averaging with � = 1 the same estimates are obtained in
this case, which is why there is no separate line plotted. The line based on the AIC
averaging estimator with � = d2, sAICb, lies closer to the one for equal weights
than the sAICa implied estimate. For � = T we obtain the same estimates as with
the equal weights estimator, which is why this line is not plotted.

The jackknife model averaging estimator is labeled JMA. It was suggested by
Hansen and Racine (2012) for estimating linear models with heteroskedastic errors
and is applied in the simulations of Chapter 2 above. Hansen and Racine (2012)
show that the model weights obtained with the JMA estimator achieve the lowest
possible expected squared error under certain conditions.

Furthermore we apply the FIC estimators developed in Chapter 2. These can
be de�ned for di�erent focus parameters, for example for one speci�c impulse re-
sponse coe�cient. This allows a di�erent model to be selected at each horizon,
and as Figure 4.1 shows this leads to very erratic estimates. The red line labeled
FIC corresponds to this de�nition. It is the one showing the lowest point estimate
at horizon 14 and the highest (at around 0) at horizon 18. Since one is typically
interested in �nding a model speci�cation that estimates whole impulse response
functions, we will not use this narrowly focused estimator in the following, but
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Figure 4.1: Stock and Watson (2001) data set IRs estimated
from a VAR(4) (black line) and various estimation methods. p = 12.

de�ne a broader focus, namely all the impulse response coe�cients under con-
sideration in the speci�c model. These are d2(H + 1) in number, where d is the
number of variables in the VAR, and H is the number of horizons under consider-
ation (for Stock and Watson (2001) H = 24, for example). We choose the trace of
the estimated AMSE matrix, cf. Remark 2.10, as the means to aggregate the indi-
vidual FIC scores, and label this method FICir. This means that the FIC is set up
to select the model that minimizes the sum of the d2(H+1) estimated asymptotic
MSE’s of the impulse response coe�cients. Additionally we consider the criterion’s
model averaging version without bias correction, cf. Equation (2.10), and label it
FICirb. The de�nition of our focus is just one particular illustratory choice, but
in general most foci that a researcher might think of can be de�ned for the FIC.
The focus only has to be expressed as a smooth function of the model parameters,
cf. Chapter 2. One interesting choice for policy analysis might involve a di�eren-
tiation between short- and long-run impulse response coe�cients, cf. Chapter 9.1
of L�utkepohl (2005). We leave this for future research.

We will typically only present the impulse response functions based on a se-
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lection of these model criteria to keep the �gures uncluttered and well readable.
The estimates based on the sAICa procedure, for example, usually lie very close
to these of the AIC and sAICb methods by construction, and will for this reason
often not be graphed. For joint con�dence bands we apply the adjusted Bonferroni
method described in Chapter 3 to pointwise con�dence intervals obtained from the
following bootstrap procedure.

Bootstrap Procedure Kilian (1998a) suggests reestimating the lag order in
each bootstrap replication, and shows the asymptotic validity of this method which
we adopt when strongly consistent model selection criteria are used. Furthermore
it is shown that the validity of the bootstrapped con�dence intervals in this setting
is still given when using AIC. Let xIC stand for the chosen information criterion.
Then the algorithm is as follows.

1. Choose p; p. Fit VAR(p) models, p � p � p, to the data fytg,

yt = bA1yt�1 + bA2yt�2 + : : :+ bAbpyt�bp + but:
Determine bp by minimizing the xIC.

2a. Generate bootstrap replications fy�t g based on the recursion

y�t = bA1y�t�1 + bA2y�t�2 + : : :+ bAbpy�t�bp + u�t ;

where the fu�t gTt=1 are obtained as follows: Let K be the number of variables.

Draw randomly with replacement from the but multiplied by
�

T
T�Kp�1

�1=2

(cf. Davidson & MacKinnon (2004)). Demean the set of T draws.

For each bootstrap replication fy�t g

2b. Fit VAR(p) models, p � p � p, to the series and determine bp� by minimizing
the xIC. (endogenous lag order bootstrap)

3. Calculate the impulse response coe�cient b��( bA�1; : : : ; bA�bp� ; b��).
This procedure yields a distribution of the estimates of the impulse response coef-
�cient �. Pointwise con�dence bands for a nominal coverage of 1� � can then be
obtained by reading o� the �=2 and 1 � �=2 percentile interval endpoints of the

set of bootstraped estimates b��. Their standard deviation is the standard error of
�, which is reported in Table 4.4 for some responses.

A variation of this method is the exogenous lag order algorithm: Leave out
step 2b, and set bp� = bp instead.

Analogously to these bootstrap algorithms for model selection estimators we
de�ne counterparts for averaging estimators in Section 3.4.
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4.3 Estimates

This section details the speci�cations used in the three di�erent empirical studies.
The �rst paragraph containing Table 4.1 gives an overview of the di�erent data
sets and model speci�cations, which are subsequently laid out in detail for each
of the studies separately, together with plots of the resulting impulse response
functions. The discussion of the results takes place in Section 4.4.

Overview The speci�cations of all three data sets are comprehensively listed
in Table 4.1. The three studies used slightly di�erent time series. The quarterly
data set of Stock and Watson (2001) includes all the years from 1960 until 2000,
Christiano et al. (1999)’s quarterly time series lasts from 1965:Q3 until 1995:Q2,
and Uhlig (2005) works with monthly data stretching from 1965 to 2003. The
chosen lag order of four in the �rst two studies, and twelve in the last one hence
all correspond to the time horizon of one year. But Ivanov and Kilian (2005)
note that in general dynamcics for models with the same variables measured at
di�erent frequencies are di�erent.2 And when comparing the di�erent results we
make the same observation as well, see below. Note however that Uhlig (2005)
may be a special case, since the monthly data has been obtained by interpolation
from lower frequency data. The interpolation method for acquiring monthly data
used by Uhlig (2005) is described in Bernanke et al. (1997) and Bernanke and
Mihov (1998). Temporal aggregation of time series is the opposite operation.
Low frequency data for ow variables are aggregates from high frequency data.
Silvestrini and Veredas (2008) survey the current state of the literature on temporal
aggregation.

The chosen parametrization for ensuring identi�cation of a structural mone-
tary policy shock implies a contemporaneous e�ect of zero of certain variables.
For Stock and Watson (2001) these are the ination response to a shock in unem-
ployment, and the responses of ination and unemployment to a monetary policy
shock. For the other data sets these are the responses of real GDP, the GDP price
deator and the commodity price index to an exogenous monetary policy shock.

Stock and Watson (2001) Stock and Watson (2001) employ a three variable
quarterly data set consisting of the rate of price ination3, the unemployment -,
and the federal funds interest rate for the period 1960:Q1-2000:Q4, T = 160 ob-
servations. The order of the variables in the respective VAR corresponds to the
order in which they are named in this section for all three data sets. A unit
root in the federal funds rate cannot be rejected with a p-value of 0.38, and the
largest absolute value of the roots in the VAR(4) that they choose to estimate is
0.9714. But we do not impose a unit root for estimation for the reasons discussed
in Section 4.2 above. We set p = 12 and report additional results for p = 9 in the

2Obviously, for VARMA models the parameters of the model for the low frequency observa-
tions are functions of the parameters of the model for the high frequency observations, also cf.
Silvestrini and Veredas (2008).

