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Chapter 1

Introduction

“Science is the great antidote to the poison of enthusiasm and superstition.”

Adam Smith

This introductory chapter provides an informal introduction to the concepts used,

presents the motivation of the topics under study, and gives a roadmap for the rest of

the dissertation.

1.1 Public goods games

Game theory is the mathematical discipline of decision-making in strategic situa-

tions. The minimal requirements needed to describe such situations – games – are the

interacting agents – players –, the possible decisions the players can make – strategies –,

and the players’ preferences over the outcomes of their decisions. Under some permis-

sive assumptions, these preferences can be represented by numerical (von Neumann-

Morgenstern) utility functions – called payoffs. Crucially, the models of game theory

allow a player’s payoffs to (partially or fully) depend on the other players’ decisions.

Games with only these three components are called normal-form games. Depending

on the complexity of the model, games may have several other components describing

the timing of the decision-making process, the information available to the players,

and the heuristics by which they evaluate information and make their choices. As it is

apparent by the number and difficulty of these concepts, game theory is a particularly

rich, deep field, with close ties to real-life situations.

Zero-sum games have the property that in every outcome the sum of payoffs of
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all players is always zero (or, equivalently, always the same constant). These games

capture situations where the players are in direct conflict with each other: one player’s

gain is another’s loss and vice versa. It was the study of two-player zero-sum games by

John von Neumann in 1928, titled Zur Theorie der Gesellschaftsspiele that is counted

as the first contribution to modern game theory.

Conversely, non-zero-sum games allow for mutual gains via coordination and coop-

eration. Some animals associate into social groups in order to realize the gains from

playing non-zero-sum games. Arguably, the defining characteristic of the homo sapi-

ens is the innovative drive to seek out and play non-zero-sum games. Civilization and

high economic development is associated with a society’s ability to design, create, and

maintain institutions that ensure coordination and cooperation in those games.

The public goods game is one of the most well-known and most relevant of non-

zero sum games. The original version of the game reads as follows: There are n > 2

agents with an endowment of 100 euros each. Every agent decides individually and

simultaneously on how much of the endowment they wish to contribute to a common

pot. Once the decisions are made, the amount of money in the pot is multiplied by a

number 1 < m < n and redistributed among the agents equally. In this game every

euro of a player’s contribution increases the wealth of the whole society by m > 1 euros,

meaning that contributing the entire endowment of 100 euros is the socially optimal

choice. However, as every euro of contribution increases the wealth of every player,

including the donor’s, only by m/n < 1 euros, every donor loses 1 − m/n euros for

each euro of contribution, making the contribution of 0 euros the individually optimal

choice. Hence, payoff-maximizing agents will not contribute. This game, together

with its generalizations, is one of the most widely studied problems of game theory

with applications in every field of economics, as well as in sociology, biology, medicine,

computer science, political science, and psychology. Such profound interest in what is

a simple tradeoff between self-regard and prosocial behavior is due to the synergy of

individual efforts towards the collective good, universally found in every human and

animal society.

1.2 Networks

While the depth of the public goods game, especially given its simplicity, makes it an

attractive choice to model a variety of situations, its original form cannot capture the

intricacies of real societal interactions. There are two points of critique of the original
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game. The first is the process by which the societal gain is created. In the original

version, the extra money is provided by an external source, i.e. the arbitrator, repre-

senting society’s joint benefit from the public good created by a centralized institution,

i.e. the government. However, value may also be created by private individuals, i.e.

the players themselves, in which case the gains are possibly realized by only a subset

of players. Second, in real societies, agents are not symmetric with respect to their

benefits gained from centrally created public goods either. In fact, many public goods

are spatially excludable. For example, an investment into a city’s commuter train net-

work benefits the city’s residents unequally, those living in the city center will realize

lower gains than those living in the metropolitan area. An elegant way to resolve these

critical points and construct a more closely applicable model in the spirit of the public

goods game is by describing the nature of interactions within the population by the

use of networks. In this setting, the players reside in the nodes of the network, and

players contribute to create localized goods in the nodes they inhabit. Players gain

benefits from the goods they themselves created, as well as the goods to which they

are connected in the network.

Networks are a representation of pairwise relations between abstract objects. De-

pending on what type of objects are considered, we may distinguish social networks,

biological networks, computer networks, and many others. By only considering pairs,

the number of parameters that define a network is kept low, a polynomial function of

the number of objects. Because of this, the framework strikes a balance between rich-

ness and efficiency, making networks accurate, elegant, and comprehensive descriptions

of complex spatial systems. In this dissertation three types of networks are considered.

In order of increasing generality these are simple graphs, weighted networks, and di-

rected networks.

In simple graphs relations are binary, two objects may be either linked or not

linked. This is the most common framework to capture social networks. For ex-

ample, scientific collaboration networks are typically imagined as simple graphs with

researchers being the nodes and co-authorships being the links. In these models, every

link is assigned the same (or similar) meaning, such as friendship, communication, or

some other type of connection. While not always an accurate representation of reality,

such networks are widely used since they allow for concise graphical representations

of even a large number of nodes and links. Chapter 3’s model is a game played on a

simple graph.

Weighted networks are generalizations of simple graphs, allowing each link to

have a unique meaning. This is accomplished by assigning numbers – weights – to
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links, usually indicating a stronger relationship in case of a large weight or a weaker

one in case of a small weight. Weighted networks constitute a richer model, more

closely capturing the details of a web of real relationships, while still allowing for good

representations. Depending upon the application the weights may be positive integers,

indicating a multiplicity of links, such as multiple joint papers in a scientific collabo-

ration network, positive real numbers, indicating intensity, strength, or capacity such

as the value of a collaboration, or both positive and negative real numbers. A possi-

ble interpretation is positive numbers indicating good/beneficial/healthy relationships

and negative numbers indicating bad/detrimental/toxic relationships, with the abso-

lute value of the weight measuring its strength. A game played on weighted networks

is discussed in Chapter 2.

Both simple graphs and weighted networks make the assumption that links go both

ways between pairs, and, in case of weighted networks, the weight of a link is equal for

both players. Directed networks, a generalization of both, is a framework that exists

to capture situations which do not adhere to this property. These situations include

unequal relationships, where one participant is more important or more powerful than

the other, parasitic relationships, from which one party benefits but the other is hurt,

and hierarchical relationships, where one party is affected by the other but not the

other way around. A game played on directed networks is discussed in Chapter 4.

1.3 Learning

Any analysis of a normal-form game begins with the application of a solution con-

cept. A solution is an ex-ante prediction of the outcome of the game satisfying some

intuitive properties. Players may be expected to agree on the solution as a result of

some bargaining process, or the solution may be the benchmark at the initiation of

the process. Unless the option to cooperate is specified by the rules of the game we

typically assume that players have no regard for each other’s payoffs and therefore

such solutions, especially when viewed as a possible outcome of the game, must be

multilaterally self-enforcing. By far the most commonly used and well-known concept

is the Nash equilibrium. Developed by John Nash in 1950, the Nash equilibrium is

a combination of the players’ strategies such that no player can be strictly better off in

payoffs terms by unilaterally deviating from it. The Nash equilibrium is an intuitive,

succinct, and powerful concept, as its existence is proven for every normal-form game

(possibly requiring a probabilistic extension of the game). Its predictive potential,
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however, is limited.

The main issue of Nash equilibria which hinders its use in real life situations is

multiplicity. Even in the simplest case of two players and two strategies the existence

of a unique Nash equilibrium is not guaranteed, and even for a handful of players

and strategies the number of Nash equilibria may be in the dozens or hundreds. The

average number of Nash equilibria in games with 4 players and 6 strategies for each

player is above 2000.

This vast multiplicity causes inaccuracy of the predictions on two levels: coordina-

tion and selection. Many realistic scenarios feature a lack of coordination mechanisms

(e.g. binding agreements), meaning that even a few players are unlikely to choose

strategies that correspond to the same Nash equilibrium. In a 2 × 2 game with two

pure (not requiring probabilistic mixing of strategies) Nash equilibria, such as coordina-

tion games, both players may justifiably play both of their strategies. This means that

all four outcomes may be reached, the likelihood of a successful coordination is 50%,

and the Nash equilibrium’s predictive power is nil. In case of larger games coordination

becomes much harder.

Even if the game rules include ways to achieve coordination, the problem of equilib-

rium selection persists. The original equilibrium concept gives no insight into which of

the dozens, hundreds, or thousands of Nash equilibria should be expected to be played.

As these equilibria may lead to very different combinations of payoffs, both coordina-

tion and selection remain key obstacles to making plausible and useful predictions.

Other solution concepts exist to address these issues, many of them are refinements

of the Nash equilibrium, but, just like the original concept itself, they have proven

extremely hard to validate in general classes of games.

Learning is the way by which agents accumulate, evaluate, and react to new

information. For a wide range of games learning has proven to be highly successful

in providing motivation for various equilibrium concepts, and specifically for the Nash

equilibrium. In a game featuring learning, the players are playing slightly different

versions of the same normal-form game many times. As players discover more about

the game and their opponents, they make improvements on their strategies the result of

which should, in time, resemble equilibrium play. This approach is attractive from an

applied point of view, as, rather than one-shot game with near-simultaneous decision-

making, most strategic interactions take place in a repeated setting. The improvements

happen as the players receive revision opportunities, the timing of which, and the

heuristic by which the revisions themselves are made, depend on the model.

The concept of learning is central to all chapters appearing in this dissertation.
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Chapter 2 studies how well the use of Nash equilibria is motivated in public goods

games played on weighted networks. Chapter 3 presents a probabilistic learning model

in a public goods game played on a simple graph with two types of decision makers,

farsighted and myopic. Chapter 4 examines a simple learning process, the best-response

dynamic, in public goods games played on directed networks. In the learning models

of Chapters 2, 3, and 4, the processes governing the asymptotic behavior of strategies

are one-sided, meaning that the revision opportunities are assigned to only one player

in each time period, while the strategy of every other player in the player sets remains

fixed. In subsequent periods, the identity of the player holding that period’s revision

opportunity may change, but the set of players remains fixed throughout, irrespective

of how the players perform. In Chapter 5’s model of the immunotherapy of cancer,

the tumor’s reaction to various forms of therapy is analyzed. This model takes an

evolutionary approach, meaning that players – cells – using strategies yielding high

payoffs in the given circumstances will thrive, while those with strategies yielding low

payoffs will perish. The modeling choices in the four chapters were made to reflect

the plausible ways by which populations in their respective applications learn to play

the game. As a general rule of thumb, we can say that short-term economic and

biological interactions (compared to the lifespan of the model’s subjects), as well as

sociological models have a fixed player set with players accumulating information as

they learn through trial and error. In long-term economic and biological interactions,

in genetic algorithms of computer science, and in intergenerational sociological studies

the player set is typically fluctuating with new players arriving to the game, possibly by

having more successful players proliferate, as well as living players exiting it, possibly

by less successful players dying off. By this process, the population goes through the

Darwinian dynamics of evolution via natural selection.

1.4 Public goods and tumors

A tumor is a group of body cells which have undergone mutations to an extent that

they satisfy five properties not found in normal cells: (1) Self-sufficiency in growth

signals; the ability of a cell to reproduce in the absence of hormones or other signals

from the body. (2) Insensitivity to anti-growth signals; the resistance to environmen-

tal conditions that would halt proliferation in normal cells. (3) Evading apoptosis;

apoptosis is a type of programmed cell death occurring in response to, among other

factors, genetic instability or infections, which tumor cells have evolved to disobey. (4)
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Limitless replicative potential; normal mammalian cells are unable to reproduce after

about 60-70 doublings, called the Hayflick limit, which is overcome via mutation in the

order of one in every ten million cells, producing an immortalized cell with unlimited

doubling capability. (5) Sustained angiogenesis; angiogenesis is the process by which

new blood vessels are formed from pre-existing ones, a process which tumor cells are

able to hijack in order to ensure a continuous supply of oxygen and nutrients into the

tumor. These five properties are present in malignant and benign tumors alike. Malig-

nant tumors satisfy an additional property: (6) Metastatis; the ability to break away

from their original site, invade neighboring tissues and organs and spread through the

body. These six properties are collectively known as the Original Hallmarks of Cancer.

In recent years further hallmarks were added as typical characteristics of malignant

tumors, only one of which is touched upon by this dissertation: (7) Immune evasion;

the ability to withstand, evade, or suppress attempts by the body’s immune system to

destroy the tumor.

Cancer is an umbrella term for over 100 diseases of multi-cellular organisms involv-

ing malignant tumors. It is one of the leading causes of death in the world, affecting

up to 14 million people each year, killing up to 9 million (2015), and costing over 1

trillion USD annually (2010).

In 1971, U.S. President Richard Nixon signed the National Cancer Act, starting an

increased research effort into finding a cure for cancer, a project nicknamed the “War

on Cancer”. In spite of significant research achievements into the causes, prognosis,

and new forms of therapy of cancer, the reduction in cancer death rates has remained

modest and is mostly attributed to lifestyle improvements and a greater awareness

rather than advances in therapy. The war rhetoric, with its positive effects on public

awareness notwithstanding, allows the persistence of potentially harmful paradigms.

The most widely known paradigm in therapy is that of the Maximum Tolerated Dose

(MTD).

Unlike bacteria or viruses, cancer cells are highly similar in structure to the normal,

unmutated cells of the human body, meaning that any non-targeted therapy that is able

to destroy tumors, such as chemotherapy, is also highly toxic for the patient. MTD

is the highest dose of a drug or treatment the patient can receive without causing

unacceptable side effects. One of the standards of cancer treatment is to identify the

MTD of the given drug, typically chemotherapy, introduce it to the patient, ceasing

only when the toxicity caused by the drug becomes as bad as the cancer prognosis.

By doing so the treating physician is waging his or her own war with the patient’s

cancer, and the therapy becomes a race between cancer’s resilience to the drug, and the
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patient’s resilience to the cancer and the drug. The only two outcomes of such therapies

are a cancer-free patient, with all detectable tumors eradicated, or a deceased patient.

In both outcomes the patient pays a high price both in financial terms and in enduring

the painful side effects. While viewing the ongoing efforts to cure cancer as a war both

on a macro level (by rushing to develop new, revolutionary forms of treatment) and on

a micro level (by trying to completely eradicate all tumors of a patient) is helpful in

taking the necessary immediate, decisive, and radical actions, it may obscure situations

when treating to kill as many cancer cells as quickly as possible is a suboptimal strategy.

This is because, although MTD treatments provide good initial results in shrinking the

tumor, the high dose of treatment promotes the evolution of resistance by cancer cells.

Due to their defective DNA, cancer cells accumulate mutations with an increased rate,

hence adaptation happens rapidly. Since cancer cells without resistance are wiped out

by the high dose, the time during which the entire tumor adapts, and therefore the

disease remains sensitive to the therapy is minimized by applying the MTD.

The game theory of cancer emerged as a direct response to the war-on-cancer

paradigm, treating cancer cells as payoff-maximizing players rather than the enemy.

The intention was to model cancer’s response to existing therapies, but the field has

quickly grown beyond this level. Today, game theoretic papers exist or are in prepa-

ration modeling many properties of tumors from the initial evolution of the hallmarks

of cancer, to tumor growth and metastasis, to more effective timing of treatments. As

any successful society, cancer cells play their own non-zero-sum games, notably the

public goods game, between themselves. Examples include the joint efforts by cancer

cells to promote angiogenesis and attract nutrients, to systematically destroy stromal

structures and thus metastasize into different tissues, and to suppress the immune sys-

tem. Game theory’s insights into these areas are potentially extremely valuable. Thus

far the most consequential insight comes from the direct application of evolutionary

game theory and it states that the best control for cancer cells resistant to therapy are

non-resistant cancer cells. Hence, by lowering the dose of treatment, the time until re-

sistance can be greatly increased while at the same time keeping the cancer burden low

enough that the patient does not succumb, rendering cancer into a chronic disease. The

lower dose means that this approach is also less costly and less painful for the patient.

By applying treatment to control the tumor rather than destroy it, called “adaptive

therapy”, Moffitt Cancer Center has achieved two extremely promising results: animal

trials have shown that prostate cancer may be kept under control indefinitely, while

presently ongoing clinical trials with human patients living with advanced prostate

cancer have shown that the time until cancer progression and death may be at least
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tripled compared to the standard of care. As the clinical trials are still continuing,

with new trials currently under development at the time this dissertation is written,

the true potentials of adaptive therapy, and other applications of game theory in cancer

are still yet to be determined.

Chapter 5 of this dissertation presents a model of the immunotherapy of cancer.

Some immune evasion strategies of cancer cells, specifically the tumor’s immunosup-

pression, are modeled as public goods games played by the cancer cells. Immunotherapy

is a form of treatment that induces or enhances immune response. In recent years forms

of immunotherapy have proven successful in what appeared to be hopeless cases of can-

cer, which resulted in widespread mainstream attention. Its general efficacy, however,

is still uncertain, as a successful application requires much more tailoring than existing

methods of treatment.

1.5 Structure

This dissertation is structured as follows. The introduction is followed by four self-

contained chapters. Three of them, Chapters 2, 3, and 4 are related to public goods

games played on networks, and one, Chapter 5, is related to the immunotherapy of

cancer. The dissertation is concluded by a valorization addendum, exploring the value-

creating potential of the research presented in the four chapters.

Chapter 2 examines the convergence of basic one-sided learning processes in public

goods games played on weighted networks. It is shown that adaptive learning converges

to the set of Nash equilibria of a game as long as two conditions are satisfied. First,

all players must receive revision opportunities with some frequency. It does not matter

how often or how rarely a player gets a revision opportunity as long as we can specify a

length of time such that during any interval of that length every player revises at least

once. Second, every revision must take the updating player closer to his contemporary

best response. Crucially, we do not impose that players always take the optimal action

at the time of their updates, or that they must have a higher payoff after their revisions

than before. The condition merely states that the distance from their optimal choice,

given the other players’ contributions, must decrease as a result of the update. If a

third condition, the finiteness of the set of Nash equilibria, also holds then every such

process converges to a single Nash equilibrium point. Finally, the chapter proves that

this third condition is generically satisfied.

Chapter 3 builds a model of exploitation with two player types with different abil-
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ities. One sophisticated agent plays against a group of myopic agents and is trying to

maximize his payoffs by manipulating his neighbors into producing the public good.

The players are connected by a simple graph, hence the game involves asymmetries in

both ability and position. Sophistication is modeled as a form of foresight, the ability

to take future payoffs into account, while the rest of the population’s myopia represents

a general societal naiveté. As in Chapter 2, the game’s dynamics take place in discrete

time with one player receiving a revision opportunity in each period, while every other

player’s actions are kept the same. In each period the player who receives the revision

opportunity is assigned randomly, independently from past periods, and with a uniform

distribution across players. The chapter shows that an optimal exploitative strategy

exists for the farsighted player and it is Markovian, meaning that every choice depends

only on the current state of the world rather than the game’s entire history until that

point. Furthermore, playing optimally guarantees that the game eventually reaches a

rest point, at which the myopic players are playing their best-response contributions

and the farsighted player has no ways to advance the game such that he receives a

higher expected payoff. This result is driven by the fact that in an unweighted setting,

the best-responding behavior of myopic players propagates a rising inequality between

players, reflecting increased production of players with lower access to the public good,

and increased free-riding behavior by players with more access to it. Since the asymp-

totic behavior of this game in equilibrium is once again converging to the rest points of

the system, Chapter 2’s own convergence results are shown to be robust with respect

to the inclusion of a farsighted player for games played on unweighted graphs. Fi-

nally, the consequences of changes in the network are explored. Adding a link between

the farsighted player and a previously unlinked myopic player makes the farsighted

player better off, while adding a link between two of the farsighted player’s previously

unlinked myopic neighbors will make the farsighted player worse off.

Chapter 4 considers games played on directed networks. In both Chapters 2 and

3 the reciprocal nature of the interactions, guaranteed in simple graphs and weighted

networks, is strongly exploited. Both convergence results rely heavily on the fact that

a player moving towards a best response always advances the game towards one of its

Nash equilibria, a property derived through the theory of potential games. The results

of this strand of literature can only be used in undirected networks. This chapter

provides insight for the thus far unexplored, but more general case of directed networks.

Examples and situations that lead to either cycling, and therefore non-convergence are

shown. Two classes of networks are identified with acyclical best-response dynamics:

hierarchical relationships with a clear, unambiguous ranking of players, and networks
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where the internal effects of a player’s own production to his own payoffs are larger

than their external effects on the rest of the population.

Chapter 5 presents an ecological model of immunotherapy based on game theoretical

concepts. Two populations are considered, cancer cells and killer T-cells engaged in

direct conflict. Cancer cells have two types with respect to their immune evasion

strategies, selfish and cooperative. Selfish cells employ strategies that benefit no cancer

cell other than itself. These strategies involve the evolution of crypticity by down-

regulating tumor-specific antigens on the cells’ surface, resulting in a failure by the killer

T-cells of the immune system to recognize them as cancerous cells. Cooperative cells on

the other hand use strategies that benefit every tumor cell within the neighborhood.

Such strategies involve immunosuppression by sending signals to regulatory T-cells

that will in turn deactivate killer T-cells. Selfish and cooperative cells may be viewed

as defectors and contributors in a public goods game, as being selfish is always the

individually optimal strategy – maximizing the proliferative potential of the given cell

– while cooperation is the socially optimal one – maximizing the proliferative potential

of the tumor. The chapter contains analytical results as well as simulations, considering

multiple types of immunotherapy with two main results: (1) Introducing treatment

focusing on the selfish phenotype, e.g. by unmasking the cells evolving crypticity and

activating the killer T-cells, pushes the tumor towards cooperation. As the cells’ private

incentive to be selfish diminishes, cooperation inside the tumor will evolve and cancer’s

immunosuppression will intensify. As a result, the patient’s prognosis may worsen by

the treatment. (2) Introducing treatment interfering with cancer’s immunosuppressive

ability has less effect on the cancer’s composition, as cancer cells have an incentive to

be selfish with and without the therapy. As a result, the tumor’s immunosuppression

will diminish, and patient prognosis improves by the treatment.
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Chapter 2

Adaptive learning in weighted

network games

“Learning never exhausts the mind.”

Leonardo da Vinci

This chapter1 studies adaptive learning in the class of weighted network games. This class

of games includes applications like research and development within interlinked firms, crime

within social networks, the economics of pollution, and defense expenditures within allied

nations. We show that for every weighted network game, the set of pure Nash equilibria

is non-empty and, generically, finite. Pairs of players are shown to have jointly profitable

deviations from interior Nash equilibria. If all interaction weights are either non-negative or

non-positive, then Nash equilibria are Pareto inefficient. We show that quite general learning

processes converge to a Nash equilibrium of a weighted network game if every player updates

with some regularity.

2.1 Introduction

The theory of learning is of fundamental importance in game theory. With most of

the focus in the non-cooperative game theory literature being devoted to the study

of equilibria – various concepts, characterizations of the equilibrium set, properties,

1This chapter is based upon Bayer, Herings, Peeters, and Thuijsman (2017). I would like to thank

Péter B́ıró, Yann Bramoullé, and Mark Voorneveld for their comments, as well as Sebastian Bervoets

and Mathieu Faure for feedback and suggestions.
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refinements – it is critical to understand how equilibrium is reached. However, the main

concepts of equilibrium theory, and in particular, the concept of Nash equilibrium,

have proven difficult to validate, especially in one-shot games. To quote Fudenberg

and Levine (1998): “One traditional explanation of equilibrium is that it results from

analysis and introspection by the players in a situation where the rules of the game,

the rationality of the players, and the players’ payoff functions are common knowledge.

Both conceptually and empirically, these theories have many problems.” One of the

main goals of learning in game theory is to provide such a motivation. For one-shot

games this is typically achieved by interpreting the equilibrium points as results of

a series of updates by the players acting in a recurrent setting of that game. These

updates are made in response to observed moves by their opponents, with various

assumptions on rationality. Ideally, as the players discover more about the game and

about their opponents, their collective decisions should, in time, resemble equilibrium

play. As such, the learning literature focuses mainly on the stability and convergence

properties of various learning processes.

The class of games in which we frame our analysis is the class of weighted network

games. This class of games corresponds to the private provision of local public goods

games introduced by Bramoullé and Kranton (2007) for undirected graphs and gener-

alized by Bramoullé et al. (2014) for weighted networks. For a comprehensive overview

of related models, see Sections 3 and 4 of Jackson and Zenou (2014). The main prac-

tical reason this class of games is worth studying, is its wide range of applications in

various subfields of economic theory, including R&D within interlinked firms (König

et al., 2014), crime within a social network (Ballester et al., 2006), and peer effects

with spatial interactions (Blume et al., 2010). Further applications include pollution

models as in Leontief (1970) as well as defense expenditures within an international

community as studied by Sandler and Hartley (1995) and Sandler and Hartley (2007).

Networks offer a simple way to model complex interactions between many decision

makers. The simplest network models are undirected graphs, in which a link between

a pair of players indicates a direct interaction. Since players may be indirectly affected

by the neighbors of their neighbors, and so on, each interaction may be relevant for

each player, resulting in a profoundly rich model. In weighted networks, interaction

weights with arbitrary values, either positive or negative, are used to characterize the

way that pairs of interacting players influence each other.

The parameters of a weighted network game are the weighted network itself, de-

scribing the interactions between the players, a vector of targets that describes the

players’ needs, and a vector of upper bounds representing the players’ highest possible
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activity levels. Each player has a concave benefit function of the weighted aggregate

activity and a linear cost function of his own activity. We show that the set of Nash

equilibria of weighted network games is non-empty and generically finite. Additionally,

we show that under quite general conditions pairs of players can jointly improve their

payoffs, so Nash equilibria are not strong. We also give conditions such that they are

not Pareto efficient.

We study a class of learning processes with the following features. The players

update their decisions at discrete points in time, maximizing their payoffs for a single

period. The updates determine the status quo of the next period. At any given period,

only one player is allowed to update, the actions of every other player remain the same.

This class of learning processes includes e.g. the improvement paths of Monderer and

Shapley (1996).

Weighted network games are generalized aggregative games (Dubey et al., 2006),

as well as best-response potential games (Voorneveld, 2000), but may not belong to

the class of ordinal potential games (Monderer and Shapley, 1996). Since weighted

network games generally do not have an ordinal potential, better-response dynamics

may not converge, and we show the possibility of non-convergence by an example.

Our main results concern the properties of adaptive learning processes centered

around the best responses. We find that convergence to the set of Nash equilibria

requires two conditions: (1) each update has to take the player closer to his contempo-

rary best response, and (2) with some regularity, every player must have the possibility

to update. Furthermore, we show that such processes converge to a Nash equilibrium

point, if (3) the set of Nash equilibria is finite. The first and second condition concerns

the players and may be interpreted as assumptions of cautiousness and activity, re-

spectively. The third condition concerns the parameters of the weighted network game

and is generically satisfied. The main significance of our results is in the fact that the

convergence of learning processes to a Nash equilibrium can be achieved with relatively

weak assumptions on the behavior of the players. Our convergence conditions are less

demanding than those studied before, and weakening either of (1) and (2) would lead

to non-convergence.

As revision opportunities are generally scarce in real-life applications, the analysis

of general, discrete-time learning processes are necessary to provide motivation for the

use of Nash equilibria. To our knowledge, the paper on which chapter is based upon is

the first to do so in the setting of weighted network games. Bramoullé et al. (2014) and

Bervoets and Faure (2019) study best-response dynamics in continuous time. Bervoets

et al. (2016) considers a two-stage stochastic learning process with experimenting play-
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ers that converges with probability one. Eksin et al. (2012) considers a similar game

of incomplete information played on a graph. Unlike the papers examining continuous

learning processes, our results make full use of the global properties of the best-response

potential and hence we are able to make predictions on processes with erratic move-

ments. These processes may correspond to decision makers who make mistakes either

by result of a “trembling hand” or due to a lack of sophistication. Therefore, both our

setting and our results are behaviorally motivated.

This chapter is structured as follows. Section 2.2 introduces weighted network

games. Section 2.3 contains the characterization of the set of Nash equilibria and

its welfare properties. In Section 2.4 we define learning processes and discuss their

cycling properties. Section 2.5 contains our main results, the convergence conditions

of learning processes. Section 2.6 concludes.

2.2 Weighted network games

Let I = {1, . . . , n} denote the set of players with n ≥ 2. The action set of player i ∈ I
is Xi = [0, xi] with xi > 0. Let xi ∈ Xi denote player i’s action. The action profile

of all players is denoted by x = (xj)j∈I and the action profile of all players except

i by x−i = (xj)j 6=i. Similarly, X =
∏
i∈I Xi denotes the set of action profiles and

X−i =
∏
j∈I\{i}Xj the set of action profiles for all players other than i.

Definition 2.2.1. The tuple G = (I,X, (πi)i∈I) is called a weighted network game if

for every i ∈ I the payoff function πi : X → R is given by:

πi(x) = fi

(∑
j∈I

wijxj

)
− cixi,

with cost parameters ci > 0, interaction weights wij ∈ R, and benefit functions fi : R→
R.

Assumption 2.2.2. For every i ∈ I, wii = 1, and for every i, j ∈ I, wij = wji.

Furthermore, for every i ∈ I, the benefit function fi is twice continuously differentiable

and satisfies the following properties: (1) f ′i > 0, (2) f ′′i < 0, and (3) there exists ti ∈ R
such that f ′i(ti)− ci = 0.

The interpretation is the following. Each player i ∈ I produces a specialized good using

a linear production technology. The costs of producing one unit of the good are equal

to ci. The production of player i is denoted by xi. Each player consumes his own good

as well as a weighted sum of his neighbors’ goods. The total amount of consumption
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of player i is
∑
j∈I wijxj and the benefit of consumption is fi(

∑
j∈I wijxj). The con-

sumption level ti where the marginal benefits of consumption are equal to ci is called

the target value. Note that since ti can be above or below values achievable by using

action profiles in X, property (3) of the benefit function is without loss of generality.

For player i, the interaction weight wij captures the substitutability of one unit of

player j’s good to his own. If wij > 0, then player j’s production generates positive

externalities for player i. Specifically, if wij = 1, then player i’s enjoyment of player

j’s good equals that of his own good. If wij ∈ (0, 1), then player i derives less benefits

from player j’s good than from his own. If wij ∈ (1,∞), then player i enjoys the good

of player j more than that of his own. Negative values of wij indicate that player

j’s production has negative external effects on player i’s benefits, with wij ∈ (0,−1),

wij = −1, and wij ∈ (−1,−∞) indicating that the negative effects are smaller, equal,

or greater in magnitude than the positive effects of equal amounts of the own good. The

assumption wii = 1 is a normalization. The symmetry assumption wij = wji for i, j ∈ I
is also made in previous studies like Dubey et al. (2006), Bramoullé and Kranton (2007),

and Bramoullé et al. (2014). The asymmetric case wij 6= wji is relatively unexplored

in the local public good setting and hence an interesting direction for future research,

see Bourlès et al. (2017) for a model of transfers with asymmetric interactions. The

interaction weights are collected in a matrix W.

Example 2.2.3. Let I = {1, 2} be a set of two countries that have to decide on the

level of their defense expenditures. We take Xi = [0, Zi], where Zi denotes the GDP

of Country i ∈ I, and

W =

(
1 w12

w12 1

)
.

The increasing, concave functions f1 and f2 indicate the countries’ benefits from de-

fense. Let ti = 0.01Zi, indicating that both countries have a target value for defense

expenditure of 1% of their GDP. This is the amount they would spend on defense if

the other nation spends nothing.

If w12 = 0, then neither country benefits from the other’s defense expenditure, nor

are they threatened by it. This may indicate neutrality or a significant geographical

distance. If w12 > 0, the two nations are allies and the game becomes a game of

strategic substitutes. In this case both nations benefit from the other’s defense spending

and national defense expenditures are likely to be lower than 1% of GDP. If w12 < 0, the

two nations are hostile to each other, and the game is a game of strategic complements.

In this case the nations are hurt or threatened by the other’s defense spending and
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defense expenditures will likely exceed 1% of GDP.

In case w12 = 1, Example 2.2.3 results in the 2-player pure public good model of

defense expenditure between allies, while 0 < w12 < 1 gives the symmetric version of

the limited substitutability public good model of defense expenditure between allies,

developed by Sandler and Hartley (2001). They do not consider the case w12 < 0.

In the subsequent section, we discuss how the set of Nash equilibria of this particular

game depends on the parameters t1, t2, and w12 in more detail.

Our setup allows the modeling of more intricate relationships between players, as

illustrated by the following example.

Example 2.2.4. Let I = {1, 2, 3} be a set of three countries deciding on the level of

their defense expenditures, Xi = [0, Zi], and

W =


1 −1 1

−1 1 1

1 1 1

 ,

and t = (0.03Z1, 0.03Z2, 0.01Z3). In this example, Countries 1 and 2 are rivals, but

both of them are friendly to Country 3. An example of this type of relationship may

be that of Israel, Saudi Arabia, and the U.S. since the 2000s.

Example 2.2.4 and similar examples that feature intransitive relationships between

countries cannot be modeled in the spirit of Sandler and Hartley (2001). Our setup

therefore reflects more closely the possible intricacies of diplomatic relationships and

can be used to model any system of alliances and threats, provided that the relationship

between any two nations is symmetric.

Games with strategic substitutes and complements are of great relevance in the

economic literature. The game of Example 2.2.3 can be interpreted as a game where

two firms choose their output to maximize their profits, with the interaction weight w12

deciding whether their products are net substitutes or net complements. An interaction

matrix similar to the one of Example 2.2.4 may describe the relationship between two

competitor firms producing substitute goods, e.g. plane manufacturers Airbus and

Boeing, and a third firm producing a complementary good, e.g. a kerosene supplier

Exxon Mobil. Other such examples include gaming consoles, XBox and Playstation

with a game developer EA Sports, or tea companies Lipton and Twinings with a sugar

company Südzucker. Weighted network games provide a framework to model any type

of relationship structure with any number of companies. As it will be apparent later,
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our main results extend to Bertrand and Cournot games of differentiated products and

linear demand curves, since weighted network games are best-response equivalent to

such games.

We denote the set of weighted network games satisfying Assumption 2.2.2 by G.

Since wii = 1 for every i ∈ I and wij = wji for every i, j ∈ I, the number of free

parameters in W is n(n−1)/2. Let w ∈ Rn(n−1)/2 denote the column vector of the upper

triangular elements of W . We define the set of parameters P = Rn++×Rn(n−1)/2×Rn.
Then, for (x,w, t) ∈ P, let G(x,w, t) be the set of weighted network games in G with

upper bounds x, interaction weights w, and targets t. A weighted network game in

such a set is characterized by the benefit functions fi and cost parameters ci.

The properties in Assumption 2.2.2 imply that for every x−i ∈ X−i, πi(xi, x−i)

has a unique global maximizer in Xi. For player i ∈ I, let bi : X → Xi denote his

best-response function, i.e. bi(x) = argmax xi∈Xi πi(xi, x−i) for every x ∈ X. We

now show that for a fixed configuration (x,w, t) ∈ P , all games in G(x,w, t) are best-

response equivalent, which implies that all games in G(x,w, t) have the same set of

Nash equilibria.

Lemma 2.2.5. Let (x,w, t) ∈ P and let G ∈ G(x,w, t) be a weighted network game.

For every i ∈ I and x ∈ X it holds that

bi(x) =


0 if ti −

∑
j 6=i wijxj < 0,

ti −
∑
j 6=i wijxj if ti −

∑
j 6=i wijxj ∈ [0, xi],

xi if ti −
∑
j 6=i wijxj > xi.

(2.1)

Proof. By differentiation of the payoff function we get

∂πi(xi, x−i)

∂xi
= f ′i(

∑
j∈I

wijxj)− ci.

The first order condition of unconstrained maximization is satisfied if f ′i(
∑
j∈I wijxj)−

ci = 0. Using property (3) of fi this is satisfied if
∑
j∈I wijxj = ti.

If ti −
∑
j 6=i wijxj ∈ [0, xi], then it follows that bi(x) = ti −

∑
j 6=i wijxj . Note that

the second order condition of maximization is satisfied due to the concavity of fi, and,

therefore, of πi.

If ti −
∑
j 6=i wijxj < 0, then for every xi ∈ Xi it holds that ti <

∑
j∈I wijxj .

Invoking properties (2) and (3) of fi, for every xi ∈ Xi we have f ′i(
∑
j∈I wijxj) < ci,

meaning that ∂πi(xi, x−i)/∂xi is uniformly negative. Therefore, πi is maximized for

the lowest possible value of xi, so bi(x) = 0.
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Similarly, if ti −
∑
j 6=i wijxj > xi, then for every xi ∈ Xi it holds that ti >∑

j∈I wijxj . Properties (2) and (3) of fi guarantee that for every xi ∈ Xi we have

f ′i(
∑
j∈I wijxj) > ci, and that ∂πi(xi, x−i)/∂xi is uniformly positive. Therefore, πi

is maximized for the highest possible value of xi, so bi(x) = xi. This concludes the

proof. �

It is useful to define a player’s unconstrained best response, the contribution level a

player would choose if instead of [0, xi], the set of available actions were equal to R.

For player i ∈ I and action profile x ∈ X, let b̂i(x) = ti−
∑
j 6=i wijxj denote this value.

Clearly, b̂i(x) 6= bi(x) implies that ti −
∑
j 6=i wijxj 6∈ [0, xi] and therefore the actual

best response is on the boundary: bi(x) ∈ {0, xi}.
For i ∈ I, we define the numbers bi and bi by bi = minx−i∈X−i(ti−

∑
j 6=i wijxj) and

bi = maxx−i∈X−i(ti −
∑
j 6=i wijxj). Since the set X−i is compact, both bi and bi are

well-defined. It is easily seen that the unconstrained best response of player i always

belongs to the interval [bi, bi].

Lemma 2.2.5 shows that for every player i ∈ I and every action profile x ∈ X such

that bi(x) ∈ (0, xi), ceteris paribus changing player j’s action by ∆xj changes player

i’s best response by −wij∆xj .

2.3 Nash equilibria

Since this chapter’s main focus is on the convergence of adaptive learning processes to

the set of Nash equilibria, as a precursor we characterize the relevant properties of this

set.

We first show that a weighted network game from Definition 2.2.1 satisfying As-

sumption 2.2.2 is a best-response potential game (Voorneveld, 2000). A game with set

of players I, action space X, and payoff functions (πi)i∈I is a best-response potential

game if there exists a function φ : X → R such that for every i ∈ I and every x ∈ X it

holds that

argmax
xi∈Xi

πi(xi, x−i) = argmax
xi∈Xi

φ(xi, x−i). (2.2)

We call φ the best-response potential of game (I,X, π). In the following proposition

we show that every weighted network game is a best-response potential game and use

φ to characterize the set of Nash equilibria. For (x,w, t) ∈ P, let X∗(x,w, t) denote

the set of Nash equilibria of a game in G(x,w, t).

Proposition 2.3.1. For every (x,w, t) ∈ P, it holds that:

20



1. Every game G ∈ G(x,w, t) is a best-response potential game with the potential

φ : X → R defined by

φ(x) = x>t− 1
2x
>Wx, x ∈ X.

2. X∗(x,w, t) 6= ∅.

3. x∗ ∈ X∗(x,w, t) if and only if x∗ satisfies the Karush-Kuhn-Tucker (KKT) con-

ditions, i.e. for every i ∈ I, there exist λi, µi ∈ R+ such that

ti −
∑
j∈I wijx

∗
j + λi − µi = 0,

x∗i ≥ 0, xi ≥ x∗i ,

λix
∗
i = 0, µi(xi − x∗i ) = 0.

The proof of Proposition 2.3.1 can be found in the Appendix.

The best-response potential allows for a simple characterization of the set of Nash

equilibria as the solution set of a KKT problem. The existence of a Nash equilibrium

immediately follows due to the bounded action space. In case the action space is

unbounded, negative interaction weights may cause an infinite increase of best replies,

leading to nonexistence.

Proposition 2.3.1 is related to Lemma 1 of Bramoullé et al. (2014), which applies to

weighted network games for which φ is an ordinal potential in the sense of Monderer

and Shapley (1996). Weighted network games in our class G do not generally admit

an ordinal potential. In fact, Example 2.4.5 shows that better-response dynamics can

lead to cycles in our set-up, which is incompatible with the existence of an ordinal

potential. Proposition 2.3.1 therefore only makes the weaker claim that φ is a best-

response potential.

The existence of a best-response potential is of particular interest for a wide class

of games. Their significance in the aggregative/network games strand of literature

was first pointed out by Kukushkin (2004). Ewerhart (2017) studies this question in

the class of contest games. It is a pivotal step in our analysis as well for its strong

implications on the convergence properties of best-response dynamics.

Since weighted network games are also generalized aggregative games (Jensen,

2010), the existence of the best-response potential also follows from more general re-

sults in the literature. In particular, it can be shown that the pseudo-potential of

Theorem 1 in Dubey et al. (2006) simplifies into the quadratic function φ.
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In addition to φ being a best-response potential, for network games on unweighted

graphs, Bervoets and Faure (2019) show that locally, φ serves as an ordinal potential,

i.e:

sgn
(∂πi(xi, x−i)

∂xi

)
= sgn

(∂φ(xi, x−i)

∂xi

)
.

This property can be easily generalized for weighted network games.

In what follows we use the characterization of Proposition 2.3.1 to derive conditions

for the interaction matrix and the vector of targets that guarantee the equilibrium set

to be finite. For (x,w, t) ∈ P, let Ξ(x,w, t) denote the set of solutions (x, λ, µ) to the

conditions of Proposition 2.3.1. For H ⊆ I, let

ΞH(x,w, t) = {(x, λ, µ) ∈ Ξ(x,w, t) : ∀i ∈ H,λi = µi = 0, and

∀i ∈ I \H,max{λi, µi} > 0}.

In words, ΞH(x,w, t) denotes the set of solutions to the KKT conditions of Proposition

2.3.1 such that for every player in H neither complementarity condition is binding and

for every player outside H exactly one complementarity condition is binding. Note

that both complementarity conditions cannot be binding simultaneously.

The set X∗H(x,w, t) is obtained by taking the projection of ΞH(x,w, t) to the set

of action profiles X, X∗H(x,w, t) = projX ΞH(x,w, t), where projX is the projection

mapping into X. If x∗ ∈ X∗H(x,w, t), then x∗ ∈ X∗(x,w, t) and for every i ∈ I \H we

have x∗i ∈ {0, xi}. It follows that X∗(x,w, t) =
⋃
H⊆I X

∗
H(x,w, t). Then, clearly, the

set of Nash equilibria X∗(x,w, t) is finite if and only if for every H ⊆ I, X∗H(x,w, t) is

finite.

Let bounds x ∈ Rn++, interaction weights w ∈ Rn(n−1), and a set H ⊆ I be given.

The set of target vectors for which X∗H(x,w, t) is infinite is denoted by

TH = {t ∈ Rn : |X∗H(x,w, t)| =∞}.

The set TH denotes its closure. Further, let

T = {t ∈ Rn : |X∗(x,w, t)| =∞}

denote the set of target vectors that yield infinitely many Nash equilibria and let T

denote the closure of T .

Lemma 2.3.2. For every x ∈ Rn++, for every w ∈ Rn(n−1)/2, for every H ⊆ I, the set

TH has Lebesgue measure zero.
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Proof. Let some x ∈ Rn++, some w ∈ Rn(n−1)/2, and some H ⊆ I be given.

First consider the case H = ∅. Then, for every t ∈ Rn it holds that X∗∅ (x,w, t) ⊆∏
i∈I{0, xi}, meaning that for every t ∈ Rn we have |X∗∅ (x,w, t)| <∞. It follows that

T∅ = T ∅ = ∅.
Now consider the case H 6= ∅. We show that there exists a set UH ⊂ Rn of Lebesgue

measure zero such that TH ⊆ UH .

For every t ∈ Rn, for every x∗ ∈ X∗H(x,w, t), we have that

x∗i ∈ {0, xi}, i ∈ I \H,

ti −
∑
j∈H wijx

∗
j −

∑
j∈I\H wijx

∗
j = 0, i ∈ H.

Let WH = (wij)i,j∈H denote the submatrix of W that we obtain by removing every

row and every column whose index is not contained in H. Further, let WH,−H =

(wij)i∈H,j∈I\H , tH = (ti)i∈H , x∗H = (x∗i )i∈H , and x∗−H = (x∗i )i∈I\H . Now, the previous

system of equations can be written in matrix form as

WHx
∗
H = tH −WH,−Hx

∗
−H . (2.3)

Therefore, by the Rouché-Capelli theorem, |X∗H(x,w, t)| =∞ implies rank(WH) < |H|.
So TH = TH = ∅ whenever rank(WH) = |H|. Consider the case where rank(WH) <

|H|. For y ∈
∏
i∈I\H{0, xi}, let UyH be the set of target vectors t such that tH −

WH,−Hy belongs to the span of WH . Notice that UyH is an (n − |H| + rank(WH))-

dimensional vector space and therefore a closed set of Lebesgue measure zero. Let

UH =
⋃
y∈

∏
i∈I{0,xi}

UyH . Since UH is a union of finitely many closed sets of Lebesgue

measure zero, it is also closed and is of Lebesgue measure zero. Notice that t ∈ Rn\UH
implies that t ∈ Rn \ TH , since for every t ∈ Rn \ UH the system

WHx
∗
H = tH −WH,−Hx

∗
−H

has no solutions in x∗H . It follows that TH ⊆ UH . Furthermore, since UH is closed, we

also have TH ⊆ UH . �

We prove Lemma 2.3.2 for the closure of the set TH , which implies that the set of target

vectors with infinitely many Nash equilibria is not only small in a measure theoretic

sense, but also in a topological sense.

The intuition behind Lemma 2.3.2 is that for a fixed subset of players, the set

of interior Nash equilibria corresponds to the solution set of a linear system which,

generically, has only one solution. The case of infinitely many solutions, and hence, the

possibility of infinitely many Nash equilibria obtains only if the rank of the interaction
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matrix is not full and the target vector belongs to a vector space parallel to the span

of the interaction matrix, which is only the case for a set of target vectors of Lebesgue

measure zero.

As an illustation of Lemma 2.3.2 for the case where all targets are very large or very

small, i.e. for every i ∈ I we have ti > maxx∈X
∑
j∈I wijxj or ti < minx∈X

∑
j∈I wijxj ,

the set of Nash equilibria is a subset of the corners of the strategy space X, i.e.

X∗(x,w, t) ⊆
∏
i∈I{0, xi}, and is therefore finite.

Lemma 2.3.3. For every x ∈ Rn++, for every w ∈ Rn(n−1)/2, the set T has Lebesgue

measure zero.

Proof. We show that there exists a set U ⊆ Rn of Lebesgue measure zero such that

T ⊆ U .

Let U =
⋃
H⊆I UH . Since U is a union of finitely many sets of Lebesgue measure

zero, it has Lebesgue measure zero. Since T =
⋃
H⊆I TH , and TH ⊆ UH for every

H ⊆ I, it also holds that T ⊆ U . Once again, since U is closed, we have T ⊆ U . �

Corollary 2.3.4. For every x ∈ Rn++, for every w ∈ Rn(n−1)/2, for almost every

t ∈ Rn, the weighted network game G ∈ G(x,w, t) has a finite number of Nash equilibria.

The generic finiteness of the set of Nash equilibria is illustrated in the following example.

Example 2.3.5. Fix parameters x and w12 in a weighted network game with two play-

ers. We have shown in Corollary 2.3.4 that for almost every t ∈ R2 the set X∗(x,w12, t)

is finite. For every t ∈ R2, the set X∗∅ (x,w12, t) is trivially finite, and it is easy to see

that the sets X∗{1}(x,w12, t) and X∗{2}(x,w12, t) are finite in the case of two players.

We therefore only check the interior solutions to the KKT problem of this game as

defined in Proposition 2.3.1, i.e. where all Lagrange parameters λi, µi are zero. In an

interior solution x∗ ∈ X∗{1,2}(x,w12, t), we have b̂1(x∗) = x∗1 and b̂2(x∗) = x∗2, therefore

x∗1 = t1 − w12x
∗
2,

x∗2 = t2 − w12x
∗
1.

In case w12 is not equal to 1 or −1, rearranging yields

x∗1 = t1−w12t2
1−(w12)2 ,

x∗2 = t2−w12t1
1−(w12)2 .

Therefore, for every w12 ∈ R \ {−1, 1}, we have |X∗{1,2}(x,w12, t)| ≤ 1. Whether or not

the set of interior equilibria is empty depends on whether x∗ is an element of X.
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If w12 = −1, it is easy to check that t1 = t2 = 0 yields infinitely many Nash

equilibria x∗ with x∗1 = x∗2. There can also be infinitely many Nash equilibria when

t1 + t2 = 0. There are no interior Nash equilibria for different values of t as then the

system of best responses is inconsistent. Similarly, if w12 = 1 then there can only

be infinitely many Nash equilibria if t1 = t2. Indeed, if x1 + x2 > t1, then there are

infinitely many Nash equilibria x∗ with x∗1 + x∗2 = t1, if x1 + x2 = t1, then there is a

unique interior Nash equilibrium, and if x1 + x2 < t1, then there are no interior Nash

equilibria.

Our result makes use of the generic uniqueness of interior equilibria, but the network

structure allows for the existence of a finite number of corner equilibria. Ballester and

Calvó-Armengol (2010), Belhaj et al. (2014) and Allouch (2015) provide results for the

uniqueness of Nash equilibrium.

We conclude this section by discussing efficiency properties of equilibria. We con-

sider efficiency in the Pareto sense. Other models consider efficiency in terms of mini-

mizing total efforts/production (Bramoullé and Kranton, 2007; Goyal, 2012), or max-

imizing total welfare (Bramoullé and Kranton, 2007; Helsley and Zenou, 2014). We

first show that a pair of players with a non-zero interaction weight can always jointly

deviate from an interior equilibrium to a better action profile. For a subset of players

H ⊆ I and δ ∈ R, let δH ∈ Rn denote the vector such that δHi = δ for i ∈ H and

δHi = 0 for i ∈ I \H.

Proposition 2.3.6. Let (x,w, t) ∈ P be given. Let x∗ ∈ X∗(x,w, t) be a Nash equi-

librium of a game G = (I,X, π) ∈ G(x,w, t) such that x∗i ∈ (0, xi) and x∗j ∈ (0, xj). It

holds that:

1. If for some i, j ∈ I with i 6= j it holds that wij 6= 0, then there exists δ ∈
(0,min{x∗i , x∗j , xi − x∗i , xj − x∗j}) such that πi(x

∗) < πi(x
∗ + sgn(wij)δ

{i,j}) and

πj(x
∗) < πj(x

∗ + sgn(wij)δ
{i,j}).

2. If w ≥ 0 or w ≤ 0 and, for some i, j ∈ I with i 6= j, it holds that wij 6= 0,

then there exists δ ∈ (0,min{x∗i , x∗j , xi− x∗i , xj − x∗j}) such that the action profile

x∗ + sgn(wij)δ
{i,j} is a Pareto improvement over x∗.

The proof of Proposition 2.3.6 can be found in the Appendix.

Proposition 2.3.6 implies that interior Nash equilibria are not strong Nash equilibria

since there are profitable deviations by coalitions of two linked players. Moreover,

interior Nash equilibria are not Pareto efficient provided that the interaction weights
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are either all non-negative or all non-positive. See Elliott and Golub (2019) for a

characterization of efficient Nash equilibria in the non-negative case.

2.4 Cycling of learning processes

Within the framework of weighted network games, we consider learning processes where

players update their strategies sequentially. That is, given some initial action profile,

one player changes his action, while that of every other player remains the same. Then,

another player makes a change under similar circumstances, and so on. We improve

upon existing results (Kukushkin, 2004; Dubey et al., 2006), which show acyclicity

of best-response dynamics by identifying the conditions under which a general class of

learning processes (particularly, the better-response dynamics) may cycle. We find that

learning processes may cycle if and only if players move away from or radically overshoot

the best response. Since the non-existence of best-response cycles is a necessary but not

sufficient condition of the convergence of best-response dynamics (Kukushkin, 2015),

this is a crucial step towards our convergence results.

Let N denote the set of positive integers and let K = {{1, 2}, {1, 2, 3}, . . .} ∪N be a

collection of index sets. For K ∈ K, we denote by K− the set that results from K by

leaving out its highest element. Notice that K− is equal to K if K = N.

Definition 2.4.1. Let some G ∈ G and K ∈ K be given. A sequence of action profiles

(xk)k∈K is a path in the game G if:

1. For each k ∈ K− there exists a player ik such that xk+1
−ik = xk−ik ,

2. There is at least one k ∈ K− such that xk+1 6= xk.

If xk+1
−ik = xk−ik , and xk+1

ik
6= xkik , then we call ik the updating player at period k.

As per Definition 2.4.1, a path is a sequence where at most one player has changed

his contribution between any two successive action profiles, while there are at least two

different action profiles in the sequence.

Definition 2.4.2. Let some G ∈ G and K ∈ K be given. A path (xk)k∈K is best-

response compatible in the game G if for every k ∈ K− it holds that:

1. If xk+1 = xk, then there exists ik ∈ I such that xk+1
ik

= xkik = bik(xk).

2. If xk+1
ik
6= xkik , then xk+1

ik
= bik(xk).
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Definition 2.4.3. Let some G ∈ G and K ∈ K be given. A path (xk)k∈K is better-

response compatible in game G if for every k ∈ K− it holds that:

1. If xk+1 = xk, then there exists ik ∈ I such that xk+1
ik

= xkik = bik(xk).

2. If xk+1
ik
6= xkik , then πik(xk+1) > πik(xk).

Definitions 2.4.2 and 2.4.3 capture two of the simplest and best-known learning pro-

cesses. In case of a best-response compatible path, each updating player moves to his

best available option. In case of a better-response compatible path, updating players

are only required to strictly improve their payoffs. Clearly, a best-response compatible

path is also a better-response compatible path.

Definition 2.4.4. Let some G ∈ G and K = {1, . . . ,m} ∈ K be given. A finite path

(xk)k∈K in the game G is a cycle if x1 = xm.

It is well known that best-response dynamics do not produce cycles in best-response

potential games (Voorneveld, 2000), which includes weighted network games by Propo-

sition 2.3.1. Better-response dynamics do not generate cycles in ordinal potential games

(Monderer and Shapley, 1996). The following example shows that better-response cy-

cles can occur within weighted network games.

Example 2.4.5. Let I = {1, 2}, X1 = X2 = [0, 4], and t1 = t2 = 1. Moreover, let the

payoff functions be given by

π1(x1, x2) = 2
√
x1 + 0.6x2 − x1

and

π2(x1, x2) = 2
√
x2 + 0.6x1 − x2.

It is easy to check that π1 and π2 satisfy the properties laid down in Definition 2.2.1

and Assumption 2.2.2 with w12 = 0.6, f1(z) = f2(z) = 2
√
z, and c1 = c2 = 1.

Table 2.1 presents a sequence of action profiles that constitutes a better-response

cycle for this example.

Note that the changes in player 1’s choice of actions between periods 1 and 2 and

between periods 3 and 4, as well as those for player 2 between periods 4 and 5 and

between periods 6 and 7 are quite large, given the action space. Columns 5 and 6 of

Table 2.2 present for each period the distance between the current action and both the

best response and the action chosen by the player updating his action. Notice that in

periods 1 and 4, the actions chosen are more than twice as far away from the current
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k xk1 xk2 π1(xk) π2(xk)

1 0 0.1 0.49 0.53

2 3 0.1 0.50 2.66

3 3 0 0.46 2.68

4 0.1 0 0.53 0.49

5 0.1 3 2.66 0.50

6 0 3 2.68 0.46

7 0 0.1 0.49 0.53

Table 2.1: Actions played and payoffs in the better-response cycle in Example 2.4.5.

action than the best response is, meaning that the updating player, despite the increase

in payoffs, has moved farther from his optimal decision than he originally was. We refer

to this as extreme overshooting beyond the best response. This chapter’s main result

is showing that a lack of extreme overshooting is a sufficient and necessary condition

of convergence in the class of learning processes centered in the best responses.

k xk1 xk2 bik(xk) |bik(xk)− xkik | |x
k+1
ik
− xkik | αk

1 0 0.1 0.94 0.94 3 −2.19

2 3 0.1 0 0.1 0.1 0

3 3 0 1 2 2.9 −0.45

4 0.1 0 0.94 0.94 3 −2.19

5 0.1 3 0 0.1 0.1 0

6 0 3 1 2 2.9 −0.45

7 0 0.1

Table 2.2: The size of action changes in the better-response cycle of Table 2.1.

As before, for a path (xk)k∈K , let (ik)k∈K− denote the updating player in period

k if there was a change in the action profile and let it denote any other player if there

was not. Furthermore, for k ∈ K−, let the overshooting coefficient αk ∈ R∪ {−∞,∞}
be defined as

αk =
xk+1
ik
− bik(xk)

xk
ik
− bik(xk)

,

where we take the convention that in case the denominator is 0, αk = −∞ if the

numerator is negative, αk = 0 if the numerator is 0, and αk = +∞ if the numerator is
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positive. Column 7 of Table 2.2 shows the values of αk in the better-response cycle of

Example 2.4.5.

The coefficient αk determines the extent of overshooting of the updating player

beyond the best response. If there is overshooting, then αk is negative. There is no

overshooting if αk is positive. If αk = 0 then the updating player moved to the best

response. If αk ∈ {−∞,∞} then xk+1
ik
6= xkik = bik(xk), so the player moved away from

a best response. If αk < −1, then the new action is farther from the best response

relative to the action before the update.

Values of αk in (0, 1) correspond to a better response, while in case αk > 1 the

payoff of the updating player is lower than before. For negative values of αk, the

threshold between better and worse replies depends on the payoff function. Naturally,

the possible values that αk may take depend on x.

As suggested by Example 2.4.5, sequences of action profiles that feature extreme

overshooting beyond the best response may cycle. We therefore characterize sequences

by their extent of overshooting.

Definition 2.4.6. A path (xk)k∈K in a game G ∈ G is α-centered for some α > 0 if

for every k ∈ K− it holds that |αk| < α.

A best-response compatible path is α-centered for every α > 0. Furthermore, for

every α > 0 there exist paths that are better-response compatible and α-centered, but

are not best-response compatible. For instance, it is easy to see that every sequence

(αk)k∈K− such that for every k ∈ K−, αk ∈ [0,min{α2 ,
1
2}], is both α-centered and

better-response compatible.

The restriction of being α-centered on a better-response dynamic captures a form

of cautiousness by the players, as they do not engage in updates that take them very

far from their optimal choice. For finite values of α, players do not change their action

in an α-centered path if they are at their best response, as that would imply |αk| =∞.

Alternatively, α can be thought of as a measure of inaccuracy of best-responding players

who are unable to execute their intended strategies.

For the remainder of this chapter we mainly consider α-centered paths with α ∈
(0, 1). In these paths, every updating player moves closer to his current best response.

We define the overshooting coefficient α̂k similar to αk, replacing the best-response

function b with the unconstrained best-response function b̂. For a path of action profiles

(xk)k∈K , we define

α̂k =
xk+1
ik
− b̂ik(xk)

xk
ik
− b̂ik(xk)

, k ∈ K−.
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The relationship between αk and α̂k is summarized in the following lemma.

Lemma 2.4.7. Let (xk)k∈K be a path of action profiles in a game G ∈ G. The following

statements hold for every k ∈ K−:

(i) αk 6= α̂k implies bik(xk) ∈ {0, xik}.

(ii) αk ∈ (0, 1) implies α̂k ∈ (0, 1).

(iii) αk ∈ (−1, 0) implies αk = α̂k.

(iv) αk = 0 implies 0 ≤ α̂k ≤ 1.

(v) α̂k = 1 implies xk+1 = xk.

Proof. (i). If bik(xk) ∈ (0, xik), then it holds that bik(xk) = b̂ik(xk) and thus αk = α̂k.

(ii). We only need to consider the case αk 6= α̂k. By (i) we have bik(xk) ∈ {0, xik}.
Take the case bik(xk) = 0. Then it holds that b̂ik(xk) < 0, so xk+1

ik
< xkik due to

0 < αk < 1, and thus

0 < αk =
xk+1
ik

xk
ik

<
xk+1
ik
− b̂ik(xk)

xk
ik
− b̂ik(xk)

= α̂k < 1.

The case bik(xk) = xik follows from similar arguments.

(iii). Since αk ∈ (−1, 0), we have

sgn(xkik − bik(xk)) = − sgn(xk+1
ik
− bik(xk)) 6= 0.

Therefore, it must hold that bik(xk) ∈ (0, xi), otherwise xk+1
ik

would not be in Xik . It

follows that bik(xk) = b̂ik(xk).

(iv). Once again, we only need to discuss the case αk 6= α̂k, so bik(xk) ∈ {0, xik}.
Consider the case bik(xk) = 0. We have that b̂ik(xk) < 0 and xk+1

ik
= 0 since αk = 0.

It holds that

0 = αk ≤
−b̂ik(xk)

xk
ik
− b̂ik(xk)

= α̂k ≤ 1.

The case bik(xk) = xik follows from similar arguments.

(v). In case α̂k = 1, we have

xk+1
ik
− b̂ik(xk) = xkik − b̂ik(xk),

so xk+1
ik

= xkik . �
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In the following proposition we show the relation between the value of α̂k and changes

in the value of the potential as defined in Proposition 2.3.1. This relationship will

prove crucial in our convergence analysis.

Proposition 2.4.8. Let a game G ∈ G be given.

1. Let (xk)k∈K be a path of action profiles such that for every k ∈ K−, α̂k ∈ R.
Then it holds that

φ(xk+1)− φ(xk) = 1
2 (1− α̂k)(1 + α̂k)(̂bik(xk)− xkik)2, k ∈ K−.

2. The game has no 1-centered cycles.

Proof. 1. Using the definition of φ gives

φ(xk+1)− φ(xk) =
∑
i∈I

(xk+1
i − xki )ti − 1

2

∑
i∈I

xk+1
i (

∑
j∈I

wijx
k+1
j ) + 1

2

∑
i∈I

xki (
∑
j∈I

wijx
k
j ).

Using the symmetry of the interaction matrix W and taking advantage of the fact that

xk+1 is the successor of xk in a path, we substitute xk−ik = xk+1
−ik to get

φ(xk+1)− φ(xk) = (xk+1
ik
− xkik)ti − 1

2 ((xk+1
ik

)2 − (xkik)2)− (xk+1
ik
− xkik)

∑
j 6=ik

wikjx
k
j .

Factoring out xk+1
ik
− xkik yields

φ(xk+1)− φ(xk) = (xk+1
ik
− xkik)[(tik − 1

2 (xk+1
ik

+ xkik)−
∑
j 6=ik

wikjx
k
j ].

Substituting b̂ik(xk) = tik −
∑
j 6=ik wikjx

k
j gives

φ(xk+1)− φ(xk) = (xk+1
ik
− xkik)(b̂ik(xk)− 1

2 (xk+1
ik

+ xkik))

= 1
2 (xk+1

ik
− xkik)[̂bik(xk)− xk+1

ik
+ b̂ik(xk)− xkik ].

Finally, substituting xk+1
ik

= (1− α̂k )̂bik(xk)+ α̂kx
k
ik and b̂ik(xk)−xk+1

ik
= α̂k (̂bik(xk)−

xkik) gives

φ(xk+1)− φ(xk) = 1
2 (1− α̂k)(1 + α̂k)(̂bik(xk)− xkik)2.

Suppose that (xk)k∈K is a 1-centered cycle. For every k ∈ K− it holds by Lemma 2.4.7

that α̂k ∈ (−1, 1] and therefore by the first statement we have φ(xk+1)− φ(xk) ≥ 0.

By Definition 2.4.1, each path has at least one pair of successive action profiles

that are different. Let k′ ∈ K− be such that xk
′+1 6= xk

′
. Since the path (xk)k∈K

is 1-centered, Lemma 2.4.7 implies |α̂k′ | < 1, and therefore by the first statement we

have φ(xk
′+1)−φ(xk

′
) > 0. Together with the fact that φ(xk+1)−φ(xk) ≥ 0 for every

k ∈ K−, we obtain a contradiction to (xk)k∈K being a 1-centered cycle. �
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Proposition 2.4.8 says that in a path of action profiles, the change of the potential is

only determined by the magnitude of α̂k. Each time the updating player gets closer

to his unconstrained best response by his update, the value of the potential increases,

and each time he gets further from the unconstrained best response, the value of the

potential decreases. By this property we show that if every update moves the updating

player closer to his best response, then better-response cycles cannot exist. This also

implies the non-existence of best-response cycles. Notice that the cycle in Example

2.4.5 is not 1-centered, hence Proposition 2.4.8 is not applicable. Furthermore, notice

that for α > 1, cycling is possible in an α-centered path. For example, if we have

i1 = i2 and α1 = α2 = −1, then (x1, x2, x3) constitutes a cycle. This means that α ≤ 1

is a necessary and sufficient condition for the non-existence of α-centered cycles.

2.5 Convergence results

With the cycling behavior of the learning processes established we present the main

results of this chapter, the convergence of a general class of learning processes.

Clearly, processes that are not 1-centered will not converge in general, although

there are examples of processes and networks where this is possible, e.g. the better-

response dynamic in case of the empty network.

Intuition suggests that for 1-centered processes, where each player moves closer

to his best response, convergence is guaranteed. However, a player may get farther

away from his best response through the updates of the other players, meaning that

subsequent updates for any given player are not necessarily smaller in magnitude than

previous ones. As a first step to establish convergence, we show that the distance

between consecutive elements of any α-centered path with α < 1 converges to zero and

that the distance between the current action and the best response to it approaches

zero for an updating player.

Proposition 2.5.1. Let (xk)k∈N be an α-centered path in a game G ∈ G such that

α < 1. It holds that:

1. limk→∞ ‖xk+1 − xk‖2 = 0.

2. limk→∞ |bik(xk)− xkik | = 0.

Proof. 1. We use the fact that xk+1
ik

= (1− α̂k )̂bik(xk) + α̂kx
k
ik to obtain

‖xk+1 − xk‖22 = (xk+1
ik
− xkik)2 = (1− α̂k)2(̂bik(xk)− xkik)2.

32



Applying Proposition 2.4.8 gives

‖xk+1 − xk‖22 = 2
1− α̂k
1 + α̂k

(φ(xk+1)− φ(xk)).

Since the path is α-centered with α < 1, by Lemma 2.4.7 we have −α < α̂k ≤ 1. It

follows that

‖xk+1 − xk‖22 ≤ 2
1 + α

1− α
(φ(xk+1)− φ(xk)). (2.4)

By the first part of Proposition 2.4.8 we have that the sequence (φ(xk))k∈N is mono-

tonically increasing. Furthermore, since φ is continuous and the set X is compact, the

sequence (φ(xk))k∈N is also bounded, and hence it is convergent, so φ(xk+1)−φ(xk)→
0 as k → ∞. Since the right-hand side of (2.4) converges to zero, it follows that

‖xk+1 − xk‖22 → 0 as k →∞. This implies the statement.

2. Suppose it does not hold that limk→∞ |bik(xk) − xkik | = 0. Then the sequence

(ik, xk)k∈N has a converging subsequence (ik
`

, xk
`

) with limit (i, x) such that |bi(x)−
xi| = ε > 0. We distinguish three cases: (a) b̂i(x) ∈ (0, xi), (b) b̂i(x) ≤ 0, and (c)

b̂i(x) ≥ xi.
Case (a). b̂i(x) ∈ (0, xi).

There is `′ ∈ N such that, for every ` ≥ `′, ik` = i, bi(x
k`) ∈ (0, xi), and |bi(xk

`

)−xk`i | ≥
ε/2. It follows that α̂k` = αk` , so by Proposition 2.4.8,

φ(xk
`+1)− φ(xk

`

) ≥ 1
2 (1− αk`)(1 + αk`)

1
4ε

2 > 1
2 (1− α)(1 + α) 1

4ε
2, ` ≥ `′. (2.5)

By Proposition 2.4.8, we have that the sequence (φ(xk))k∈N is monotonically increasing,

so the subsequence (φ(xk
`

))`∈N is monotonically increasing, and by (2.5) it tends to

infinity. This contradicts the fact that the continuous function φ has a maximum on

the compact set X.

Case (b). b̂i(x) ≤ 0.

We have that bi(x) = 0 and xi = ε. There is `′ ∈ N such that, for every ` ≥ `′, ik` = i,

bi(x
k`) ≤ xk`i , and |bi(xk

`

)− xk`i | ≥ ε/2. If b̂i(x
k`) ≥ 0, then α̂k` = αk` . Otherwise, we

have b̂i(x
k`) < 0, so bi(x

k`) = 0, and

0 ≤ α̂k` =
xk

`+1
i − b̂i(xk

`

)

xk
`

i − b̂i(xk
`)
≤ xk

`+1
i − bi
xk

`

i − bi
=
αk`x

k`

i − bi
xk

`

i − bi
≤

1
2αk`ε− bi

1
2ε− bi

<
1
2αε− bi
1
2ε− bi

.

(2.6)

The right-hand side of (2.6), denoted by β, belongs to (α, 1), so it holds that

−α < α̂k` ≤ β, ` ≥ `′.
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By Proposition 2.4.8, we have that

φ(xk
`+1)− φ(xk

`

) ≥ 1
2 (1− αk`)(1 + αk`)

1
4ε

2 > 1
2 (1− β)(1 + β) 1

4ε
2, ` ≥ `′. (2.7)

By Proposition 2.4.8, we have that the sequence (φ(xk))k∈N is monotonically increasing,

so the subsequence (φ(xk
`

))`∈N is monotonically increasing, and by (2.7) it tends to

infinity. This contradicts the fact that the continuous function φ has a maximum on

the compact set X.

Case (c). b̂i(x) ≥ xi.
We can derive a contradiction along similar lines as in Case (b).

Since all three cases lead to a contradiction, we conclude that limk→∞ |bik(xk) −
xkik | = 0. �

The first statement of Proposition 2.5.1 follows from the monotonicity and therefore

the convergence of the values of the potential along an α-centered path, by applying

Proposition 2.4.8 to translate differences in the value of the potential to distances

between action profiles. The second statement shows convergence to the best response

for all updating players. In order to achieve convergence to a Nash equilibrium, we

need convergence to the best response for all players. This can only be achieved if all

players update regularly, otherwise nothing guarantees convergence for a player who,

for instance, never updates. We therefore define the notion of updating in every `

periods, which is going to be the final condition for our main result.

Definition 2.5.2. Player i ∈ I updates in every ` periods in a path of action profiles

(xk)k∈N in a game G ∈ G if for every k ∈ N there exists k′ ∈ {k, . . . , k + ` − 1} such

that either [xk
′

i 6= xk
′+1
i ] or [xk

′
= xk

′+1 and xk
′

i = xk
′+1
i = bi(x

k′)].

A player satisfies Definition 2.5.2 if in every length ` segment of the path there is an

action profile at which he updated or there exists a pair of successive action profiles

that are identical and the player is at his best response. This condition is quite general,

e.g. if ` > n, then it includes the possibility of fixing the order of updates across the

players – provided that each player gets a turn.

We are ready to present our main results.

Theorem 2.5.3. Let (x,w, t) ∈ P and let (xk)k∈N be an α-centered path in a game

G ∈ G(x,w, t). If α < 1 and every player updates in every ` periods for some ` ∈ N,

then every cluster point of (xk)k∈N belongs to X∗(x,w, t). If, in addition, we have that

|X∗(x,w, t)| <∞, then there exists x∗ ∈ X∗(x,w, t) such that limk→∞ xk = x∗.
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Proof. We first show the first statement. Since every linear function is Lipschitz con-

tinuous, the function bi : X → Xi is Lipschitz continuous for every i ∈ I. Denote the

Lipschitz constant of bi by Li.

Let x be a cluster point of (xk)k∈N. We prove the result by showing that, for every

i ∈ I, for every ε > 0, |bi(x)− xi| < ε. We need a technical lemma.

Lemma 2.5.4. Let (xk)k∈N be a path of action profiles in a game G ∈ G such that

limk→∞ ‖xk+1 − xk‖2 = 0. For every ε > 0, for every ` ∈ N, there exists M ∈ N such

that, for every m > M, for every k ∈ {m, . . . ,m+ `− 1}, we have ‖xk − xm‖2 < ε.

The proof of this lemma can be found in the Appendix. Let i ∈ I and ε > 0 be

given.

Let M1 ∈ N be such that, for every m > M1, for every k ∈ {m, . . . ,m+ `− 1}, we

have ‖xk − xm‖2 < ε/(3 + 2Li). Lemma 2.5.4 guarantees the existence of such an M1.

Let M2 ∈ N be such that for every m > M2 it holds that |bim(xm) − xmim | <
ε/(3 + 2Li). The second statement of Proposition 2.5.1 guarantees the existence of

such an M2.

Let m > max{M1,M2} be such that ‖xm − x‖2 < ε/(3 + 2Li). Such an m must

exist, since x is a cluster point of the sequence (xk)k∈N.

If player i updates in every ` periods, then there exists k′ ∈ {m, . . . ,m + ` − 1}
such that |bi(xk

′
) − xk′i | < ε/(3 + 2Li), where we use that m > M2. Since m > M1

as well, it holds that ‖xk′ − xm‖2 < ε/(3 + 2Li), and by the choice of m we have

‖x − xm‖2 < ε/(3 + 2Li). In particular, it follows that |xk′i − xmi | < ε/(3 + 2Li) and

|xmi − xi| < ε/(3 + 2Li). By the triangle inequality we get

|bi(xk
′
)− xi| ≤ |bi(xk

′
)− xk

′

i |+ |xk
′

i − xmi |+ |xmi − xi| <
3ε

3 + 2Li
.

Also, ‖x−xm‖2 < ε/(3 + 2Li) and ‖xm−xk′‖2 < ε/(3 + 2Li) imply that ‖x−xk′‖2 <
2ε/(3 + 2Li). Using the Lipschitz continuity of bi, we get

|bi(x)− bi(xk
′
)| < 2Liε

3 + 2Li
.

Summing up, we have

|bi(x)− xi| ≤ |bi(x)− bi(xk
′
)|+ |bi(xk

′
)− xi| <

2Liε

3 + 2Li
+

3ε

3 + 2Li
= ε.

This concludes the first part of the proof.

For the second part let Y denote the non-empty set of cluster points of (xk)k∈N. The

first statement implies that every element of Y is a Nash equilibrium. We therefore
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only have to show that Y is a singleton. We know that the set Y is finite, since

Y ⊆ X∗(x,w, t) and the set X∗(x,w, t) is finite by assumption.

Let some y ∈ Y be given. Since the set Y is finite, there exists ε > 0 such that

for every x ∈ X \ {y} with ‖x − y‖2 ≤ ε it holds that φ(x) − φ(y) < 0. Take ε > 0

sufficiently small such that the set

D(y) = {x ∈ X : ε
2 ≤ ‖x− y‖2 ≤ ε}

is non-empty. Since D(y) is also compact, the number φ = maxx∈D(y) φ(x) is well-

defined. Note that φ(y) > φ.

Since φ is continuous and y ∈ Y, we have that limk→∞ φ(xk) = φ(y). So there

exists M1 ∈ N such that for every k > M1 it holds that φ(xk) > φ. Furthermore, since

limk→∞ ‖xk+1 − xk‖2 = 0 by Proposition 2.5.1, it holds that there exists M2 ∈ N such

that for every k > M2 we have ‖xk+1 − xk‖2 < ε/2.

Let m > max{M1,M2} be such that ‖xm − y‖2 < ε/2. Such an m must exist due

to the fact that y ∈ Y. We argue that for every k > m we have ‖xk − y‖2 < ε/2.

Suppose to the contrary that there exists k > m with ‖xk− y‖2 ≥ ε/2 and let k be the

smallest such number. Since k > M2 and ‖xk−1 − y‖2 < ε/2, we have ‖xk − y‖2 < ε,

hence xk ∈ D(y) and φ(xk) ≤ φ < φ(xm), contradicting the fact that the sequence

(φ(xk))k∈N is non-decreasing.

We have shown that for every ε > 0 sufficiently small, there exists m ∈ N such that

for every k > m it holds that ‖xk − y‖2 < ε/2. It follows that y is the only cluster

point of (xk)k∈N. �

Theorem 2.5.3 combines the results in Propositions 2.4.8 and 2.5.1. It identifies suf-

ficient conditions for one-sided learning processes to converge. The conditions are as

follows: first, every update must take the updating player closer to his current best

response and, second, players must update regularly. Theorem 2.5.3 and Proposition

2.5.1 together imply that any such process will spend an arbitrarily long time in any

ε-range of any cluster point of the process. Finally, if we have that the set of Nash

equilibria is finite, we get convergence to a single Nash equilibrium point. The latter

condition holds generically as stated in Corollary 2.3.4.

We conclude this section by an example illustrating the tightness of these sufficient

conditions.

Example 2.5.5. Consider the case with no strategic interaction, w = 0, and interior

target values, for every i ∈ I, 0 < ti < xi. Then a game G ∈ G(x,w, t) has a single Nash

equilibrium, x∗ = t. Since the Nash equilibrium set is finite, Theorem 2.5.3 applies. It
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is easy to see that to achieve convergence to the Nash equilibrium, the α < 1 condition

cannot be weakened even in this simple case.

Letting α = 1 allows for limk→∞ αk = 1, which means that the conditions of

Proposition 2.5.1 are no longer satisfied. In this case, the distance to the best reply,

which is equal to the target value ti, is no longer converging to zero. We have no

convergence to the Nash equilibrium.

2.6 Conclusion

In this chapter we consider weighted network games, a class of games with a very

wide range of applications, where direct, pairwise player interactions are described by

a matrix of weights. We show that these games are best-response potential games and,

generically, have a finite set of Nash equilibria.

Pairs of linked players can always benefit from jointly deviating in an interior equi-

librium. Two players whose contributions are strategic substitutes of each other can

jointly increase their actions to increase their payoffs, while players whose contributions

are strategic complements can jointly decrease their actions to improve their payoffs.