3Stock and Watson (2001): \The ination data are computed as �t = 400 ln(Pt=Pt�1), where
Pt is the chain-weighted GDP price index".
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SW CEE Uhlig

frequency quarterly quarterly monthly
period 1960:Q1 - 2000:Q4 1964:Q3 - 1995:Q2 1965:01 - 2003:12
impulses all monetary monetary
benchmark lag order 4 4 12
max horizon 24 16 60

1 Price Y Y
2 unemployment Price Price
3 FF Pcom Pcom
4 � FF FF
5 � NonbR NonbR
6 � TotR TotR
7 � M1 �

Table 4.1: Speci�cations of the di�erent sVAR studies. Impulses de-
scribes which impulse responses are plotted: SW plot all nine impulse
response functions, the other studies only show the responses to a struc-
tural monetary shock. The second part of the table lists the variables
in the ordering used for modelling. FF stands for the federal funds rate.
Data sets of SW: Stock and Watson (2001), CEE: Christiano et al. (1999),
Uhlig: Uhlig (2005). � stands for \not applicable".

appendix. p = 12 is chosen as it is the largest integer smaller than
p
T as sug-

gested in Chapter 3.5. Figure 4.2 shows the estimated impulse response functions,
Table 4.2 the weights of the averaging estimators. It shows that, as expected, the
di�erent averaging estimators divide the weights di�erently between the lags, and
this translates into di�erent estimated response functions in Figure 4.2.

Christiano et al. (1999) Christiano et al. (1999)’s structural VAR models
seven variables: The log of real GDP (Y), the log of the implicit GDP deator
(Price), the smoothed change in an index of sensitive commodity prices (Pcom),
the federal funds rate (FF), the log of nonborrowed reserves plus extended credit
(NonbR), the log of total reserves (TotR), and the log of M1 (M1), all quarterly
observed in the period 1964:Q3-1995:Q2 resulting in 124 observations.4 The au-
thors choose four lags, but o�er no motivation for this choice, that corresponds
to a one year period and implies a largest absolute root of 0.990 of the estimated
lag polynomial. We set p = 11 as it is the largest integer smaller than

p
T as

suggested in Chapter 3.5, and provide some results for p = 9 in the appendix,
Chapter 4.A.1, where we �nd that the estimated impulse responses remain simi-
lar for the most part, with the exception of those based on AIC model selection
and the FIC estimator. Table 4.3 shows the models chosen by AIC, the weights

4The start date written in their study is 1965:Q3, but that does not include the 4 presample
observations that are necessary for the impulse responses implied by the VAR(4) to match those
presented by the authors.
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Figure 4.2: Stock and Watson (2001) data set IRs for p = 12.
Criteria line colors: Black: VAR(4). Blue: AIC (solid), sAICb (broken).
Green: BIC. Gray: Equal weights averaging. Orange: Jackknife model
averaging. Red: FIC averaging.
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Figure 4.3: Stock and Watson (2001) data set IRs for p = 12. Left
column: Point estimates. Right column: IR point estimates with 66%
joint (adjusted Bonferroni) con�dence bands, 5000 bootstrap replications.
Criteria line colors: Black: VAR(4). Blue: AIC (solid), sAICb (broken).
Green: BIC. Gray: Equal weights averaging. Orange: Jackknife model
averaging. Red: FIC averaging.

90



4.3. ESTIMATES

lag sAICb FICirb JMA

1 0.00 0 0.25
2 0.02 0.19 0.26
3 0.07 0.04 0.11
4 0.07 0 0.03
5 0.06 0 0
6 0.13 0 0.26
7 0.08 0 0
8 0.09 0 0.05
9 0.12 0 0
10 0.12 0 0
11 0.12 0.33 0.05
12 0.10 0.44 0

Table 4.2: Weights of model averaging methods sAICb, FICirb, jackknife
model averaging for the Stock and Watson (2001) data set. The lag order
selected by the AIC is marked in boldface.

assigned by sAICb, FICirb, and JMA. The BIC selects p = 1 lags, AIC selects the
largest model p = p.

The impulse response estimates based on using the di�erent methods are plot-
ted in Figures 4.4 - 4.6. Point estimates are given in the left column, point es-
timates together with bootstrapped 95% con�dence bands in the right columns.
Table 4.3 tells us, that sAICb divides the weights among all models with higher
weights on the larger models.

The con�dence bands in Christiano et al. (1999) are obtained from a residual
(Sieve) bootstrap with 500 replications (cf. their footnote 23). These are what
is termed naive con�dence bands by L�utkepohl et al. (2015). The bands are con-
structed by connecting pointwise con�dence intervals, which typically results in
bands that have lower e�ective coverage of the impulse response function than
intended. This can be seen in the �gures: Together with the naive bands we plot-
ted the bands calculated by the adjusted Bonferroni method (cf. Chapter 3 and
L�utkepohl et al. (2015)), which are wider. Also plotted are the point estimates
and the adjusted Bonferroni con�dence bands based on sAIC model averaging.
Note that the con�dence intervals for the VAR(4) implied impulse reponses are
not directly comparable to those obtained from the other methods, because the
endogenous lag order bootstrap allows to reestimate the lag order for every boot-
strap iteration, while for the VAR(4) method a VAR(4) is estimated in every
bootstrap iteration. But as mentioned above Christiano et al. (1999) did not spec-
ify which method or which model selection criterion they used to decide on their
speci�cation.

Uhlig (2005) Uhlig (2005) extends Bernanke and Mihov (1998)’s monthly (ac-
quired through interpolation) data set to the period 1965:01 - 2003:12 yielding 468
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Figure 4.4: Christiano et al. (1999) data set IRs, responses to
a contractionary monetary policy shock one standard deviation in size.
Left column: point estimates. Right column: 95% endogenous lag order
bootstraped con�dence intervals (naive and adjusted Bonferroni), 5000
bootstrap replications. Criteria line colors: Black: VAR(4). Blue: AIC
(solid), sAICb (broken). Green: BIC. Gray: Equal weights averaging.
Magenta: Hannan-Quinn selection. Orange: Jackknife model averaging.
Red: FIC averaging.
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Figure 4.5: Christiano et al. (1999) data set IRs, responses to
a contractionary monetary policy shock one standard deviation in size.
Left column: point estimates. Right column: 95% endogenous lag order
bootstraped con�dence intervals (naive and adjusted Bonferroni), 5000
bootstrap replications. Criteria line colors: Black: VAR(4). Blue: AIC
(solid), sAICb (broken). Green: BIC. Gray: Equal weights averaging.
Magenta: Hannan-Quinn selection. Orange: Jackknife model averaging.
Red: FIC averaging.
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lag sAICb FICirb JMA

1 0.02 0 0.31
2 0.04 0.08 0.45
3 0.04 0.09 0
4 0.04 0 0.06
5 0.04 0 0
6 0.04 0.11 0
7 0.05 0 0
8 0.06 0 0
9 0.14 0.09 0.12
10 0.16 0 0.06
11 0.37 0.63 0

Table 4.3: Weights of model averaging methods sAICb, FICirb, jackknife
model averaging for the Christiano et al. (1999) data set. The lag order
selected by the AIC is marked in boldface.

observations. It contains six variables: real GDP, GDP price deator, a commod-
ity price index, the federal funds rate, nonborrowed reserves, and total reserves.
A Dickey Fuller test fails to reject the Null of a unit root in the federal funds rate
with a p-value of 0.3. The largest root of the estimated VAR(12) is 1.0003. Uhlig
(2005) uses a VAR(12) without constant or trend to model the log levels except
for the federal funds rate, which is taken as such instead of in logarithms. The de-
cision on twelve lags is based on LR tests starting with 15. We use this as p = 15.
When applying model selection criteria to the data set AIC would select bp = 3, and
BIC bp = 2. However these small models do not capture the dynamics completely:
Ljung-Box tests for the individual series of residuals indicate signi�cant (at 5%
signi�cance level) autocorrelation of order eight and higher (mostly for the federal
funds rate). When estimating models with nine or more lags this is not the case,
so we set p = 9. With this restricted set of models, 9 = p � p � p = 15, AIC, BIC
and also HQ end up selecting the same model of lag order nine. And also the sBIC
and JMA averaging methods put all weight on that model. The weights of the
sAICb estimator are w = (0:25; 0:19; 0:15; 0:14; 0:11; 0:10; 0:06). The correspond-
ing IRs of a one standard deviation shock to the federal funds rate are graphed
in Figure 4.7 and are discussed in Section 4.4 below. As a robustness check we
also set p = 21, the largest integer smaller than

p
T . The resulting shapes of the

impulse response functions were similar to those for p = 15 for all methods except
for the equal weights and the FIC methods. The graphs are available from the
author upon request.

Uhlig (2005) plots medians along with their 68% con�dence bands obtained
from a Bayesian procedure. Similarly we plot the bootstrapped 68% adjusted
Bonferroni con�dence bands for the estimates based on the sAICb method and
the VAR(12) in Figure 4.8 and for the AIC-based estimates in Figure 4.9.
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Figure 4.6: Christiano et al. (1999) data set IRs, responses to a
contractionary monetary policy shock one standard deviation in size. Left
graph: point estimates. Criteria line colors: Black: VAR(4). Blue: AIC
(solid), sAICb (broken). Green: BIC. Gray: Equal weights averaging.
Magenta: Hannan-Quinn selection. Orange: Jackknife model averaging.
Red: FIC averaging. Right graph: 95% endogenous lag order bootstraped
con�dence intervals, 5000 bootstrap replications. Line colors: Black bro-
ken: VAR(4) estimate with adjusted Bonferroni con�dence bands. Black
solid: VAR(4) naive con�dence band. Blue: sAICb estimate with adjusted
Bonferroni con�dence bands.

4.4 Discussion

Comparison of Benchmark Estimates We �rst discuss the results based on
the authors’ chosen lag order of one year corresponding to a VAR(12) for the Uhlig
(2005) data set, and a VAR(4) for the other two data sets. While the three data
sets are not the same, they have been chosen for our analysis because they share
some common variables, some of which have similarly shaped dynamic responses
across all studies, and the same research question, namely what the e�ects of an
exogenous, contractionary monetary policy shock one standard deviation in size
are. This corresponds to a shock in the third structural innovation in the Stock
and Watson (2001) model, and in the fourth in the models of Christiano et al.
(1999) and Uhlig (2005), cf. Table 4.1. If not noted di�erently, all the analyses of
this chapter refer to such a shock.

The impulse response functions that are especially similar across all studies
are those of the federal funds rate. Also, for the response of the general ination
measure, for example, we can observe that it is positive in the beginning, and
turns negative in the long run for all three studies. Let us look at the response
of the federal funds rate in Figures 4.3 and following in more detail. The federal
fund rate’s response function rises contemporaneously to a value between 0.5%
and 0.75% and becomes slightly negative over the course of four to �ve years in
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Figure 4.7: Uhlig (2005) data set IRs, responses to a contractionary
monetary policy shock one standard deviation in size. AIC, BIC, HQ,
sBIC, and JMA all select or put all weight on a VAR(9) and hence their
impulse response functions coincide.
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Figure 4.8: Uhlig (2005) data set IR estimates based on sAICb
and the VAR(12) with 68% adjusted Bonferroni bootstrapped con�dence
bands (exogenous lag order bootstrap) from 5000 bootstrap replications.
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Figure 4.9: Uhlig (2005) data set IRs of the AIC-based estimator
with 68% adjusted Bonferroni bootstrapped con�dence bands (exogenous
lag order bootstrap).
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all cases. The monthly data set shows an increase in the federal funds rate from
the contemporaneous e�ect to the �rst month, indicating that the full e�ect of a
shock only occurs after a few months. This spike gets evened out by using the
quarterly frequency of the other two data sets. The second hump at around 1 year
after the shock is common to all three studies.

The response of the general ination measure is restricted to zero initially by
our choice of parametrization, but then shows the response known as the price
puzzle, cf. Uhlig (2005) and Sims (1992), rising at �rst before turning negative in
the long run. Uhlig (2005) points out that the remedy suggested by Eichenbaum
(1992) of including commodity prices does not resolve the price puzzle. From that
point of view one might argue that the small set of variables used by Stock and
Watson (2001) is enough to capture the dynamics of prices and interest rates, but
on the other hand the con�dence bands of the ination response still do contain
0% for the beginning quarters in the Stock and Watson (2001) data set, cf. Figure
4.3, so there the evidence for the existence of the price puzzle is weaker than for the
Uhlig (2005) data. This is also the case for the Christiano et al. (1999) data. For
the higher frequency data of Uhlig (2005) the response of the GDP price deator
does not become as negative in the long run as for the other data sets, and it
remains in the positive region longer, cf. Figure 4.7.

This type of delayed reaction in the responses of the Uhlig (2005) data can
also be observed for the other variables. While the response of real GDP remains
at around -0.4% even after �ve years, Christiano et al. (1999) describe a hump
shaped response with the lowest point after around one and a half years and a
return to almost original levels after four years, cf. Figure 4.4. One reason for
the di�ering dynamics might be that the data sets end in di�erent years, since,
in general, estimates of underlying model parameters are not constant through
time, which can be due to measurement errors or actual changes in the DGP, cf.
e.g. Chapter 9 of Juselius (2006). Another reason for di�ering dynamics could be
the di�erent frequency of Uhlig (2005)’s time series compared to the other two, as
discussed in Section 4.3 above.

The response of the commodity price index reaches values of around -1.5% in
both models where it is a part of the analysis, cf. Figures 4.4 and 4.7. However,
from a little more than two years on the response in Uhlig (2005)’s model stays
almost at while Christiano et al. (1999) describe an increase back to above 0 with
the response dying out after about three years. In contrast to the response of real
GDP and that of the commodity price index the responses of both bank reserves
measures appear more dynamic for the estimates based on the Uhlig (2005) data
set. After initial drops they move back up to reach slightly positive values after
�ve years while the responses estimated from Christiano et al. (1999)’s data almost
stagnate after about half a year. The main conclusion that Christiano et al. (1999)
draw from their model about the reaction of bank reserves also holds for Uhlig
(2005)’s estimates:

\First, there is a persistent rise in the federal funds rate and a
persistent drop in nonborrowed reserves. This �nding is consistent
with the presence of a strong liquidity e�ect. Second, the fall in total
reserves is negligible initially [. . . ] So according to this policy shock
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measure, the Fed insulates total reserves in the short run from the full
impact of a contraction in nonborrowed reserves by increasing borrowed
reserves."

Out of the three considered studies the unemployment rate is only part of
the Stock and Watson (2001) data set, but the studies of Bernanke and Blinder
(1992), and Christiano et al. (1996) come to the same observation as can be made
here, that it rises after a delay of about two quarters (Christiano et al. (1999), p.
26). The money supply measure M1 is only modelled by Christiano et al. (1999).
Belongia and Ireland (2015) illustrate the bene�ts of including money aggregates
in VARs evaluating monetary policy. The response of M1 to the monetary shock
is negative and very similar to that of total reserves as pointed out in their study,
cf. Figures 4.5 and 4.6.