In case all players’ actions are strategic substitutes or all players’ actions are strate-

gic complements, such deviations lead to Pareto improvements. Therefore, in general,

equilibria are neither strong nor efficient.

We study a large class of better-response learning processes. The convergence prop-

erties of these processes are determined by their centering parameter, which indicates

to what extent players can overshoot their best responses. If players move closer to

the best response at each update, as is the case for best-response dynamics and better-

response dynamics with a centering parameter of one, then the players get arbitrarily

close to the set of Nash equilibria and converge to a single Nash equilibrium whenever

the set of Nash equilibria is finite, which is generically the case. This is due to the fact

that the best-response potential is symmetric around the best response of the players,

hence moving closer to the best response increases the value of the potential. In the

case of better-response dynamics with unrestricted overshooting, it is shown that cycles

may arise.

The restrictions on overshooting that guarantee convergence to a Nash equilibrium

in the general case are the same as in a trivial game with no strategic interaction. The

reason for this is that the best-response potential can be shown to increase whenever

an updating player moves closer to his best response, irrespective of the values of the
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interaction weights. Our results hence identify a rich class of learning processes that

produce Nash equilibria, including cautious better-reply dynamics.

Topics that are left unexplored in this chapter include asymmetric interaction

weights, which is the topic of Chapter 4. Another interesting topic is the issue of

inefficiency of equilibria. These inefficiencies may disappear in different – possibly

more centralized – classes of learning processes. Finally, the beliefs that shape the up-

dates themselves are left unmodeled and unexplored. These topics are open for future

research.

2.A Appendix: Proofs

The Appendix contains some of the more straightforward proofs, or proofs with close

analogues in already existing literature.

Proposition 2.3.1. For every (x,w, t) ∈ P, it holds that:

1. Every game G ∈ G(x,w, t) is a best-response potential game with the potential

φ : X → R defined by

φ(x) = x>t− 1
2x
>Wx, x ∈ X.

2. X∗(x,w, t) 6= ∅.

3. x∗ ∈ X∗(x,w, t) if and only if x∗ satisfies the Karush-Kuhn-Tucker (KKT) con-

ditions, i.e. for every i ∈ I, there exist λi, µi ∈ R+ such that

ti −
∑
j∈I wijx

∗
j + λi − µi = 0,

x∗i ≥ 0, xi ≥ x∗i ,

λix
∗
i = 0, µi(xi − x∗i ) = 0.

Proof. We show that for every x ∈ X and every i ∈ I it holds that

argmax
xi∈Xi

πi(xi, x−i) = argmax
xi∈Xi

φ(xi, x−i).

1. The left-hand side of the equality above equals bi(x). For the right-hand side,

notice that x>W is the row vector of consumption levels of each player, x>W =

(
∑
j∈I w1jxj , . . . ,

∑
j∈I wnjxj), using the fact that W is symmetric. Multiplication by

x gives

x>Wx = x1

∑
j∈I

w1jxj + · · ·+ xn
∑
j∈I

wnjxj .
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Differentiating φ(xi, x−i) by xi leads to

∂φ(xi, x−i)

∂xi
= ti − 1

2

(
2xi +

∑
j 6=i

wijxj +
∑
j 6=i

wjixj

)
= ti −

∑
i∈I

wijxj ,

where the last equality uses the symmetry of W .

Setting the derivative of φ with respect to xi equal to zero gives the extreme point

xi = ti−
∑
j 6=i wijxj , and as long as ti−

∑
j 6=i wijxj ∈ [0, xi], it is the unique maximum,

since the second derivative is −wii = −1.

If ti−
∑
j 6=i wijxj < 0, then, since xi ≥ 0, the first derivative of φ with respect to xi

is uniformly negative on [0, xi] hence the unique maximum is achieved for the minimal

contribution, xi = 0.

Similarly, if ti −
∑
j 6=i wijxj > xi, then the first derivative is uniformly positive,

meaning that, in [0, xi], the unique maximum is achieved for the maximal contribution,

xi = xi.

2. Let b : X → X be the function such that its component i ∈ I is equal to bi, the

best-response function of player i. Since X is non-empty, compact, and convex, and b

is continuous, the existence of an x∗ such that b(x∗) = x∗ is guaranteed by Brouwer’s

fixed-point theorem.

3. Since every game in G(x,w, t) is a best-response potential game with potential φ,

every Nash equilibrium satisfies the stated KKT conditions.

Since, for every i ∈ I, for every x ∈ X, it holds that

∂2φ(x)

∂x2
i

= −1 < 0,

every point satisfying the KKT conditions yields a Nash equilibrium. �

Proposition 2.3.6. Let (x,w, t) ∈ P be given. Let x∗ ∈ X∗(x,w, t) be a Nash

equilibrium of a game G = (I,X, π) ∈ G(x,w, t) such that x∗i ∈ (0, xi) and x∗j ∈ (0, xj).

It holds that:

1. If for some i, j ∈ I with i 6= j it holds that wij 6= 0, then there exists δ ∈
(0,min{x∗i , x∗j , xi − x∗i , xj − x∗j}) such that πi(x

∗) < πi(x
∗ + sgn(wij)δ

{i,j}) and

πj(x
∗) < πj(x

∗ + sgn(wij)δ
{i,j}).

2. If w ≥ 0 or w ≤ 0 and, for some i, j ∈ I with i 6= j, it holds that wij 6= 0,

then there exists δ ∈ (0,min{x∗i , x∗j , xi− x∗i , xj − x∗j}) such that the action profile

x∗ + sgn(wij)δ
{i,j} is a Pareto improvement over x∗.
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Proof. 1. We first discuss the case wij > 0.

Since x∗i ∈ (0, xi) and x∗j ∈ (0, xj), it holds that
∑
k∈I wikxk = ti and

∑
k∈I wjkxk =

tj . Hence, for δ > 0 such that x∗i + δ ≤ xi and x∗j + δ ≤ xj , we have

πi(x
∗ + δ{i,j})− πi(x∗)

δ
=
fi(ti + δ(1 + wij))− fi(ti)

δ
− ci.

Since fi is concave, we have

fi(ti + δ) ≤ fi(ti + δ(1 + wij))− δwijf ′i(ti + δ(1 + wij)).

Therefore, we can write

πi(x
∗ + δ{i,j})− πi(x∗)

δ
≥ fi(ti + δ)− fi(ti)

δ
− ci + wijf

′
i(ti + δ(1 + wij)).

Let εi = minx∈X f
′
i(
∑
k∈I wikx

k). Since f ′i is a continuous function, its minimum

over the compact set X is well-defined. Notice that Assumption 2.2.2 guarantees that

εi > 0. Thus,

πi(x
∗ + δ{i,j})− πi(x∗)

δ
≥ fi(ti + δ)− fi(ti)

δ
− ci + wijεi.

Also due to the continuity of f ′i , the term (fi(ti+δ)−fi(ti))/δ−ci converges to zero as δ

goes to zero. Hence, for sufficiently small positive δ, we have πi(x
∗+δ{i,j})−πi(x∗) > 0.

The same argument applies to agent j.

The case wij < 0 follows from very similar arguments.

2. We first consider the case where wij > 0. As per Proposition 2.3.6, there exists

δ ∈ (0,min{x∗i , x∗j , xi − x∗i , xj − x∗j}) such that πi(x
∗ + δ{i,j}) > πi(x

∗) and πj(x
∗ +

δ{i,j}) > πj(x
∗). Since w ≥ 0 it follows that for every other player h ∈ I \ {i, j} we

have fh(
∑
k∈I whkx

∗
k+δ{i,j}) ≥ fh(

∑
k∈I whkx

∗
k), while his own action did not change,

and therefore πh(x∗ + δ{i,j}) ≥ πh(x∗), meaning that players i and j increasing their

action by δ yields a Pareto improvement.

The case w ≤ 0 follows from similar arguments. �

Lemma 2.5.4. Let (xk)k∈N be a path of action profiles in a game G ∈ G such that

limk→∞ ‖xk+1 − xk‖2 = 0. For every ε > 0, for every ` ∈ N, there exists M ∈ N such

that, for every m > M, for every k ∈ {m, . . . ,m+ `− 1}, we have ‖xk − xm‖2 < ε.

Proof. Let some ε > 0 and some ` ∈ N be given. The statement obviously holds for

` = 1, so consider the case ` > 1.
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For every δ > 0 there exists Mδ ∈ N such that for every m > Mδ we have ‖xm+1 −
xm‖2 < δ, since limk→∞ ‖xk+1 − xk‖2 = 0. We take δ = ε/(` − 1) and consider an

arbitrary m > Mδ.

Then, by the triangle inequality, for every k ∈ {m, . . . ,m+ `− 1} we can write

‖xk − xm‖2 ≤ ‖xk − xk−1‖2 + · · ·+ ‖xm+1 − xm‖2 < k−m
`−1 ε ≤ ε.

Therefore, Mδ is a suitable candidate for M . �
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Chapter 3

Myopic and farsighted players

in the local public goods game

“Forethought we may have, undoubtedly, but not foresight.”

Napoleon Bonaparte

This chapter1 studies the exploitation of a myopic population by a single farsighted player in a

network game. Our model contributes to the growing literature of local public goods games by

considering multiple levels of player sophistication. By framing the game as a Markov Decision

Process we show the existence and payoff-uniqueness of optimal strategies in every network

structure. Every stationary equilibrium strategy profile of this game has a set of rest points

called absorbing effort profiles. Myopic players have a propensity for a rising inequality in

production, creating rich free-riders and poor producers. This property of the game results in

the convergence of equilibrium play to an absorbing effort profile for every network structure

and every initial state. The farsighted player benefits from new links that connect him to

more myopic neighbors or the breaking of a link running between two of his neighbors.

1This chapter is based upon Bayer, Herings, and Peeters (2019). A part of this chapter was written

during my visit at Aix-Marseille School of Economics between March 1 and June 1, 2018 sponsored

by the Graduate School of Business and Economics of Maastricht University. I would like to thank

Péter Csóka, and László Kóczy, for comments on previous versions of this chapter, as well as Yann

Bramoullé for feedback and suggestions.
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3.1 Introduction

Economic agents interacting on the same market have vast differences in their so-

phistication. The sources of these differences are many, they include asymmetries in

technology (an innovator against followers), goals (a speculator against investors), or

experience (a new entrant against incumbents), or various other cognitive and physi-

cal limitations. When an agent with a higher level of sophistication is pitted against

a population of naive agents, the former type may use its advantages to exploit the

latter, if by such actions it can achieve higher gains. Depending upon the market in

question and on the situation, exploitation may manifest as free-riding, breaking so-

cial contracts, manipulation, and obstructing or destroying the coordination of other

players. Many models focus on homogeneous player sophistication and employ tools

such as the Nash equilibrium. These tool are efficient, but conceptually valid only if

every agent is sufficiently naive. Therefore, the predictions of these models are often

not robust to the inclusion of a sophisticated agent. As the induced behavior, exploita-

tion, tends to be destructive to social norms as well, its analysis is motivated by pure

theoretical, behavioral, and sociological factors.

In addition to sophistication, agents also differ in their spatial properties. These

properties – which may refer to physical space such as geographical position, or an

abstract space such as online connectivity – define the ways by which each agent

interacts with the rest of the population. Simple graphs provide a very rich but at

the same time a highly efficient tool to model spatial asymmetries. In this chapter we

combine tools of game theory in order to capture the strategic nature of exploitation

with tools of network theory to examine the ways exploitative behavior is dependent

upon the position of the sophisticated player.

The specific model in which our analysis is framed is the private provision of public

goods game, also known as the local public goods game, introduced by Bramoullé and

Kranton (2007). The direct predecessor of this model is Ballester et al. (2006)’s model

of externalities. The class of local public goods games has an established theoretical

literature as well as a wide range of applicability. The latter includes applications

in industrial organization, by a model of distribution of R&D costs by interlinked

firms (König et al., 2014), sociology, by a paper on crime and social networks (Calvó-

Armengol and Zenou, 2004) as well as a spatial model of peer effects (Blume et al.,

2010), and political economy, by a model on the distribution of defense expenditures

within allied nations (Sandler and Hartley, 1995) and its follow-up, on the distribution

of counter-terrorism expenditures between allies (Sandler and Hartley, 2007). Goyal
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(2012) and Jackson and Zenou (2014) offer comprehensive overviews of related models.

The case of homogeneous player rationality and ability in this gameclass is well-

understood. Bramoullé and Kranton (2007) shows existence of Nash equilibria and

that equilibria with free riders are present in any non-trivial network. The follow-up

paper, Bramoullé et al. (2014) shows existence conditions of stable Nash equilibria

with respect to continuous best-response dynamics. Subsequent literature focuses on

the asymptotic behavior of basic learning processes. It has been shown that best-

response dynamics always converge to a single Nash equilibrium (Bervoets and Faure,

2019) and that convergence may be achieved by a learning process with very little

requirements on player sophistication (Bervoets et al., 2016).

In this chapter we study the effects of heterogeneous player sophistication in the

above gameclass. Through this effort we provide an insight into the behavior of eco-

nomic agents who are differentiated both by their abilities and their spatial properties.

To our knowledge the paper on which this chapter is based is the first to do so. In the

spirit of Ellison (1997) we discuss the inclusion of a single player of increased sophis-

tication into a population of naive agents. In games of strategic complements such as

coordination games, the addition of the more sophisticated player improves efficiency,

as coordination shifts towards a better Nash equilibrium via strategic teaching by the

sophisticated player (Camerer et al., 2002). In contrasts, our game, a game of (local)

strategic substitutes, induces a manipulative behavior by the sophisticated player with

no clear gains in efficiency. By modeling sophistication as a form of farsightedness, i.e.

the ability to discount future gains rather than optimizing for a single period, we create

a player whose interest lies in the maximization of his neighbors’ efforts into creating

the local public good, while minimizing his own efforts.

The main component of local public goods games is the underlying network, de-

scribing the nature of interactions between the players, with one player designated

as the farsighted player. All players, regardless of type, may decide on the amount

of effort they exert into creating a specialized good. Every player consumes the to-

tal amount of goods created in their neighborhood and pays the costs of own effort.

To keep our analysis focused on the players’ spatial properties and on the farsighted

player’s attempts at exploitation, we assume that players are symmetric in their target

level of consumption.

As we are interested in the process of exploitation, we examine the game described

above in a dynamic setting which takes place in discrete time. In every period a

randomly selected player has a chance to revise his exerted effort. Once he does,

period payoffs are awarded, and a new random player receives a revision opportunity.
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Period payoffs are discounted by the farsighted player but not by the myopic players

who therefore maximize their instantaneous payoffs. By applying classic results of

the theory of Markov Decision Processes, we show the existence of optimal stationary

strategies of the farsighted player for every network structure, given the myopic players’

equilibrium behavior. Therefore, the existence of stationary subgame perfect equilibria

of the implied stochastic game is guaranteed. Moreover, by the theory of best-response

potential games (Voorneveld, 2000), we get that the above game played by a population

of myopic best-responders converges to a rest point, a Nash equilibrium of the static

game.

In this chapter we show the existence of such rest points, called absorbing effort

profiles, for every stationary subgame perfect equilibrium. The addition of the far-

sighted player means that the rest points will not necessarily coincide with static Nash

equilibria, as they would do for a homogeneously myopic population. The stability

of the absorbing profiles requires that each myopic player’s exerted efforts be a best

response to the other players’, and that the farsighted player has no profitable way

of advancing the game into a state that is better for him. Furthermore, in our main

convergence result we show that for every network, every starting state, and every

equilibrium play the process converges to such an absorbing profile with probability 1.

Our results allow for a straightforward description of the ways in which the inclusion

of a farsighted player alters key aspects of equilibrium play. The presence of the

farsighted player does not weaken the convergence properties of the game, but changes

the set of rest points. There are two mechanisms working to this effect: (1), Nash

equilibria which are easy to improve upon by the farsighted player will not be stable

against farsighted deviations, and (2), some effort profiles that are stable for the myopic

players may be desirable for the farsighted player even if he is not at his static best

response. As a result the set of absorbing effort profiles is neither a subset nor a

superset of the Nash equilibria of the static game.

A further key effect of including the farsighted player is that, unlike a game played

by myopic players, equilibrium play may produce cycles between action profiles, as

the farsighted player may try to revisit a previous action profile hoping for a more

favorable random draw in the order of revising players. However, the probability of

the game being locked in an infinite cycle is zero. This, as well as the convergence of

the game, is guaranteed by a crucial property of the gameclass, a tendency towards

increased free-riding behavior. This effect is propagated by the local substitutability of

efforts between neighboring players. An increase in one player’s efforts will decrease his

neighbor’s myopic best-response efforts. Similarly, a neighbor’s decrease will increase

46



a player’s myopic best-response efforts. As we will show in this chapter, the result

of these mutually reinforcing effects is strong enough to break any cycles that the

farsighted player might try to implement, and thus leads to convergence.

Throughout most of this chapter we keep the underlying network structure fixed,

but in applications the spatial properties of the players are liable to change, either by

the players’ own choice, or by external factors. For this reason we consider comparative

statics of different networks. Evaluating networks can inform the farsighted player’s

choice on which links to form and which to sever to increase his utility in a network

formation setting or advise a social planner who aims to minimize the possibilities of

exploitation in a game by restructuring the network. We find that adding a link to

connect the farsighted player to an additional neighbor, or removing a link between

two of his neighbors leads to an increase in the farsighted player’s evaluations.

The combination of these two results confirms the intuition that being the center of

a star network is optimal for the farsighted player since it allows for the full exploitation

of the entire myopic population. Moreover, it shows that there is a sequence of single

changes (the addition or removal of one link) that lead to the star network and each

step improves on the farsighted player’s evaluation of the network. However, we also

show that not every sequence of changes that leads to the star network is profitable

in every step, meaning that networks may contain stumbling blocks that hinder the

farsighted player’s attempts of reaching the optimal network structure.

To sum up, this chapter contributes to the network literature and to the game

theory literature by building a dynamic model of exploitation of a myopic population

by a single farsighted player on a network. We show existence of equilibrium play,

existence of stable effort profiles with respect to equilibrium play, and convergence to

these stable effort profiles. Finally, we consider how changes in the network affect the

farsighted player’s long-run utility.

The chapter proceeds as follows. Section 3.2 introduces local public goods games

and introduces the dynamic and stochastic components of the model. Section 3.3 shows

the existence of absorbing profiles of efforts. Section 3.4 contains our results regarding

the propensity of rising inequality between players under equilibrium play. Section 3.5

contains our main convergence result, showing that equilibrium play progresses the

game to an absorbing profile of actions. In Section 3.6 we examine how the farsighted

player’s evaluations of a network are affected by adding or severing a link. Section 3.7

concludes.
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3.2 The model

We now introduce the static version of local public goods game with the set of prim-

itives, (n,G, (fi)i∈I , (ci)i∈I , d). We then go on to extend this model into a recurrent

setting taking place in discrete time with additional primitive δ.

Let I = {1, . . . , n} denote the set of players with n ≥ 2. Player 1 is called the

farsighted player. All players other than 1 are called myopic. Let the set I \ {1} be

denoted by I−1.

A network structure, characterized by the n × n binary matrix G, will represent

local interaction. For i, j ∈ I, gij = 1 means that players i and j are connected, while

gij = 0 means that they are not. We assume gii = 1, and we assume that connections

run both ways, i.e. for every i, j ∈ I we have gij = gji. For a player i ∈ I, the set

Ni(G) = {j ∈ I \ {i} : gij = 1} is called the set of i’s neighbors, or i’s neighborhood.

For J ⊆ I let NJ(G) = {i ∈ I \ J : gij = 1 for some j ∈ J} denote the neighborhood

of a set of players J . Finally, for i ∈ I let N i(G) = Ni(G) ∪ {i}, and for J ⊆ I

let NJ(G) = NJ(G) ∪ J . Throughout Sections 3.2, 3.3, 3.4, and 3.5, we assume a

fixed network structure and hence shorten these notations to Ni, NJ , N i, and NJ ,

respectively.

The set of possible efforts of player i is Xi = {0, 1/d, 2/d, . . .}, with positive integer

d. Let X =
∏
i∈I Xi denote the set of effort profiles, and let X−i =

∏
j∈I\{i}Xj . For

i ∈ I and x ∈ X, the ith component of the effort profile, xi is called the effort exerted

by player i. For an effort profile x ∈ X and a set of players J ⊆ I we denote by

x(J) =
∑
i∈J xi the sum of the players’ efforts. The value x(N i) is called player i’s

consumption.

The players are engaged in a local public goods game with payoff functions πi : X →
R that are given by

πi(x) = fi(x(N i))− cixi,

where ci ∈ R+, and the functions fi : {0, 1/d, 2/d, . . .} → R+ satisfy the following

properties:

1. fi(0) = 0,

2. fi is monotonically increasing,

3. fi(y)− fi(y − 1/d) ≥ fi(y + 1/d)− fi(y) for all y ∈ {1/d, 2/d, . . .},

4. fi(1)− fi(1− 1/d) > ci/d, and fi(1 + 1/d)− fi(1) < ci/d.
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5. fi is bounded.

For i ∈ I and x ∈ X, the value fi(x(N i)) is called the benefits enjoyed by player i. The

function fi is called the benefit function of player i, while the parameter ci is the cost of

one unit of effort for player i. Let π(x) denote the vector of payoffs (π1(x), . . . , πn(x))

in effort profile x.

The interpretation of the game characterized by Γ = (I,X, (πi)i∈I) is the following.

Similarly to the game in Chapter 2, each player decides how much to contribute to the

local public good. After choosing their efforts, the players reap the benefits from their

own efforts, as well as from the efforts of their immediate neighbors, and the value of

the benefits is given by the benefit functions fi. In addition, all players incur linear

costs for their own efforts, exerting unit level of efforts comes with a cost of ci for

player i. The five properties of the benefit function respectively mean (1) the benefits

of consuming zero units of the good are zero, (2) monotonicity, (3) concavity, (4) the

existence of an optimal effort level, above which the cost of producing any additional

amount of the public good is larger than the benefits of its consumption for each player,

and (5) boundedness. These properties are standard in the discussion of local public

good games. The optimal effort levels are the same for all players and, by (4), their

value is normalized to unity.

We are interested in the dynamic behavior of a farsighted player acting against a set

of myopic players in a recurrent version of Γ, denoted by Γ′. The dynamics take place

in discrete time, indexed by t = 1, 2, . . .. The game starts with an arbitrary profile

of efforts, x0. In every period t, an active player it is chosen via a fixed probability

distribution from all players. Similarly to Chapter 2’s updating process, if player it

holds a revision opportunity, then the profile xt is given as a concatanation of his

choice, denoted by zt, and every other player’s effort in period t − 1. Instantaneous

payoffs, πi(x
t) are awarded in period t. In period t+ 1 a new active player is selected,

and so on. A state is therefore characterized by a vector of efforts, and the active

player. The set of states is denoted by Ω = X × I. For a player i ∈ I, an effort level

xi ∈ Xi, and an effort profile x′ ∈ X the effort profile (xi, x
′
−i) is the one that differs

from x′ in only the ith coordinate, with player i playing xi.

Fix T ≥ 1. For time periods 1 ≤ t ≤ T , states ωt = (xt−1, it) ∈ Ω, and choices

zt ∈ Xit , a sequence hT = (ω1, z1, ω2, z2, . . . , ωT−1, zT−1, ωT ) such that for every

1 ≤ t ≤ T it holds that

xt−it = xt−1
−it and xtit = zt (3.1)
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is called a T -long history. Let HT denote the set of T -long histories, and H =
⋃
t∈NH

t

denote the set of finite histories. For a player i, an effort profile x, and a state ω, let

HT
i , HT

x , and HT
ω denote the set of T -long histories for which the last active player, iT

is i, the last effort profile, xT−1 is x, and the last state, ωT is ω, respectively. Define

Hi =
⋃
t∈NH

t
i , Hx =

⋃
t∈NH

t
x, and Hω =

⋃
t∈NH

t
ω.

The function representing a player’s decisions in all possible situations is called a

strategy. A strategy si of a player i ∈ I, is a function si : Hi → Xi. For a history

hTi ∈ HT
i , the value si(h

T
i ) is the effort chosen by player i after observing history hTi .

Denote the set of strategies of player i by Si and let S =
∏
i∈I Si.

The transitions between the states are governed by a probability distribution Q : Ω×
{0, 1/d, . . .} → ∆(Ω). The probability that state ω′ follows ω if choice z is made equals

Q(ω′|ω, z). The marginal distributions of Q with respect to X and I are denoted by

QX and QI , respectively, i.e. for every ω ∈ Ω and z ∈ {0, 1/d, . . .} it holds that

QX(x|ω, z) =
∑
i∈I Q(x, i|ω, z), and QI(i|ω, z) =

∑
x∈X Q(x, i|ω, z). Due to the con-

sistency condition (3.1), for every x, x′ ∈ X, i ∈ I and z ∈ Xi we have

QX(x′|(x, i), z) =

1, if x′ = (z, x−i)

0, otherwise.

Hence, any assumption made on QI pins down Q itself. For now we assume that the

next active player is selected uniformly from the set of all players at all times.

Assumption 3.2.1. For every i ∈ I, every ω ∈ Ω, and every z ∈ {0, 1/d, . . .} we

assume that QI(i|ω, z) = 1/n.

Assumption 3.2.1 provides simplicity for our framework. It constitutes a deviation

from Chapter 2’s model, where no explicit assumptions were made on the assignment

of revision opportunities. As it will be apparent later on, the results in this chapter

hold for a more general class of probability distributions, requiring only that for each

period, every player should have at least some ε > 0 probability of becoming the active

player.

All players receive instantaneous payoffs in all periods, regardless of activity and

history. In period t ≥ 1, player i ∈ I receives instantaneous payoff πi(x
t). For strat-

egy profile s and a T -long history h ∈ HT , let ut1(h, s) denote the expected instan-

taneous payoff that player 1 receives in period T + t − 1. For example, u1
1(h, s) =

π1(siT (h), xT−1
−iT ) = π1(xT ). Player 1’s utility is given as the discounted expected in-

stantaneous payoffs, with discount factor δ ∈ (0, 1) as follows:
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U1(h, s) =

∞∑
t=1

δt−1ut1(h, s)

as player 1’s utility function.

A myopic player i ∈ I−1 cares only about his instantaneous payoffs, so for x ∈ X
and h ∈ HT , his utility function is defined by

Ui(h, s) = πi(siT (h), x−iT ).

The main equilibrium concept of dynamic games is the Subgame Perfect Equilibrium

(SPE), which is defined as follows:

Definition 3.2.2 (SPE). Strategy profile s∗ is an SPE of Γ′ if for every player i ∈ I,

every history h ∈ H, and every strategy si ∈ Si it holds that

Ui(h, s
∗) ≥ Ui(h, (si, s∗−i)).

In an SPE in every period the farsighted player maximizes his discounted expected

payoffs of the future, while the myopic players maximize instantaneous payoffs.

The strategy bi ∈ Si for which bi(h
t) = max{0, 1 − xt−1(Ni)} is called the best-

responder strategy of player i. Clearly, if s∗ is an SPE, then s∗i = bi for every i ∈ I−1.

Note that the best-responder strategy depends only on the last state observed.

Strategies that satisfy this criterion are called stationary strategies. More formally, a

strategy si ∈ Si is called stationary if there is a function s′i : X → Xi such that for

every x ∈ X, and every h ∈ H(x,i) it holds that si(h) = s′i(x) (note that the set X

is isomorphic with H0
(·,i)). The value s′i(x) is player i’s choice at effort profile x. We

identify the set of stationary strategies of player i with the set of maps S̃i = {s′i : X →
Xi}, and the set of stationary strategy profiles with S̃ =

∏
i∈I S̃i. The main equilibrium

concept used in this chapter is the Stationary Subgame Perfect Equilibrium (SSPE),

defined as follows:

Definition 3.2.3 (SSPE). A strategy profile s∗ is an SSPE of Γ′ if it is an SPE and

for every i ∈ I, the strategy s∗i is stationary.

Again, if s∗ is an SSPE of Γ′, then for every i ∈ I−1 we have s∗i = bi. In Proposition

3.2.4 we show that an SSPE exists in this game. Denote by (s1, b−1) ∈ S the profile of

strategies where player 1 plays s1 and every other player is a best-responder.

Proposition 3.2.4. The game Γ′ has an SSPE.
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Proof. Consider a Markov Decision Process (MDP) with set of states Ω. We assume

that in every state (x, i) for which i 6= 1, nature chooses bi(x). With that assumption

in place, player 1 is left as the only strategic player. A policy of his is a function

p : H1 → X1, whereas a stationary policy is a function p′ : X → X1. The process that

drives the transition to a new state from ω to ω′, given choice z is Q(ω′|ω, z).
Since Q is Markovian, this is indeed an MDP. Let the reward after history h given

policy p be given as

Vp(h) = U1(h, (p, b−1)).

Denote this MDP by Γ′1 and let p∗ be an optimal stationary policy of Γ′1. Then, it

holds that for every h ∈ H we have

p∗ ∈ argmax
p

Vp(h).

Hence, for every h we have p∗ ∈ argmax s1∈S1
U1(h, (s1, b−1)), and therefore (p∗, b−1) ∈

S̃ is an SSPE. �

Let the set of SSPEs be denoted by S∗. Proposition 3.2.4 makes use of the fact that

the myopic players’ equilibrium behavior is independent of that of their opponents.

Therefore, we can model the farsighted player’s decision problem as an MDP with the

myopic players treated as parts of nature. An optimal stationary policy in this MDP is

a best response by the farsighted player to the myopic players’ equilibrium strategies in

game Γ′. Together, an optimal stationary policy and the myopic best-responses form

an SSPE of Γ′. Note that if δ is small, we have a unique SPE/SSPE, in which every

player is a best-responder. Furthermore, it can be shown that for a general δ every

SPE yields the same expected utility for player 1:

Proposition 3.2.5. For any two SPE strategy profiles r, s ∈ S of game Γ′ it holds

that for every h ∈ H we have

U1(h, r) = U1(h, s).

Proof. If s, r are both SPE strategy profiles, then s1 and r1 are both optimal (poten-

tially non-stationary) policies of Γ′1. Therefore, it holds for every h that

Vs1(h) = Vr1(h).

�
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Propositions 3.2.4 and 3.2.5 establish the existence and the payoff-uniqueness of the

farsighted player’s best strategy for any network structure. Note, however, that the

myopic players’ payoffs may not be the same in each SSPE.

In the remaining of this chapter we restrict our attention to stationary strategies

and will use SSPE as our equilibrium concept, since no player can realize gains in

utility by choosing a non-stationary strategy.

Furthermore, we will pay special attention to the case where player 1 is patient, i.e.

δ is close to 1, as in this case player 1 is most prompted to play more sophisticated

strategies than his opponents. A close examination of this case reveals in which situa-

tions a farsighted agent is able to manipulate the game in order to end up in a position

where he can free-ride on his neighbors’ efforts.

3.3 Existence of absorbing effort profiles

This section contains the definition of an equilibrium concept of effort profiles, called

absorbing effort profiles. We then go on to show existence.

Definition 3.3.1 (Absorbing effort profile). An effort profile x ∈ X is absorbing for

stationary strategy profile s ∈ S̃ if for every player i ∈ I it holds that

si(x) = xi.

In other words, if x is an absorbing effort profile of s, then if the game reaches x, it will

never move out of it. Let the set of absorbing effort profiles of s be denoted by A(s).

We define two standard concepts of graph theory, cliques and independent sets.

Definition 3.3.2 (Cliques). A non-empty set of players M ⊆ I is called a clique, if

for every i, j ∈M we have gij = 1.

Notice that every single player constitutes a clique, as does every pair of neighbors.

Definition 3.3.3 (Independent sets). Let J ⊆ I. The set of players M ⊆ J is called

an independent set of J if for every i, j ∈ M with i 6= j it holds that gij = 0. The set

M is called a maximal independent set of J if it is independent and J ⊆ NM . The set

M is called a maximum independent set of J if it is independent and there is no other

independent set M ′ of J for which |M ′| > |M |.

Notice that for every J ⊆ I, every maximum independent set of J is also a maximal

independent set of J .
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We now present the main result of this section, the existence of absorbing effort

profiles for SSPE strategies. Even stronger, we identify a profile, x∗, that is absorbing

for every SSPE.

Let M1 be a maximum independent set of N1. Let M be a maximal independent set

of I such that for every i ∈ M1 we have i ∈ M . Such an M can be easily constructed

for a given M1, by adding a player who is not in NM1
, then adding a player outside

the neighborhood of M1 and the new player, and so on, until we run out of players.

Let x∗ ∈ X be defined as x∗i = 1 if i ∈ M and x∗i = 0 if i /∈ M . Notice that N1 6= ∅
implies 1 /∈M and N1 = ∅ implies 1 ∈M .

Proposition 3.3.4. For every SSPE s∗, and any x∗ as defined above, it holds that

x∗ ∈ A(s∗).

The proof of Proposition 3.3.4 requires a number of technical steps. We first introduce

the notion of reachability between effort profiles.

Definition 3.3.5 (Reachability). Let x, x′ ∈ X and s ∈ S̃. We say that x′ is reachable

from x in s if either x = x′, or there exists a sequence of effort profiles satisfying

equation (3.1) in which x precedes x′ (not necessarily as an immediate predecessor)

and the updates are made in accordance with strategy profile s, i.e. zt = sit(x
t−1).

If x′ is reachable from x in s then we write x -s x′. We write x ∼s x′ if x -s x′

and x′ -s x both hold. We write x ≺s x′ if x -s x′ and x′ 6-s x. Clearly, ∼s is an

equivalence relation. An equivalence class of ∼s containing x is called a recurring set

in s if there exists no x′ ∈ X for which x ≺ x′. The recurring set in s that contains

the effort profile x ∈ X is denoted by [x]s. If y ∈ [x]s for some x then we say that y is

recurring. Finally, let Rs(x) = {x′ ∈ X : x -s x′} denote the set of effort profiles that

are reachable from x in s.

We now introduce the notion of pillar sets as an upper bound of the total contribu-

tion of a subset of myopic players. The idea is the following: We pick a myopic player

with positive effort, called a pillar, whose neighborhood without the farsighted player

has a total effort of at most one. We remove the player and his myopic neighbors from

the network. We find another such player and repeat until we run out of players with

positive effort. The pillar set contains the players selected by this process. The name

pillar is chosen for the players’ property of supporting at most 1 unit of effort.

Let I+
−1(x) = {i ∈ I−1 : xi > 0}, and I0

−1(x) = {i ∈ I−1 : xi = 0}, denote the myopic

contributors and free-riders in effort profile x, respectively.
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Definition 3.3.6 (Pillar set). Let J ⊆ I−1 and x ∈ X be given. The set M ⊆ J is

called a pillar set of J in x if there exists some enumeration of the elements of M ,

(ik)
|M |
k=1, such that

• M is a maximal independent set within J ∩ I+
−1(x).

• for every k ∈ {1, . . . , |M |} we have x((J ∩N ik) \
⋃k−1
k′=1N ik′ ) ≤ 1.

We denote the collection of pillar sets of J in effort profile x byMx(J). In the special

case J ∩ I+
−1 = ∅, M = ∅ is a pillar set.

A pillar set of a subset of players for a given effort profile provides an upper bound

on the total effort levels of all players in that set. Clearly, if a pillar set M exists for an

effort profile x ∈ X and a subset of players J ⊆ I−1, then the properties of Definition

3.3.6 guarantee that x(J) ≤ |M | holds. Note that this upper bound is usually not

tight. The notion of pillars is demonstrated by an example.

Example 3.3.7. Let I = {1, . . . , 7}, and consider the network structure in which every

myopic player is a neighbor of the farsighted one, and the myopic players are located

on a circle. Consider the effort profile x = (0.1, 0.4, 0.4, 0.3, 0.4, 0.4, 0.1) (see Figure

3.1). Then, {2, 4, 6} is a pillar set of I−1 in x, as all myopic players exert positive effort

in x, M is a maximal independent set of I−1, and, if we take the sequence (2, 4, 6), it

holds that x({2, 3, 7}) = 0.9 ≤ 1, x({4, 5}) = 0.7 ≤ 1, and x({6}) = 0.4 ≤ 1. This set

is of cardinality 3, and hence we should have x(I−1) ≤ 3, which is of course true, as

x(I−1) = 2. Notice that {2, 5} is not a pillar set of I−1, since x({4, 5, 6}) = 1.1 > 1.

0.1

1

0.4

2

0.4

3

0.3

4

0.4

5

0.4

6

0.1

7

Figure 3.1: The links between the myopic players of Example 3.3.7.

By Definition 3.3.6, two properties immediately follow.

1. Inclusion. For x ∈ X and sets J, J ′ ⊆ I−1 with J ⊆ J ′, if M ∈ Mx(J ′) with

M ⊆ J , then M ∈Mx(J).
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2. Addition. For x ∈ X and sets J, J ′ ⊆ I−1, if M ∈ Mx(J) and M ′ ∈ Mx(J ′),

and if M ∪M ′ is an independent set, then M ∪M ′ ∈Mx(J ∪ J ′).

Let X ′−1 ⊂ X−1 denote the set of effort profiles of myopic players that accommodate

a pillar set for every J ⊆ I−1. Let X ′ = X1 × X ′−1. Notice that X ′−1 is a finite set.

The existence of a pillar set of I−1 in an effort profile does not necessarily imply the

existence of a pillar set in a J ⊆ I−1. We now show that if every myopic player is a

best-responder, as they are in equilibrium, the game will enter the set X ′ with positive

probability, and once there, it cannot leave it.

Lemma 3.3.8. Let s ∈ S̃ be given such that s−1 = b−1.

1. Reachability: For every x ∈ X \X ′ it holds that Rs(x) ∩X ′ 6= ∅.

2. No exit: For every x ∈ X ′ it holds that Rs(x) ⊆ X ′.

Proof. 1. We show that once every myopic player has been active at least once, the

resulting effort profile must be in X ′. Let ((x0, 2), . . . , (xn−2, n), xn−1) ∈ Ωn−1×X be

a sequence satisfying (3.1) such that x0 ∈ X \X ′. The proof constructs a pillar set of

xn−1 for an arbitrary J .

Fix J ⊆ I−1 and consider the player in J with the highest index number with

positive efforts in xn−1. If no myopic player in J has positive efforts, the empty set

is a pillar set of J in xn−1. Otherwise let this player be denoted by j1. Then, we

have xj1−1(N j1) = 1. By the choice of j1 we have 1 = xj1−1(N j1) ≥ xn−1(J ∩ N j1).

Remove the myopic players in N j1 from the game, and let j2 denote the myopic player

in J \N j1 with the highest index number of the remaining players with positive efforts

in xn−1. If there is no such player, then M = {j1} is a suitable pillar set of J in xn−1.

Otherwise, by the choice of j2, it holds that 1 = xj2−1(N j2) ≥ xn−1((J ∩N j2) \N j1).

Remove the myopic players belonging to N2 and repeat. If there are no more myopic

players with positive efforts in J \(N j1 ∪N j2), then M = {j1, j2} is a suitable pillar set

of J in xn−1. Otherwise we go on as before with a j3. Since there are only finitely many

myopic players, this construction will terminate after at most n− 1 steps, resulting in

pillar set of J in xn−1. Since such a construction can be performed for any choice of

J , it holds that xn−1 ∈ X ′.
2. Suppose that the statement is false. Then, there exists a sequence of states,

((x0, i1), . . . , (xT , iT+1)) ∈ ΩT+1, that satisfies (3.1) such that x0 ∈ X ′ and xT ∈ X\X ′.
Then, there must exist J ⊆ I−1 such that there is no pillar set of J in xT . We show

that, no matter the choice of J , a pillar set can always be constructed.
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We use an induction argument. First, consider the case |J | = 1, i.e. J = {j}.
If xTj = 0, then the empty set is a pillar set. If 0 < xTj ≤ 1, then {j} is a pillar

set. The case xTj > 1 is impossible, since j ∈ {i1, . . . , iT } implies xTj = [0, 1], while

j /∈ {i1, . . . , iT } means xTj = x0
j , hence the pillar set of {j} in x0 is also a pillar set in

xT .

Suppose |J | = k for k > 1 and for every 1 ≤ k′ < k it holds that every subset of

I+
−1(xT ) with a cardinality of k′ has a pillar set in xT . If there exists j ∈ J with xTj = 0,

then take the set J ′ = J \ {j}. Since a pillar set only includes contributing players, by

the induction hypothesis there exists a pillar set of J ′ in xT , which is clearly a pillar

set of J in xT as well.

If J ⊆ I+
−1(xT ) and if J ∩ {i1, . . . , iT } = ∅, then for every j ∈ J we have x0

j = xTj ,

hence the existence of a pillar set of J in x0 implies the existence of a pillar set of J in

xT .

If J ⊆ I+
−1(xT ) and if J ∩ {i1, . . . , iT } 6= ∅, then let j1 ∈ J denote the last player

in the sequence (it)Tt=1 who is also a member of J . By this choice, we must have

xT (N j1 ∩ J) ≤ 1. Consider the set of players, J ′ = J \ N j1 . By the induction

hypothesis, there exists an M ′ ⊆ J ′ which is a pillar set of J ′ in xT . Then, since

M ′ ∩Nj1 = ∅, by the Addition property, M = {j1} ∪M ′ is a pillar set of J ′ in xT . �

Remark 3.3.9. By the proof of Lemma 3.3.8, two statements follow.

1. Notice that not only is the set X ′ reachable from any effort profile, it is reachable

via at most n− 1 updates, hence it will be reached almost surely for any starting

state.

2. For a fixed x1 ∈ X1 it also holds that once the game reaches {x1} × X ′−1, it

cannot leave this set unless player 1 updates. The proof is identical to that of

the ’No exit’ part of Lemma 3.3.8.

As a consequence of Lemma 3.3.8, for any strategy profile s such that s−1 = b−1, and

any recurrent set [x]s we must have [x]s ⊆ X ′.
Let X∗ = {x ∈ X : ∀i ∈ I−1 xi = bi(x)} and X∗+ = {x ∈ X : ∀i ∈

I+
−1(x) xi = bi(x)} denote the sets of effort profiles where every myopic player is

at his best response, and every contributing myopic player is at best response, respec-

tively. Notice that for every s1 ∈ S̃1 we have A(s1, b−1) ⊆ X∗ ⊆ X∗+.

We now prove Proposition 3.3.4.

Proof of Proposition 3.3.4. Since every myopic player is a best-responder in equilibrium,

for every SSPE strategy profile s∗, every x ∈ X∗, and every i ∈ I−1 we have that
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s∗i (x) = xi. Let X1 = argmax x′∈X′ π1(x′). Due to the second point of Lemma 3.3.8, for

every s∗ and x ∈ X1∩X∗ we have s∗1(x) = x1, as π1(x) is the maximum instantaneous

payoff that can be reached in X ′. Recall the definitions of x∗ and M1. Clearly, x∗ ∈ X∗.
We now show that x∗ is an element of X1 as well.

If N1 6= ∅, then, since the cardinality of every pillar set of N1 is an upper bound of

the total effort in N1, and no pillar set of N1 can have a bigger cardinality than M1,

by the fact that x∗(N1) = |M1| we have that x∗ ∈ argmax x′∈X′ x
′(N1). By the fact

that x∗1 = 0, and by the assumptions made on π1, it follows that x∗ ∈ X1 as well. This

means that x∗ ∈ A(s∗) for any SSPE s∗.

If N1 = ∅, then for any effort profile x ∈ X it holds that x(N1) = 0, and the

payoff of player 1 depends only on x1. By the assumptions placed on π1, it follows that

s∗1(x) = 1 for every x ∈ X, hence x∗ ∈ A(s∗) for any SSPE s∗.

�

Proposition 3.3.4 identifies an effort profile which is both acceptable for the myopic

players, as they are playing best responses, and for the farsighted player, who gets the

maximum instantaneous payoff attainable from this position. By this construction we

show not only that the set of absorbing effort profiles is non-empty for every SSPE,

but also that it has a non-empty intersection with the set of static Nash equilibria of

the game. However, it is not true that the set of absorbing effort profiles would equal

the set of Nash equilibria, as shown by the following example.

Example 3.3.10. Let I = {1, 2, 3}, d = 2, ci = 1 for i ∈ I. Let the network G be

given by g12 = g23 = 1, and g13 = 0. Consider the effort profile x0 = (0, 0.5, 0.5) (see

figure 3.2).

0

1

0.5

2

0.5

3

Figure 3.2: The network and initial effort profile of Example 3.3.10. Player 1 can choose be-

tween remaining under his target consumption, or disturbing the equilibrium between players

2 and 3 and prompting a response.

Clearly, for a strategy s1 ∈ S̃1 such that s1(x0) = 0, it holds that x0 ∈ A(s1, b−1),

whereas we clearly have x0 /∈ X∗. We show next that by choosing δ and f1 appropri-

ately, s1(x0) = 0 is the equilibrium play of player 1. By playing 0 at x0, player 1 will

receive the payoff stream f1(0.5) indefinitely.
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Figure 3.3: If player 1 increases his effort in Example 3.3.10, then he faces a permanent

decrease in efforts from player 2. Player 3 provides for both 2 and 3, and player 1 cannot

change that.

For s1 ∈ S̃1 with s1(x0) > 0, the only effort profiles we can reach from x0 are the

ones where players 2 and 3 play 0.5 and 0.5, or 0 and 1, respectively. Moreover, with

probability 1, we will reach a profile where the latter is the case, since at any point when

player 1 has a positive effort level, if players 2 and 3 receive revision opportunities in

this order, they will set their efforts to 0 and 1 respectively. From this point onwards,

by the assumptions on f1, every period’s instantaneous payoff that player 1 receives

is at most f1(1) − 1. Hence, if f1(1) − 1 > f1(0.5) and if δ is high enough, player 1’s

equilibrium choice in profile x0 is s1(x0) = 0. In this case, the set of absorbing effort

profiles of the equilibrium strategy will include an effort profile that is not a Nash

equilibrium of the static game.

Notably, Example 3.3.10 also illustrates that the best profile for the farsighted

player, x∗ = (0, 1, 0), is not attainable from the (0, 0.5, 0.5) starting effort profile. Even

so, an absorbing profile has been reached, which, as shown in Section 3.5, is generally

true for all games and all initial profiles.

3.4 Rising inequality between myopic players

In this section we concentrate on the myopic players. In particular, we focus on the

progression of the game when it is played by a set of best-responding players revising

in sequence. We show that such dynamics allow for a rise of inequality in the efforts

exerted towards the local public good.

Since the farsighted player can gain utility by exploiting as many of his myopic

neighbors as possible, the results of this section provide insight to his opportunities

and limitations. Therefore, we will find it particularly useful to set up our convergence

theorem. First we show that an effort profile where all myopic players are at their best

replies is reachable from any effort profile.

Lemma 3.4.1. Let s ∈ S̃ be such that s−1 = b−1. For every x ∈ X there exists an

x′ ∈ Rs(x) such that x′ ∈ X∗ and x′1 = x1.
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Lemma 3.4.1 follows by the fact that local public goods games are best-response

potential games (Voorneveld, 2000). As shown in Chapter 2, the function

φ(x) =
∑
i∈I

xi −
1

2
x>Gx

is a best-response potential of a static local public goods game with continuous action

sets. Notice that for every (x, i) ∈ Ω it holds that argmax xi∈R+
φ(xi, x−i) ∈ Xi, since

x(Ni) ∈ {0, 1/d, . . . , }, and hence we have

argmax
xi∈Xi

πi(xi, x−i) = argmax
xi∈Xi

φ(xi, x−i)

by the same arguments as in Chapter 2, meaning that φ is a best-response potential

of Γ.

By Remark 3.3.9, if player 1 is never selected to become active, the game can reach

the finite set {x1} ×X ′−1 by at most n− 1 updates, with every update increasing the

value of φ. Furthermore, as the game cannot leave {x1} × X ′−1 and the value of φ

cannot decrease, an effort profile will be reached, where φ cannot increase any further

by unilateral deviations. At that point, every myopic player will be at his best response.

Lemma 3.4.1 means that should the farsighted player refrain from changing his own

effort – whether by his own choice or by the fact that he is not selected to become

active for a time – the myopic players will reach a partial equilibrium.

We now present a lemma on rising inequality between a linked pair of myopic play-

ers. Given an effort profile such that one member of the pair has a higher consumption

than the other, the effort profile where the former player exerts no effort while the

latter one provides for the former is always reachable.

Lemma 3.4.2 (Rising inequality between pairs). Let s ∈ S̃ be such that s−1 = b−1.

Let x ∈ X and i, j ∈ I−1 be given such that gij = 1 and x(N j) > x(N i). Then there

exists y ∈ Rs(x) that can be reached via updates only by players i and j such that

yj = 0, yi = max{0, 1− x(Ni) + xj}.

Proof. If xj = 0, let player i revise and denote the resulting profile y, which satisfies

the statement. If xj > 0, then let players j and i revise once in sequence and denote

the resulting profile by x′. Clearly, x′(N j) > x′(N i) holds, as only i and j updated.

Furthermore, we have x′i = bi(x
′). If x′i = 0, then we have x′(Ni) ≥ 1, and hence

x′(Nj) > 1, meaning that x′j = bj(x
′) = 0, and the statement holds for y = x′.

If x′i > 0, then we must have x′(N j) > x′(N i) = 1. Consider a sequence of states

((x0, i1), (x1, i2), . . . , (x2d−1, i2d)) ∈ Ω2d such that x0 = x′, it = j if t is odd and it = i
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if t is even, and for every t ≥ 1 we have xt = (bit(x
t−1), xt−1

−it ). Since x′(N j) > 1 we

have x1
j < x0

j , and x1(N i) = 1− x0
j + x1

j , hence player i will increase his effort by the

same amount as player j’s decrease, i.e., x2
i −x1

i = x0
j−x1

j . Since x2(N j) > x2(N i) = 1,

the same argument can be repeated. After at most 2d steps, player j will reach 0 and

player i will have taken over all of player j’s efforts. �

Lemma 3.4.2 is illustrated in the following example.

Example 3.4.3. Consider again the the network structure and effort profile of Ex-

ample 3.3.7 (see Figure 3.1). Since x(N2) = 1 < x(N3) = 1.2, the conditions of

Lemma 3.4.2 apply. It is easy to see that letting players 3 and 2 best-respond to

x in sequence leads to the profile x2 = (0.1, 0.6, 0.2, 0.3, 0.4, 0.4, 0.1), with x2(N2) =

1 < x2(N3) = 1.2. Doing so again gives x4 = (0.1, 0.8, 0, 0.3, 0.4, 0.4, 0.1), satisfying

x4
2 = 1− x0(N2) + x0

3 = 0.8 and x4
3 = b3(x4) = 0.

Repeated application of Lemma 3.4.2 allows it to be generalized in Lemma 3.4.4 to one

player and several neighbors with higher consumption.

Lemma 3.4.4 (Rising inequality in neighborhoods). Let s ∈ S̃ be such that s−1 = b−1.

Let x ∈ X, i ∈ I−1, and J ⊆ I−1 ∩Ni be given such that for every j ∈ J it holds that

x(N j) > x(N i). Then there exists y ∈ Rs∗(x) that can be reached via updates only by

players in {i} ∪ J such that y(J) = 0 and yi = max{0, 1− x(Ni) + x(J)}.

Proof. Fix j ∈ J . As shown in the proof of Lemma 3.4.2, a sequence of alternating

best-response updates by players i and j allows the game to reach an action profile x′

for which we have x′j = 0. We now show that for every j′ ∈ J \ {j} it still holds that

x′(N j′) > x′(N i). We have

x′(N j′) = x′(N j′ \ {i, j}) + x′i + gjj′x
′
j = x(N j′) + (x′i − xi) + gjj′(x

′
j − xj),

and

x′(N i) = x′(N i \ {i, j}) + x′i + x′j = x(N i) + (x′i − xi) + (x′j − xj).

Since x′j − xj ≤ 0 and by gjj′ ∈ {0, 1} we have (gjj′ − 1)(x′j − xj) ≥ 0, hence we have

x′(N j′)− x′(N i) ≥ x(N j′)− x(N i) > 0.

Therefore, the same method used in the proof of Lemma 3.4.2 can be repeated

until every player in J exerts an effort of 0, and player i takes over the efforts of every

j ∈ J . �

Lemma 3.4.4 is a direct consequence of Lemma 3.4.2, as differences in consumptions

between two neighboring players are either preserved or magnified when the player with
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lower consumption takes over the efforts of another of his neighbors. The two lemmas

together describe a progression towards increasing inequality in efforts between myopic

players, given an inequality in consumption.

We now introduce two notions to describe sets of contributing myopic players.

Definition 3.4.5 (Islands, factions, partnerships). Let x ∈ X. A connected, non-

empty set of myopic players L ⊆ I−1 is called an island in x if

• for every j ∈ L it holds that xj > 0,

• for every i ∈ NL \ {1} it holds that xi = 0.

A possibly disconnected L satisfying the same properties is called an archipelago, con-

sisting of unions of islands. Furthermore, a connected F ⊆ I−1 is called a faction in x

if F is an island and for every j ∈ F it holds that xj = bj(x). Similarly, an archipelago

that satisfies the same properties is called a partnership.

Let the collection of islands in x be denoted by L(x), the collection of factions by F(x),

and the collection of partnerships by B(x).

An island is a set of contributing myopic players and whose myopic neighbors

outside the set are free riders. A faction is an island where every player is at his best

response, and therefore has a consumption of exactly 1. Archipelagos are unions of

islands, while partnerships are unions of factions. Clearly, every myopic player in every

effort profile is either a member of an island or a free rider. For any s1 ∈ S̃1, in every

effort profile in either of the three sets, X∗, X∗+, A(s1, b−1), every myopic player is

either a member of a faction or a free rider.

Notice that given a profile x ∈ X, for every partnership B ∈ B(x) it holds that

M ∈Mx(B) if and only if M is a maximal independent set of B.

The following lemma shows an important property, that every island can give rise

to a partnership through a series of best-responses.

Lemma 3.4.6 (From islands to partnerships). Let x ∈ X and let s be given such that

s−1 = b−1. Let L ∈ L(x) be such that there is a player i ∈ L for which x(Ni∩{1}) < 1.

Then, there exists an x′ ∈ Rs(x) with updates only by players belonging to L, and a

partnership B ∈ B(x′) such that B ⊆ L and for every j ∈ L we have that x′j = bj(x
′)

Proof. Similarly to the proof of Lemma 3.4.1 suppose that only the players in L are

allowed to move. As before, by the fact that this is a best-response potential game,

together with the results of Voorneveld (2000) guarantee that the players will reach an
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action profile x′ ∈ X where for every j ∈ L it holds that x′j = bj(x
′). The condition

x(Ni ∩ {1}) < 1 for at least one i ∈ L guarantees that at least one member of L will

have a positive effort level. It follows that there must be a B ⊆ L that is a partnership

in x′. �

The main result of this section shows that in recurring effort profiles no member of a

partnership and its neighborhood will change his efforts if the partnership lies outside

player 1’s neighborhood.

Proposition 3.4.7 (Members of distant partnerships never change their efforts). Let

s ∈ S̃ be such that s−1 = b−1, let x ∈ X, and let x be a recurrent profile in s. Then,

for every B ∈ B(x) such that B ∩ N1 = ∅, for every j ∈ NB and every x′ ∈ [x]s it

holds that xj = x′j.

Proof. Suppose that |B| = 1, i.e. B is a one-player faction, {j}. It must hold that

xj = 1. Then, no neighbor of j can increase his efforts before j decreases his own.

However, j cannot decrease his own efforts before a neighbor of his increases. Hence,

no effort profile can be reached from x where any player in NB = N j has a different

effort level.

Now let m > 1 and suppose that the statement holds for every partnership with

fewer than m members. Let |B| = m and suppose that we have an x′ ∈ [x]s and a

j ∈ NB such that x′j 6= xj . Since the members of B are playing their best-responses in

x, every history through which x′ can be reached from x must include an effort profile

y and a player i ∈ NB such that yi = bi(y) > 0 but yj = xj for every j ∈ NB \ {i}.
It must hold that y(N i) = 1, as yi = bi(y) > 0. Furthermore, it must be true that

B \ Ni 6= ∅, otherwise y(Ni) ≥ 1 and bi(y) = 0, a contradiction. Moreover, for every

j ∈ Ni ∩ B we have y(N j) = x(N j) + yi > 1. Hence, by Lemma 3.4.4 there exists

y′ ∈ Rs(y) such that y′(Ni∩B) = 0. Notice that i is not in the neighborhood of B \Ni.
Hence, the remainder of the original partnership is an archipelago in y′.

By Lemma 3.4.6 there exists y′′ ∈ Rs(y
′) and a partnership B′ ⊆ B \ Ni in y′′.

However, since y′′ ∈ [x]s, and since |B′| ≤ |B \ Ni| < m we must have xj = y′′j for

every j ∈ NB′ . This contradicts the assumption that B is a partnership of m players

in x and that x is recurrent. �

The intuition behind Proposition 3.4.7 is as follows: Any one-player faction outside

player 1’s neighborhood will remain one indefinitely, as it is simply an expert with an

effort of 1, surrounded by free riders. Neither will change their effort levels before the

other does so. A two-player faction, if it breaks can lead to a one-player partnership,
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and therefore it either cannot break in a recurrent set of effort profiles, or a profile

with a two-player faction cannot be recurrent. By induction the same argument can

be extended to partnerships of more players.

3.5 Reaching a single effort profile

The main result of this section is the following:

Theorem 3.5.1. There exists a δ < 1 such that for every δ ∈ (δ, 1) and every SSPE

strategy profile s∗ it holds that every recurring set is a singleton, and for any given

starting state, ω, one of the recurring sets is reached with probability 1.

Naturally, Theorem 3.5.1 implies that every recurrent effort profile belongs to X∗,

furthermore some element of X∗ is reached almost surely from any starting state.

The proof of Theorem 3.5.1 needs a number of steps. We introduce a binary relation

on effort profiles regarding their pillar sets.

Definition 3.5.2 (Pillar-dominance). Let x, y ∈ X ′, and J ⊆ I−1 be given. We say

that y pillar-dominates x in J , denoted by x /J y, if

min
Mx∈Mx(J)

|Mx| ≤ min
My∈My(J)

|My|.

Notice that x /J y holds automatically if J ∩ I+
−1(x) = ∅.

The idea behind the notion of pillar-dominance is to introduce an upper bound on

the effort levels in x with information regarding y. For example, if we have x/N1
y, and

y is an experts and free riders Nash equilibrium with ` experts in N1, then we know

that x(N1) ≤ `. The whole proof idea of Theorem 3.5.1 makes use of this relation.

Crucially, notice that /J is a transitive relation.

We now turn to the first in what will be a series of statements that set up the

proof of Theorem 3.5.1. The proof strategy is as follows: Starting from a non-singleton

recurring set under an SSPE we construct an effort profile where all myopic players are

at best response, while at the same time it is no worse for the farsighted player than

any other in the recurring set, and we also provide a corresponding strategy for player

1 by which he is guaranteed to reach it, which leads to contradiction.

To achieve this, given an SSPE s∗, and a non-singleton recurring set [x]s∗ we need

a profile y ∈ [x]s∗ with four properties:

1. y ∈ X∗,
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2. xmax /N1 y,

3. every faction in y is either completely inside or completely outside of N1,

4. every faction in y inside N1 is a clique,

where xmax ∈ argmax x′∈[x]s∗
π1(x′) denote one of the best profiles for player 1 of the

recurring set.

Properties 1, 3, and 4 together describe an effort profile where, for some y1 ∈ [0, 1],

the total contribution of the farsighted player’s neighbors is y(N1) = m(1 − y1), with

m denoting the number of contributing cliques in player 1’s neighborhood. Property 2

ensures that m ≥ xmax(N1). The proof strategy is to construct a strategy for player 1

which leads him to an effort profile where his consumption is m while his efforts are 0

with probability 1. If such a strategy exists, then s∗1 cannot be part of an SSPE.

In what follows we first present a technical lemma, then prove that such a y can

indeed be reached, always adding one property at a time. Finally, we prove Theorem

3.5.1. For i ∈ I−1, let L(i, x) denote the island that i belongs to, if any.

For x ∈ X let L(x) = {i ∈ I+
−1(x) : L(i, x) is not a clique} denote the set of con-

tributors for whom the islands they belong to are not cliques.

Lemma 3.5.3. Fix s ∈ S̃ such that s−1 = b−1. Let x ∈ X be a recurrent effort profile

in s such that x1 < 1. Let i ∈ I−1 be such that x(N i) < 1. There exists y ∈ X∗+∩Rs(x)

that can be reached by updates only by myopic players such that

1. yi = bi(y),

2. x /N1
y, and

3. |L(x)| ≥ |L(y)|.

The proof can be found in the Appendix.

The next lemma states that from any recurring effort profile the game reaches a

state where every myopic player is at best response, the ensuing effort profile pillar-

dominates the original one, and the number of myopic contributors who are not in

cliques does not increase. This establishes properties 1 and 2 that we will use for the

proof of Theorem 3.5.1, and builds towards property 4.

Lemma 3.5.4. Fix s ∈ S̃ such that s−1 = b−1. If there exists an x ∈ X with |[x]s| > 1,

and x1 < 1, then there exists an action profile y ∈ X∗ ∩Rs(x), that can be reached via

updates only by myopic players, such that x /N1
y and |L(x)| ≥ |L(y)|.
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The proof can be found in the Appendix. Lemma 3.5.4 relies on the repeated use of

Lemma 3.5.3 to advance the game into further effort profiles that both pillar-dominate

the original, ensure that all myopic contributors are at best response, and that the

number of contributors not in cliques does not increase. The fact that the game is a

best-response potential game guarantees that the myopic players will eventually stop

revising and they all reach their best responses. We demonstrate the meaning of Lemma

3.5.4 with an example.

Example 3.5.5. Consider again the network of Example 3.3.7. Suppose that the

profile x = (0.1, 0.4, 0.4, 0.3, 0.4, 0.4, 0.1) (see Figure 3.1) is recurring. Then, the effort

profile we get by allowing player 2 to usurp players 3 and 7 in succession is also recurring

(shown in Figures 3.4 and 3.5). Notice that in the new profile, player 4 can also usurp

player 5 which would leave player 4 with an effort of 0.9. Subsequently, player 6 can

move to his best response, also exerting 0.9 effort, creating three one-player factions

(Figure 3.6). Every player is at best response, every contributor is part of a one-player

faction that is also a clique, and the only pillar set is {2, 4, 6}. Hence, the resulting

profile pillar-dominates x.
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Figure 3.4: The links between the myopic players and the effort profile of Example 3.5.5 after

player 2 usurps player 3’s efforts. Now rising inequality applies for players 2 and 7.

Notice that in Example 3.5.5 property 3 is vacuous and we got property 4 for

free, neither of which is guaranteed to happen in the general case. Further examples

(Examples 3.5.7 and 3.5.9) will be used to illustrate such cases. By its construction,

Example 3.5.5 also demonstrates why showing that recurring sets include an effort

profile with all four properties is a crucial step for proving Theorem 3.5.1. Once the

farsighted player becomes active, it is clear that his best strategy is to move to zero,
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Figure 3.5: The links between the myopic players and the effort profile of Example 3.5.5 after

player 2 usurps player 3 and 7’s efforts in succession.
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Figure 3.6: The links between the myopic players and the effort profile of Example 3.5.5. Rising

inequality allows the formation of an effort profile where the farsighted player’s problem is

greatly simplified.

which will be followed by players 2, 4, and 6 moving to 1, hence the best profile for

player 1 is reached, and x could not have been recurring under an SSPE.

As mentioned, generally properties 1 and 2 do not imply properties 3 and 4. As a

next step we show that once we reached a profile that satisfies 1 and 2, then we can

reach a profile that satisfies 1, 2, and 3.

Lemma 3.5.6. Fix s ∈ S̃ such that s−1 = b−1. If there exists an x ∈ X with |[x]s| > 1

and x1 < 1, then there exists an action profile y ∈ [x]s ∩X∗, such that x /N1
y and for

every F ∈ F(y) it holds that either F ⊆ N1 or F ∩N1 = ∅, and |L(x)| ≥ |L(y)|.

The proof can be found in the Appendix. The idea behind Lemma 3.5.6 is to start

with an effort profile where all myopic players are at best response, which is possible
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due to Lemma 3.5.4. If there is a faction with members both inside and outside of N1,

then we check how the farsighted player reacts. If he does not revise his efforts, the

recurrent set must be a singleton. If he decreases, we apply Lemma 3.5.4 to get back

to a state with all myopic players at their best responses, with the farsighted player

now having a lower contribution. If he increases, then a faction with members both

inside and outside his neighborhood will splinter into smaller ones, with one splinter left

completely outside his neighborhood. Thus, a contradiction is reached by Proposition

3.4.7, as the original profile could not have been recurrent. This idea is demonstrated

by a simple example.

Example 3.5.7. Consider the line network, and the initial effort profile, x0 of Example

3.3.10 (shown in Figure 3.2). If this profile is recurring, then the recurring set is

a singleton: If the farsighted player would not deviate, i.e. s1(x0) = 0, we have

[x0]s = {x0}, a singleton. If the farsighted player would deviate, i.e. s1(x0) > 0, then

by the rising inequality between pairs lemma (Lemma 3.4.2) we can reach a profile

where player 3 is an expert and player 2 is a free rider. There is no way back to x.

Therefore, it can be easily seen that any candidate non-singleton recurring set in the

line network must contain at least one profile in which player 3 is a free rider, meaning

that the only partnership is completely inside N1.

Finally, we add property 4. We show that a profile can be reached such that every

faction inside the farsighted player’s neighborhood is a clique while also satisfying

properties 1, 2, and 3. For x ∈ X let F1(x) = {F ∈ F(x) : F ⊆ N1} denote the

collection of factions that are entirely inside player 1’s neighborhood.

Lemma 3.5.8. Fix s ∈ S̃ such that s−1 = b−1 and for every x ∈ X it holds that

s1(x) ≤ 1. If there exists an x ∈ X with |[x]s| > 1 and x1 < 1, then there exists an

action profile y ∈ [x]s ∩ X∗, such that x /N1
y, for every F ∈ F(y) we either have

F ⊆ N1 or F ∩N1 = ∅, and for every F ∈ F1(y) it holds that F is a clique.

The proof can be found in the Appendix. The idea behind Lemma 3.5.8 is to start

from a profile that satisfies the first three properties, and then, similarly to Lemma

3.5.6 we check what the farsighted player’s choice would be. If he does not revise, then

again, we are in a singleton recurring set. If he does, then we break up an original

faction into smaller ones. Once the factions are small enough, i.e. they have one, two,

or three players, they are guaranteed to be cliques. We demonstrate the idea with an

example.
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Example 3.5.9. Consider once more the network of Example 3.3.7 with the following

effort profile: x = (0.1, 0.4, 0.4, 0.1, 0.4, 0.4, 0.1) (Figure 3.7). Since x ∈ X∗, we have

no inequality to exploit with the rising inequality lemmas.
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Figure 3.7: The links between the myopic players and the effort profile of Example 3.5.9. All

players are at best response but the only faction is not a clique. There is no inequality, none

of the myopic players can usurp any other.

The only way for the game to escape x is by the farsighted player’s deviation. If he

does not deviate, the recurring set containing x must be a singleton. If he does, then,

depending on the order of players revising, inequalities can appear that we can exploit

to fragment the faction {2, 3, 4, 5, 6, 7} into smaller ones.

Suppose that player 1 increases his effort by 0.2 to exert 0.3, and that this change

is followed player 3’s revision (a decrease to 0.2), then player 7’s (a decrease to 0, since

he cannot go below that). Figure 3.8 shows the resulting effort profile which we call

x′.

Notice that x′(N2) = 0.9 < x′(N3) = 1 < x′(N7) = 1.1, and hence the rising

inequality in neighborhoods lemma is now applicable for player 2 and his only con-

tributing myopic neighbor, 7. Hence, from x′ we can reach an effort profile in which

player 2 is a one-player faction with an effort of 0.7, and players 3 and 7 are both free

riders. Following this, it is easy to see that the profile y = (0.3, 0.7, 0, 0.7, 0, 0.7, 0)

is also reachable by player 4 usurping player 5 followed by player 6 moving to his

best reply. Note that any increase of player 1 allows the emergence of the same three

one-player factions via similar methods.

If player 1 decreases instead of increasing, we can also reach the same outcome.

Suppose that player 1 decreases his effort to 0, and his revision is followed by player

2’s (an increase to 0.5) and then by player 4’s (an increase to 0.2). Figure 3.9 shows

this effort profile which we call x′′.
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Figure 3.8: The links between the myopic players and the effort profile of Example 3.5.9, after

an increase by player 1, and two subsequent decreases by players 3 and 7. Rising inequality

applies for player 2 and 3.
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Figure 3.9: The links between the myopic players and the effort profile of Example 3.5.9, after

a decrease by player 1, and two subsequent increases by players 2 and 4. Rising inequality

applies for player 2 and 3.

Since x′′(N2) = 1 < x′′(N3) = 1.1, the rising inequality between pairs lemma

applies for players 2 and 3. Moreover, player 2 can usurp player 7 as well, again

forming a one-player faction. This can be followed by player 4 usurping 5, and then

6 moving to his best response to reach another effort profile with three one-player

factions, (0, 1, 0, 1, 0, 1, 0)

In the following proof we assume that an SSPE strategy profile can permit non-

singleton recurrent sets, which makes the four lemmas applicable, then arrive at a

contradiction.

Proof of Theorem 3.5.1. Assume that we have an x ∈ X and an s∗ ∈ S∗ for which

|[x]s∗ | > 1. Let xmax ∈ argmax x′∈[x]s∗
π1(x′) denote one of the best effort profiles for
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player 1. Note that since |[x]s∗ | > 1, player 1 has to move at least once. Since N1 = ∅
leads to a trivial contradiction, we assume N1 6= ∅.

If I+
−1(xmax) = ∅, then we must have xmax(N1) = 0, and for every i ∈ N1 we have

xmax(Ni) ≥ 1, otherwise any neighbor revising would improve player 1’s instantaneous

payoff. Clearly, by allowing all myopic players outside N1 to reach their best responses

as well we can reach x∗ ∈ X∗ with x∗1 = xmax
1 , x∗(N1) = 0, and π1(x∗) = π1(xmax).

If this is the best that player 1 can achieve, then in an SSPE we must have s∗1(x∗) =

xmax
1 = x∗1 = 1, since, in absence of any efforts from his neighbors, any change in

his own effort would decrease his own instantaneous payoffs. This means that the

absorbing set is a singleton, a contradiction.

If I+
−1(xmax) 6= ∅, then let M ∈Mxmax(N1). Then, for every x′ ∈ [x]s∗ we have

π1(x′) ≤ f1(|M |).

Furthermore, since the farsighted player changes his efforts at least once, changing his

instantaneous payoff, we must have a x′ ∈ [x]s∗ with π1(x′) < f1(|M |). We will show

that there exists y ∈ [x]s∗ for which π1(y) ≥ f1(|M |) and y ∈ X∗, with y1 = 0. This

leads to contradiction, as under these circumstances, playing s∗1(y) > 0 would not be

an SSPE strategy, and we have [y]s∗ = {y}.
Let y0 ∈ [x]s∗ denote the effort profile such that y0 ∈ X∗, for every F ∈ F(y0)

with F ∩ N1 6= ∅ it holds that F ⊆ N1 and F is a clique, and there does not exist a

y′ ∈ [x]s∗ with the same properties for which |F1(y′)| > |F1(y0)|. Let |F1(y0)| = m0.

By Lemma 3.5.8, such a y0 must exist, and m0 ≥ |M |. In other words, y0 is a profile

where m0 cliques of myopic players contribute in player 1’s neighborhood with each

clique’s total effort equaling 1− y0
1 .

Consider the following strategy s1 ∈ S̃1 for x′ ∈ X:

s1(x′) =

max{x′1 − 1/d, 0} if x′ ∈ X∗,

x′1 otherwise.

We now show that if, instead of s∗1, player 1 adopts s1 as soon as the game reaches

the effort profile y0, the game will reach an effort profile where player 1’s instantaneous

payoff is at least f1(m0), and all myopic players are at best response. If y0
1 = 0, this

is already achieved, hence π1(y0) = f1(m0) ≥ f1(|M |), meaning that in any SSPE, s∗,

we must have s∗1(y0) = 0, contradicting |[x]s∗ | > 1.

Let y′ = (s1(y0), y0
−1). What we show next is that for every i ∈ N1 such that y′i = 0

and bi(y
′) > y′i, N i contains the entirety of one clique of myopic players of positive
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effort and no other myopic players of positive effort. If N i includes no contributing

myopic players, then letting exactly one player in every faction F ∈ F1(y0) move to his

best response after y′, and finally letting i do the same would produce m0 + 1 factions

in N1, contradicting the choice of y0.

If for some F ∈ F1(y0) we have N i∩F 6= ∅, but F 6⊆ N i, then take j ∈ F \N i. Since

j ∈ F we have y′(N j) = 1−1/d, and since i is not at his best response, but was before

player 1 decreased, we have y′(N i) = 1 − 1/d as well. Now, let y′′ denote the profile

we get from y′ by letting players i and j move successively to best response. Then, for

every j′ ∈ F ∩ N i we have y′′(N j′) = 1 + 1/d, while y′′(N i) = y′′(N j) = 1. Hence,

by Lemma 3.4.4, there exists a profile ŷ ∈ Rs(y0), with ŷ(F ∩Ni) = 0. From here, by

letting players i, j, and one player from every other clique F ′ ∈ F1(y0), F ′ 6= F move

to best response we get a profile with m0 + 1 cliques of myopic players contributing,

contradicting the choice of y0.

Hence, if i ∈ N1 with bi(y
′) > y′i, then N i contains the entirety of one clique. It

cannot contain any other myopic contributors, since for every F ∈ F1(y0) we have

y′(F ) = 1 − y0
1 , meaning that y′((N i ∩ F ) ∪ {1}) = 1 − 1/d. If i had any other

contributing myopic neighbors, he would have a consumption of at least one.

Therefore, once player 1 adopts the strategy s1, every time a myopic player updates,

a faction is created that is also a clique. If y0
1 > 0, then let s = (s1, b−1), and let

y1 ∈ Rs(y0)∩X∗ be such that y1
1 = y0

1 − 1/d. Notice that y0 /∈ Rs(y1), because player

1 never increases his efforts while playing s1. As factions cannot split, nor can they

merge, y1 will have m0 cliques of myopic players contributing with every clique’s effort

totaling 1− y1
1 = 1− y0 + 1/d. The same arguments can be repeated for y2, and so on,

until we have yk1 = 0 for some k ≤ d. By continuing along this strategy, player 1 slowly

decreases his efforts, while the cliques of myopic players in his neighborhood increase.

If we let y denote any profile where player 1’s effort is 0, and the neighboring cliques’

efforts are 1, then clearly we have π1(y) = f1(m0) ≥ f1(|M |). Hence, the instantaneous

payoff f1(m0) is reached with certainty.

With that we achieve contradiction, as a player with a high enough δ will choose

s1 instead of s∗1, meaning that s∗ is not an SSPE.

�

We conclude this section by a technical result regarding the limit of expected utilities

for a given starting state.

Proposition 3.5.10. There exists a δ such that for every δ ∈ (δ, 1), every ω ∈ Ω, and

every SSPE profile s∗, limt→∞ ut1(ω, s∗) exists.
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Proof. Let ω ∈ Ω and an SSPE s∗ be given. Let Qt(x) denote the probability that the

game is in effort profile x in period t if the game starts in state ω and players follow

strategy profile s∗. By Theorem 3.5.1 it follows that with probability 1, the game

proceeds to an absorbing effort profile. By the fact that no absorbing profile can be

reached from any other, for every x ∈ X the limit limt→∞Qt(x) exists and can only

be positive for x ∈ A(s∗).

Hence

lim
t→∞

ut1(ω, s∗) = lim
t→∞

∑
x∈X

Qt(x)π1(x) =

lim
t→∞

∑
x∈A(s∗)

Qt(x)π1(x) =
∑

x∈A(s∗)

lim
t→∞

Qt(x)π1(x)

also exists. �

3.6 Lower and upper bounds on long-run payoffs

In this section we compare networks based on the opportunities they offer. Given a

network, the objective is to identify which connections are valuable for the farsighted

player, and which connections are harmful. The most direct application of this analysis

is in models where network formation is an option, i.e. the farsighted player or a planner

can form and sever links for a cost. Such is the case in most social networks, computer

networks, and many biological networks.

In Section 3.5 we have shown that equilibrium strategies lead to convergence to

an absorbing effort profile in case the farsighted player is patient. The utility, i.e. the

discounted sum of expected instantaneous payoffs, of these players is almost completely

decided by the instantaneous payoffs they receive in the absorbing effort profiles they

can reach by their chosen SSPE strategy. However, since the set of SSPE strategies

depends on the network structure and on the initial effort profile of the players in a

convoluted way, we conduct comparative statics of networks based on lower and upper

bounds of the long-run payoffs that the farsighted player can achieve.

The formal definitions are as follows. For a network G let δ(G) denote threshold

value of δ for which Theorem 3.5.1 holds.

Definition 3.6.1. Let δ > δ(G) and let

• u(G) = infω∈Ω,s∗∈S∗ limt→∞ ut1(ω, s∗).

• u(G) = supω∈Ω,s∗∈S∗ limt→∞ ut1(ω, s∗).
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Notice that both values exist as for every SSPE strategy profile Theorem 3.5.1 ensures

that some absorbing effort profile is reached in the long run. The values u(G) and

u(G) are lower and upper bounds on the long-run expected payoff of the farsighted

player who knows only the network G, his position in it, but not the initial state,

and thus has not yet chosen an equilibrium strategy. Clearly, u(G) ≤ u(G) for every

G ∈ G. For a patient farsighted player as assumed by Theorem 3.5.1 and Definition

3.6.1, the long-run expected payoff almost completely determines the utility of the

farsighted player and hence u(G) and u(G) are close estimates on the infimum and

supremum of U1(ω, s∗), respectively. More precisely, for every ε there exists a δ such

that for every δ > δ we have |u(G) − (1 − δ) infω∈Ω,s∗∈S∗ U1(ω, s∗)| < ε and |u(G) −
(1− δ) supω∈Ω,s∗∈S∗ U1(ω, s∗)| < ε.