One interesting question raised by our choice of data sets is what the e�ects of
measuring the variables at di�erent frequencies are. Is it bene�cial for estimator
precision to use monthly instead of quarterly data? Note that while Bernanke
and Mihov (1998) use a monthly as well as a biweekly data set and compare the
estimates of both, they do not explicitly report standard errors for the estimated
impulse responses, but only for some policy parameters. Since the number of
variables included in our three di�erent data sets di�er, and they do not cover
the same periods, we cannot draw de�nite conclusions, but beginning with dis-
cussing the precision of the federal funds rate response estimate should give us
an idea what the answer might be, since this variable behaves similarly across
data sets. As mentioned above we are concerned with the responses to a contrac-
tionary monetary policy shock one standard deviation in size. Table 4.4 reports
the average widths of the con�dence bands of some relevant impulse response func-
tions, and standard errors of impulses, estimated by the benchmark VAR models5.
See Section 4.2 for the technical details of the calculation methods. Similarly to
L�utkepohl et al. (2015) we calculate the average width as the sum of the widths
of the individual pointwise con�dence intervals divided by the number of periods,
which we set to correspond to four years, so 48+1 periods for the monthly, and
16+1 periods for the quarterly data sets. The bootstrapped standard errors of
the impulse response at the horizon corresponding to four years are also given.
The table entries corresponding to the federal funds rate’s response are marked in
bold face. This variable is ordered third in the Stock and Watson (2001) data set,
and fourth in the other two. Those variables whose impulse response functions
cannot be meaningfully compared with those of the other data sets, for example
because they cover di�erent ranges in the Christiano et al. (1999) and Uhlig (2005)
analyses, are not shown. Note, for example, that the data sets of Christiano et al.
(1999) and Uhlig (2005) both use the same types of variables, and ordering of the
variables for the most part. But the money supply variable M1 is additionally
included in the former, and the impulse responses of the commodity price index
move over di�erent ranges for the two di�erent data sets: between -0.15% and
0.1% in the former, and between -1.7% and 0.2% in the latter. This �nding might

5A VAR(4) for Stock and Watson (2001) and Christiano et al. (1999), and a VAR(12) for
Uhlig (2005).
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possibly be explained by a di�erence in the concrete choice of index since Chris-
tiano et al. (1999) explicitly state that they employ the smoothed change in an
index of sensitive commodity prices.

average widths standard errors
naive adj. Bonferroni

variable SW CEE Uhlig SW CEE Uhlig SW CEE Uhlig

1 � 0.26 0.18 � 0.49 0.28 � 0.16 0.13
3 0.25 � � 0.44 � � 0.13 � �
4 � 0.33 0.17 � 0.64 0.31 � 0.13 0.07
5 � 0.88 0.65 � 1.58 1.11 � 0.44 0.38
6 � 0.78 0.57 � 1.31 0.94 � 0.41 0.36

Table 4.4: Average (over four years) widths of the 68% naive and ad-
justed Bonferroni con�dence bands around the response to a monetary
policy shock, and bootstrapped standard errors of the same response at
horizon four years, estimated by the benchmark models. The average
width is calculated as the sum of the widths of the intervals divided by
the number of periods. The number in bold face marks the federal funds
rate variable, which shows the smallest average width for the monthly data
set. The other variable names are listed in Table 4.1. � stands for \not
applicable". Data sets of SW: Stock and Watson (2001), CEE: Christiano
et al. (1999), Uhlig: Uhlig (2005).

Table 4.4 shows that, indeed, the federal funds rate’s response is estimated
with highest precision with the monthly data set, and also for real GDP, and
nonborrowed and total reserves the con�dence bands are more narrow, and the
standard errors smaller, for the monthly data, on average, than for the quarterly
data. Including more variables in a structural VAR analysis, on the other hand,
does not seem to improve precision based on these numbers, as the Christiano et al.
(1999) study uses the highest number of variables among the three studies, namely
seven. These observations follow equally from any of the three panels of the table,
so from the widths of the naive and the adjusted Bonferroni con�dence bands, as
well as from the sizes of the standard errors. Generally, the size of standard errors
is taken to represent (inverse) precision, while smaller con�dence bands might also
be due to lower e�ective coverage, a measure of accuracy. The study of L�utkepohl
et al. (2015) considers the widths of the con�dence bands calculated by several
di�erent methods as one criterion to make recommendations on the ranking of
these methods.

Comparison of Model Selection and Averaging Methods We now discuss
the di�erences in the estimates implied by using di�erent model selection and
model averaging methods.

It is interesting to note that the suggestions made by Ivanov and Kilian (2005)
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yield estimates that are, for some impulse responses, farthest away from those given
by the speci�cations of the authors of the studies we consider. Ivanov and Kilian
(2005)’s suggestion is to use the model with the lowest HQ score for quarterly data.
Consider the Christiano et al. (1999) data, for example. For the later horizons the
estimated response of the DGP deator, and the estimated responses of bank
reserves and M1 are further away from the responses implied by Christiano et al.
(1999)’s choice of lag order than those for the other methods. This is also the case
for the responses of the GDP deator and for the reserve responses at later horizons
implied by AIC model selection for the Uhlig (2005) data set. And for monthly
data Ivanov and Kilian (2005) suggest using AIC. There is one quali�cation to these
suggestions, namely that the quarterly data should have at least 120 observations,
which makes Christiano et al. (1999) a borderline case with 124 observations.

The BIC tends to select even smaller models (models with fewer lags) than HQ,
and we see that the responses based on BIC are also often far away from those
of the other methods, which, compared to the BIC and HQ, describe more or less
similar shapes, cf. the response of nonborrowed reserves in Figure 4.5. This is not
the case for the Uhlig (2005) responses where AIC, BIC and HQ select the same
lag order. Kilian (2001) and Ivanov and Kilian (2005) advocate against using the
BIC for lag order selection in the context of estimating impulse response functions,
which seems a sensible suggestion based on our observation.

The impulse response functions typically become more ragged6 with increasing
model size/lag order. This is shown in Figure 4.10 in the appendix, where it is
also discussed that this behavior is not unique to structural VAR analyses, but
that it already shows for stationary autoregressive settings. It goes in line with the
increase in estimator volatility for increasing model size7, and the algebra of the
impulse response calculation where each additional horizon means adding another
estimated coe�cient matrix as long as the horizon is smaller than the posited lag
order. In the quarterly data sets AIC selects models with more than the four lags
of the benmark model. These impulse responses are consequently more ragged,
cf. e.g. the response of nonborrowed reserves in Figure 4.5, a behaviour that
may be undesired for explaining macroeconomic reactions. We note that the AIC
smoothed averaging method with � = d2, sAICb, literally yields smoother impulse
response functions than its selection counterpart. These lie between the response
functions of the benchmark model and the AIC-based model most of the time,
cf. for example Figure 4.2. Next, we compare the precision of both methods. To
quantify precision we use the bootstrapped con�dence bands for model averaging
methods, that were introduced in Chapter 3. Table 4.5 shows the average widths
of the pointwise naive con�dence intervals for the AIC and the sAICb method.
The impulse responses are the responses to a monetary policy shock. The average
is taken over all horizons plotted in the �gures8. We see that the average width of
the sAICb model averaging based method is always smaller than that of the AIC

6Ragged describing the opposite of monotonous. So a response that has more or higher spikes
than another one would be termed more ragged.

7This in turn may be partly due to a reduction in the number of degress of freedom.
8So 24 quarters for Stock and Watson (2001), 16 for Christiano et al. (1999), and 60 months

for Uhlig (2005).
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model selection based method. In summary the sAICb model averaging method
yields smoother estimates with higher precision than the AIC model selection
method. Together with the theoretical arguments of Chapter 3 this observation
strengthens the case for using the model averaging versions of the AIC rather than
doing AIC model selection.

SW CEE Uhlig
variable AIC sAICb AIC sAICb AIC sAICb

1 0.25 0.23 0.21 0.20 0.20 0.18
2 0.12 0.11 0.15 0.15 0.21 0.19
3 0.32 0.30 0.11 0.11 1.38 1.30
4 � � 0.26 0.25 0.15 0.14
5 � � 0.63 0.62 0.63 0.60
6 � � 0.56 0.55 0.57 0.54
7 � � 0.33 0.33 � �

Table 4.5: Average widths of the pointwise naive 68% con�dence inter-
vals around the response to a monetary policy shock in the models with
lag length chosen by the AIC selection criterion, model weights calculated
by sAICb, respectively. The averages are taken over the respective num-
bers of periods plotted in Figures 4.2 to 4.7. � stands for \not applicable".
Data sets of SW: Stock and Watson (2001), CEE: Christiano et al. (1999),
Uhlig: Uhlig (2005).

Turning to the other model averaging methods it is interesting to see that the
FIC method and the sAIC method yield very similar estimates. This is especially
the case for the quarterly data sets. The objectives of both approaches are actually
quite di�erent, cf. Hansen (2005). While AIC was developed with the idea of
picking out the correct speci�cation of the underlying model, the FIC is explicitly
designed to optimize the estimate of a certain focus parameter. However, the
speci�c methods applied here are at less extreme ends of these two philosophies,
since as focus of the FICirb estimator we de�ned all the impulse response functions.
Note that this also includes those not plotted, for example the response of real GDP
to a shock in real GDP. With this more general focus than for example de�ning just
the impulse response coe�cient at some particular horizon as the focus parameter,
the FIC becomes closer to a model selection criterion that aims at a global model
�t. Claeskens and Hjort (2003) explicitly discuss the relationship between AIC and
FIC in their Section 5.6 and show that minimizing the estimated average mean
squared error of the log likelihood corresponds to using the AIC criterion. Also
we compare the sAICb method with the FICirb method, which are both model
averaging methods.

On the one hand it is interesting to note that the ad hoc choice for modelling a
VAR(4) corresponding to 1 year in the quarterly data sets is validated, one could
say by the fact that by applying likelihood ratio tests Uhlig (2005) also settles
on a model that conditions on a 1 year period. But on the other hand Ivanov
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and Kilian (2005) argue that data sets of di�erent sampling frequency should be
treated di�erently, and a qualitatively di�erent behaviour between the quarterly
data sets and the monthly data set is also described above for the responses of the
GDP price deator. Now, concentrating attention on the quarterly data sets of
Christiano et al. (1999) and Stock and Watson (2001) the equal weights averaging
estimates actually lie very close to the benchmark estimates, cf. Figures 4.2 to
4.6. For the monthly data set of Uhlig (2005) this is not the case. In terms of the
robustness checks on the authors’ results alluded to in the introduction this means
the following for the quarterly data sets. Even though the authors did not arrive
at their choice for conditioning on a 1 year period with formal testing, their choice
can be argued to represent a nondiscriminatory average of the whole model set’s
estimates. So their choice of modelling a VAR(4) can actually be interpreted as
taking an uninformed average over the whole model set. Stock and Watson (2004)
found that in forecast combinations simple combination methods (they consider
a mean forecast giving equal weight to each of the forecasts in the panel, among
others) perform well in terms of forecasting error.

Above we already discussed that the BIC and HQ model selection criteria tend
to lead to estimates that are rather di�erent from those of the other methods. But
these criteria also tend to select models that might be too small to capture the
dynamics of the DGP. For the rest of the plotted criteria the general shapes of the
impulse responses, and hence the conclusions that a researcher would draw from
these, are similar. This holds especially for the methods of choosing a VAR(4),
using AIC, sAICb, EW or FICirb for the quarterly data sets, as can be seen in the
response of the federal funds rate to a shock in the federal funds rate in Figure 4.3,
for example. At 24 quarters the response is -0.1 no matter which model selection
or averaging method is used. This means that the results of the sVAR analyses
are relatively robust to the choice of method for deciding on a lag order. This does
not seem to be the case as much for the monthly data set. The response of the
GDP price deator after 60 months is estimated to be negative when a VAR(12)
is used, but positive at 0.2 when AIC is used for model selection, cf. Figure 4.7.
But also note that the 68% con�dence bands around the AIC based point estimate
still contain 0, cf. Figure 4.9.

4.5 Conclusion

The three data sets that we consider have many similarities, but also di�er across
several dimensions, e.g. number of variables and sampling period. Therefore we
carefully choose a few variables for measuring the precision of their estimators. We
�nd that in terms of precision it is bene�cial to sample data at higher frequency
(monthly instead of quarterly), but that the extension of a model’s conditioning
set by including more variables does not increase precision. This is interesting
because it is an argument in the same direction as Uhlig (2005) makes, who states
that also in terms of remedying the price puzzle, including more variables, in this
case a commodity price index, is not helpful. This prize puzzle, that is observing
a positive hump in the DGP deator’s response in the beginning periods, is one
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of the two patterns, that we observe across all speci�cations in a more or less
pronounced fashion. The other robust observation concerns the dynamics of the
federal funds rate, whose response returns to slightly negative levels in the long-run
for all speci�cations. These two observations are robust to changes in the variables
used in the model, the sampling period, the maximum lag order p and even the
model selection or model averaging criterion. However, the length of time for the
response of ination to remain in the positive region di�ers across data sets, and so
does its long-run impact. This brings us to those macroeconomic variables whose
responses are less robust to modelling changes. Based on our results we would be
less con�dent in making a general claim about the long-run e�ect on real GDP, a
very important variable to policy makers. Its response to a monetary shock is not
signi�cantly di�erent from zero for the Christiano et al. (1999) setting, but clearly
negative with the Uhlig (2005) estimates. For the general ination measure we also
observe di�erent responses for di�erent speci�cations, and, additionally, the choice
of model selection method shows to have a large e�ect on ination: While after
four years it is estimated to be negative for the quarterly data sets, cf. Figures 4.2
and 4.4, it could be as high as 0.2%, depending on the method of selecting a lag
order, for the Uhlig (2005) data, cf. Figure 4.7. Di�erent estimated responses for
di�erent data sets might be due to the di�erences in sampling periods or also in
sampling frequency. The survey of Silvestrini and Veredas (2008) is a good starting
point when discussing how time series from the same DGP sampled at di�erent
frequencies relate to each other. It would be interesting, in future research, to
single out which di�erences in the responses are caused by which di�erences in the
data sets, by e.g. shortening the sampling periods to make them equal across all
three studies.

From the di�erent model selection and model averaging methods, that we ap-
ply, we draw the following conclusions for the structural VAR analysis of empirical
data. We cannot agree with the suggestion of Ivanov and Kilian (2005) of using
HQ model selection for quarterly data sets. The application of our model averag-
ing methods mostly delivers results similar to those of the model selection methods
that are already routinely used by researchers. This is an expected �nding in view
of Chapters 2 and 3. These methods seem to be an interesting and useful ad-
dition to the macroeconomist’s toolbox. It is especially interesting to note that
for quarterly data the equal weights estimator can be considered an alternative
to the benchmark estimates, that are based on a lag order corresponding to one
year. The two methods that have, to our knowledge, not been applied in this
context before, are sAICb and FICirb. While AIC is a well established criterion
for model selection in policy analysis, the impulse response estimates implied by
AIC selection show sharp peaks in some of the graphs above. Here its smooth
model averaging versions, like the sAICb, o�er an alternative with more intuitive,
smoother, and more precise estimates. Interestingly, the speci�c FIC averaging
method that we use delivers estimates rather similar to the sAICb method. FIC
methods are especially interesting because of their underlying theory that allows
them to be speci�cally de�ned for estimating the impulse response functions, and
we believe that our results are an encouragement to applied researchers to consider
the use of these for sVAR analyses.
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From a theoretical perspective there remain challenges for two groups of es-
timators that are being applied in this chapter. In Chapter 2 we show that the
impossibility of consistently estimating the misspeci�ed parameters causes the fea-
sible FIC-based estimators to have lower accuracy than the respective infeasible
estimators. And Leeb and P�otscher (2005) show in a series of papers that the
distributions of post-model-selection estimators cannot be estimated consistently
uniformly over the parameter space. In light of this �nding the authors implicitly
advise to use estimators like, for example, the bootstrapped con�dence bands that
we calculate, with caution. Both �ndings are similar insofar as the theory for
both is based on models where some of the parameters are local to zero. From
an applied perspective Chapters 2 and 3 provide su�cient simulation evidence to
show that our methods have an accuracy similar to other standard methods. But
it would be interesting, in future research, to explicitly consider the consequences
of Leeb and P�otscher (2005)’s �ndings for structural VAR analyses.
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4.A Appendix

4.A.1 Additional Results for Christiano et al. (1999)