By using the two bounds we can make qualitative comparisons between networks

from the perspective of the farsighted player. Without further information on the initial

state of the game, every farsighted player should place his evaluation of a network

within an ε-range of the interval between the two bounds.

Let G = {G ∈ Rn×n : ∀i, j ∈ I gij = gji, gii = 1}. The main results of this section

concern the comparative statics of the bounds as links are added to the network. We

first show that the two bounds coincide in networks where the farsighted player is

linked to every myopic opponent. Let G1 = {G ∈ G : ∀i ∈ I−1 g1i = 1} denote the set

of such networks with n players.

LetMind
1 (G) denote the set of independent sets of myopic players in the farsighted

player’s neighborhood in network G.

Proposition 3.6.2. There exists δ such that for every G ∈ G1 and every δ > δ it holds

that

u(G) = u(G) = f1( max
M∈Mind

1 (G)
|M |).

The proof of Proposition 3.6.2 can be found in the Appendix. It constructs a strategy

that achieves a long-run payoff equal to the network’s upper bound for every initial

state. If the farsighted player is sufficiently patient, then his SSPE strategy must

also achieve this long-run payoff. This strategy consists of two simple stages: (1)

establishing dependence by providing for the myopic neighbors, i.e. exerting an effort

of 1 until every neighbor decreases to 0, and (2) withdrawal of efforts and forcing an

increase, i.e. moving to 0 effort. The steps (1) and (2) may be repeated if not enough

players increase after the withdrawal stage.

The complexity of this strategy is rather low. As an immediate implication of the

simplicity of this strategy, the values of the upper and lower bounds may be reached
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even without the ability to compute SSPE strategies. We will generalize this point to

the entire class of networks towards the end of this section. Note however, that the

above strategy is not necessarily an SSPE itself, as there may be better strategies that

guarantee the same outcome, e.g. by reaching the optimum sooner.

For now we turn to our comparison results. We first introduce the measures of

networks by which we will characterize the values of the upper and lower bounds,

respectively. We start with the upper bound.

Definition 3.6.3. Let e : G → N be given by

e(G) = max
M∈Mind

1 (G)
|M |.

The value e(G) is the cardinality of a maximum independent set of the farsighted

player’s neighborhood in network G. It is the maximum number of players that the

farsighted player can fully exploit simultaneously without any of the myopic players

preferring to deviate. We now show a strictly monotone relationship between e(G) and

u(G)

Proposition 3.6.4. For every G ∈ G it holds that

u(G) =

f1(e(G)) if e(G) > 0,

f1(1)− c1 if e(G) = 0.
.

Proof. Recall the effort x∗ from Proposition 3.3.4. It is a Nash equilibrium of the static

game Γ such that players in a maximum independent set M ∈Mind
1 exert an effort of

1 and players in N1 \M exert 0. Hence, it maximizes player 1’s instantaneous payoffs

over the set of effort profiles X ′, meaning that u(G) = f1(|M |) = f1(e(G)), if N1 6= ∅,
while u(G) = f1(1)− c1 if N1 = ∅. �

Proposition 3.6.4 shows that the value of the upper bound is very easily calculated as

the cardinality of a maximum independent set of the farsighted player’s neighborhood.

Hence, it can be done so even without knowledge of the entire network.

We now provide a similar characterization of u(G). We need a technical definition.

Definition 3.6.5 (Closed partnership). For x ∈ X, a partnership B ∈ B(x) is closed

if for every i ∈ NB \ {1} it holds that x(N i ∩B) ≥ 1.

A closed partnership is a partnership whose members provide at least 1 unit of effort

for each of their free-riding neighbors. Note that a closed partnership may be a union

of other, potentially not closed, factions or partnerships. Let the collection of closed

partnerships in effort profile x be denoted by B̃(x).
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Definition 3.6.6 (Blocking profile). The set X̃ = {x ∈ X∗ : x1 = 1, and ∀j ∈ I−1 \
N1 ∃B ∈ B̃(x) with j ∈ NB} is called the set of blocking profiles.

The action profiles included in X̃ are the ones for which no player in I−1 \N1 reacts

to player 1’s changes, as all are either inside of or are neighbors of a closed partnership.

Notice that X̃ is always non-empty: setting a maximal independent set of I \N1 and

the farsighted player’s exerted efforts to 1 and every other player’s to 0 satisfies the

definition. Furthermore, note that x ∈ X∗ with x1 = 1 alone does not guarantee that

every myopic player outside N1 will be in a closed partnership or in the neighborhood

of a closed partnership.

For x̃ ∈ X̃ let I(x̃) = {i ∈ I : there is no B ∈ B̃(x̃) such that i ∈ NB} denote

the players who are not blocked by a closed partnership. Note that I(x̃) ⊆ N1 as all

other players are blocked by a closed partnership by Definition 3.6.6, but I(x̃) is not

generally equal to N1.

Definition 3.6.7. Let the function e : G → N be given by

e(G) = min
x̃∈X̃

max
M∈Mind

1 (G|I(x̃))
|M |.

The value e(G) in Definition 3.6.7 gives the minimum number of players that the

farsighted player can exploit no matter what the initial state is. The reason for this

is the following. Since in a blocking effort profile x̃ all players outside of I(x̃) are

getting more than 1 unit of effort from some members of a closed partnership, we

consider the subgraphs of G where these players are removed. From such a subgraph

we take the cardinality of the maximum independent set, maxM∈Mind
1 (G|I(x̃)) |M |, since,

as seen previously in Propositions 3.3.4 and 3.6.4, getting 1 effort from the maximum

independent set of his neighborhood is the best instantaneous payoff the farsighted

player can hope for. In addition, this payoff is attainable, as we will show in the next

proposition. By taking a minimum over effort profiles in X̃ the value e(G) gives the

exact number of units of the public good that is attainable for even the worst choice

of x̃.

Similarly to Proposition 3.6.4 we characterize u(G) by e(G) and show that they are

strictly monotonous transformations of each other.

Proposition 3.6.8. For every G ∈ G it holds that

u(G) =

f1(e(G)) if e(G) > 0,

f1(1)− c1 if e(G) = 0.
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The proof of Proposition 3.6.8 can be found in the Appendix.

By Proposition 3.6.8, the value of the lower bound hinges on the number of inde-

pendent myopic neighbors in player 1’s neighborhood that cannot be fully supported

by closed partnerships outside player 1’s neighborhood. Every such player is liable

to exploitation by the farsighted player. As all players outside the farsighted player’s

neighborhood are in closed partnerships, Proposition 3.6.2 can be applied to ensure that

even an unsophisticated farsighted player takes full advantage of a maximum indepen-

dent set of unblocked myopic neighbors. Taking the minimum over all effort profiles

with closed partnerships gives a lower bound of the farsighted player’s possibilities.

Similarly to Proposition 3.6.2, the strategy to reach a long-run payoff that equals the

lower bound is very simple. To guarantee this value, a patient farsighted player must

switch between the dependence stage and the withdrawal stage, alternating between

playing 1 and 0.

We now present the main comparison results. For a network G with gij = 0, let

Gij = G+ {i, j}. Gij is the network we get by adding the link {i, j} to G.

Theorem 3.6.9. If we add the link {i, j} to the network G with gij = 0, the following

comparisons hold:

1. If i = 1, we have u(G) ≤ u(Gij) and u(G) ≤ u(Gij). In addition, if j /∈ NN1 we

have u(G) < u(Gij).

2. If i, j ∈ N1, we have u(G) ≥ u(Gij) and u(G) ≥ u(Gij).

3. Otherwise, u(G) = u(Gij).

Proof. By Propositions 3.6.4 and 3.6.8, and by the strict monotonicity of f1, it is

sufficient to show the analogue of Theorem 3.6.9 after replacing u with e and u with e

in all three statements. The substitution also makes use of f1(1) > f1(1) − c1 for the

cases e(G) = 0 and e(G) = 0. Let X̃ij be defined in the same manner as X̃ for the

network Gij .

1. The first inequality follows due to the fact that the cardinality of the maximum

independent set of the farsighted player’s neighborhood cannot decrease by the arrival

of a new neighbor. For the second inequality notice that 1 ∈ {i, j} implies that X̃ ⊇
X̃ij , since every closed partnership in I−1 \ N1(Gij) is a closed partnership in I−1 \
N1(G). On the other hand, for a fixed x̃ ∈ X̃ij we have M1(G|I(x̃)) ⊆ M1(Gij |I(x̃)).

Both of these facts imply e(G) ≤ e(Gij). The final inequality is due to the fact that the

maximum independent set of the farsighted player’s neighborhood necessarily increases

if we add a node without any links to the others.
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2. As before, the first inequality follows very simply by the fact that the cardinality

of a maximum independent set in a network cannot increase by the addition of a new

link. For the second inequality, i, j ∈ N1 implies X̃ = X̃i,j , since for every x̃ ∈ X̃ we

have x̃(N1) = 0 and x̃1 = 1. Therefore we only need to consider what happens to the

maximum independent set of N1∩I(x̃) for a fixed x̃, whose cardinality cannot increase

by the addition of another link.

3. Naturally, any link that does not change G|N1(G) does not affect its maximum

independent set and hence, does not change e(G). �

Theorem 3.6.9 fully characterizes the qualitative effects of an additional link on the

upper bound. A new link is either beneficial or neutral to the farsighted player if it

connects him to a new neighbor, harmful or neutral if it connects two of his neighbors,

and neutral in all other cases. The first two statements are upheld very similarly for

the lower bound. In all other cases the effect of a new link on the lower bound is

ambiguous. This will be demonstrated by Examples 3.6.10 and 3.6.11.

The comparison results concerning the upper bound are achieved as straightforward

consequences of its characterization as the cardinality of a maximum independent set of

the farsighted player’s neighborhood. Adding a player into the neighborhood increases

the number of players whose efforts are enjoyed by the farsighted player, although

depending on the connections the upper bound may not change. In case the new

neighbor shares no connection with any of the old ones, the upper bound is guaranteed

to increase. This has the implication that farsighted players prefer to link to distant

players in the network rather than neighbors of his neighbors. Another way to improve

his position is by weakening the connectedness of his existing neighborhood, as any

severed link has a chance to increase the upper bound. All other single changes in the

network are inconsequential on the upper bound, although this does not apply to a

series of single changes.

Changes in the network affecting the neighborhood of the farsighted player have

the same effect on the lower bound. Connecting two neighbors of the farsighted player

has no effects on the set of effort profiles with closed partnership outside the farsighted

player’s neighborhood but it can increase the cardinality of maximum independent sets

of the remaining players, increasing the lower bound. Adding a new neighbor reduces

the possibilities to create closed partnerships while potentially increasing the cardinal-

ity of maximum independent sets, both effects work to increase the lower bound. In

all other cases the new link changes the set blocking profiles in a way that can lead to

an increase or to a decrease in the lower bound. This is demonstrated by the following
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two examples which make up the remainder of this section.

Example 3.6.10. Consider a network of five players {1, 2, 3, 4, 5} with the following

links: {{1, 2}, {2, 3}, {1, 4}, {4, 5}}. In this network, the value of the minimum ex-

ploitation function is 0, and hence the lower bound is f1(1)− c1. Figure 3.10 shows the

network and an effort profile with two closed partnerships which block both myopic

players from exerting positive effort.

1

1

0

2

1

3

0

4

1

5

Figure 3.10: The network blocking effort profile of Example 3.6.10. Players 2 is blocked by

player 3’s effort while player 4 is blocked by player 5. Player 1’s best option is to exert an

effort of 1.

Adding the link {3, 5} eliminates this blocking effort profile as players 3 and 5 both

exerting an effort of 1 is no longer stable for myopic deviation. Hence, at least one of

players 2 and 4 will always be free to provide for player 1, hence the value of the lower

bound increases to f1(1). The resulting network with a new blocking profile is shown

in Figure 3.11
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Figure 3.11: The network blocking effort profile of Example 3.6.10 after connecting the two

non-neighbors of player 1. Players 2 and 4 cannot be blocked at the same time.

Now consider connecting a player in the neighborhood of the farsighted player with

one outside, e.g. adding the link {2, 5}. Then, the profile in which player 5 plays 1

and all other myopic players play 0 once again blocks both neighbors of the farsighted
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player. Hence, adding a link between two non-neighbors can benefit the farsighted

player, while adding a link between a neighbor and a non-neighbor may harm him.

Example 3.6.10 shows two simple cases through which the lower bound can be influ-

enced. Linking the farsighted player’s neighbors to non-neighbors can make it easier

to achieve blocking effort profiles due to more links, while linking two non-neighbors

to each other can make it harder, as closed partnerships will be harder to find.

While the above reasoning holds for many networks, there are examples where

connecting a neighbor to a non-neighbor, or deleting a link between two non-neighbors

both have the potential to increase the lower bound if the original blocking profile is

sensitive for any changes in the network. This is shown in the following example.

Example 3.6.11. Consider a game with 17 players. The farsighted player is linked to

10 myopic players, none of which have links between them. The remaining 6 myopic

players are grouped into two cliques of three players, but there are no links between

the cliques. One of the farsighted player’s neighbors has no other connections. The 9

other neighbors are connected to three other players each: one player from one clique

and two players of the other. No two of these 9 players have the same set of neighbors.

In this network, the profile where the 6 clique members are playing 1/3 each blocks

the 9 neighbors, and this is the only blocking profile that will block all of them, while

the 10th cannot be blocked in any way, hence the value of the lower bound is f1(1).

Figure 3.12 shows this network and blocking profile.

Suppose that we remove a link one of the three cliques, the one with which each

of the 9 neighbors has one connection. We thereby form a line of three players. As a

result, the blocking profile of Figure 3.12 will no longer be admissible, since the clique

will not be a partnership. The new worst blocking profile is one in which the center

player of the line is a free rider, the other two contribute 1, while the other clique has

two free riders and one player contributing 1. The value of the lower bound therefore

increases to f1(2). The new blocking profile is shown on Figure 3.13.

Finally, suppose that we take the original network and add a link between the 10th

neighbor to a member of the clique with which the 9 neighbors have one connection.

Then, the original blocking profile of Figure 3.12 will again be inadmissible as the equal

1/3-1/3-1/3 distribution only gives the 10th neighbor 1/3 of effort, hence the clique

is not a closed partnership. The worst blocking profile is the one where each clique

has a single player with 1 effort, including the one to whom the 10th neighbor is now

connected to. In this profile the farsighted player is no longer able to exploit the 10th

player, but gains two players from his 9 other neighbors, who are now connected to
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Figure 3.12: The network and the worst blocking effort profile of Example 3.6.11. The dotted

ellipsis and lines indicates the neighborhood of the farsighted player.

trios of zeros. Hence the value of the lower bound increases to f1(2) again. This profile

is shown on the right side of Figure 3.10.

As a consequence of Theorem 3.6.9, the star network with the farsighted player in the

middle maximizes both the lower and the upper bound, and they are equal to f1(n−1)

by Proposition 3.6.2. However, as shown by Example 3.6.10, deleting a link between

two myopic players who are not neighbors of the farsighted player may decrease the

lower bound. Furthermore, Example 3.6.11 shows that adding a link between two

myopic players can dramatically increase the value of the lower bound. These two

facts serve as potential stumbling blocks for a farsighted player who is trying to reach

the star network. However, if linking to new players is a costless option, then the first

statement of Theorem 3.6.9 guarantees that the farsighted player will link to all myopic

players. Additionally, if the farsighted player can sever links running between myopic

players, then the second statement implies that the star network will be reached by
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Figure 3.13: The network and a worst effort profile of Example 3.6.11 with one link from one

of the cliques removed. The number of neighbors that can be exploited increases to 2.

severing all links between his neighbors.

3.7 Conclusion

In this chapter we consider the private provision of local public goods game, a gameclass

with a wide array of applicability and a strong body of theoretical contributions. We

build a model of exploitation of a myopic population by a single farsighted player

with the goal of analyzing exploitative behavior based on the spatial properties of the

population. Our chapter is the first to consider a theoretical model combining the

spatial asymmetries with various levels of player ability.

We consider a dynamic and stochastic setting such that in every time period a

randomly selected player is given a chance to revise his exerted effort into the local

public good. With this dynamic, the game is known to converge to a Nash effort profile.
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Figure 3.14: The network and a worst effort profile of Example 3.6.11 with one link added.

The number of neighbors that can be exploited increases to 2.

The farsighted player’s optimal strategies correspond to optimal policies of a Markov

Decision Process, and hence, stationary subgame perfect equilibria of this game exist

for every network structure.

Our next question was the issue of convergence. We find that every network and

every SSPE permits the existence of absorbing effort profiles that are stable for devi-

ations given the strategies of the players. Moreover, we show that the game dynamics

between myopic players propagate a rising inequality in the exerted efforts of the pop-

ulation. Unless stable partnerships are able to form, then myopic players with lower

total efforts in their neighborhood will increase their efforts, while players with high

total efforts in their neighborhood will lower theirs. As these two effects are mutually

reinforcing each other, we observe a tendency towards a rising inequality of production

of the local public good within the myopic population. This benefits the farsighted

player if the high-effort players end up in his neighborhood and harms him otherwise.
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As a result of the rising inequality, self-sustaining partnerships may form with high-

effort players in the center and free-riders around them. These autarchic partnerships

may become closed as the surrounding free-riders may dampen any ripple effect in the

network (including the ones caused by the farsighted player) from reaching the central

players with high efforts. In this chapter we show that no matter the network struc-

ture or the starting effort profile, due to the rise of inequality, an optimally playing

farsighted player will cause the game to eventually settle in an absorbing state.

Finally, we analyze the farsighted player’s minimum and maximum available long-

run payoff in a given network as a way of evaluating and comparing different network

structures. We provide characterizations for both bounds by the use of maximum

independent sets of (some subset of) the farsighted player’s neighborhood, and show

that the value of the lower bound is reachable from any starting state by a very simple

farsighted strategy. We show that adding a link that connects the farsighted player to a

new neighbor or removing a link that runs between two of his neighbors improves both

his minimum and maximum evaluation of the network. From this we conclude that

the star network is the best structure for the farsighted player for a fixed set of players,

but there are cases when adding a link between two myopic players, particularly, two

myopic players outside the farsighted player’s neighborhood, can increase his minimum

and maximum evaluation.

3.A Toolkit: Buffers

This section introduces necessary concepts for the proofs of the statements in Section

3.5. Notice that the proof of Proposition 3.4.7 is achieved mostly via the application

of Lemmas 3.4.2 and 3.4.4. In this section we extend Lemma 3.4.4 along the lines of

the following example:

Example 3.A.1. Consider the game and the initial effort profile of Example 3.3.7. We

have x(N2) = x(N7) = 1 < x(N3) = 1.2 (see Figure 3.1). Rising inequality between

pairs applies for players 2 and 3 but not for players 2 and 7. However, after player 2

usurps player 3 (figure 3.15), player 7 becomes richer than player 2.

This is due to the fact that players 3 and 7 are not neighbors, hence player 7 gains

from player 2’s increase but does not lose from player 3’s decrease. Hence, player 2 can

usurp player 7 as well (figure 3.16).

Once player 2 usurps both of his neighbors, he becomes a one-player island (and

faction). The set of free-riding players {3, 7} acts as a buffer between the two islands,
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Figure 3.15: The links between the myopic players and the effort profile of Example 3.A.1

after player 2 usurps player 3’s efforts. Now rising inequality applies for players 2 and 7.
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Figure 3.16: The links between the myopic players and the effort profile of Example 3.A.1

after player 2 usurps player 7’s efforts as well. Player 2 becomes a one-player faction, and is

separated from the island {4, 5, 6} by a buffer of players, {3, 7}.

{2} and {4, 5, 6}: as long as the farsighted player does not move away from his effort

of 0.1, no matter how the efforts change in the latter, the former is not affected.

Naturally, once a second player has been usurped, the same argument can be re-

peated on higher levels, allowing for additional players with equal consumption to be

taken over. We now introduce the idea formally.

Definition 3.A.2 (Buffer set). Let x0 ∈ X and i ∈ I−1 be given. Let D0
i (x

0) = {j ∈
Ni ∩ I+

−1(x0) : x0(N j) > x0(N i)}. For k ≥ 1 let xk ∈ X and Dk
i (x0) ⊆ Ni be defined

recursively as follows:
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xkj =


0 if j ∈ Dk−1

i (x0),

max{0, 1− xk−1(Ni \Dk−1
i (x0))} if j = i,

xk−1
j otherwise.

.

Dk
i (x0) = Dk−1

i (x0) ∪ {j ∈ Ni ∩ I+
−1(xk) : xk(N j) > xk(N i)} = Dk−1

i (x0) ∪D0
i (x

k).

Once Dk
i (x0) = Dk−1

i (x0) for some k ≥ 1, the set Di(x
0) = Dk

i (x0) is called the buffer

set of player i in effort profile x0.

The set Dk
i (x0) denotes the set of players whose efforts can be usurped by player i

starting from effort profile x0, as per the conditions of Lemma 3.4.4. The effort profile

xk+1, is the one we get once the efforts of players in Dk
i (x0) have been usurped. By

Lemma 3.4.4, for every s ∈ S̃ with s−1 = b−1 we have xk+1 ∈ Rs(xk) with updates

only from player i and elements of Dk
i (x0). Hence, Di(x

0) is the set of all players whose

efforts can be usurped iteratively by player i, starting from effort profile x0. Notice

that Di(x
0) may contain neighbors of i who do not have a higher consumption than

i in the effort profile x0. Such is the case in Example 3.A.1, with player 7, who is a

member of D2(x), but not of D0
2(x).

Lemma 3.A.3. Let x0 ∈ X and J ⊆ I+
−1(x0) be such that for every i′ ∈ NJ ∩ I+

−1(x0)

it holds that x0(N i′) > minj′∈J x
0(N j′). For any k ≥ 0, i ∈ argmin j′∈J x

0(N j′), and

j ∈ Ni ∩ I+
−1(x0) \Dk

i (x0) it holds that

j ∈ Dk+1
i (x0) \Dk

i (x0)⇔ Dk
i (x0) 6⊆ Nj .

Typically we take J to be an island, in which case the condition for all contributing

myopic neighbors to consume more than the player with the lowest consumption is

vacuous.

Proof. By Definition 3.A.2, j ∈ (Ni ∩ I+
−1(x0)) \ Dk

i (x0) means xk(N j) ≤ xk(N i).

By i ∈ argmin j′∈J x
0(N j′) together with the assumptions in Lemma 3.A.3 we have

xk(N j) ≥ xk(N i), hence xk(N i) = xk(N j). Furthermore, also by Definition 3.A.2, it

holds that

xk+1(N i)− xk(N i) = xk+1
i − xki − xk(Dk

i (x0)).

⇒: Consider the contrapositive. If we had Dk
i (x0) ⊆ Nj , then by j ∈ Ni we have

xk+1(N j)− xk(N j) = xk+1
i − xki − xk(Dk

i (x0)),

meaning that xk(N j) = xk(N i) leads to xk+1(N j) = xk+1(N i), hence j /∈ Dk+1
i (x0).
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⇐: Dk
i (x0) 6⊆ Nj means that

xk+1(N j)− xk(N j) = xk+1
i − xki − xk(Dk

i (x0) ∩Nj) > xk+1
i − xki − xk(Dk

i (x0)),

meaning that xk(N j) = xk(N i) implies xk+1(N j) > xk+1(N i), hence j ∈ Dk+1
i (x0).

�

Lemma 3.A.4. Let x ∈ X and a J ⊆ I+
−1(x) be given such that for every i′ ∈

NJ ∩ I+
−1(x) it holds that x(N i′) > minj′∈J x(N j′). Let i, j ∈ argmin j′∈J x(N j′) such

that gij = 1. We have two statements:

1. if j /∈ Di(x) and i /∈ Dj(x), then Di(x) = Dj(x).

2. if j /∈ Di(x) and i ∈ Dj(x), then Di(x) ⊂ Dj(x).

Proof. We show that if j /∈ Di(x), then Di(x) ⊆ Dj(x), which directly implies state-

ment 2, and, by applying symmetry, we get statement 1.

By Lemma 3.A.3, if j /∈ Di(x), then for every k ≥ 0, Dk
i (x) ⊆ Nj , otherwise we

would have j ∈ Dk+1
i (x). Furthermore, it is also true that D0

i (x) ⊆ D0
j (x) since for

every i′ ∈ D0
i (x) we have x(N j) = x(N i) < x(N i′), hence i′ ∈ D0

j (x).

We show that, for any k ≥ 0, Dk
i (x) ⊆ Dk

j (x) implies Dk+1
i (x) ⊆ Dk+1

j (x). Suppose

the contrary, i.e. we have Dk
i (x) ⊆ Dk

j (x) but Dk+1
i (x) 6⊆ Dk+1

j (x). Then there exists

j′ ∈ Dk+1
i (x) such that j′ /∈ Dk+1

j (x). Since j′ /∈ Dk
i (x), we have j′ /∈ D0

i (x), hence it

holds that x(N j′) = x(N i). By i ∈ J and by the assumption made on J we have j′ ∈ J
and j′ ∈ argmin i′∈J x(N i′). Since Dk+1

i (x) ⊆ Nj we have j′ ∈ Nj as well. Hence,

by Lemma 3.A.3, j′ ∈ Dk+1
i (x) implies Dk

i (x) 6⊆ Nj′ , while j′ /∈ Dk+1
j (x) implies

Dk
j (x) ⊆ Nj′ , contradicting Dk

i (x) ⊆ Dk
j (x). �

Lemma 3.A.5. Let x ∈ X and a J ⊆ I+
−1(x) be given such that for every i′ ∈

NJ ∩ I+
−1(x) it holds that x(N i′) > minj′∈J x(N j′). For every i0 ∈ argmin j′∈J x(N j′)

there exists a non-empty connected C ⊆ argmin j′∈J x(N j′) such that

1. for every i ∈ C it holds that D = Di(x) = NC ∩ I+
−1(x),

2. Di0(x) ⊆ D.

Furthermore, if there exists a j ∈ Ni0 ∩ I+
−1(x) with x(N i0) < x(N j), then the

resulting buffer, D = NC ∩ I+
−1(x) is non-empty.

Proof. The proof is constructive. Let C0 = {i0} and let D0 = Di0(x). For k ≥ 0 we

construct a Ck and a Dk such that for every i, i′ ∈ Ck it holds that Di(x) = Di′(x) =
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Dk, x(N i) = x(N i′) = minj′∈J x(N j′) and Di0(x) ⊆ Dk. Consider the following

construction for Ck+1 and Dk+1.

If we have NCk ∩ I+
−1(x) = Dk, then we terminate. If not, then there must exist a

j ∈ (NCk ∩I+
−1(x))\Dk. Notice that j /∈ Dk implies x(N j) = minj′∈J x(N j′), meaning

that j ∈ J and j ∈ argmin j′∈J x(N j′).

Take an arbitrary j ∈ (NCk ∩ I+
−1(x)) \ Dk and an ik ∈ Ck ∩ Nj . If ik /∈ Dj(x),

then we take Ck+1 = Ck ∪ {j}. Then, by the first part of Lemma 3.A.4 we have

Dj(x) = Dik(x). Hence, if we take Dk+1 = Dk, then if point 2 is satisfied for Ck and

Dk, they are also satisfied for Ck+1 and Dk+1. If ik ∈ Dj(x), then we take Ck+1 = {j}.
By the second part of Lemma 3.A.4 we have Dj(x) ⊃ Dik(x). For Dk+1 = Dik(x), if

point 2 is satisfied for Ck and Dk, it will also be satisfied for Ck+1 and Dk+1.

In both cases, either Ck grows, or Dk does, while Dk can never decrease. Property 2

trivially holds for C0, and is preserved by the construction. The process will ultimately

terminate with a κ ≤ n such that we have D = NCκ ∩I+
−1(x) = Dκ, satisfying property

1 as well.

Clearly, if there exists a j ∈ Ni0 ∩ I+
−1(x) such that x(N i0) < x(N j), then j ∈ D0

i0 ,

meaning that D is non-empty. �

The idea behind Lemma 3.A.5 is to take a player with a minimum consumption, find

his neighbors, then take one of those players, and so on. Lemma 3.A.4 guarantees that

we will arrive at a maximal set of players that can be usurped, and that this maximal

set covers the entire non-free riding neighborhood.

Definition 3.A.6 (Partnership with buffer). Let x ∈ X be given. The trio of sets

(B,C,D), with B,C,D ⊆ I−1 is called a partnership with a buffer in x if the following

properties are all satisfied:

• B ∈ B(x),

• B ⊆ C and for every i ∈ C it holds that xi = bi(x),

• C is connected,

• D = NC ∩ I+
−1(x),

• for every (i, j) ∈ C ×D it holds that gij = 1,

• x(C \B) = x(D) = 0.
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Note that Definition 3.A.6 only requires B and C to be non-empty. A partnership with

a buffer consists of a partnership, B nested in a connected subset of myopic players, C

which may contain free riders, and a buffer of free-riders, D separating the partnership

from the remainder of the myopic player set.

In the following lemma we extend both Lemma 3.4.4 and Lemma 3.4.6.

Lemma 3.A.7. Let s ∈ S̃ such that s−1 = b−1. Let x ∈ X be a recurrent effort profile

such that x1 < 1. Let J ⊆ I+
−1(x) be such that for every i′ ∈ NJ ∩ I+

−1(x) it holds

that x(N i′) > minj′∈J x(N j′). For every i0 ∈ argmin j′∈J x(N j′) there exists an effort

profile y ∈ Rs(x) and a partnership with a buffer (B,C,D) in y such that

1. C ⊆ argmin i∈J x(N i), Di0(x) ⊆ D,

2. y can be reached from x via updates only by the players in C ∪D.

3. x /(C∪D)∩N1
y.

Proof. By Lemma 3.A.5 there exists a connected C ⊆ argmin i∈J x(N i) such that for

every i ∈ C we have NC ∩ I+
−1(x) = Di(x) and Di0(x) ⊆ Di(x), satisfying properties 1

and 2.

Recall the definition of xk from Definition 3.A.2. For every k it is true that xk ∈
Rs(x) with updates only by player i and the elements of Dk

i (x). Let κ ≥ 0 be given

such that xκ = xκ−1, and let y′ = xκ. Thus, we get y′(D) = 0. Since D = NC ∩ I+
−1(x)

and y′(D) = 0, C is an archipelago in y′. By applying Lemma 3.4.6 to each of its

islands we reach a profile y with updates only by players belonging to C, such that for

every i ∈ C we have yi = bi(y). Let B = C ∩ I+
−1(y). Then, it is true that B ∈ B(y)

and y(C \B) = 0, satisfying all required properties of partnerships with buffers.

Now we show property 3. If B ∩N1 = ∅, then x = y, otherwise B is a partnership

in x but not in y, contradicting the recurrence of x by Proposition 3.4.7. If x = y, then

property 3 is satisfied. Assume B ∩ N1 6= ∅. Notice that since y(C \ B) = y(D) = 0,

M ∈My((C ∪D) ∩N1) if and only if M ∈My(B ∩N1). Since x is recurrent, the set

NJ ∩I+
−1(x) has a pillar set in x, meaning that minj∈NJ∩I+−1(x) x(N j \{1}) ≤ 1. By the

assumptions on J we must have argmin j∈NJ∩I+−1(x) x(N j \ {1}) = argmin j∈J x(N j \
{1}). Since for every i ∈ B ∩ N1 it holds that i ∈ argmin j∈J x(N j), we also have

i ∈ argmin j∈J x(N j \ {1}). Hence, for every i ∈ B ∩ N1 we have x(N i \ {1}) ≤ 1,

meaning that for every M ∈ My((C ∪ D) ∩ N1) we have M ∈ Mx((C ∪ D) ∩ N1),

implying property 3. �

Note that by Lemma 3.A.7, if there exists j ∈ Ni0 ∩ I+
−1(x) such that x(N i0) <

x(N j), then it also holds that Di0(x) ⊆ D = NC ∩ I+
−1(x) 6= ∅.
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This section’s final lemma sets up the proofs of the lemmas in Section 3.5.

Lemma 3.A.8. Fix s ∈ S̃ such that s−1 = b−1. Let x ∈ X be a recurrent effort profile

in s such that x1 < 1. There exists a y ∈ X∗+ ∩ Rs(x) that can be reached by updates

only by myopic players such that x /N1
y and |L(x)| ≥ |L(y)|.

Proof. First, let I = {1, 2} with g12 = 1. For any initial profile x such that x1 < 1,

letting player 2 move to a best response will satisfy the statement for y = (x1, 1− x1),

since 1 − x1 > 0, and M = {2} is a pillar set of I−1 = {2} in every profile. Clearly,

|L(x)| = |L(y)| = 0.

We proceed by induction for the number of players, n. Assume that the statement

is satisfied for every network of fewer than n players. If there exists i ∈ I0
−1(x), then,

since myopic players behave identically in the presence of the free-rider i as they would

in a game played by the set I \{i} on the network G|I\{i}, we can invoke the induction

hypothesis for a game of n− 1 players which guarantees the statement. Hence we can

assume that I0
−1(x) = ∅. This means that the property |L(x)| ≥ |L(y)| is vacuous,

since the number of contributors who are not in cliques cannot increase.

By Lemma 3.A.7 there exists profile x′ ∈ Rs(x) and a partnership with a buffer,

B,C,D in x′ such that C ⊆ argmin i∈I−1
x(N i) and x/(C∪D)∩N1

x′. Since D = NC\{1},
we can remove C∪D and apply the induction condition on the set of players I\(C∪D).

Hence, there exists a profile y ∈ X∗+∩Rs(x′) for which x′/(I−1\(C∪D))∩N1
y and for every

i ∈ C∪D it holds that yi = x′i. Any pillar sets of (C∪D)∩N1 and of (I−1\(C∪D))∩N1

in y are disjoint due to D = NC \ {1} and y(D) = 0, hence x /N1 y is implied by the

Addition property of pillar sets. �

3.B Proofs of the lemmas of Section 3.5

The proofs found in this section make extensive use of the concepts outlined in the

previous one.

Lemma 3.5.3. Fix s ∈ S̃ such that s−1 = b−1. Let x ∈ X be a recurrent effort profile

in s such that x1 < 1. Let i ∈ I−1 be such that x(N i) < 1. There exists y ∈ X∗+∩Rs(x)

that can be reached by updates only by myopic players such that

1. yi = bi(y),

2. x /N1 y, and

3. |L(x)| ≥ |L(y)|.
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Proof. By Lemma 3.A.8 and by the transitivity of /N1 , we can take x ∈ X∗+. If

x(N i) ≥ 1, then we are done. Otherwise, since x ∈ X∗+, we must have xi = 0. If

I+
−1(x)∩Ni = ∅, then by letting player i move to his best response we get a profile that

satisfies all properties. If not, then we must have i ∈ N1, otherwise, by applying Lemma

3.4.4 on player i and the set Ni ∩ I+
−1(x) we would get a partnership outside player 1’s

neighborhood, a contradiction by Proposition 3.4.7. Since, for every F ∈ F(x) it holds

that x(F ) ≥ 1 − x1, for any F ∈ F(x) it holds that F 6⊆ Ni, otherwise x(N i) ≥ 1.

Hence, there must exist a player i0 ∈ I+
−1(x) \N i such that (Ni ∩Ni0) ∩ I+

−1(x) 6= ∅.
Let x′ be the profile we get by letting player i move to his best response. Then, for

every j ∈ Ni ∩ I+
−1(x) it holds that x′(N j) > 1, and hence, every myopic contributor

in the neighborhood of I+
−1(x) \N i has a higher consumption than the minimum con-

sumption in I+
−1(x) \N i. Furthermore, since i0 ∈ argmin i′∈I+−1(x)Ni

(N i′), by Lemma

3.A.7 we have a profile x1 ∈ Rs(x′) and a partnership with a buffer, B0, C0, D0, in x1

such that C0 ⊆ argmin i′∈I+−1(x)\Ni x(N i′), Di0(x′) ⊆ D0, and x′ /(C0∪D0)∩N1
x1. No-

tice that x1
i = x′i > 0, since i’s move had to be an increase. Furthermore, i /∈ C0 ∪D0

due to the fact that C0 ⊆ I+
−1(x′) \N i and D0 ⊆ NC0 , meaning that x′ /(C0∪D0)∩N1

x1

implies x /(C0∪D0)∩N1
x1. Finally we have x1(N i) < 1, since D0

i0(x′) includes some of

player i’s neighbors due to (Ni ∩Ni0) ∩ I+
−1(x) 6= ∅, Di0 ⊆ D0, and x1(D0) = 0.

Let I1 = (I+
−1(x)∪{i}) \ (C0 ∪D0) = I+

−1(x1) \B0. For k ≥ 1 we will construct the

profile xk+1 ∈ Rs(xk) and a partnership with a buffer Bk, Ck, Dk in xk+1, such that

a number of properties are satisfied. Let Ik+1 = Ik \ (Ck ∪ Dk). The properties we

expect from xk+1 and Bk, Ck, Dk are as follows:

• Bk, Ck, Dk ⊆ Ik and Dk = NCk ∩ I+
−1(xk) = NCk ∩ Ik.

• Only the players in Ck ∪Dk update between xk and xk+1.

• If i ∈ Ik+1, then xk+1
i ≥ xki and xk+1(N i) < 1.

• x /(Ck∪Dk)∩N1
xk+1.

Let κ = min{k ≥ 1: Ik = ∅} and let y = xκ. We will show that such a y satisfies all

desired properties. For the construction of xk+1 we differentiate two cases.

Case 1: There exists a non-empty J ⊆ Ik \ {i} such that for every j ∈ Ik ∩ NJ it

holds that xk(N j) > minj′∈J x
k(N j′). Then, by Lemma 3.A.7 there exists a profile

xk+1 ∈ Rs(x
k) and a partnership with a buffer, Bk, Ck, Dk ⊆ Ik in xk+1 such that

Ck ⊆ argmin j∈J x
k(N j), D

k = NCk ∩ I+
−1(xk) = NCk ∩ Ik, and xk /(Ck∪Dk)∩N1

xk+1.

Since i /∈ J , it holds that i /∈ Ck. If i /∈ Dk as well, then we have xk+1
i = xki , while
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xk(N i) < 1 implies xk+1(N i) < 1 as, by the fact that only the players in Ck ∪Dk have

updated and xk+1(Dk) = 0, no player in i’s neighborhood has a higher effort in xk+1

than in xk. If i ∈ Dk then xk+1
i = 0 and i /∈ Ik+1. Since for every i′ ∈ Ck ∪ Dk we

have xi′ = xki′ , x
k /(Ck∪Dk)∩N1

xk+1 implies x /(Ck∪Dk)∩N1
xk+1.

Case 2: For every J ⊆ Ik \ {i} there exists a j ∈ NJ ∩ Ik such that xk(N j) ≤
minj′∈J x

k(N j′). This property implies that Ik is connected, as any component of

Ik that does not include i would satisfy the previous property. It also means that

i ∈ argmin j∈Ik x
k(N j), otherwise we have a contradiction for J = Ik \ {i}.

If Ik = {i}, then let i move to his best response and let xk+1 denote the resulting

effort profile. Since xk(N i) < 1, we have xk+1
i > xki . Furthermore, {i} ∈ B(xk+1). Let

Ck = {i} and Dk = ∅. We clearly have x /(Ck∪Dk)∩N1
xk+1.

If Ik ⊆ N i, but Ik 6= {i}, then Ik must be a clique due to i ∈ argmin j∈Ik x
k(N j).

Therefore, for every j ∈ Ik we have xk(N j) = xk(N i) < 1. Let any player from Ik move

to best response and let xk+1 denote the resulting effort profile. Let Bk = Ck = Ik

and Dk = ∅. Then, every pillar set of Ck ∪ Dk in xk+1 is a singleton, containing

one player of Ik. Since i ∈ N1 we have minM∈M
xk+1 ((Ck∪Dk)∩N1) |M | = 1, while

minM∈Mx((Ck∪Dk)∩N1) ≤ 1, we also have x /(Ck∪Dk)∩N1
xk+1.

If Ik has members outside of N i, then we first show that (argmin j∈Ik\Ni x
k(N j))∩

NNi 6= ∅. Suppose the contrary. Then, minj∈Ik\Ni x
k(N j) < minj′∈Ik∩NNi

xk(N j′).

This means that Ik \ NNi
6= ∅. Let J = Ik \ NNi

. Then, NJ ∩ Ik = NNi ∩ I
k, and

therefore, for every j ∈ NJ ∩ Ik it holds that xk(N j) > minj′∈J x
k(N j′), contradicting

the condition of reaching Case 2.

Case 2a: There exists an i′ ∈ (argmin j∈Ik\Ni x
k(N j))∩NNi and a j′ ∈ (Ni∩Ni′)∩Ik

such that xk(N i) = xk(N j′) < xk(N i′). Then j′ ∈ argmin j∈Ik x
k(N j). By Lemma

3.A.7 there exists a profile xk+1 ∈ Rs(xk) and a partnership with a buffer Bk, Ck, Dk

such that Ck ⊆ argmin j∈J x
k(N j), D

k = NCk ∩ Ik = NCk ∩ I+
−1(xk), Dj′(x

k) ⊆ Dk,

and xk /(Bk∪Dk)∩N1
xk+1. From this point, the arguments follow Case 1, except in this

case we have i ∈ Dk. This is due to the fact that i′ ∈ Dk by i′ ∈ D0
j′(x

k). By i′ /∈ Ni,
Lemma 3.A.3 gives i ∈ D1

j′(x
k), implying i ∈ Dk.

Case 2b: The condition of reaching Case 2a does not hold, however, there exists a

player i′ ∈ (argmin j∈Ik\Ni x
k(N j))∩NNi and a j′ ∈ Ik∩(Ni∩Ni′) such that xk(N i) =

xk(N j′) = xk(N i′). Then, i′ ∈ argmin j∈Ik x
k(N j). Let player i move to his best

response from xk and call the resulting effort profile x̂k. Due to xk(N i) < 1 this is an

increase, hence x̂ki > xki . We get x̂k(N i) = x̂k(N j′) = 1, and i′ ∈ argmin j∈Ik x̂
k(N j).

By Lemma 3.A.7 there exists xk+1 ∈ Rs(x̂k) and a partnership with a buffer Bk, Ck, Dk

in xk+1 such that Ck ⊆ argmin j∈Ik x̂
k(N j), D

k = NCk∩Ik = NCk∩I+
−1(xk), Di′(x̂

k) ⊆
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Dk, and xk/(Ck∪Dk)∩N1
. Clearly, i /∈ Ck, hence we either have i ∈ Dk and i /∈ Ik+1,

or xk+1
i = x̂ki > xki . Furthermore, notice that j′ ∈ Di′(x̂

k), hence j′ ∈ Dk. Therefore,

if i ∈ Ik+1, then we get xk+1(N i) < 1 as Dk ∩Ni 6= ∅.
Case 2c: The conditions of reaching Cases 2a and 2b do not hold. If we had a

player i′ ∈ argmin j∈Ik\Ni x
k(N j)∩NNi and a j′ ∈ Ik ∩ (Ni ∩Ni′) such that xk(N i) =

xk(N j′) > xk(N i′), it would contradict i ∈ argmin j∈Ik x
k(N j). Hence, if we select

an arbitrary i′ ∈ (argmin j∈Ik\Ni x
k(N j)) ∩ NNi and a j′ ∈ Ik ∩ (Ni ∩ Ni′), we must

have xk(N i) < xk(N j′). As in Case 2b, let x̂k denote the profile we get by letting

player i move to his best response. Since xk(N i) < 1, we have x̂ki > xki , and due to

i ∈ argmin j∈Ik x(N j), for every j ∈ Ni ∩ Ik we have 1 = x̂k(N i) ≤ x̂k(N j). Since x ∈
X∗+, and since no player in the neighborhood of i′ has increased, we have xk(N i′) ≤ 1.

Hence, i′ ∈ argmin j∈Ik x̂
k(N j). Therefore, by Lemma 3.A.7 we have a profile xk+1 ∈

Rs(x
k) and a partnership with a buffer Bk, Ck, Dk such that Ck ⊆ argmin j∈Ik x̂

k(N j),

Di′(x̂
k) ⊆ Dk, and x /(Ck∪Dk)∩N1

xk+1. We now show that i /∈ Ck. Suppose the

contrary. If we had i ∈ Ck, then minj∈Ik x̂
k(N j) = 1. By the connectedness of Ck

this would mean that there is a pair i0 ∈ Ik \ N i and j0 ∈ Ik ∩ Ni with gi0j0 = 1

and x̂k(N j0) = x̂k(N i0) = 1. However, this must mean xk(N i) = xk(N j0) < xk(N i0),

contradicting the fact that Case 2b’s conditions are not satisfied. Hence, i /∈ Ck. The

fact that xk+1
i > xki if i ∈ Ik+1 and xk+1

i = bi(x
k) = 0 otherwise follows similarly to

Case 1.

We now show that each of the three properties are satisfied for y, starting with

property 2. Notice that since Ck is never empty when Ik is non-empty, the process

described above will terminate in xκ with κ < n. Consider the sets Ck∪Dk. Clearly, we

have I+
−1(x)∪{i} =

⋃κ
k=0(Ck∪Dk). Since for every k ≥ 0 we have x/(Ck∪Dk)∩N1

xk+1,

Bk, Ck, Dk are partnerships with buffers in y, covering the entirety of I+
−1(x)∪{i}, and

since the players in Ck ∪Dk do not change their efforts after reaching the profile xk+1,

the Addition property of pillar sets implies x /N1
y for y = xκ, satisfying property

2. Since every myopic contributor in y is at best response due to the properties of

partnerships and buffers, we have y ∈ X∗+.

Now we show yi = bi(y). Clearly, i ∈ Ck ∪Dk for some k ≤ κ. If i ∈ Ck for some

k ≤ κ, then xk+1
i = bi(x

k+1) by property 2 of Definition 3.A.6. Since Dk = NCk ∩ Ik,

and since xk+1((NCk \Dk) ∩ I−1) = 0 by construction, we have xk+1(NCk \ {1}) = 0.

The construction of y guarantees y(NCk \ {1}) = 0 as well, meaning that xk+1
i =

bi(x
k+1) implies yi = bi(y). If i ∈ Dk for some k ≤ κ, then yi = 0. Furthermore, since

Bk ⊆ Ni, and since y(Bk) ≥ 1− x1, by i ∈ N1, we must also have y(N i) ≥ 1, meaning

that yi = bi(y).
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Finally, we show |L(y)| ≤ |L(x)|. If xi > 0, then by the construction of y it holds

that I+
−1(y) ⊆ I+

−1(x). Therefore, no island that was not a clique could become larger,

and no island that was a clique could become a non-clique, implying |L(y)| ≤ |L(x)|.
The same holds if xi = 0 and yi = 0, as, once again, no free rider in x is a contributor

in y. If xi = 0 but yi > 0, then we must have had a k ≤ κ with i ∈ Bk. As shown

in Case 2, this can only happen if i itself is a member of a clique, hence y satisfies

property 3 as well. �

Lemma 3.5.4. Fix s ∈ S̃ such that s−1 = b−1. If there exists an x ∈ X with |[x]s| > 1,

and x1 < 1, then there exists an action profile y ∈ X∗∩Rs(x), that can be reached via

updates only by myopic players, such that x /N1
y and |L(x)| ≥ |L(y)|.

Proof. First, let I = {1, 2} with g12 = 1. For any initial profile x such that x1 < 1,

letting player 2 move to a best response will satisfy the statement for y = (x1, 1− x1),

since 1 − x1 > 0, and M = {2} is a pillar set of I−1 = {2} in every profile. Clearly,

|L(x)| = |L(y)| = 0.

We proceed by induction for the number of players, n. Assume that the statement

is satisfied for every network of fewer than n players.

Let x1 = x. For k ≥ 1 we will construct the profile xk+1 ∈ Rs(xk) such that the

following properties are satisfied:

1. Only myopic players update between xk and xk+1.

2. xk+1 ∈ X∗+, and if xk /∈ X∗, then xk+1 6= xk.

3. xk /N1 x
k+1.

4. |L(xk)| ≥ |L(xk+1)|.

Let κ = min{k ≥ 1: xk = xk+1}. Such a κ must exist due to the fact that X1 ×X ′−1

is finite, we cannot leave it by Lemma 3.3.8 and Remark 3.3.9, and that for every

1 ≤ k ≤ κ it holds that φ(xk) < φ(xk+1). Clearly, by the transitivity of /N1
, the

profile y = xκ satisfies all of the desired properties. The construction of xk+1, given

xk proceeds as follows. We distinguish four cases.

Case 1: There exists i ∈ I−1 with xk(N i) < 1. In this case Lemma 3.5.3 guarantees

the existence of xk+1 which satisfies properties 1, 3, and 4. Furthermore, xk+1 is such

that xk+1 ∈ X∗+ and xk+1
i = bi(x

k+1), meaning that xk+1 6= xk, satisfying property 2

as well.
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Case 2: For every i ∈ I−1 we have xk(N i) ≥ 1, and I0
−1(xk) 6= ∅. In this case

we have an i ∈ I−1 such that xki = 0. Since myopic players behave identically in

the presence of the free-rider i as they would in a game played by the set I \ {i} on

the network G|I\{i}, we can invoke the induction hypothesis for a network with n− 1

players. Therefore, there exists xk+1 ∈ Rs(xk) which satisfies property 1, as well as

xk+1 ∈ X∗+, because all myopic players other than i are at their best response. We have

xk /N1\{i} x
k+1 by the induction hypothesis, which, due to xki = 0 implies property

3. Since xki = xk+1
i , we have |L(xk)| ≥ |L(xk+1)| as well, satisfying property 4. If

for every j ∈ I−1 \ {i} we have xk+1
j = xkj , then we must have had xk ∈ X∗ due to

xk(N i) ≥ 1, satisfying property 2 as well.

Case 3: For every i ∈ I−1 we have xk(N i) ≥ 1, I0
−1(xk) = ∅, and we have two

players, i, j ∈ I−1 with gij = 1 and xk(N i) 6= xk(N j). In this case, property 4 is

vacuous, as |L(xk)| cannot increase. By Lemma 3.A.7, there exists a profile x̂k and a

partnership with buffer B,C,D in x̂k with C ⊆ argmin i∈I−1
xk(N i), D = NC \ {1},

and xk /(C∪D)∩N1
x̂.

Since every element of I−1 \ (C ∪D) is separated from B by the buffer of free-riders

D in the profile x̂k, by s−1 = b−1, every myopic player will behave identically as they

would in a network without C ∪D, G|I\(C∪D). Therefore, we can apply the induction

hypothesis on the set of players I \(C∪D). Hence, there exists a profile xk+1 such that

for every j ∈ C∪D it holds that xk+1
j = x̂kj , every member of I−1\(C∪D) is at his best

response in xk+1, and x̂k /N1\(C∪D) x
k+1. Clearly, xk+1 satisfies properties 1, 2, and 4.

Since x̂k /N1\(C∪D) x
k+1 implies xk /N1\(C∪D) x

k+1, and since xk /(C∪D)∩N1
x̂k implies

xk /(C∪D)∩N1
xk+1, the Addition property of pillar sets gives xk /N1 x

k+1, satisfying

property 3.

Case 4: For every i ∈ I−1 we have xk(N i) ≥ 1, I0
−1(xk) = ∅, and we for every

pair of players i, j ∈ I−1 with gij = 1 it holds that xk(N i) = xk(N j). If G is a

disconnected network, we apply the induction hypothesis to each of its components. If

G is connected, then for every i ∈ I−1 it holds that xk(N i) = α ≥ 1. If α = 1, then

xk ∈ X∗ and we are done. If α > 1 and I−1 is a clique, then by letting every myopic

player move to his best response in any order we reach a suitable xk+1.

If α > 1 and I−1 is not a clique, then there must exist i, j, j′ ∈ I−1 such that

gij = gij′ = 1 but gjj′ = 0. Let the players j and j′ move to their best responses from

xk and call the resulting effort profile x′. Since α > 1, both players must decrease,

meaning that we have x′(N j) = x′(N j′) > x′(N i), and i ∈ argmin i′∈I−1
x′(N i′). By

Lemma 3.A.7 there exists an effort profile x̂k and a partnership with bufferB,C,D in x̂k

such that C ⊆ argmin i′∈I−1
x′(N i′), D = NC \ {1}, Di(x

′) ⊆ D, and xk /(C∪D)∩N1
x̂k.
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Notice that j, j′ ∈ D, since j, j′ ∈ D0
i (x
′). From here the analysis of this case follows

that of Case 3. �

Lemma 3.5.6. Fix s ∈ S̃ such that s−1 = b−1. If there exists an x ∈ X with |[x]s| > 1

and x1 < 1, then there exists an action profile y ∈ [x]s ∩X∗, such that x /N1 y and for

every F ∈ F(y) it holds that either F ⊆ N1 or F ∩N1 = ∅, and |L(x)| ≥ |L(y)|.

Proof. By Lemma 3.5.4 and by the transitivity of /N1 , we can take a x′ ∈ Rs(x) ∩X∗

and show that a y ∈ Rs(x′) exists that satisfies the desired properties. If the statement

does not hold for x′, then we must have F ∈ F(x′) with an i ∈ F ∩N1 and a j ∈ F \N1

such that gij = 1.

Because of |[x]s| > 1, we must have either s1(x′) > x′1 or s1(x′) < x′1. If s1(x′) < x′1,

then by Lemma 3.5.4 there exists x1 such that x′/N1
x1, |L(x′)| ≥ |L(x1)|, and x1 ∈ X∗.

If no faction in x1 has members in both N1 and I−1 \N1, we are done. If there are such

factions, then again we must have s1(x1) 6= x1
1. If s1(x1) < x1

1, we repeat the same

argument until we find a profile of similar properties for which either the statement

holds, or where player 1 increases. Since negative contributions are not possible, player

1 cannot decrease forever.

If s1(x′) > x′1, then let player 1 revise, and let the resulting profile be denoted

by x′′. For every i′ ∈ F ∩ N1 we have x′′(N i′) > x′′(N j) = 1, and we also have

j ∈ argmin j′∈F x
′′(N j′). Hence, by Lemma 3.A.7 there exists a profile x̂ ∈ Rs(x

′′)

and a partnership with a buffer B,C,D in x̂ such that C ⊆ argmin j′∈F x
′′(N j′), and

D = NC ∩ I+
−1(x′′) = NC ∩ F . Hence, B ∈ B(x̂) with B ∩ N1 = ∅, a contradiction

by Proposition 3.4.7. Therefore, every faction of x′ is either completely inside or

completely outside N1. �

Lemma 3.5.8. Fix s ∈ S̃ such that s−1 = b−1 and for every x ∈ X it holds that

s1(x) ≤ 1. If there exists an x ∈ X with |[x]s| > 1 and x1 < 1, then there exists an

action profile y ∈ [x]s ∩ X∗, such that x /N1
y, for every F ∈ F(y) we either have

F ⊆ N1 or F ∩N1 = ∅, and for every F ∈ F1(y) it holds that F is a clique.

Proof. By Lemmas 3.5.4 and 3.5.6, and by the transitivity of /N1
we can take x ∈ X∗,

such that for every F ∈ F(x) we either have F ⊆ N1 or F ∩N1 = ∅. We prove that for

every such x, if there is a F ∈ F1(x) that is not a clique, then we have a y ∈ Rs(x)∩X∗

with x /N1 y and |L(y)| < |L(x)|.
Since there exists a F ∈ F1(x) that is not a clique, there exist players i, j, j′ ∈ F

with gij = gij′ = 1 but gjj′ = 0. Consider the profile x′ = (s1(x), x−1). Clearly, x′ 6= x,

otherwise we have |[x]s| = 1.
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If s1(x) < x1, then by Lemma 3.5.4 there exists a x′′ ∈ Rs(x
′) ∩ X∗ such that

x′ /N1
x′′ and L(x′′) ≤ L(x′). Since x′(N i) < 1 by player 1’s decrease, we must have

x′′ 6= x′ and x′′1 = x′1 < x1. We then consider the profile (s1(x′′), x′′−1), and if player 1

decreases again, we repeat the above argument. Since player 1 cannot decrease forever,

as in Lemma 3.5.6, we must have an effort profile x̃ ∈ Rs(x) ∩ X∗ with x /N1 x̃ and

L(x̃) ≤ L(x) such that s1(x̃) > x̃1. We therefore assume s1(x) > x1.

We discuss two cases.

Case 1: s1(x) ∈ (x1, 1). Then, it holds that x′(N i) = x′(N j) = x′(N j′) > 1. Let

x′′ denote the profile we get by letting j and j′ move to a best response, both of whom

decrease. Now we have x′′(N i) < x′′(N j) = x′′(N j′), and i ∈ argmin i′∈F x
′′(N i′).

Take J = F ∩ I+
−1(x′′). By Lemma 3.A.7 there exists an effort profile x̂ ∈ Rs(x′′) and a

partnership with a buffer B,C,D in x̂ such that C ⊆ argmin i′∈F x
′′(N i′), D = NC∩F ,

Di(x̂) ⊆ D, and x′′ /(C∪D)∩N1
x̂.

Notice that x′′j > 0 and x′′j′ > 0 imply j ∈ D and j′ ∈ D respectively, as in this

case they are members of J , and of D0
i (x
′′), hence x̂j = x̂j′ = 0. Since the players in

I−1\(C∪D) did not change their efforts between x and x̂ we clearly have x/N1\(C∪D) x̂,

meaning that, by the Addition property of pillar sets, we have x /N1
x̂ as well. Since

no player who was a free rider in x has positive efforts in x̂, but we had j, j′ ∈ L(x)

who are both free riders in x̂, we must have L(x̂) < L(x).

By Lemma 3.5.6, and by the transitivity of /N1 , there exists a y ∈ Rs(x̂) which

returns all myopic players to playing best responses, satisfying all desired properties.

Case 2: s1(x) = 1. In this case, let x′′ denote the profile we get by letting all of

N1 move to best response, leading to x′′(N1) = 0. Then, for every i ∈ I \ N1 we

have x′′i = bi(x
′′), as every contributor is a member of a partnership, and should a free

rider j ∈ I \ N1 have a consumption lower than 1, by Lemma 3.4.4 we would have

a x̃ ∈ Rs(x
′′) where {j} ∈ F(x̃), a contradiction by Proposition 3.4.7. Since every

myopic player is at best response in x′′ and we have s1(x′′) ≤ 1 by assumption, we

must have s1(x′′) < 1, otherwise |[x′′]s| = 1, a contradiction.

Let player 1 move from x′′ and call the resulting effort profile x̂. Since for every

j ∈ I \N1 we had xj = bj(x) while x̂j = bj(x̂) holds as well, for every i ∈
⋃
F∈F1(x) F =

N1 ∩ I+
−1(x) it must hold that x̂(N i) = x̂1. Let M be a maximum independent set of⋃

F∈F1(x) F . Notice that M ∈ Mx(N1). Let the members of M update in any order

and call the resulting effort profile ŷ. Then, for every i ∈ M we will have ŷi = 1− x̂1

and for every j ∈ I \M we have ŷj = x̂j . Since the only pillar set of N1 in ŷ is M , we

have x /N1
ŷ. Furthermore, as there was a faction inside N1 in profile x that was not

a clique, whereas there are no such factions in ŷ, we must have L(ŷ) < L(x).
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If ŷ ∈ X∗, then we are done. Otherwise, Lemma 3.5.6 guarantees the existence of

y ∈ Rs(ŷ) which satisfies all desired properties. �

3.C Proofs of Propositions 3.6.2 and 3.6.8

Proposition 3.6.2. There exists δ such that for every G ∈ G1 and every δ > δ it holds

that

u(G) = u(G) = f1( max
M∈Mind

1 (G)
|M |).

Proof. For x ∈ X let I1
−1(x) = {i ∈ I−1 : xi = 1} denote the set of myopic players

with effort level 1. Let M be a maximum independent set of N1(G) and consider the

following strategy, s1 ∈ S̃1:

s1(x) =

0 if I1
−1(x) ⊆M,

1 otherwise.

To show the statement, we first argue that by the strategy profile s = (s1, b−1) the game

reaches an effort profile with probability 1 where the farsighted player’s instantaneous

payoff equals f1(|M |). Let xM ∈ X be the effort profile for which xi = 1 if i ∈ M

and xi = 0 otherwise. Notice that A(s) = {xM}, as in every other effort profile the

farsighted player or a member of M would change his effort. Furthermore, for every

x ∈ X it holds that xM ∈ Rs(x), and it is reachable by fewer than n + |M | revisions

as follows: If I1
−1(x) 6⊆ M , then player 1 revises to play 1, then each of the myopic

players revise in any order to play 0. This takes n steps. Once all myopic players are

at 0, player 1 decreases his efforts to 0, and then the members of M revise in any order

all of them increasing to 1, reaching the profile xM in |M | more steps. If I1
−1(x) ⊆M ,

then all members of M \ I1
−1(x) revise any order, all of whom increasing to 1, once

again, reaching the profile xM in at most |M | steps.

With xM being the unique absorbing profile, and it being reachable in a bounded

number of steps for every ω ∈ Ω we have that

lim
t→∞

ut1(ω, s) = f1(|M |).

Since there exists a strategy that guarantees a long-run payoff of f1(|M |) there must

be a sufficiently high δ such that for every δ > δ and every SSPE s∗ we have

lim
t→∞

ut1(ω, s∗) ≥ lim
t→∞

ut1(ω, s) = f1(|M |).
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On the other hand, f1(|M |) = maxx∈X′ π1(x), so by Lemma 3.3.8 and Remark 3.3.8

we also have

lim
t→∞

ut1(ω, s∗) ≤ f1(|M |).

Hence, u(G) = u(G) = f1(|M |). �

Proposition 3.6.8. For every G ∈ G it holds that

u(G) =

f1(e(G)) if e(G) > 0,

f1(1)− c1 if e(G) = 0.
.

Proof. We first consider the case that e(G) = 0. Clearly, in any network the farsighted

player can guarantee the long-run payoff f1(1)− c1 by playing the strategy s1(x) = 1

for every x ∈ X. Hence we must have u(G) ≥ f1(1) − c1. If e(G) = 0, then there

must exist an x̃ ∈ X̃ such that maxM∈Mind
1 (G|I(x̃)) |M | = 0, which happens if and only

if N1 ∩ I(x̃) = ∅. Take ω = (x̃, 1). In this game, player 1 plays as if he was the only

player as he gets 0 from his neighbors and no player will change his effort level no

matter what player 1 does. Hence, in every SSPE we must have s∗1(x̃) = 1, meaning

that u(G) ≤ f1(1)− c1 also holds.

We now consider the case e(G) > 0. We first show that u(G) ≤ f1(e(G)). Let

x ∈ argmin x̃∈X̃ maxM∈Mind
1 (G|I(x̃)) |M | and let Ω = {(x, i)|i∈I}.

Since in every SSPE, the players outside I(x) never change their efforts, and since

no player in I(x) is connected to a player outside of it with positive efforts, they do not

influence the other players’ payoffs in any way. We can therefore remove them from

the network and take the network G|I(x). Since I(x) ⊆ N1 we can apply Proposition

3.6.2. Hence for every ω ∈ Ω it holds that

u(G|I(x)) = f1(e(G|I(x))).

By the choice of x, we have f1(e(G|I(x))) = f1(e(G)), and we have u(G|I(x)) ≥ u(G)

due to

u(G) = inf
ω∈Ω,s∗∈S∗

lim
t→∞

ut1(ω, s∗) ≤ inf
ω∈Ω,s∗∈S∗

ut1(ω, s∗).

Finally, we show that if e(G) > 0 then u(G) ≥ f1(e(G)) also holds. We prove this

by induction. For n = 2 the statement holds by Proposition 3.6.2. Now fix n and

assume that it holds for every network with fewer than n players. For networks that

belong to G1 the statement holds by Proposition 3.6.2, so we can assume that G /∈ G1.
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Suppose that u(G) < f1(e(G)). Let X̂ = {x̂ ∈ X : B̃(x̂) 6= ∅}. Since G /∈ G1,

X̂ must be non-empty, as any effort profile x̂ for which x̂j = 1 for some j /∈ N1

and x̂(Nj) = 0 will satisfy this property. For every x̂ ∈ X̂ and every B ∈ B̃(x̂) we

have that e(G) ≤ e(G|I\NB ), since combining any closed partnership in the reduced

network G|I\NB with B gives a closed partnership in G. We now construct a strategy

s∗∗ ∈ S̃1×{b−1} such that for every ω ∈ Ω it holds that limt→∞ ut1(ω, s∗∗) ≥ f1(e(G))

to achieve a contradiction.

Consider the following strategy:

s∗∗1 (x) =

0 if x ∈ X∗ and either x(N1) = 0 or x(N1) ≥ e(G),

1 otherwise.

If player 1 adopts s∗∗1 , then by Lemma 3.4.1 the game eventually reaches a state y ∈ X∗

for which either y(N1) ≥≥ e(G) or y(N1) = 0 If it is the former, we are done. If it

is the latter, then by the definition of s∗∗, there exists y0 ∈ Rs∗∗(y) ∩ X∗+ for which

y0(N1) = 0 and y0
1 = 0. There are two cases. If B̃(y0) 6= ∅, then take a B ∈ B̃(y0)

and remove NB from the game altogether. By the induction hypothesis it is true that

u(G|I\NB ) ≥ f1(G|I\NB ), hence player 1 has an SSPE in the reduced game with player

set I \NB which guarantees at least a payoff of f1(G|I\NB ) ≥ f1(e(G)).

If B̃(y0) = ∅, then there must exist i0 ∈ N1 with y0(N i0) < 1. By Lemma 3.4.4

there exists ŷ0 ∈ Rs∗∗(y0) in which ŷ0
i0 = 1, ŷ0(Ni0) = 0, and for every j /∈ N i0 we

have ŷ0
j = y0

j .

Once i0 usurped his neighborhood’s efforts we again let every other myopic player

reach their best responses again without player 1 moving. By Lemma 3.4.1, there

exists a y1 ∈ Rs∗∗(ŷ0) ∩X∗ such that y1
1 = y0

1 = 0. Notice that y1
i0 = ŷ0

i0 = 1, while

y1(Ni0) = ŷ0(Ni0) = 0. We now repeat the argument we had for y0. If B̃(y1) 6= ∅, then

take a B ∈ B̃(y1), remove NB from the game, and apply the induction hypothesis to

show the statement. If not, and if e(G) = 1, then we are done. If not, and if e(G) > 1,

then there must exist an i1 ∈ N1 for which y1(N i1) < 1. Then, by Lemma 3.4.4 there

exists ŷ1 ∈ Rs∗∗(y1) for which ŷ1
i1 = 1, ŷ1(Ni1) = 0, and for every i ∈ I \N i1 it holds

that ŷ1
i = y1

i .

We continue this way until, for some k ≤ |N1|, we reach a ŷk such that for every

i ∈ N1 we have ŷki = bi(ŷ
k). Notice that in ŷk a maximal independent set of N1 is

playing 1 while the rest of N1 is playing 0. Let this independent set be denoted by M∗

and notice that e(G) ≤ |M∗|.
Once we reach ŷk we let all remaining myopic players reach their best replies as

per Lemma 3.4.1. Let this effort profile be denoted by y∗. It is easy to see that
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y∗ ∈ X∗, and that π1(y∗) = f1(|M∗|) ≥ f1(e(G)). Note that the definition of s∗∗

ensures that we either find a closed partnership that we can remove, or the game

reaches y∗ with probability 1. Hence, a minimum long-run instantaneous payoff of

f1(e(G)) is attainable from any effort profile via strategy s∗∗ and the same must hold

for every SSPE profile s∗. Hence u(G) ≥ f1(e(G)). �
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Chapter 4

Best-response dynamics in

directed network games

“I do detest everything which is not perfectly mutual.”

Lord Byron

This chapter1 studies the cycling behavior of a simple learning process in network games

of non-reciprocal relationships. Unlike in the well-studied case of reciprocal relations, in

directed network games one-sided best-response dynamics may produce cycles. This chapter

presents two subclasses of such games in which best-response cycles cannot occur, leading

to convergence to the set of Nash equilibria. The first such class features a hierarchical

relationship between the players, and is characterized by a directed acyclic network. The

second features weak interaction of the players, more specifically, the total external effects of

each player’s decision are lower than the effect on own payoffs.

4.1 Introduction

The Nash equilibrium is one of the central concepts of game theory. One of its most

attractive properties is that it applies to all games that can be represented in a nor-

mal form. This great generality, however, does not come with a flawless record in

1This chapter is based upon Bayer and Kozics (2019). I would like to thank Botond Kőszegi,

Miklós Pintér, and Ádám Szeidl for comments on previous versions of this chapter, as well as Yannick

Viossat for feedback and suggestions.
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applied situations. The concept’s success as an accurate predictor of outcomes of real-

life strategic situations is mixed, giving excellent predictions in some (e.g. congestion

games), but poor ones in others (e.g. one-shot public goods games, beauty contests).

Nash equilibrium’s excellent theoretical properties and its shortcomings in applied set-

tings together imply that there are fundamental differences in behavior in games where

it provides an accurate prediction and in those where it fails to.

The theory of learning provides the toolkit to capture these differences. By hy-

pothesizing that equilibrium behavior arises through the adaptation rather than the

introspection of the players, learning serves as the principal toolkit to provide motiva-

tion to be interested in the equilibrium behavior in games: If general learning processes

converge to a Nash equilibrium, then it may be used as a prediction. Additionally, as

some Nash equilibria may be more likely to be limit points of learning processes than

others, learning may help resolve problems arising from equilibrium selection.

In this chapter, we analyze a generalized version of Chapter 2’s model of weighted

network games, called directed network games. As explained previously in Chapters

2 and 3, network games constitute an extremely rich framework, with a wide range of

applications in many fields of science. Unlike in the models of Chapter 2 and Chapter 3,

directed network games allow for players to have non-reciprocal relations to each other.

Non-reciprocal relationships may represent (1) one-sided links, in which case a player

influences another player’s payoffs but not vice versa, (2) two-sided, complementary,

but unequal links, in which case one player has more of an influence over another

player’s payoffs than the other way around, or (3) two-sided, parasitic links which

provide benefits for one player but provide harm to the other.

A brief overview of relevant theoretical literature is as follows: Public goods games

played on networks have been introduced by Bramoullé and Kranton (2007). For these

games, the stability of Nash equilibria with respect to a simple learning process, the

continuous best-response dynamic has been established by Bramoullé et al. (2014).

Uniform convergence of the continuous best-response dynamic to a single Nash equi-

librium in all such games has been shown by Bervoets and Faure (2019). Bervoets et

al. (2016) constructs an unsophisticated, convergent learning processes. All of these

papers assume reciprocal relations between the players of the network, relying on the

theory of potential games (Monderer and Shapley, 1996) to achieve their results. The

same assumption is made in Ballester et al. (2006)’s closely related model on peer

effects.

To our knowledge, this is the first model focusing on non-reciprocal relationships in

the class of network games. As shown by Monderer and Shapley (1996), the existence
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of a potential function is closely related to the reciprocity of interactions between every

pair of players, a property that cannot be exploited in our more general setting. We

focus on the cycling properties of one-sided best-response dynamics. It is easy to see

that even in a simple game of non-reciprocal interactions, a game played on a directed

cycle network, best-response cycles may emerge, leading to non-convergence, and a

lack of motivation for the Nash equilibrium. Nevertheless, classes of networks exist

that give rise to good cycling behavior.

In this chapter we identify two such subclasses, called hierarchical games, and games

of weak interaction. Hierarchical games are characterized by directed acyclic networks.

They are applicable in situations when pairwise interactions are one-sided, as described

by point (1). Populations that adhere to this criterion have some underlying hierarchy.

Players on the highest level are not affected by any other player, players on intermediate

levels are affected by those on higher levels but not by those on lower levels, while

players on the lowest level have no effect on any other player. A specific application of

hierarchical games in the realm of environmental economics is waste-water management

along a river. In this case the players of the game are municipalities located along the

river, while the hierarchy follows the flow of the river, with upstream municipalities at

the top of the hierarchy. Other examples of networks satisfying this criterion include

trophic networks and military command structures.

The second subclass of games with good cycling properties are games of weak in-

teraction. Such games are characterized by networks with weights that are relatively

small in absolute value. Specifically, for a game to be of weak interaction, every player’s

influence on his own payoffs has to be higher than his influence on every other player’s

payoff combined. The strength of the interactions represents the level of the intercon-

nectedness of the network. In social networks, low interconnection can be interpreted

as a form of individualism. In economics, weak interaction is a characteristic of effi-

cient markets, while strong interaction indicates the possibility of arbitrage. In biology,

weak, but non-negligible interaction is a characteristic of the foraging behavior of most

solitary animals, as well as of some social animals.

Our results imply that the Nash equilibrium retains some of its predictive power in

games on networks even if the relations are non-reciprocal. Specifically, the acyclicity

of the best-response dynamic means that many intuitive one-sided learning processes

converge for these two subclasses of games, if the strategy spaces are finite – which they

are in most applications. The predictive power of the Nash equilibrium is therefore

shown if (1) there is a clear hierarchy on the players, or (2) interactions are not too

strong.
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This chapter is organized as follows: Section 4.2 presents our two main concepts,

directed network games and best-response dynamics. Section 4.3 contains the main

results, the acyclicity of best-response dynamics in hierarchical games and games of

weak interaction. Section 4.4 concludes.

4.2 The model

Let I = {1, . . . , n} be the set of players. For i ∈ I and bounds xi < xi the set

Xi = [xi, xi] is called the action set of player i, X =
∏
i∈I Xi is called the set of action

profiles, and X−i =
∏
j 6=iXj the set of action profile for all players except i. Let

xi ∈ Xi denote the action taken by player i, x−i ∈ X−i the truncated action profile of

all players except player i, and x = (xi)i∈I the action profile of all players.

Definition 4.2.1. The tuple G = (I,X, (πi)i∈I) is called a directed network game with

payoff functions πi : X → R given by

πi(x) = fi

∑
j∈I

wijxj

− cixi, (4.1)

where for every i ∈ I, we have that fi : R → R is twice differentiable, f ′i > 0, f ′′i < 0,

wij ∈ R, ci ≥ 0.

The interpretation is the following. Each player produces a specialized good with linear

production technology, incurring costs ci for every unit of the good produced. Players

derive benefits from the consumption of their own goods and they are affected by their

opponents’ production decisions. Player i’s enjoyment of player j’s good is represented

by the weight wij ∈ R. Crucially, unlike in Chapters 2 and 3, we do not impose

reciprocal relations, i.e. wij 6= wji may hold. As before, we normalize the interaction

parameter of each player i with himself, wii, to 1. The overall benefits of player i are

given by the benefit function fi over the weighted sum of his and his opponents’ goods.

Note that if wij > 0 and wji > 0, then the goods of players i and j are strategic

substitutes. If wij < 0 and wji < 0 then their goods are strategic complements. If

wij > 0 and wji < 0, then players i and j share a parasitic link.

Since the benefit functions fi are increasing and concave, and the cost parameters

ci are positive, for a given x−i, there is a unique value of xi that maximizes πi(x). For

player i ∈ I, let bi denote the best-response functions, i.e. for every i ∈ I and x ∈ X,

bi(x) = argmax xi πi(x). Let the target values ti be implicitly defined by f ′i(ti) = ci

as in Chapter 2. Unlike in Chapter 3 we do not assume that players have symmetric
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target consumption levels. If f ′i is always larger (smaller) than ci then ti is defined as

positive (negative) infinity.

Lemma 4.2.2. Let G = (I,X, (πi)i∈I) be a weighted network game. Then, for every

i ∈ I and x ∈ X the best response functions are the following:

bi(x) =


xi if ti −

∑
j 6=i wijxj < xi,

ti −
∑
j 6=i wijxj if ti −

∑
j 6=i wijxj ∈ [xi, xi],

xi if ti −
∑
j 6=i wijxj > xi.

(4.2)

Proof. First, we calculate the unconstrained best response for player i. The first-order

condition is:

∂πi(x)

∂x
= f ′i

∑
j∈I

wijxj

− ci = 0, (4.3)

as wii = 1. Combining with f ′i(ti) = ci, we get that the unconstrained best response,

b̃i(x) is

b̃i(x) = ti −
∑
j 6=i

wijxj . (4.4)

As the second-order condition is

∂2πi(x)

∂x2
= f ′′i

∑
j∈I

wijxj

 < 0, (4.5)

b̃i(x) is indeed maximizing the payoff. This means, that for every xi > bi(x), a marginal

increase of xi decreases πi(x), while for every xi < bi(x), a marginal increase of xi

increases πi(x). Therefore, if b̃i(x) ∈ [xi, xi], then bi(x) = b̃i(x). If b̃i(x) < xi, then

bi(x) = xi, as choosing a larger xi would decrease the payoff. Similarly, if b̃i(x) > xi,

then bi(x) = xi. �

Lemma 4.2.3. Every directed network game has a Nash equilibrium.

Bramoullé et al. (2014)’s analogue result using Brouwer’s fixed-point theorem for a

positive and symmetric weight matrix is directly applicable in the directed network

case. Let the set of Nash equilibria be denoted by X∗.

Although Lemmas 4.2.2 and 4.2.3 have close analogues in existing models with

symmetric interaction, most results, especially those concerning the cycling and con-

vergence of best-response dynamics do not hold in the directed network case. We raise

an example of a well-known case of non-reciprocal interaction.
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Example 4.2.4. Let I = {1, 2, 3}, let Xi = [0, 1] for i ∈ I, t = (1, 1, 1)>, and

W =


1 0 1

1 1 0

0 1 1

 .