Figure 4.10 plots the estimated impulse response of real GDP for di�erent VAR
models. It shows that the impulse response functions become more ragged the
higher the number of lags that is included in the estimated VAR. The same obser-
vation can already be made for stationary autoregressive processes. Figure 4.11
shows the impulse response functions estimated by di�erent AR models on a time
series of length T = 160 generated by the process

yt = 0:4yt�1 + 0:2yt�2 + 0:2yt�3 + ut;

where ut are independent standard normally distributed errors. We see that the
AR(9) implied impulse response function is more ragged than the AR(2) implied
impulse response function in the following sense. Here we measure \raggedness" by
the number of times the sign of the di�erence from the impulse response coe�cient
at horizon h� 1 to horizon h changes. For an AR(1) process with autoregressive
coe�cient � the impulse response function at horizon h, ’h, is given by �h. So for
� > 1 it is a monotonous function in h, and the number of the sign changes is hence
0. For the impulse response function estimated by the AR(2), that is plotted in
Figure 4.11, there are two changes in sign: ’1�’0 is negative, ’2�’1 is positive,
and ’3 � ’2 is negative again. In Table 4.6 the average number of sign changes
for the impulse response functions estimated by AR models of di�erent lag orders
are given. For these results we simulated 10,000 time series of length T = 160
of the process given above. We conclude that the increase in raggedness of the
impulse response functions that follows from an increase in the estimating model’s
complexity is not an issue that only arises when treating systems of multiple time
series, but one that is inherent in the modelling of univariate autoregressive time
series already.

lags 1 2 3 4 5 6 7 8 9

avg. changes 0.0 1.3 2.1 2.7 3.8 4.9 6.2 7.1 7.8

Table 4.6: The average number of sign changes in the di�erences of
impulse responses from one horizon to the next. The number increases
with the size of the AR model used for estimation.

Results for p = 9 For the results in the main text we have chosen p = 11. To
show that the conclusions we drew from these are robust to the choice of p we give
the results for p = 9 in this paragraph. Compared to the setting with p = 11 the
FICirb and AIC-based responses are shifted downward for reserves and M1, and
the peaks in the response of the commodity price index are atter.
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Figure 4.10: Christiano et al. (1999) data set IRs of the estimated
VAR(i), i = 1; : : : ; 9. Estimated IR functions of higher order VARs are
more ragged.

4.A.2 Additional Results for Stock and Watson (2001)

For the results of the main text we have chosen p = 12. To show that the conclu-
sions we drew from these are robust to the choice of p we give the results for p = 9
in this paragraph. The point estimates in the following Figures 4.14 - 4.15 should
be compared to those in Figures 4.2 - 4.3 in the main text. The rough shapes of
the estimated impulse responses functions are found to be similar. The responses
of ination and unemployment to a shock in ination, for example, are at around
0.2 after 24 quarters for all of the di�erent model criteria in Figure 4.2 as well as
in Figure 4.14.

One e�ect of changing p can be observed in the responses implied by AIC
model selection and FIC model averaging: While for p = 12 the responses that go
lowest for an impulse in the federal funds rate are those implied by FIC averaging,
for p = 9 the responses implied by AIC model selection reach the lowest points
after such an impulse. This can be seen in the response of the federal funds rate
in Figure 4.3, for example. There the only response that falls below -0.2% for a
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Figure 4.11: Estimated IRs for a stationary autoregressive pro-
cess estimated with di�erent AR models. Estimated IR functions of
higher order AR’s are more ragged.

Figure 4.12: Christiano et al. (1999) data set IRs for p = 9.
Criteria line colors: Black: VAR(4). Blue: AIC (solid), sAICb (broken).
Green: BIC. Gray: Equal weights averaging. Magenta: Hannan-Quinn
selection. Orange: Jackknife model averaging. Red: FIC averaging.

few periods, is that implied by FIC averaging, but it is the one implied by AIC
selection in Figure 4.15.
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Figure 4.13: Christiano et al. (1999) data set IRs for p = 9. These
are the counterparts to graphs in Figure 4.4 and following in the main text.
Criteria line colors: Black: VAR(4). Blue: AIC (solid), sAICb (broken).
Green: BIC. Gray: Equal weights averaging. Magenta: Hannan-Quinn
selection. Orange: Jackknife model averaging. Red: FIC averaging.
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Figure 4.14: Stock and Watson (2001) data set IRs for p = 9.
These are the counterparts to graphs in Figure 4.2 and following in the
main text.

111



CHAPTER 4

occupy space to move next one down

Figure 4.15: Stock and Watson (2001) data set IRs for p = 9.
Top right graph: Response of unemployment to a contractionary monetary
policy shock: AIC (black) and BIC (gray) IR estimates with 66% joint
(adjusted Bonferroni) con�dence bands.
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Conclusion

In this thesis we extend the range of some model selection and model averaging
criteria to multivariate stationary time series models by providing their theoretical
properties, and we show their usefulness for the �eld of macroeconomic policy
analysis.

Claeskens and Hjort (2003) enriched the concept of model selection by intro-
ducing the focused information criterion (FIC). The FIC, unlike other common
information criteria that aim at a good average prediction quality, allows to iden-
tify those models that best estimate a focus parameter that can be de�ned by
the user. The focus parameter is allowed to be any su�ciently regular function
of the model parameters. Claeskens and Hjort (2003)’s theory makes use of a lo-
cally misspeci�ed framework, where some of the model parameters shrink towards
zero. We extend the theory about the FIC’s asymptotic properties in regression
settings as described by Liu (2015) to autoregressive models in Chapter 2. We
o�er a basis for de�ning stationary parameter regions for the locally misspeci�ed
framework and we discuss the role of the misspeci�cation parameter, which cannot
be estimated consistently. In Chapter 3 we then similarly extend the results about
the asymptotic properties of the sAIC and sBIC averaging methods, that Zhang
(2015) derived, to dynamic regression settings. That chapter also illustrates that
a weight scaling parameter actually de�nes a whole set of smoothed estimators.
We believe that smoothed averaging estimators could be de�ned for other model
selection criteria as well, and that these would likewise have properties similar to
their selection counterparts. This is a possible venue for future research. It would
also be interesting to �nd out how the results of the series of papers by Leeb
and P�otscher (2005) can be incorporated into our methodology. Together with
the bootstrap procedure that we de�ne for the smoothed averaging estimators the
applied researcher now has on her hands another set of theoretically grounded
model selection and averaging criteria, which we hope can be used bene�cially on
empirical data.

The motivations for the two sets of criteria, focused criteria, smoothed av-
erages, stem from two di�erent strategies of managing model uncertainty. The
former is to acknowledge that �nding the actual DGP is not as important as �nd-
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ing the best predictor for the focus of the analysis. The latter is to acknowledge
that combined estimates from multiple models may behave better than estimates
from one single model. We show how these criteria can be applied to structural
VAR analysis and o�er a comparison with other commonly used model selection
estimators in Chapter 4. We �nd that the sAIC estimator performs well com-
pared to the AIC estimator, and that sampling data at a higher frequency leads to
higher precision of the estimators. It is our hope that this application might inu-
ence other researchers to apply frequentist model averaging techniques in similar
settings.

While we introduce new applications for existing model criteria we also have
to note from our analyses that not one model criterion is best suited across all
possible DGP’s. So the evolution of econometrics will likely continue on a path
where the suitability of di�erent estimation methods is evaluated for each setting
separately. It will remain an ongoing quest to evaluate existing criteria or �nd
new ones that are best suited for a speci�c application.
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Summary

Econometricians are faced with the challenge of �nding suitable models for the
data to be analyzed. They face model uncertainty since the true data generating
model is not known, and use model selection criteria or model averaging methods
to deal with it. In this thesis we extend the range of applicability of some model
selection and model averaging criteria to multivariate stationary time series models
by providing their theoretical properties, and we show their usefulness for the �eld
of macroeconomic policy analysis.