By Lemma 4.2.2, the best-response functions are b1(x) = 1 − x3, b2(x) = 1 − x1,

b3(x) = 1− x2. The only Nash equilibrium is x∗ = (0.5, 0.5, 0.5)>.

Example 4.2.4 is inspired by games with cyclic best-response dynamics, such as the

rock-paper-scissors game. Such games are extensively used in applications involving

evolutionary game theory, particularly in modeling ecological interactions.

We now introduce the class of learning processes this chapter is focused on, the

best-response dynamic.

Definition 4.2.5. A sequence of action profiles (xk)k∈N is called a one-sided best-

response dynamic, or best-response dynamic for short, if for every k ∈ N there exists

an ik ∈ I such that xk−ik = xk+1
−ik and xk+1

ik
= bik(xk).

The set of sequences that satisfy Definition 4.2.5 are the same as the infinite best-

response compatible paths of Chapter 2. In a one-sided learning process, each period

sees exactly one player changing his action. As in Chapter 2 we make no explicit

assumptions on how the revision opportunities are assigned, only that each period sees

only one player revising. In a one-sided process governed by the best-response dynamic,

every player revises to his best response given the previous period’s action profile. The

actions of every other player remain the same. It is possible that the actions of all

players remain the same, i.e. xk = xk+1 for some k, but only if at least one player’s

action was already his best response.

Definition 4.2.6. A sequence of action profiles (xk)k∈N has a cycle if there exist three

time periods, k < k′ < k′′ such that xk = xk
′′
, but xk 6= xk

′
.

A process has a cycle, if it revisits an action profile in two different time periods,

between which there is a time when it moves away from it. Cycling properties are

extremely important for the convergence of the learning process. For instance, in case

the absence of cycles can be shown for a process, then it will always converge in a finite

(i.e. discretized) setting of the game.

Cycles in a best-response dynamic are called best-response cycles. As shown in

Chapter 2’s Section 4, in games with a symmetric weight matrix there are no best-

response cycles. However, this is not true in general for directed network games. This

is shown by the following example.
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k xk1 xk2 xk3 ik
∑
j∈I wikjxj bik(xik)

0 1 0 0 3 0 1

1 1 0 1 1 2 0

2 0 0 1 2 0 1

3 0 1 1 3 2 0

4 0 1 0 1 0 1

5 1 1 0 2 2 0

6 1 0 0

Table 4.1: The best-response cycle of Example 4.2.7.

Example 4.2.7. Consider the game outlined in Example 4.2.4, with I = {1, 2, 3},
Xi ∈ [0, 1] for i ∈ I, t = (1, 1, 1)> and

W =


1 0 1

1 1 0

0 1 1

 .

Notice that the game has a single Nash equilibrium, x∗ = (0.5, 0.5, 0.5)>.

Suppose that the initial action profile of the players is x0 = (1, 0, 0)>. Table 4.1

shows a best-response cycle of length 6.

We recall another definition from Chapter 2, that of a best-response potential game.

Definition 4.2.8. [Best-response potential game (Voorneveld, 2000)] A game G =

(I,X, (πi)i∈I) is a best-response potential game, if there exists a best-response potential

function φ : X → R such that for every i ∈ I, and every x−i ∈ X−i it holds that

argmax
xi∈Xi

πi(x) = argmax
xi∈Xi

φ(x). (4.6)

The symmetry of the weight matrix W and the game having a best-response potential

are tightly related. For symmetric weight matrices, Bramoullé et al. (2014) has shown

that the function φ(x) = x>t− 1
2x
>Wx is an exact potential of Ballester et al. (2006)’s

game of negative externalities, given by the following, quadratic payoff functions:

ui(x) = tixi −
1

2
x2
i −

∑
j 6=i

wijxixj .

Since ui and πi give rise to the same best-response functions, φ is, as discussed in

Chapter 2, a best-response potential. However, by Theorem 4.5 of Monderer and Shap-
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ley (1996), φ can only be an exact potential of the game characterized by (I,X, (ui)i∈I),

if for every i, j ∈ I we have

∂2ui
∂xi∂xj

=
∂2uj
∂xi∂xj

,

which amounts to

wij = wji.

This suggests that φ has no analogous forms that could serve as a best-response po-

tential for the wij 6= wji case. As shown in Example 4.2.7, non-reciprocal relationships

allow for the emergence of best-response cycles, the absence of a best-response poten-

tial, and thus, non-convergence.

4.3 Classes of games with acyclical best-response dy-

namics

As shown in the previous section, allowing for non-reciprocal interactions in network

games has grave consequences on the convergence properties of even the simplest learn-

ing processes, i.e. the one-sided best-response dynamic which may now produce best-

response cycles. Nevertheless, there are useful classes of network games where the

absence of cycles can still be shown without restrictive assumptions on the learning

process. In this section we present two of them, hierarchical games and games with

weak interactions.

Consider the following example.

Example 4.3.1. Let I = {1, 2, 3} be a set of three cities with industrial zones located

along a river. The river flows from city 1 to city 2 and then to city 3. Each city i

decides on the amount of money spent on cleaning the industrial waste in the river

out of a budget of 2, i.e. Xi = [0, 2]. The cities’ target values describe the point at

which the marginal benefits of an extra euro’s worth of cleaner water are the same

as the costs for that city, and are as follows: t = (1, 2, 3)>. The targets increase

downstream, indicating that in the absence of cleaning expenses from other cities,

a downstream city requires higher cleaning efforts due to the extra pollution from its

upstream counterparts’ industries. The interaction weights between the cities are given
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as follows:

W =


1 0 0

0.5 1 0

0.25 0.5 1

 .

City 1 is unaffected by the decisions of cities 2 and 3 due to its upstream position. City

2 derives benefits from city 1’s cleaning efforts, but less so than from that of its own.

City 3 derives benefits from both cities’ cleaning efforts, again less so than from that

of its own, and less so for the more distant city 1.

As per Lemma 4.2.2 the best-response functions of the three players are as follows:

b1(x) = 1, b2(x) = min{2,max{0, 2− 0.5x1}}, and b3(x) = min{2,max{0, 3− 0.25x1 −
0.5x2}}. The unique Nash equilibrium is x∗ = (1, 1.5, 2)>.

Example 4.3.1 reflects a much-stylized situation, inspired by one-dimensional models

of river pollution such as the one appearing in Pimpunchat et al. (2009). As suggested

by the example, typical models of pollution cannot be accommodated by a symmetric

interaction matrix, as the external effects typically go only one way. A further char-

acteristic of this example is the hierarchical relationship of the best-responses, as the

payoffs of cities are independent of the actions of downstream cities, and the underlying

network has no cycles.

In addition to river pollution, such hierarchies are present in most production chains

where goods – and therefore externalities – flow downwards in the production chain,

or in some social networks such as the military where orders are traveling down the

chain of command. Many trophic networks also have hierarchical features with apex

predators on the highest level of the hierarchy and prey animals located on lower levels.

A formal characterization of such networks is as follows.

Definition 4.3.2. A game is called hierarchical if for its underlying network W it

holds that wij = 0 for every i < j ∈ I.

In other words, if the underlying network is acyclic, we have a hierarchical game. In

Definition 4.3.2 it is assumed that players with lower indices are higher up in the

hierarchy, i.e. player 1 is unaffected by any other player’s action, player 2 is only

affected by player 1, etc., which is without loss of generality.

Proposition 4.3.3. For every hierarchical game and every best-response dynamic

(xk)k∈N it holds that there are no cycles in (xk)k∈N.

111



Proof. Suppose that there is a cycle (xk)k∈{`,...,`′′} with ` < `′′ such that x` = x`
′′

but

x` 6= x`
′

for some `′ ∈ {`, . . . , `′′}. Let i denote the player with the lowest index such

that there exists an `i ∈ {`, . . . , `′′} with x`i 6= x`ii . Such a player must exist, otherwise

no player has changed his action during this time period, contradicting the definition

of a cycle.

Since for every player i′ < i we have that x`i′ = x`+1
i′ = . . . = x`

′′

i′ , by the definition

of hierarchical games we have that
∑
j 6=i wijx

`
j =

∑
j 6=i wijx

`+1
j =

∑
j 6=i wijx

`′′

j and

hence bi(x
`) = bi(x

`+1) = . . . = bi(x
`′′). However, since (xk)k∈{`,...,`′′} comes from a

best-response dynamic, this contradicts the x`i 6= x`ii . �

The idea behind the proof of Proposition 4.3.3 is the observation that for a player to

revisit an action played earlier, a player in a higher level of the hierarchy must have

changed his action at some point. Because of this, the player at the highest level cannot

revisit earlier actions, as once he reaches his best response, he stays there indefinitely,

for the movements on the lower levels do not change his payoffs, and therefore, his

best response. Hence, the highest level player must not change his action throughout

a cycle, meaning that the second highest player also cannot revisit earlier actions, and

so on.

To set up the next class of games, consider a parametric version of Examples 4.2.4

and 4.2.7.

Example 4.3.4. Consider a game with circular externalities, similar to the one pre-

sented in Example 4.2.4, with the strength of the interactions represented by the pa-

rameter δ ∈ [0, 1].

W =


1 0 δ

δ 1 0

0 δ 1

 .

By Lemma 4.2.2, the best-response functions are b1(x) = 1 − δx3, b2(x) = 1 − δx1,

b3(x) = 1− δx2. The only Nash equilibrium is x∗ = (1/(1 + δ), 1/(1 + δ), 1/(1 + δ))>.

If the strength of the interaction is high, i.e. δ = 1, then best-response cycles may

exist as per Example 4.2.7. If the strength of the interaction is zero, i.e. δ = 0, then

the game is a hierarchical game, as well as a weighted network game, meaning that

best-response cycles cannot exist.

In Table 4.2 we show the sequence of action profiles that follows if players receive

revision opportunities in the same order as in the best-response cycle of Example 4.2.7,

starting, again, in the action profile (1, 0, 0)>. It is clear from the table and from the
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k xk1 xk2 xk3 ik
∑
j∈I wikjxj bik(xik)

0 1 0 0 3 0 1

1 1 0 1 1 δ 1− δ
2 1− δ 0 1 2 δ − δ2 1− δ + δ2

3 1− δ 1− δ + δ2 1 3 δ − δ2 + δ3 1− δ + δ2 − δ3

Table 4.2: The best-response dynamic of Example 4.3.4.

best-response functions, that in this order of revisions, the player holding the revision

opportunity in period k will play
∑k
`=0(−δ)` = (1− (−δ)k+1)/(1 + δ) in the next, for

parameter values of δ < 1. Playing on in this order will produce no cycles, and lead to

convergence to the Nash equilibrium.

Intuition suggests that if the interaction parameters are low enough, then the game

maintains the good cycling and convergence properties characteristic of games with

reciprocal interaction. Example 4.3.4 suggests that the critical value of cross-player

interaction which leads to cycling is the value by which players interact with themselves.

In the next definition we introduce games of weak interaction along the above ideas,

formally.

Definition 4.3.5. A game is of weak interaction if for every i ∈ I the underlying

network satisfies
∑
j∈I\{i} |wji| < 1.

By Definition 4.3.5, a game is said to be of weak interaction if the sum of absolute

value of every player’s outgoing weights is lower than unity, i.e. the player’s interaction

parameter with himself. In such games, the total external effects of a player’s actions

on other players’ best-responses are lower than the effect of his actions on his own

best-response. Notice that the definition does not impose that the incoming weights,

i.e. a player’s sensitivity to the other players’ actions, be lower than unity. Crucially,

weak interaction is markedly different from no interaction, as the external effects are

of the same order as the players’ influence on themselves. However, as the number of

players grow large, the per capita level of interaction approaches zero.

Examples of games of low interaction include games in efficient financial and eco-

nomic networks. In this context, low interaction means that the players’ own financial

or production decisions affect own profits more than other players on the market. If

the converse was true, there would be a possibility of arbitrage by increasing the profits

of other agents (by increasing volume if the weights are positive, and by dropping it
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if the weights are negative), and being compensated by them in return. A biological

example of low interaction would be foraging games, where, typically, animals’ foraging

strategies affect the given animal more than its opponents.

The final result of this chapter states that games of weak interaction can never give

rise to best-response cycles.

Proposition 4.3.6. For every game of weak interaction and every best-response dy-

namic (xk)k∈N it holds that there are no cycles in (xk)k∈N.

Proof. Let the function L : X → R be defined as follows:

L(x) =
∑
i∈I
|xi − bi(x)|.

Clearly, the function’s value is 0 if and only if x is a Nash equilibrium.

Fix k ∈ N. We now calculate the change in the value of L between periods k and

k + 1. If xkik = bik(xk), then xk+1 = xk, hence the change is zero. If xkik = xk+1
ik

+ d =

bik(xk) + d for some d 6= 0, then by the properties of best-response dynamics we have

L(xk+1)− L(xk) =
∑
j 6=ik
|xkj − bj(xk+1)| −

∑
j 6=ik
|xkj − bj(xk)| − |d|.

For every j ∈ I \ {ik} we have |xkj − bj(xk+1)| − |xkj − bj(xk)| ≤ |bj(xk) − bj(xk+1)|,
hence we get

L(xk+1)− L(xk) ≤
∑
j 6=ik
|bj(xk)− bj(xk+1)| − |d|.

Finally, by the properties of the best-response functions we have

L(xk+1)− L(xk) ≤
∑
j 6=ik
|wji||d| − |d| < 0,

where the last inequality is due to the weak interaction property.

Hence, every time a player changes his action in a best-response dynamic, L’s value

strictly decreases, meaning that we cannot get cycles. �

Proposition 4.3.6 is shown directly by calculating the change in the aggregated distances

from their current best responses, as players revise their actions. The weak interaction

property guarantees that the total distance can never increase along a best-response

dynamic, meaning that acyclicity is guaranteed. Since all inequalities used in the proof

are tight, the result itself is tight. As demonstrated by Example 4.2.7, allowing the

total magnitude of the interaction parameters to sum up to 1 leads to the emergence

of best-response cycles.
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Since the weakness of interaction is a good measure of the individualism present

in a social network, this result implies that more individualistic societies allow for an

increased predictive power of the concept of Nash equilibrium, as games played on these

societies will have better convergence properties. In games played on financial networks

our result hints that more efficient markets allow for more accurate predictions of the

Nash equilibrium.

4.4 Conclusion

In this chapter we analyze the cycling behavior of a simple learning process, called

the best-response dynamic in directed network games. Directed network games are an

extension of the private provision of public goods game, or local public goods game,

allowing for players to have non-reciprocal relationships with one another. To our

knowledge, the paper on which this chapter is based is the first to consider such relations

in this gameclass. Non-reciprocity of relations occurs in social networks between two

agents if a link goes only one way, a link is more significant for one than for the other,

or the relationship is beneficial for one party and harmful for the other. In economics,

most externalities, such as pollution are non-reciprocal: they either only travel one

way, or the magnitude by which the agents affect one another is different. In biology,

trophic networks typically feature one-way interactions, while many other interspecies

relations, such as parasitism may be grossly non-reciprocal.

There are several existing results on the acyclicity and convergence of several learn-

ing processes if relationships are reciprocal. These results rely on the theory of potential

games, particularly on the fact that classic results by Monderer and Shapley (1996) im-

ply that reciprocal relationships give way to the existence of a best-response potential

function. Because of this, every one-sided best-response update, or any update taking

the player closer to his current best response will increase the value of the potential,

meaning that these processes are acyclical.

While best-response potentials do not exist in general for games featuring non-

reciprocal relations, alternative methods may be used to analyze learning in subclasses

of directed network games. In this chapter we present two such subclasses, hierarchical

games and games of weak interaction. Hierarchical games are characterized by directed

acyclical networks, featuring one-way links with no cycles. Games of weak interaction

are networks in which every player’s actions affect the other players’ decisions less so

than his own. Both games have a wide range of applications and together they cover
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a significant part of the applications featuring non-reciprocal interaction.

In this chapter we show that both of the above mentioned subclasses lead to acyclical

best-response dynamics with strong implications on the convergence of these learning

processes. In discretized games, acyclicity is a sufficient condition for convergence.

In case of a best-response dynamic, the convergence is to the set of Nash equilibria.

As most applications are closely captured by discretized strategy spaces, our results

show that the predictive power of the Nash equilibrium extends beyond games with

reciprocal relationships.

Additional work is needed to establish convergence conditions in games with con-

tinuous strategy spaces. By introducing additional assumptions, such as on the order

of players receiving revision opportunities, further classes of games may be identified

with good cycling and convergence properties. These plans are left for future research.
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Chapter 5

A two-phenotype model of

immune evasion by cancer

cells

“And now for something completely different.”

Monty Python

This chapter1 proposes a model with two types of cancer cells differentiated by their defense

mechanisms against the immune system. “Selfish” cancer cells develop defense mechanisms

that benefit the individual cell, whereas “cooperative” cells deploy countermeasures that in-

crease the chance of survival of every cell. Our phenotypes capture the two main features of

the tumor’s efforts to avoid immune destruction, crypticity against immune cells for the self-

ish cells, and tumor-induced immunosuppression for the cooperative cells. We identify steady

states of the system and show that only homogeneous tumors can be stable in both size and

composition. We show that under generic parameter values, a tumor of selfish cells is more

benign than a tumor of cooperative cells, and that a treatment against cancer crypticity may

promote immunosuppression and increase cancer growth.

1This chapter is based upon Bayer, Brown, and Staňková (2018). The majority of this project was

conceived during my research visit at the University of Illinois at Chicago between July 23 and August

23, 2016. The visit was sponsored by the European Union’s Horizon 2020 research and innovation

program. I would like to thank Jessica Cunningham, Abdel Halloway, and Christopher Whelan for

feedback and suggestions.
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5.1 Introduction

The immune system influences cancer initiation and progression. One of the hall-

marks of cancer is evasion of the immune system (Hanahan and Weinberg, 2011). The

immune system is how multi-cellular organisms mount an adaptive response to dis-

eases and pathogens (including cancer). There are innate and adaptive mechanisms

of immunity. Innate immunity provides a relatively undirected but permanent defense

against pathogens using a variety of white blood cells that include phagocytes and

natural killer cells. Dendritic cells (a subset of phagocytes) provide a link between the

innate and adaptive immune system. Upon encountering foreign proteins or molecules

(antigens) the dendritic cells can entrain T-lymphocytes (T-cells) by modifying their

receptor proteins to recognize the antigen. As part of the adaptive immune system,

the killer T-cells now possess receptors that will recognize the surface antigen on nucle-

ated cells such as infectious protozoans, viral infected normal cells, and even cancerous

cells. Upon making contact, the T-cell is able to breach the target cell’s membrane

and introduce lethal cytotoxins.

When treating cancer, a high immune system infiltration into a tumor often begets

a positive prognosis (Parcesepe et al., 2016) as immune cells inhibit the growth and

spread of the tumor. Immunotherapy tries to trigger an effective immune response to

the cancer (Dimberu and Leonhardt, 2011). Such therapies may introduce retroviruses

into the tumor. The retroviruses present antigens that induce an immune response. Or,

the patient’s own immune system may be boosted by entraining T-cells on cancer cells

drawn from the patient (Morgan et al., 2006). The antigens and entrained killer T-cells

are then injected into the patient as a form of ‘vaccine’ to create a more directed and

effective immune response to the cancer cells within the tumor. Finally, checkpoint

therapies directly target the immune evasion traits of cancer cells (Goswami et al.,

2016) making it easier for T-cells to encounter and attack cancer cells.

The adaptive immune response to cancer cells via T-cell activation has been con-

ceptualized and modeled as a competition between killer T-cells (as well as associated

macrophages, helper-cells, neutrophils, etc.) and the cancer cells. Eftimie et al. (2011)

provide an extensive review of common spatially homogeneous mathematical models

describing the interactions between a malignant tumor and the immune system, start-

ing from the single equation models for tumor growth and adding complexity. Nani

and Freedman (2000) construct a model of competition between normal cell and cancer

cells during the process of immunotherapy. Robertson-Tessi et al. (2012) and Nakada

et al. (2016) focus on the components of the immune system. Our model complements
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the literature by focusing on the various strategies available to the cancer cells in the

game played by the cancer cells and the immune system.

Unfortunately for the patient, cancer cells evolve resistance to the immune system

and to immunotherapies (Ribas, 2015; Sharma et al., 2017). A number of papers have

used agent based models to examine the evolution of resistance to various types of

treatment or drugs by imagining two populations of cancer cells – one susceptible to

treatment, the other not or less so (Panetta, 1998; Tomasetti and Levy, 2010; Sun et

al., 2016). Other models see resistance as the cancer cells outcompeting the immune

cells (De Pillis and Radunskaya, 2001). Baar et al. (2016) build a stochastic agent-

based model where resistant phenotypes and genotypes are selected via mutation as

they interact with a heterogeneous population of T-cells.

We consider an evolutionary game between two types of cancers cells in response

to the immune system (Dhodapkar, 2013), either early in cancer progression or early

in the application of immunotherapy. Rather than susceptible versus non-susceptible,

we are interested in modeling two ways for how cancer cells evade killer T-cells. The

two strategies available to the cancer cells correspond to the two major subsets of

immune-resistant cancer cells proposed by Gajewski et al. (2013). The first represents

a non-cooperative, selfish strategy where the cancer cell using this strategy enjoys

some resistance to the immune system, but in a manner that has no direct influence

on other cancer cells. Biologically, this models resistance strategies that involve the

cancer cells down-regulating or ceasing to present the antigen required for the T-cell

to recognize the cancer cell. This amounts to the cancer cells evolving camouflage and

crypticity (Maeurer et al., 1996; Seliger et al., 1997; Hicklin et al., 1999; Johnsen et

al., 1999). The second strategy amounts to cooperation as the cancer cells shut down

the immune response as a collective public good. Biologically, this models resistance

strategies where the cancer cell co-opts signaling pathways by directly signaling the T-

cells to cease or by signaling macrophages and/or helper T-cells to cease supporting the

production and entraining of killer T-cells. The collective consequence of this second

strategy is immunosuppression within the tumor (Stewart and Smyth, 2011).

In what follows we develop a predator-prey-like population model that includes

the two types of cancer cells and the T-cells. Like Babbs (2012) and Kareva and

Berezovskaya (2015), we see the interaction between cancer cells and the T-cells as

a modified predator-prey system. A selfish cell enjoys the protection provided by its

cooperative counterparts while providing no benefits to other cancer cells. Cooperative

cells work together to suppress the immune system. Their rate of survival increases

with the ratio of cooperative cells. They gain no protection from the selfish cells. The
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interplay of selfishness and cooperation represents a public goods game, selfishness

being the individually optimal strategy, while cooperation being the socially optimal

one. In our model, any given selfish cell is more likely to survive an encounter with an

immune cell than a cooperative one. Since cooperative cells gain strength in numbers

and selfish cells do not, a tumor comprised of cooperative cancer cells may be worse

for the patient.

As specific goals, we examine when one or the other cancer strategy will outcom-

pete the other. We then analyze the dynamics and equilibria of tumors comprised of

cancer cells using either the selfish or cooperative strategy. Of considerable interest

are extinction thresholds where below a critical size the immune system can drive the

cancer extinct whereas above these thresholds the cancer will grow to sizes largely

unaffected by the immune system. Using comparative statics, we consider the effects

of various parameters corresponding to different forms of therapies on the model. Of

specific interest are therapies that may unwittingly switch the stable steady state from

selfish to cooperative cancer cells thus worsening the patient’s prognosis (Smyth et al.,

2006). Section 5.2 introduces the model. In Section 5.3 we discuss the steady states

and the evolutionary stable strategies (ESS) of the model. In Section 5.4 we discuss

the effects of different therapies. Section 5.5 concludes this chapter.

5.2 The model

We imagine a patient with a clinically detectable primary tumor that may or may not

be metastatic. We assume that it is a solid tissue cancer, while not specifying the exact

kind of cancer. The model considers the interaction between the cancer cells and the

immune system within the tumor. For the moment we are imagining a population of

killer T-cells. Our focus will be on the dynamics and steady-state population levels

of both cancer and immune cells (Section 5.3). We then consider how various forms

of therapy acting through the model’s parameters alter tumor growth and prolong the

progression free survival of the patient (Section 5.4).

We use a series of ordinary differential equations to model two cancer cell pheno-

types, selfish and cooperative. Let xs(t) and xc(t) denote the population sizes of the

selfish and cooperative types at time t ∈ [0,∞), respectively. Let x(t) = xs(t) + xc(t)

denote the total tumor mass, and g(t) = xc(t)/x(t) be the proportion of cooperative

cells. Let y(t) denote the total amount of killer T-cells (referred to as T-cells, for sim-

plicity) in the tumor. We assume that the cells are well mixed, and so the ratio of the
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cooperative phenotype in any cell’s interaction radius is g(t). We refer to the values

of xs(t), xc(t), x(t), and y(t) as population counts. The value g(t) is referred to as the

composition of the tumor. We henceforth omit the time variable t, whenever it does

not cause confusion. For a time varying z(t) we use the usual notation ż to denote its

time derivative.

The change in the number of both cancer cell populations and the total population

is given by:

ẋc = rc(1−
√
x

K
)xc − gµc(g)

√
xy, (5.1)

ẋs = rs(1−
√
x

K
)xs − (1− g)µs(g)

√
xy, (5.2)

ẋ = ((1− g)rs + grc) (1−
√
x

K
)x− ((1− g)µs(g) + gµc(g))

√
xy, (5.3)

with rs, rc,K ∈ R+, and functions µc, µs : [0, 1] → R+. For ecological realism we

assume that ẋc = ẋs = ẋ = 0, whenever x = 0, i.e. the patient is cancer-free. As will

be made clear, this is the continuous extension of the model defined by 5.1, 5.2, and

5.3.

The non-negative parameters rs and rc denote the growth rates of the selfish and

the cooperative phenotypes, respectively. We assume that in the absence of immune

reaction (or other exogenous factors, e.g. treatment), the population of cancer cells

grows until it reaches its carrying capacity, K, upon which, the population stabilizes.

Standard logistic growth takes the form 1−x/K, indicating a linearly decreasing per

capita growth rate with population size. Our root-logistic formulation of 1 −
√
x/K

permits more tractable analytic results. Furthermore, below carrying capacity, per

capita growth rates are lower than logistic, and maximum population growth occurs

at 4K/9 rather that at K/2. A peaking of total population growth rate at a smaller

population size is consistent with a necrotic core in tumors. Cells proliferate at a

slower rate in the interior of the tumor than at the exterior (Adam and Maggelakis,

1989; Foryś and Mokwa-Borkowska, 2005), due to a decreased resource availability. Our

model therefore captures the increased resource scarcity, and the decreased resource

uptake of a growing tumor, resulting in a slower-than-logistic growth function. In all

other ways we follow the typical assumptions of Lotka-Volterra competition models.

Note that x is the sum of the population of selfish and cooperative phenotypes, and

thus the reproduction rate of the tumor is the linear combination of the reproduction

rates of the phenotypes using their frequencies as weights.
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Figure 5.1: Per capita growth rates of logistic (red), and root-logistic (blue) models. Both

assume decreasing per capita growth rates due to diminishing per capita resources in the

environment, but root-logistic growth rate is lower. In case of cancer, the existence of a

necrotic core implies that only a subset of the population participates in resource uptake,

thereby lowering the growth rate of tumors.

The negative terms on the right-hand sides of (5.1), (5.2), and (5.3) capture the

rate at which tumor cells have lethal encounters with T-cells. The encounter rate is

given as
√
xy to keep the analysis tractable. Note that

√
x is proportional to the

perimeter of a 2-dimensional object of area x, and in many cases,
√
x serves as an

approximation for the surface area of a 3-dimensional object of volume (or mass) x.

Therefore, our formulation can be interpreted as all encounters happening on (or in an

area proportional to) the surface region of the tumor (Robertson-Tessi et al., 2012).

The function µc denotes the rate at which a cooperative cell is killed by a T-cell

upon encounter, and the function µs denotes the rate with which a selfish cell is killed

upon encounter. They are given by:

µc(g) = γ(1− gεc), (5.4)

µs(g) = γ(1− gεc)(1− εs), (5.5)

with εc, εs ∈ [0, 1].

The parameter γ denotes the lethality of the T-cells, while parameters εs and εc

describe the resistance of the selfish and the cooperative phenotypes, respectively. The

value µc(g) is the probability that a cooperative cancer cell, encountering an active

T-cell, is destroyed, given composition g. The value µs(g) has the same interpretation

for selfish cells. As in a public goods game, the cooperative cancer cells contribute a

shared resistance that benefits all cancer cells equally, including the selfish cells. In

addition to the public resistance provided by the cooperative cells, the selfish cells

benefit themselves through their own resistance strategy. Every selfish cell benefits
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from the resistance provided by their cooperative counterparts but not vice versa. As

a result selfish cancer cells always face a lower death rate than cooperative cells. In (5.3)

the linear combination of the phenotypical death rates µx(g) = (1−g)µs(g)+gµc(g) =

(1− g)γ(1− gεc)(1− εs) + gγ(1− gεc) is determined using the frequencies as weights.

The factor 1/(1− εs) = µc/µs represents the advantage of selfishness. A value of 1,

coinciding with zero selfish resistance εs = 0, means selfish cells survive an encounter

with a T-cell with the same rate as cooperative cells. The higher the εs value, the

higher the difference between the survival rates, favoring the selfish phenotype.

Notice that µc(g) and µs(g) are given as linear functions of g, and g ∈ [0, 1]. Hence,

as the number of cancer cells x approaches zero, it can be inferred from (5.3) by

L’Hôpital’s rule that ẋ also converges to zero. Similarly, as xc, xs approach zero, ẋc

and ẋs both converge to zero. Therefore, the assumption ẋc = ẋs = ẋ = 0 whenever

x = 0 is a continuous extension of (5.1), (5.2), and (5.3).

Let ω ∈ R+ denote the maximum tumor mass a patient can survive. Once the total

cell count of cancer cells reaches ω, the patient dies. We assume x(0) < ω, meaning

that the patient is alive at time 0. Let T = inf{t ≥ 0: x(t) ≥ ω}2 denote the patient’s

survival time.

The change in the population of T-cells is given by:

ẏ = ri(1−
y

L+ a
√
x

)y − δg
√
xy, (5.6)

with a, δ, L ∈ R+. In the absence of tumor cells, the population of T-cells grows

logistically with a growth rate (or replenishment rate) ri, and a carrying capacity L.

If the patient is cancer-free, i.e. x = 0, we define ẏ = ri(1− y
L )y.

As in De Angelis and Mesin (2001) and De Pillis and Radunskaya (2001), an in-

creased tumor mass increases the immune response. This is modeled by a rise in the

carrying capacity of T-cells. We assume that this increase is proportional to the en-

counter rate per T-cell,
√
x. The non-negative parameter a indicates the strength of

the increase. Setting a = 0 means no change in immune response.

As a deviation from standard predator-prey models we assume that cooperative

cancer cells inhibit the growth of the T-cell population. This captures the immuno-

suppression effect of a tumor, which in our model is induced only by the cooperative

phenotype. The effect on the growth rate of the T-cells is proportional to the number

of cooperative cancer cells encountered, g
√
x, factored by a constant δ that measures

the effectiveness of immunosuppression. This linear formalization is also in line with

2inf ∅ = ∞.
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De Angelis and Mesin (2001). For a detailed meta-study on the molecular mechanics

of tumor-induced immunosuppression the reader is referred to Wu et al. (2015).

By rearranging (5.1) and (5.2) we can derive the evolution of g.

ġ =
˙(xc
x

)
=
ẋcx− ẋxc

x2
= g(1− g)

(
(rc − rs)(1−

√
x

K
) + (gεcεs − εs)

y√
x
γ

)
. (5.7)

In (5.7) it is stated that the frequency of cooperative cells evolves autonomously as

a result of differences of birth and death rates of the two phenotypes. The factors

1 −
√

x
K , and γ y√

x
express the relative importance of birth and death rates in deter-

mining which phenotype proliferates at a higher rate. For instance, in case of a low

T-cell population, the difference between rc and rs determines whether the ratio of

the cooperative phenotype increases or decreases. With a high T-cell population, the

phenotype with the higher resistance prevails.

As a technical remark, note that for x = 0, the composition parameter g and its

time-derivative are undefined. As a consequence, with x approaching zero, the time-

derivative of g can be unbounded in magnitude. Nevertheless, the trajectories remain

continuous, and hence g will remain between 0 and 1 as per Equation 5.7.

The system defined by (5.3), (5.6), and (5.7) is equivalent to the one defined by

(5.1), (5.2), and (5.6).

5.3 Steady-state analysis

In this section we focus our attention on the steady states of the model. Steady states

are combinations of tumor population size, tumor composition, and T-cell population

size for which all three components of the model are not changing in time. A brief

summary of our findings is as follows: No steady states exist with both cancer cells

types (cooperative and selfish) at positive population sizes. The steady state with no

cancer cells and no immune cells is always unstable. The steady state with no cancer

cells but the presence of immune cells may or may not be stable. Finally, a variety of

steady states exist with positive populations of one cancer cell type and immune cells.

Their stability properties can be illustrated using zero-growth isocline diagrams. We

start with the condition that determines which cancer cell type outcompetes the other.

The sign of the following expression determines whether a given cancer cell type can

both invade and resist invasion from the other type:

rc
rs
− 1

1− εs
.
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If the ratio of reproduction rates is larger than the advantage of selfishness, then the

tumor (unless eliminated by the T-cells) is cooperative at the ESS, otherwise, it is

selfish. Since a purely cooperative tumor is more aggressive than a purely selfish

one thanks to the former’s ability to suppress immune responses, the composition of

the tumor, and therefore the sign of the above expression is crucial for the patient’s

prognosis.

The remainder of this section contains the formal definitions, statements, and

proofs.

Definition 5.3.1. The triple (x∗, y∗, g∗) is called a steady state of the dynamic system

defined by (5.3), (5.6), and (5.7), if ẋ = 0, ẏ = 0, and ġ = 0 are all satisfied.

A steady state tumor described by (x∗, y∗, g∗) is called mixed if g∗ ∈ (0, 1), cooperative

if g∗ = 1, and selfish if g∗ = 0. Cooperative and selfish tumors comprise an ESS if they

are linearly stable for deviations in x and y, and if they resist an invasion of the other

phenotype. Since our model precludes mixed steady states, we only discuss stability

for homogeneous tumors.

Definition 5.3.2. Fix g. The set of (x, y) pairs for which ẋ = 0 is called the zero-

growth isocline curve of x. The set of (x, y) pairs for which ẏ = 0 is called the

zero-growth isocline curve of y.

For t ≥ 0 the triplet (x(t), y(t), g(t)) can be thought of as a snapshot of the tumor and

the immune system at time t, specifying the tumor size, the immune cell count, and the

composition of the tumor. As per Definition 5.3.1, in a steady state, both population

counts and the tumor composition are constant.

Clearly, if (x∗, y∗, g∗) is a steady state, then (x∗, y∗) is located along the zero-growth

isocline curves of both x and y, given g∗. The system yields three trivial steady states,

as listed in the following remark. For ecological realism we include the steady-states

with x = 0, even as the state parameter g is undefined in this case.

Remark 5.3.3. The following triples are all steady states.

1. x = 0, y = L.

2. x = 0, y = 0.

3. x = K, y = 0, g ∈ [0, 1].

In Remark 5.3.3, Case 1 describes a cancer-free patient with T-cells matching the

body’s carrying capacity. This patient is healthy. Case 2 describes a patient who is
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cancer-free, but has no T-cells. Cases 1 and 2 are undefined in the model, but their

stability properties are well-defined. This may be interpreted as an unrelated immune

deficiency. This patient is cancer-free but is unprotected against diseases due to a lack

of T-cells. Since ω < K, case 3 describes a patient who has already succumbed to

cancer, and has no immune protection.

From (5.7) one can deduce that both g = 0 and g = 1 guarantee the compositional

stability of the tumor, meaning that ġ = 0 is assured. We subdivide this section

into three subsections: we briefly show non-existence of steady states in mixed tumors

before going on to discuss steady states in selfish and cooperative tumors, respectively.

5.3.1 Nonexistence of steady states in mixed tumors

In this subsection we show that unless the advantage of selfishness happens to be the

same as the ratio of reproduction rates, then two steady state conditions, the size of

the tumor being constant, and its composition being constant can only be satisfied for

purely selfish or purely cooperative tumors.

Proposition 5.3.4. Suppose that 0 < g < 1, and 0 < x < K.

• If we have rc
rs
> 1

1−εs and ẋ = 0, then it holds that ġ > 0.

• If we have rc
rs
< 1

1−εs and ẋ = 0, then it holds that ġ < 0.

Proof. First we consider rc(1 − εs) > rs. Since ẋ = 0, we must have ẋc = −ẋs. If

ẋc > 0 and ẋs < 0, then ġ > 0 holds, since the cooperative population is rising and the

selfish one dwindling. Suppose that ẋs ≥ 0. Then we have

0 ≤ (1− g)rs(1−
√
x

K
)− (1− g)γ

y√
x

(1− gεc)(1− εs).

We multiply by g/(1− g), divide by (1− εs) and invoke rc(1− εs) > rs to get

0 ≤ g rs
1− εs

(1−
√
x

K
)− gγ y√

x
(1− gεc) < grc(1−

√
x

K
)− gγ y√

x
(1− gεc) = ẋc,

meaning that ẋc > 0, contradicting ẋ = 0, since both population counts are rising.

Therefore, ẋs < 0 and ẋc > 0 must hold, implying ġ > 0.

The case rc(1− εs) < rs follows via similar arguments. �

Proposition 5.3.4 states that constant tumor size cannot coexist with constant tumor

composition. Moreover, if the ratio of the reproduction rates rc/rs is higher than the

advantage of selfishness, 1/(1 − εs), then constant tumor size implies higher relative
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proliferation of the cooperative cells. If the ratio of reproduction rates is lower, the

opposite holds, and the selfish cells will outcompete the cooperative cells. Therefore,

no non-trivial steady states exist in which the tumor is a mix of the two phenotypes

(the knife-edge case rc/rs = 1/(1− εs) is not considered).

5.3.2 Steady states in selfish tumors

We now consider selfish tumors. We show that steady states in this case correspond

to the solution set of a second-degree polynomial in
√
x. If there are two solutions,

the one with a larger tumor population is stable if and only if the tumor population

exceeds a quarter of the carrying capacity. The steady state with the lower tumor cell

population is unstable and functions as a strong Allee threshold (Taylor and Hastings,

2005) below which tumor growth is negative.

The zero-growth isoclines of the selfish case can be calculated by setting g = 0,

ẋ = 0, and ẏ = 0, and are as follows: The zero-growth isocline of y is

y = L+ a
√
x, (5.8)

while the zero-growth isocline of x is

y =
√
x(1−

√
x

K
)

rs
γ(1− εs)

. (5.9)

This allows us to calculate the steady states of the selfish case.

Proposition 5.3.5. The triple (x∗, y∗, 0) is a steady state, if x∗ solves the following

equation

0 = − rs√
K
x∗ +

√
x∗(rs − aγ(1− εs))− γ(1− εs)L

and y∗ = L+ a
√
x∗.