Claeskens and Hjort (2003) enriched the concept of model selection by introduc-
ing the focused information criterion. We extend the theory about its asymptotic
properties in regression settings as described by Liu (2015) to autoregressive mod-
els in Chapter 2. We o�er a basis for de�ning stationary parameter regions for
the locally misspeci�ed framework and we discuss the role of the misspeci�cation
parameter, which cannot be estimated consistently: The estimator of the misspec-
i�cation parameter converges to a normally distributed random vector centered
around the true misspeci�cation parameter in the limit. This means that the es-
timate is still random in the limit, and the FIC expression does not converge in
probability to the asymptotic MSE that it is intended to estimate. The chapter il-
lustrates that point by including the infeasible estimator in the simulations, which
corresponds to the FIC estimator, but with the estimate of the misspeci�cation
parameter replaced by the true misspeci�cation parameter. The infeasible esti-
mator is shown to have a lower MSE than the FIC estimators for large ranges of
the simulations’ parameter space. It is shown that the FIC estimator performs
similarly to both AIC and BIC selection procedures. A plug-in average estima-
tor (that also su�ers from the fact that the misspeci�cation parameter cannot be
estimated consistently) is also discussed in that chapter.

In Chapter 3 we then similarly extend the results about the asymptotic prop-
erties of the smoothed AIC (sAIC) and smoothed BIC (sBIC) averaging methods,
that Zhang (2015) derived, to dynamic regression settings. While for model se-
lection based on the Akaike information criterion, the model with the lowest AIC
score is selected, the smoothed AIC averaging estimator is de�ned as the weighted
sum of the estimators from all models in the model set under consideration, with
weights de�ned by the models’ AIC scores. The chapter illustrates that the cal-
culation of the weights as given by Zhang (2015) and in other publications, is
actually only one representation of the set of smoothed AIC estimators, that is
de�ned by a certain weight scaling parameter, cf. Section 3.3.1. We extend the
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results by Zhang (2015) for a time series setting by showing root-T consistency
of the averaging estimators for speci�c ranges of the weight scaling parameter in
Section 3.3, and propose a bootstrap method to estimate the distributions of the
averaging estimators in Section 3.4. Using results of Bose (1988) we also show
its asymptotic validity. In simulations we show the bene�ts of using sAIC-based
instead of AIC-based estimators for estimating impulse response coe�cients.

In Chapter 4 the model selection criteria and model averaging methods of
Chapters 2 and 3 are applied in structural VAR analyses of empirical data. Struc-
tural VAR models are a central tool in macroeconomic and monetary policy analy-
sis and we o�er a comparison of the FIC and smoothed model averaging estimators
with other commonly used model selection estimators in this setting. We �nd that
AIC-based model averaging yields smoother and more precise estimates of impulse
response functions than AIC-based model selection. In order to make our results
more relevant we use the data from three di�erent previous studies, Christiano
et al. (1999), Stock and Watson (2001), and Uhlig (2005), which have been care-
fully selected for their similar analyses: They all estimate exogenous monetary
shocks for US data sets of similar time periods, and apply the same structural
parametrization for identifying impulse response functions. But the data sets do
di�er in sampling frequency and number of variables, and this allows us to compare
the performance of the estimators across the di�erent sampling frequencies of the
data sets and to make suggestions on sampling frequency based on a comparison
of estimator precision across the di�erent data sets. We �nd that sampling data
at a higher frequency (monthly) leads to higher precision than sampling at lower
frequencies. At the same time, the results drawn from lower frequency (quarterly)
data are more robust to the choice of model selection method.
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Valorization Addendum

This chapter discusses the societal value of the research presented in this book,
what is innovative about the presented results, who can bene�t from them, and
why they are relevant.

Before treating such a special case, the societal value of one single book, it is
an interesting exercise to reect on how scienti�c and technological development
in general has shaped our society. Are we smarter or better o� than the people
were 100 years ago? What are we better at now than we were back then? The
answer may be obvious when we talk about inventions of physical apparatuses
like the airplane, that was a whole new method of transportation, like information
technology, one might imagine what a typical insurance company looked like and
how many contracts per employee it was able to manage in the past and compare
this to the high-tech o�ces of today, or like medical procedures, whose usefulness
is also rather apparent. But as we consider shorter time periods, say the last 10
years, and scienti�c discoveries with less direct impact the question becomes more
di�cult to answer and raises follow up questions. For example: How can societal
value and its progress even be measured?

One of many approaches, too many to name here, that is often taken to address
this question is to measure economic growth. And it is a common understanding
that the advancement of technology is a central component of economic growth.
Developed countries usually see long periods of such growth, some of which should
be due to scienti�c progress, even if indirectly. Now, economic growth is typically
measured as the gross domestic product, GDP, of one or several nation(s). This is
were this book is of value: All of the chapters, and especially Chapter 4 in a very
illustrative manner, treat the type of linear models that are to date commonly
used for analyzing the dynamics of economic variables like GDP and ination.
These are vector autoregressive models, VARs. VARs describe time series data for
groups of variables which interact with each other. The term time series means
that the values of the variables can be observed at consecutive time points within
a certain time period. Chapter 3 shows that when estimating this kind of model
the proposed model averaging procedures can deliver more exact estimates than
the more commonly used, corresponding model selection procedures. Here the
exactness, or precision of an estimator is measured by the mean squared error,
MSE. So this dissertation provides methods that improve the measurement of
some important macroeconomic variables This also means that the results can be
used to measure the progress of one common indicator of societal value. Or said
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di�erently: One of the societal values of this book lies in being able to discuss
societal value.

One group of users of VARs are central banks, which monitor the economy
closely in order to �nd the level of interest rates that would lead to the ination
rate remaining in or returning to the mandated range.1 Even though the main
instruments of a central bank are designed only to set the lending rates for banks,
their decisions impact the whole economy as the e�ect of changes in these interest
rates trickle down to the interest rates that companies and retail clients are o�ered.
So, in the end, the spending behavior and savings rate of the population, and hence
the ination rate, are inuenced by the central bank’s decisions. This illustrates
how important it is that central banks use good models. Naturally they employ a
wide range of di�erent models and well sta�ed research departments, but even if
after publication of this thesis the discussed methods are not immediately picked
up by the research sta� of central banks, who often are well connected to academia
and stay up to date with the latest research, the economic impact that econometric
innovations have are potentially huge: Slight changes in estimation methods, if
adopted in multiple central banks, could lead to immense �nancial e�ects in total.

But the fact that a central bank can directly set certain types of lending rates,
but cannot directly inuence ination, means that the application of VAR models
requires some further attention when specifying the concrete model: Econome-
tricians use model selection criteria to decide whether to use a VAR model with
shorter or longer memory (lower or higher lag order). Many of these model selec-
tion criteria aim at a model that explains the observed values best, but that is not
necessarily the same model as the one that describes the reaction pro�les of the
variables in the system to a change in one of the variables best. These reaction
pro�les are called impulse response functions and they are used as the leading
example of focus parameters2 throughout this book. Chapter 2 treats a model
selection criterion that can be used to �nd the model that estimates these impulse
response functions best. So, ultimately, the methods described in this book help
central banks to better tune their monetary policy.

The model selection criterion called FIC - focused information criterion, that
is being treated in Chapter 2, is not a new criterion. What is new about that
chapter is that it extends the family of model types in which the FIC can be ap-
plied: The FIC was originally de�ned for usage with independent data, the type of
data where one observation of the regressand is assumed not to be inuenced by
the other observations of the regressand. This book treats the case of time series
data, where the value of a variable at one point in time does depend on the pre-
vious values. It is shown by means of mathematical analyses how the estimators
of the impulse response functions, which are random variables, are distributed for
a stable (in a certain sense de�ned in that chapter) VAR time series process that
can be observed forever. Even though this can only be a thought experiment it
is the cornerstone of the econometric science, where it goes under the name of

1Note that this is an exempli�ed depiction of the complex mission and range of instruments
of most central banks.

2We use the term focus parameters, in analogy to the focused information criterion, for those
parameters that are the main interest of the model’s user.
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asymptotic theory. The reason is that intuition gained from asymptotic theory
often allows to draw conclusions for real world statistical applications with (only)
a �nite number of observations. The concept of consistency is an example for an
asymptotic statement that is very important to econometricians. An estimator
is named consistent if it delivers the true underlying parameter asymptotically.
Some consistency results are also given and proven in Chapter 3, for example.
Additionally, it is common practice to amend scienti�c publications about asymp-
totic theory with simulation results, treating some prototypical cases of the type
of data that would be observed in real life. This is also the case for Chapters 2
and 3 of this book. Via these two contributions, mathematical theory and �nite
sample intuition, statistical tools are considered ready for application. This is
what this book o�ers, it makes the focused information criterion \ready to use"for
time series data.

We now come back to the de�nition of the focused information criterion: It is
de�ned such that the model, which has the highest estimated precision, is selected
based on the asymptotic results. The precision in question is that of estimating
a certain focus parameter chosen by the user of the model. The leading example
are impulse response functions, as mentioned above, but many other de�nitions of
focus parameters are also covered by the results of this book: Any focus parameter
is allowed that can be written as a smooth (continuously di�erentiable) function of
the model’s basic coe�cients. This is especially interesting in VAR models since
the number of basic coe�cients is determined by the product of the number of
variables one wants to consider with the length of the memory assumed by the
model, a number that becomes relatively large even for low dimensional systems.
It is hence sensible to expect that not all of the basic coe�cients are equally
interesting to the user of the model and by using the FIC the model (speci�cation
and) selection process can be geared towards those coe�cients that are considered
important.

One might wonder why there are di�erent model selection criteria and why
one would want to direct the selection process towards only some of the model
coe�cients and not all of them. Why do econometricians not simply �nd the
correct model that �ts the observed data perfectly? That is because econometrics
is not a science of certainties. Instead it is a �eld of research that �ne tunes its
methods and makes them available for wider ranges of model settings. But in
the end any model will just be an approximation, an attempt to explain some
random outcomes. We see this from the discussion above, that explains that
only if one was able to observe the outcomes of one process forever would it
be possible to draw de�nite conclusions about its properties. And this would
even only be the case if all the relevant variables were included in the model.
That is why di�erent researchers might use di�erent models and methods for
the same data. Some methods will explain one characteristic of the data better
while others will explain other characteristics better. The model class, model
speci�cation, and model selection criterion a researcher applies to a set of data
represent di�erent ideas about the possible data generation process. It is one
purpose of econometric literature to serve as a library of these di�erent ideas.
As discussed above, new ideas for approaching di�erent kinds of data are made
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\ready to use" by deriving their mathematical properties or the properties of
existing methods are described for new kinds of processes. So even after decades
of statistical research the literature is still growing as new and re�ned methods
are designed inspired by users of random data who wonder how one or another
procedure would perform for their application. This is another contribution of this
book: It adds a piece to the library of mathematical derivations, and guidelines for
the application of the presented methods. In Chapter 2, for example, the role of
the locally misspeci�ed parameters is discussed and it is shown that the problem
of not being able to estimate them consistently leads to a worse performance of
the FIC estimator than would be the case if the parameters were known. Other
researchers can build on these derivations and do not need to formulate them
themselves anymore in cases where they want to apply the FIC to time series
data, for example.

Since all models can only be approximations, users of statistical methods do not
have to con�ne themselves to the process of model selection, which is the process
of �nding the best suited speci�cation for the data at hand from a prede�ned
range of models. Model averaging is an alternative to model selection. In model
averaging, instead of calculating scores for all the models under consideration, and
subsequently choosing the one with the best (lowest) score for further use, weights
are calculated for all the models. These are then used for calculating an averaged
estimate as the weighted average of the estimates from all considered models. It
turns out that such averaged estimators can be more precise than estimators based
on single models. This is shown in Chapter 3. Like Chapter 2, Chapter 3 provides
the asymptotic theory of methods that had already been de�ned for independent
data settings, for the time series setting. The methods are smoothed AIC and
smoothed BIC averaging. For those economists who want to use the idea of model
averaging on a focus parameter that they are interested in in a time series setting,
Chapter 2 shows how such a FIC averaging estimate can be meaningfully de�ned.

The theoretical results alluded to above lead to point estimates. As an example,
an estimation procedure with a VAR model describing an economy could lead to
the estimated result that if the central bank’s monetary policy variable increased by
one standard deviation from one quarter to the next unexpectedly, then the e�ect
of this change on the gross domestic product two quarters later will be a reduction
by 0.3%. But this number alone, this so called point estimate, does not give any
information on the degree of certainty that the model attaches to this estimate.
Such is usually represented by con�dence intervals. In this case a 95% con�dence
interval might for example be described by the starting and end points -0.35%
and -0.25%, meaning that with 95% probability the reduction in GDP will be in
this range. Wider con�dence intervals represent greater uncertainty. Con�dence
bands are the analog to con�dence intervals for functions, and can be obtained
by joining neighboring con�dence intervals together. One common presentation of
con�dence bands is for temperature forecasts, where it can typically be observed
that the con�dence bands widen for longer prediction horizons as the precision
of the estimates decreases. Chapter 2 of this book also presents a method of
calculating con�dence bands around the estimates from FIC model selection and
FIC model averaging estimates. This method relies on the asymptotic distribution

125



VALORIZATION ADDENDUM

of the estimators, which can be more or less relevant for �nite sample results.
But the estimators of Chapter 3 are also presented together with methods for
constructing con�dence bands. These, however, are based on the �nite sample
distribution of the estimators as they rely on so called bootstrapping methods.
This means that the methods are relevant for all sample sizes, and hence very
valuable for practitioners. Since the AIC is a heavily used model selection criterion,
the smoothed AIC estimator together with the possibility of calculating con�dence
bands as presented in Chapter 3 should �nd many users among users of time series
data.

While Chapters 2 and 3 provide the mathematical framework for some new
econometric tools and simulation studies to illustrate their properties, Chapter 4
applies the aforementioned model selection and model averaging criteria and the
bootstrap algorithm for constructing con�dence bands to empirical data. The data
is the same as has been used in previous econometric publications that analyse
the e�ects of monetary policy on US macroeconomic variables by modelling VAR
processes. These publications are well known among practitioners. Nowadays
there are plenty of model selection criteria available whose theoretical properties
are described in the literature, but it may not always be obvious how much the
choice of model selection criterion a�ects estimation results. That is why the ap-
plication of di�erent model selection and model averaging criteria to these well
known data sets helps practitioners to gain intuition on how sensible the results
one might typically expect from monetary VAR models are to the choice of model
selection criterion. Arguing from a slightly di�erent perspective: There are many
di�erent methods and mathematical ideas that a researcher could spend a lot of
time and paper on to write down the corresponding asymptotic theory only with
the goal of producing material to impress publishers or employers. After all, the
econometric literature mostly consists of methods that work, that have some use.
So there would potentially still be a lot to be written down on methods that are
of limited use only. But by comparing our methods with previous studies in em-
pirical research and showing that our methods deliver estimates in similar ranges
as existing, heavily used criteria, we show that our methods are not completely
without application in empirically relevant cases.

To end this valorization section note that the vector autoregressive - VAR -
models for which the methods in this book are discussed have autoregressive - AR
- models as a special case. These have applications in many di�erent �elds, for
example climate research, �nance, physics, medicin, cf. e.g. Gani et al. (2009).
And lastly, all the discussed methods can easily be implemented with standard
statistical software packages like R and Matlab. All the necessary formulas and
de�nitions are written down in this text.
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