Proof. Setting the two right hand sides of (5.8) and (5.9) equal and rearranging gives

0 = − rs√
K
x∗ +

√
x∗(rs − aγ(1− εs))− γ(1− εs)L.

�

Let

Ds = (rs − aγ(1− εs))2 − 4
L√
K
rsγ(1− εs)

denote the value of the discriminant. Then, the exact values of the steady states are

as follows:
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• if Ds > 0, there are two steady states, (x∗s1, y
∗
s1, 0), and (x∗s2, y

∗
s2, 0), with√

x∗s1,s2 =
(rs − aγ(1− εs))±

√
Ds

2 rs√
K

and y∗s1,s2 = L+ a
√
x∗s1,s2, as long as x∗s1,s2 > 0.

• if Ds = 0, there is a single steady state, (x∗s0, y
∗
s0, 0), where x∗s0 = (rs − aγ(1 −

εs))
√
K/2rs, and y∗s0 = L+ a

√
x∗s0, as long as x∗s0 > 0.

• if Ds < 0 (or if x∗s1,s2 < 0), there are no non-trivial steady states in selfish tumors.

The zero-growth isoclines intersect only if Ds ≥ 0 is satisfied, with two points of

intersection if Ds > 0, and one point of intersection if Ds = 0.

Proposition 5.3.6. Let Ds > 0. If x∗s1 >
K
4 , then (x∗s1, y

∗
s1, 0) is stable in x and y.

The proof is shown as an appendix. It relies on showing that the elements of the

problem’s Jacobian matrix take the following signs:

J(x∗s1, y
∗
s1) =

(
− −
+ −

)
,

with the negativity of the top left element hinging on the condition x∗s1 > K/4. Graph-

ically, this condition means that the larger equilibrium is to the right of the peak of

the x zero-growth isocline. Thus, the trace of the Jacobian is negative, and the deter-

minant positive, meaning that the steady state is stable. As long as the advantage of

selfishness is larger than the ratio of phenotypical reproduction rates, this is an ESS.

Corollary 5.3.7. Let Ds > 0. If x∗s1 > K/4, and if rc/rs < 1/(1−εs) then (x∗s1, y
∗
s1, 0)

is an ESS.

Proof. By Proposition 5.3.6 we have linear stability in x and y, and since the advantage

of selfishness is higher than the ratio of reproduction rates, Proposition 5.3.4 ensures

that the selfish phenotype resists invasion by the cooperative one. �

We illustrate the steady states in the selfish case, as well as some typical dynamic

properties in the following example.

Example 5.3.8. Consider a tumor of selfish cells and the following parameter values:

K = 625, L = 20, rs = 0.2, γ = 0.1, εs = 0.7. The interpretation is the following. The

carrying capacity of tumor cells is significantly higher than that of T-cells. The uncon-

strained rate of proliferation is 20%. In 10% of encounters, T-cells become activated,
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and the cancer cells resist destruction with a rate of 70% once a T-cell is activated, for

an effective kill rate of 3% per encounter. These parameters satisfy Ds > 0, hence we

have a total of five steady states. Fix a = 1 and ω = 470.

Figure 5.2 shows the zero-growth isoclines, phase diagram, and steady states of

this system. Black dots denote the trivial steady states of Remark 5.3.3, (0, 0), (0, L),

(K, 0), and red ones denote the steady states where both the tumor size and the T-cell

count is non-zero from Proposition 5.3.5. In Figure 5.3 we plot the growth of the tumor

100 200 300 400 500 600
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40

(x∗s2, y
∗
s2)

(x∗s1, y
∗
s1)

(0, L)

(0, 0) (K, 0)ω

x

y

ẏ = 0
ẋ = 0

Figure 5.2: Phase diagram of a selfish tumor with a positive discriminant. The steady state

with a lower cancer cell population is unstable, and serves as an Allee threshold. The steady

state with a higher cancer cell population is stable and is below the lethal tumor mass. Patient

could survive with the cancer burden indefinitely.

population as a function of population size, moving along the y zero-growth isocline,

a smooth function of x. Notice that the tumor’s growth rate along the zero-growth

isocline is maximized near a cancer cell population size of 150, or 24% of carrying

capacity. The change of population, compared to distances between steady states,

is small, a useful property for discretization of the model in conducting simulations.

By Proposition 5.3.5, we have the two steady states, x∗s1 = 281.6, y∗s1 = 36.78 and

x∗s2 = 20, y∗s2 = 24.47. The interpretation is the following. At the theoretical maximum

population count, the cancer cells are at 45% carrying capacity, while the T-cells are

at 184% of L, meaning that the immune reaction to the tumor burden is significant.

At the Allee threshold, the tumor burden is 3.2% of carrying capacity, whereas T-cells

are at 122% of L.

Below a tumor burden of 20, a strong immune system overcomes and eliminates

the cancer despite its relatively large growth potential. Above the Allee threshold, the

reproduction of cancer cells offsets even a strong immune response. Tumor growth is

maximized for values of about 150, and stops at the theoretical maximum of 281.6.

129



50 100 150 200 250 300

−2

−1

1

2

3

x∗s2 x∗s1 x
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Figure 5.3: The growth rate of a selfish tumor along the y zero-growth isocline. x∗s2 serves as

a strong Allee threshold. Tumor population stabilizes at x∗s1. Tumor growth is maximized at

the quarter of the tumor’s carrying capacity.

The model has two reasons for this absence of growth. First, a larger tumor induces

a larger immune reaction that directly hinders the proliferation of cancer cells, and

second, a larger tumor will face a lower abundance, and a lower uptake of resources

that the cells use to reproduce.

Note that if for any reason (i.e. hidden tumors, or immune deficiency) a smaller

tumor burden can manage to exceed the Allee threshold, reversing tumor growth be-

comes harder and harder as time passes. Another implication of this example is that

if a successful treatment eradicates a large fraction of the tumor, but not enough to go

below the Allee threshold, then in time the cancer will return.

Example 5.3.9. Consider the same parameter values as example 5.3.8, but with γ =

0.2 instead of 0.1, corresponding to a stronger immune system. Then Ds < 0, and the

zero-growth isocline of y lies above the zero-growth isocline of x. Figure 5.4 shows the

appropriate phase diagram. As per Proposition 5.3.5, there are no non-trivial steady

states. Note that the steady state, (0, L) behaves as an attractor for every initial

condition with y(0) > 0, meaning that the cancer is always eradicated (unless the

lethal tumor mass is reached before that happens).

5.3.3 Cooperative steady states

We now examine tumors composed of cooperative cancer cells. As before, the set of

steady states corresponds to the solution set of a second degree polynomial in
√
x, and
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Figure 5.4: Phase diagram of a selfish tumor with a negative discriminant. The zero-growth

isoclines do not intersect. A healthy immune system drives the cancer cells to extinction.

Patient is expected to become cancer free.

in case of two cooperative steady states the one with a higher cancer cell population

count is stable if the number of cancer cells exceed K/4. Similarly to the selfish case, we

calculate the zero-growth isocline curves by setting (5.3) and (5.6) to 0 and substituting

g = 1. The zero-growth isocline of y in the cooperative case is

ẏ = 0⇔ y = (L+ a
√
x)(1− δ

ri

√
x) = L+ a

√
x(a− δL

ri
)− a δ

ri
x, (5.10)

while the zero-growth isocline of x is

ẋ = 0⇔ y =
√
x(1−

√
x

K
)

rc
γ(1− εc)

. (5.11)

Proposition 5.3.10. The triple (x∗, y∗, 1) is a steady state, if x∗ solves the following

equation:

0 = (− rc√
K

+ aγ(1− εc)
δ

ri
)x∗ + (rc − γ(1− εc)(a−

δ

ri
L))
√
x∗ − γ(1− εc)L,

and y∗ =
√
x∗(1−

√
x∗

K ) rc
γ(1−εc) .

Proof. Setting the right hand sides equal and rearranging gives

ẋ√
x

= (− rc√
K

+ aγ(1− εc)
δ

ri
)x+ (rc − γ(1− εc)(a−

δ

ri
L))
√
x− γ(1− εc)L,

hence the roots of the above expression are the steady-state tumor masses. �

Let

Dc = (rc − γ(1− εc)(a−
δ

ri
L))2 − 4

L√
K
rcγ(1− εc) + 4aγ2(1− εc)2 δ

ri
L
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denote the value of the discriminant in the cooperative case. The exact values of the

steady states are as follows:

• if Dc > 0, there are two steady states, (x∗c1, y
∗
c2, 1), and (x∗c2, y

∗
c2, 1), where

√
x∗c1,c2 =

(rc − γ(1− εc)(a− δ
ri
L))±

√
Dc

2 rc√
K
− 2γ(1− εc) δri

,

and y∗c1,c2 = (L+a
√
xc1,c2)(1− δ

ri

√
x∗c1,c2), provided that y∗c1 and y∗c2 are positive.

• if Dc = 0, there is a single steady state, (x∗c0, y
∗
c0, 1), for which we have

√
x∗c0 =

(rc−γ(1−εc)(a− δ
ri
L))

2 rc√
K
−2γ(1−εc) δri

, and y∗c0 = (L + a
√
x∗c0)(1 − δ

ri

√
x∗c0), provided that y∗c0 is

positive.

• if Dc < 0, there are no steady states.

By analyzing the zero-growth isoclines in both cases one can see that the main difference

between the purely selfish and the purely cooperative case comes from the suppression

of T-cells by the cooperative phenotype. Notice that the T-cell zero-growth isocline

includes a factor of 1− (δ/ri)
√
x. This factor is increasing in T-cell reproduction rate

ri and decreasing in the suppression parameter δ, as well as the encounter rate per

T-cell
√
x. Hence a positive δ leads to a diminished T-cell population as a direct result

of suppression.

Note however, that immunosuppression also indirectly raises the T-cell population.

A lower T-cell population permits a higher steady-state tumor size, which in turn

raises the T-cell population via an increased carrying capacity of T-cells. This induces

a higher effective replenishment rate of the T-cell population.

We now state the conditions of a cooperative stable steady state.

Proposition 5.3.11. Let Dc > 0. If x∗c1 > K/4, then (x∗c1, y
∗
c1, 1) is linearly stable in

x and y.

The proof is shown as an appendix. The negativity of the Jacobian’s trace is assured

by the x∗c1 > K/4 condition, whereas the positivity of the determinant is due to the

fact that the T-cell zero-growth isocline intersects the cancer’s zero-growth isocline

from below. If the advantage of selfishness is lower than the ratio of phenotypical

reproduction rates, this steady state is also an ESS.

Corollary 5.3.12. Let Dc > 0. If x∗s1 > K/4, and if rc/rs > 1/(1 − εs) then

(x∗c1, y
∗
c1, 1) is an ESS.
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Proof. By Proposition 5.3.11 we have linear stability in x and y, and since the ad-

vantage of selfishness is lower than the ratio of reproduction rates, Proposition 5.3.4

ensures that the cooperative phenotype resists an invasion by the selfish phenotype. �

Together, Corollaries 5.3.7 and 5.3.12 mean that there is always a unique ESS of the

system, and the phenotype therein is determined by the advantage of selfishness.

Example 5.3.13. Consider a tumor with only cooperative cells and the following

parameter values: K = 625, L = 20, rc = 0.2, ri = 0.1, γ = 0.1, εc = 0.7, a = 1. We

retain the values for the reproduction rate and resistance parameter of example 5.3.8

so that we can better demonstrate the effect of immunosuppression. Figure 5.5 shows

the isocline diagram, plotted for δ = 0.003. The interpretation is that T-cells are killed

with a rate of 0.3% per encounter. In this example, the cancer cell population and the

T-cell population act as competitors, as both zero-growth isoclines have negative slopes

at the stable non-trivial steady-state. Notice that the cancer’s zero-growth isocline is
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Figure 5.5: Phase diagram of a cooperative tumor with two non-trivial steady states. The

steady state with lower cancer cell population is unstable, and serves as an Allee threshold.

The steady state with higher cancer cell population is stable, and is above the lethal tumor

mass. Patient prognosis is poor.

unaffected by the change in the suppression parameter and remains a concave curve,

as in example 5.3.8. However, with δ > 0, the zero-growth isocline for y has an upward

sloping part and becomes downward sloping. Two non-trivial steady states exist.

In Figure 5.6 we plot the same diagram with δ = 0.005, corresponding to a stronger

immunosuppression ability of the cooperative phenotype (for this calibration, the zero-

growth isocline of y reduces to a line). In this case, the steady state (x∗c1, y
∗
c1) is out of

bounds, since x∗c1 > K and y∗c1 < 0, meaning that we only get one non-trivial steady
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state, (x∗c2, y
∗
c2), a saddle point, leaving (0, L) and (K, 0) as stable steady states. A

complete suppression of the immune system is therefore possible.
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Figure 5.6: Phase diagram of a cooperative tumor with a single non-trivial steady state. The

zero-growth isoclines intersect in the positive quadrant only once. A complete suppression of

the immune system becomes possible. Patient prognosis is grave.

5.4 Treatment effects

The principal objectives behind cancer modeling are to improve and inform the re-

search into therapy. Here we explore the implications of our model for cancer therapy

strategies. We do this by investigating how a change in the tumor’s micro-environment

affects the tumor and the immune system and then draw conclusions on their influence

on the patient’s prognosis.

Patient outcome in our model can be measured as survival time and/or as the

tumor’s steady-state size. Our survival time measure relates to what is known as

progression free survival time following the initiation of therapy. This can be actual

time before patient death, or it may represent the time before another line of therapy

becomes necessary. The steady-state size of the primary tumor may be of interest as

this may correlate with the likelihood or rate of metastases. We can use our model to

examine the nature and effectiveness of various forms of immunotherapy. Specifically,

we are interested in how changes in model parameter values and outcomes can be

interpreted from a therapeutic standpoint. Immunotherapy likely influences three key

parameters of the model:

1. Increasing γ, the rate at which cancer cells have lethal encounters with T-cells.

In immunotherapy this is often accomplished by using retroviruses or vaccines that
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tag the cancer cells with an antigen that can be detected by the patient’s immune

system, thus eliciting the production of antigen specific T-cells. Alternatively, immune

cells from the patient may be entrained and cultured in vitro to recognize cancer cells

collected through biopsy. These immune cells are then injected into the patient.

2. Decreasing δ, the suppression parameter of the cooperative phenotype. Targeted

therapy can be used to lower the cooperative phenotype’s ability to suppress the im-

mune system. Such therapy by neutralizing the cancer cells’ signaling or by killing cells

that overexpress PDL-1, either reduce δ, or strongly select against cancer cells with

high values of δ.

3. Decreasing εc and εs, the resistance rates of the two phenotypes. The T-cells kill

cancer cells through direct contact, and the injection of proteins that initiate apoptosis

(cell death). Cancer cells may exaggerate glycolysis to produce lactic acid. The se-

creted lactic acid by reducing Ph creates a protective moat that impairs contact with

an encountered T-cell. This is often associated with the upregulation of carboanhy-

drous IX (CAIX) that assists the cancer cell in maintaining and surviving an acidic

environment. Buffer therapies can be added to the immunotherapy as a means of

raising the Ph of the tumor and rendering the cancer cells’ acidic moat ineffective to

lower εc (Ibrahim-Hashim et al., 2017). Checkpoint inhibitors may unmask the selfish

phenotype, making the selfish phenotype more susceptible to destruction by the T-cells

(Pardoll, 2012).

With such therapies in mind, in this section we consider the effects of these key

parameters on the trajectory of tumor growth and the steady-state size of the tumor.

We do this by using comparative statics and simulations on a discretized model, using

finite difference approximation. Our conclusions are as follows.

1. Increased immune system efficiency and/or decreased cooperative resistance pro-

longs the patient’s survival time and lowers tumor mass at the stable steady

state.

2. Decreased immunosuppression prolongs the patient’s survival time in tumors that

feature the cooperative phenotype. It decreases tumor mass at the stable steady

state, if it is cooperative, and has no effect on the stable steady state, if it is

selfish.

3. Decreased crypticity has ambiguous effects. It may increase or decrease the

patient’s survival time and increase or decrease tumor mass at the stable steady

state.
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The first two findings are in line with expectations, while the third may seem counter-

intuitive. The reason for this is that reduced crypticity lowers the advantage of selfish-

ness, and thus pushes the cancer cells towards an ESS with cooperative cancer cells.

If the tumor becomes cooperative instead of selfish at the stable steady state, the pa-

tient’s prognosis may be worse due to the cooperative phenotype’s immunosuppression.

Treatments that increase the immune system’s efficiency, decrease the cooperative re-

sistance, or decrease immunosuppression have no effect on the advantage of selfishness.

Hence, these treatment strategies do not influence the tumor’s steady-state composition

and there is no ambiguity in their benefits on the patient’s prognosis.

The remainder of this section formalizes, extends, and illustrates the above results.

5.4.1 Effective treatment strategies

Any treatment that does not change the advantage of selfishness can be shown to be

effective. We first formalize the effects of the parameters γ and εc on the steady-state

tumor size.

Proposition 5.4.1.

1. If Dc is positive then, for every parametrization, the following comparative statics

hold:

a.
∂x∗c1
∂γ < 0,

∂x∗c2
∂γ > 0,

b.
∂x∗c1
∂εc

> 0,
∂x∗c2
∂εc

< 0.

2. If Ds is positive then, for every parametrization, the following comparative statics

hold:

a.
∂x∗s1
∂γ < 0,

∂x∗s2
∂γ > 0,

b.
∂x∗s1
∂εc

= 0,
∂x∗s2
∂εc

= 0.

Proof. 1.a. Consider the zero-growth isoclines of the cooperative case, (5.10) and

(5.11). Since Dc > 0 we have two intersection points, and since the zero-growth

isocline of x includes the origin, while that of y has a positive y-intercept, it must hold

that at x∗c2 the zero-growth isocline of y intersects that of x from above, while at x∗c1

the zero-growth isocline of x intersects that of y from below. Raising γ affects only the

zero-growth isocline of x, compressing it towards the x-axis. It follows that the points

of intersection must move closer together, hence tumor mass decreases at the stable

steady state, and the Allee threshold is achieved at a higher tumor mass.
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b. Decreasing εc has the same effect as increasing γ.

2.a. This case is identical to 1.a, but instead of the isoclines of the cooperative case

we need to use (5.8) and (5.9).

b. Changing εc has no effect on the zero-growth isoclines in the selfish case, hence

the selfish steady states do not change. �

Proposition 5.4.1 confirms the first point outlined at the beginning of this section.

Treating for immune system efficiency and/or cooperative resistance decreases tumor

mass at the stable steady state, making metastases less likely. In addition, this treat-

ment increases the Allee threshold, thereby making the cancer population more vulner-

able to other forms of treatment (Tobin et al., 2011). Figure 5.7 shows the qualitative

effects of an increased immune efficiency parameter on the two cooperative steady

states with original parameters taken from Example 5.3.13. The dashed red line shows

the original cancer zero-growth isocline, the solid red line shows the zero-growth iso-

cline after the increase. Note that in this example the treatment results in the cancer

cell population at the stable steady state being lower than the critical tumor mass,

hence a patient may survive indefinitely with the tumor burden due to this therapy.
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Figure 5.7: The effect of an increased γ on cooperative steady states. The cancer zero-growth

isocline is compressed towards the horizontal axis. Tumor mass becomes higher at the Allee

threshold, and lower at the stable steady state. Steady-state tumor mass falls below the lethal

value. Patient prognosis improves as a result of the treatment.

Next, we formulate the relationship between the suppression parameter and steady-

state tumor sizes for cooperative tumors.

Proposition 5.4.2. If Dc is positive then, for every parametrization, the following

comparative statics hold:
∂x∗c1
∂δ > 0,

∂x∗c2
∂δ < 0.
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Proof. We again consider the two zero-growth isoclines of the cooperative case, (5.10)

and (5.11). Raising δ has no effect on the cancer zero-growth isocline, while it decreases

the slope of the T-cell isocline. Hence the points of intersection of the two curves must

spread farther apart, implying the stated inequalities. �

Proposition 5.4.2 confirms the second point highlighted in the beginning of this

section. It implies that lowering the immunosuppression parameter via treatment has

the same qualitative effect on steady states in cooperative tumors as strengthening

the immune system. Clearly, such a treatment has no effect on a purely selfish tumor

as the selfish phenotype does not display immunosuppression. Figure 5.8 shows the

qualitative effects of a decreased immunosuppression parameter on the two cooperative

steady states with original parameters retained from Example 5.3.13. The dashed blue

line shows the original T-cell zero-growth isocline, the solid red line shows the zero-

growth isocline after the treatment. Once again, this example shows a treatment that

results in the cancer cell population at the stable steady state being lower than the

critical tumor mass. We now consider the effects of therapy on the survival time of the
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Figure 5.8: The effect of an decreased δ on cooperative steady states. The T-cell zero-growth

isocline is tilted upward. Tumor mass becomes higher at the Allee threshold, and lower at the

stable steady state. Steady-state tumor mass falls below the lethal value. Patient prognosis

improves as the result of the treatment.

patient, T , a variable determining the viability of a treatment strategy. We develop

a round of simulations in a discrete model to obtain approximations of the effects of

treatments via γ and in δ on survival time. Let xtc, x
t
s, y

t denote cooperative, selfish, and

T-cell populations at time t = 0, 1, 2 . . . for a given initial state (x0
c , x

0
s, y

0). For t ≥ 0

the dynamics of the state-variables were determined by finite difference approximations

of equations (5.1), (5.2), (5.6) with time step 1. The differences between values of time
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t and t − 1, ∆xtc = xtc − xt−1
c , ∆xts = xts − xt−1

s , and ∆yt = yt − yt−1 are given

by the right hand sides of the respective equations, substituting the previous values

xt−1
c , xt−1

s , and yt−1. The time step 1 was chosen for intuitive simplicity, and because

the differences are of a suitably small magnitude to ensure smooth dynamics (see e.g.

Figure 5.3).

The configurations used are as follows: K = 625, L = 20, rs = 0.19, rc = 0.2,

εs = 0.7, εc = 1, a = 1. We considered three possible critical tumor masses ω1 = 150,

ω2 = 200, ω3 = 250. The initial conditions of the system are characterized by x(0) =

40, y(0) = 20, g(0) = 0.7. Note that recalibrating the model with different parameters

and initial conditions does not change the qualitative effects but may lead to an early

extinction of the tumor, making survival times infinite. For different combinations of

γ and δ, Table 5.1 gives the times T1, T2, and T3 at which the tumor mass exceeds

the critical tumor masses ω1, ω2, and ω3, respectively, i.e. Ti = inf{t > 0: x(t) > ωi}.
The trends in each table are clear, for all three critical tumor masses, increasing γ or

T1

γ

0.025 0.05 0.075 0.1

δ

0.001 13 15 20 41

0.003 13 15 19 31

0.005 13 15 18 26

0.007 13 15 17 23

0.009 13 14 17 21

T2

γ

0.025 0.05 0.075 0.1

δ

0.001 17 20 27 58

0.003 16 19 25 48

0.005 16 19 23 37

0.007 16 18 22 31

0.009 16 18 21 27

T3

γ

0.025 0.05 0.075 0.1

δ

0.001 20 24 36 90

0.003 20 23 31 76

0.005 20 23 28 54

0.007 19 22 26 39

0.009 19 22 25 33

Table 5.1: Survival times for different combinations of γ and δ. Patient prognosis improves

with increase in γ and decrease in δ.

decreasing δ weakly increases survival time. Clearly, patients live the longest when

the immune system is strongest and immunosuppression is weakest, corresponding to
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the upper right corners of each table. Conversely, when the immune system is weak

and immunosuppression is the strong, life expectancy is lowest, corresponding to the

bottom left corners of the tables. Furthermore, notice that a stronger immune system

means a stronger effect of immunosuppression. All of these observations predicted by

our model fall in line with basic intuitions about immunotherapy.

5.4.2 Ambiguous effects of treating against cancer crypticity

Treating for the selfish resistance rate – the crypticity parameter – may have ambiguous

effects on the patient. Specifically, we first show that reducing the resistance rate may

both increase or decrease the tumor population at the stable steady state. On first

glance this may seem counter-intuitive as it is easy to show that selfish steady states

react the same way to a treatment of εs as cooperative ones to that of εc.

Proposition 5.4.3. If Ds is positive then, for every parametrization, the following

comparative statics hold: ∂x∗c1/∂εs > 0, ∂x∗c2/∂εs < 0.

Proof. Very similar to Proposition 5.4.1 1.b. �

Proposition 5.4.3 indicates that marginal changes of the selfish resistance parameter

also constitute an effective treatment, as they have no effect on steady-state compo-

sition. However, if due to a major change of εs, the advantage of selfishness becomes

lower than the ratio of the reproduction rates, rc/rs, then the system’s ESS may be-

come cooperative instead of selfish. This may worsen the patient’s prognosis. We

provide an example to illustrate this.

Example 5.4.4. Consider the following calibration: K = 625, L = 20, rc = 0.2,

rs = 0.19, εc = εs = 0.7, δ = 0.001, γ = 0.1. In this case, rc(1−εs) = 0.06 < 0.19 = rs,

so the advantage of selfishness is substantial. The system’s only ESS is (x∗s1, y
∗
s1, 0)

where the tumor size is x∗s1 = 261.5. At the steady state, the cancer cells are at 42%

of carrying capacity, while the T-cell population is 36.17, 181% of carrying capacity.

Suppose that the selfish phenotype’s defenses are fully eliminated, i.e. ε′s = 0 due

to a successful treatment. The interpretation is that cancer cells are no longer able to

block immune checkpoints. As a result, the advantage of selfishness is minimized, and

rc(1 − ε′s) > rs. The new ESS is (x∗c1, y
∗
c1, 1). The tumor size is x∗c1 = 349.2, or 56%

carrying capacity, which is a 34% increase in size. For the number of T-cells, we have

31.45, 157% of carrying capacity, a decrease of 13% in population. Additionally, we

face a decrease in the Allee threshold, from x∗s2 = 23.8, or 3.8% carrying capacity to
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x∗c2 = 17.4, 2.8% carrying capacity, a decrease of 27%. The tumor has switched from

selfish to cooperative cancer cells.

Example 5.4.4 shows the importance of treatment effects on tumor composition: a

treatment of the selfish phenotype’s crypticity has led to an increase in the steady-

state tumor size. However, this is not a general rule. As per Proposition 5.4.3, such a

treatment always decreases tumor size if the tumor composition at the steady state is

preserved.

The effects of treatment on the patient’s prognosis are also ambiguous. Consider

once again the configuration used for the previous simulation: K = 25, L = 20,

rs = 0.19, rc = 0.2, εc = 1, a = 1, complete with γ = 0.1 and δ = 0.005, and critical

tumor masses ω1 = 150, ω2 = 200, ω3 = 250. The initial conditions for the system

are x(0) = 40, y(0) = 20, g(0) = 0.7. Table 5.2 contains the T1, T2, and T3 levels

for different values of εs with the same initial conditions as before. Unsurprisingly,

εs T1 T2 T3

0 23 29 33

0.1 24 30 35

0.2 25 31 37

0.3 26 33 41

0.4 27 36 ∞
0.5 27 45 ∞
0.6 28 ∞ ∞
0.7 26 37 54

0.8 24 32 39

0.9 22 28 33

1 20 25 29

Table 5.2: Survival times with different values of εs for different critical tumor masses. De-

creasing the selfish resistance rate below 0.6 decreases the patient’s survival time.

survival times are minimized for the maximum resistance rate of 1, and go higher as εs

is lowered. However, instead of a monotonic relationship, survival times are maximized

for a resistance rate of 0.6 and go down again. This implies that treating a patient with

resistance rate of 0.7 is dangerous, as exposing the selfish cancer cells to the immune

system too much will lower life expectancy.

The explanation of this phenomenon comes from the phenotypes’ competition for
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resources. Treatment of the selfish phenotype results in increased proliferation by the

cooperative phenotype, making the tumor more aggressive without slowing its growth.

This is in line with Proposition 5.3.4, as lowering the advantage of selfishness results

in a cooperative tumor. For εs = 0, the advantage of selfishness is nil, and lower than

rc/rs, meaning that the tumor converges to the stable cooperative steady state, x∗c1.

For all other displayed values of εs, the advantage of selfishness is higher than the ratio

of birth rates, meaning that the tumor either converges to the stable selfish steady state

x∗s1, or goes extinct. In the above cases, for 0.1 ≤ εs ≤ 0.6, the tumor goes extinct (but

not before potentially visiting the critical tumor mass), and for values 0.7 ≤ εs ≤ 1, it

converges to the stable selfish steady state.

Figure 5.9 shows the transient dynamics of the cancer and the immune system for

four different values of selfish resistance rate, 0, 0.3, 0.6, and 0.9. For a value of 0, the

tumor grows rapidly, then progresses to the cooperative steady state, with the selfish

phenotype slowly going extinct. For a value of 0.3, the tumor shows rapid growth,

but the cooperative cells are outcompeted by the selfish cells. As the cooperative

phenotype declines, the T-cells experience a comeback, and eradicate all cancer cells.

For a value of 0.6, the same thing happens, but in this case the selfish phenotype is

more resistant, which results in a quicker extinction of the cooperative cells, a slower

tumor growth, and a slower extinction of the tumor. For a value of 0.9, the cooperative

cells are eradicated even faster, but the selfish cells are resistant enough to withstand

the immune system, resulting in rapid tumor growth towards a stable equilibrium with

large tumor size. Interestingly, optimal patient prognosis occurs when the selfish cells

have moderately strong resistance. This produces a rapid eradication of the tumor cells

and a smaller maximum tumor size prior to the immune system eventually eliminating

the selfish cells as well.

Note that the ambiguous outcome of treatment effects in εs is maintained for dif-

ferent configurations, even if rc < rs. In this case, the advantage of selfishness is always

larger than rc/rs, hence the only ESS is the stable selfish steady state. However, if

the immunosuppression parameter is large enough, a treatment of the selfish resistance

rate may still worsen the patient’s prognosis, as without enough selfish cells to com-

pete with the cooperative cells, the highly aggressive cooperative phenotype gains a

larger growth rate. Thus, even though steady-state tumor composition is preserved

and treatment decreases steady-state tumor size, the survival time of the patient may

still decrease.
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Figure 5.9: Transient dynamics of the system with different selfish resistance parameter values.

For small and large values of εs the tumor progresses to its stable equilibrium, for interme-

diate values, it is eliminated. Intermediate values of selfish resistance result in better patient

prognosis than extreme ones.

5.5 Conclusion

We use game theory to model the dynamics of cancer cells and the immune system as

a predator-prey system. The cancer cells exhibit two strategies. One confers resistance

(safety) to the focal individual with no effect on the survival of others, while the second

confers safety to both the individual and its neighbors. We refer to the former strategy

as “selfish” because it only helps itself, and the latter as “cooperative” because it

provides a public good. The model always exhibits three general outcomes: extinction

of the cancer cells with some residual population of T-cells, the coexistence of one or

the other cancer strategy with a population of T-cells, or the extinction of the T-cells

with cancer cells going to their carrying capacity (this can only happen when the cancer

cells are cooperative).

The model always results in a single pure-strategy ESS. If the two strategies share

the same growth parameters, save for those associated with providing the public good,

then the selfish strategy outcompetes the cooperative one. In this way, the game is

a kind of prisoner’s dilemma embedded within a population model based on logistic

growth and “predation” from the immune system. Others who have addressed the
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more general question of the evolution of cooperation, such as Axelrod and Axelrod

(1984) have found that cooperation can prevail against selfishness if there are non-

random interactions such as the clumping of individual by type in space (Nowak and

May, 1992; Ale et al., 2013), or if cooperators can either withhold benefits from selfish

individuals through conditional strategies such as Tit-for-Tat (Nowak and Sigmund,

1992), or otherwise punish defectors (Fudenberg and Maskin, 1986). Neither of these

features for evolving cooperation occur within our model. However, cooperation can

be the ESS if the intrinsic growth rate of the cooperators is sufficiently higher than

that of the selfish individuals. If the advantage of selfishness is higher than the ratio

of reproduction rates, the tumor is selfish, if it is lower, the tumor is cooperative.

As a predator-prey model, our immune-cancer model has several properties and

consequences. As victims of the T-cells, the cancer cells experience mortality that

increases with the population size of T-cells. Furthermore, the T-cells exert mortality

as a Type II-like functional response. This means that the cancer cells experience

safety in numbers, regardless their type, and so their isocline is humped shaped as seen

in Rosenzweig and MacArthur (1963). The upward sloping region of a cancer cell’s

isocline (in the state space of cancer cell and T-cell population sizes) represents an

Allee effect (Taylor and Hastings, 2005) as safety in numbers more than compensates

for intra-cancer cell competition.

The T-cell population is not a predator in the traditional sense. In our model they

have a carrying capacity set by the innate immune system of the patient. This attribute

is in line with predator-prey models where the predators receive a subsidy from outside

of the system (Nevai and Van Gorder, 2012). But, unlike these models, the T-cells gain

no resources nor survival advantages from killing cancer cell. The growth rate of the

T-cells does not increase with the mortality that they induce, rather, it is the overall

population size of cancer cells that stimulates their growth rate. To incorporate this

reality of T-cells, we let their carrying capacity increase with cancer cell population

size. When the cancer cells are selfish, this produces a T-cell zero-growth isocline with

a positive slope and a positive T-cell intercept. Combining the selfish cancer cell’s

and T-cell’s isoclines produces up to two interior solutions. The first is an unstable

extinction threshold, typical of many ecological models with an Allee effect. If the

cancer population size drops too low they will go extinct and the cancer is cured. If the

population size grows to a level above this threshold then a second, stable equilibrium

is achieved (for some parameterizations this second interior equilibrium may yield a

stable limit cycle) with a substantially higher cancer cell population and a higher T-cell

population as well.
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The interaction between the cooperative cancer cells and the immune system causes

the model to deviate further from a standard predator-prey model. The immunosup-

pressive effect of the cooperative cancer cells means their presence exerts mortality on

the T-cells — the cancer cells now have a predator-like effect on the T-cells even as

they still enhance the T-cells’ carrying capacity. The combined effects of the cooper-

ative cancer cells on the T-cells means that the T-cell’s zero-growth isocline can now

either exhibit a hump (allowing for either two or even three interior equilibria), or it

may be everywhere negatively sloped (allowing for either two interior equilibria or a

single interior equilibrium). In this case, if the isoclines only permit a single interior

equilibrium then it is a double extinction threshold, meaning that it separates the re-

gion where the T-cells drive the cancer cells extinct from the region where the cancer

cells drive the T-cells extinct, meaning complete immunosuppression.

By considering the two immune evasion strategies our model reveals a more diverse

array of transient dynamics and equilibria than the models of Robertson-Tessi et al.

(2012) and Nakada et al. (2016). Furthermore, we have included the two ways that

cancer cells might promote or inhibit T-cell persistence and recruitment in a more

sophisticated and realistic fashion. Our two immune evasion strategies of selfish and

cooperative mimic two broad classes of resistance strategies by cancer cells. In response

to the immune system some cancer cells down-regulate the antigen that elicits T-cell

attacks. This amounts to a form of crypticity that selfishly protects the focal cell while

likely having little impact on the other cancer cells around it. On the other hand,

cancer cells can also evolve the means to actually suppress T-cell recruitment and

proliferation. This can be done by either directly signaling T-cells to cease functioning

or by downregulating the cues that signal macrophages to stimulate T-cell proliferation

(Gajewski et al., 2013).

Immunotherapy in our model acts through model parameters that enhance the

lethal encounter rate of T-cells with cancer cells, reduce the advantage of selfishness

(render crypticity ineffective), or decrease the immunosuppressive effect of cooperators

(Ghirelli and Hagemann, 2013). These actions generally have positive therapeutic out-

comes in terms of slowing the rate of tumor growth, increasing the extinction threshold

below which the cancer will be cured, and decreasing the ultimate size of the tumor. If

this size is below the lethal threshold for the patient then this may be a durable out-

come, akin to adaptive therapy (Gatenby et al., 2009). However, by rendering crypticity

ineffective, the tumor may shift from one dominated by selfish cells to one dominated

by cooperative ones. As an unintended consequence, tumor size at the evolutionarily

ESS may increase, and the patient’s prognosis may be substantially worsened.
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Our model can also consider other therapies (singly or in combination) where a

cytotoxic drug or radiation therapy may influence the efficacy of the patient’s natural

immune system or additional immunotherapy. For instance, a cytotoxic drug may

reduce the cancer cell’s intrinsic growth rate by targeting cells with high proliferation

rates. Or a targeted therapy may reduce the population size of cancer cells to below

their extinction threshold. This becomes akin to the abscopal effect (Mole, 1953).

A number of clinical examples exist where radiation therapy can induce a stronger

immune response. If the cancer cell population is sufficiently depressed by radiation

therapy, ours and other models suggest an extinction threshold where the immune

system can now eradicate the residual cancer cell population.

A main takeaway of this chapter is that in order to shrink, or fix tumor size through

immunotherapy, the effects on tumor composition cannot be ignored. This is a well-

known thesis in other aspects of cancer therapy, e.g. in the treatment of prostate

cancer (You et al., 2017), but is yet to be adopted in immunotherapy. More specifically,

our model identifies increasing immune efficiency and decreasing immunosuppression

as viable treatment options. Both are shown to lower tumor burden and decrease

the likelihood of cancer progression and metastasis via decreasing tumor size at the

ESS, as well as to increase the patient’s life expectancy. In most dynamic models of

heterogeneous tumors – this chapter’s included – the quantitative effects of treatment

with respect to tumor composition are analytically intractable. The same holds for

life expectancy or most other proxies of the patient’s prognosis. However, based on

our work, a general qualitative statement can be formalized: treatment strategies that

influence tumor composition are risky, whereas those that preserve composition are

viable. Our findings merit more research aimed out identifying the risks and potential

benefits of the former kind of treatment, and to validate our conclusions for the latter,

whereas our proposed framework opens the possibility of integrating game theoretic

concepts and ideas into the modeling of the interactions between heterogeneous tumors

and the immune system.

5.A Appendix

The appendix of this chapter contains the more technical proofs.

Proposition 5.3.6. Let Ds > 0. If x∗s1 >
K
4 , then (x∗s1, y

∗
s1, 0) is linearly stable in x

and y.
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Proof. The system is as follows.

ẋ = rs(1−
√
x

K
)x− γ(1− εs)

√
xy = F (x, y),

ẏ = ri(1−
y

L+ a
√
x

)y = G(x, y).

Consider the Jacobian of the problem.

J(x∗s1, y
∗
s1) =

(
∂F (x,y)
∂x

∂F (x,y)
∂y

∂G(x,y)
∂x

∂G(x,y)
∂y

)
(x∗s1, y

∗
s1).

The elements are as follows.

1, ∂F (x,y)
∂x (x∗s1, y

∗
s1) < 0. We can show this by taking

∂F (x, y)

∂x
= rs(1−

3
√
x

2
√
K

)− y

2
√
x
γ(1− εs).

Note that since ẋ = 0 at the steady state, we have rs(1 −
√
x∗s1√
K

) = γ(1 − εs) y∗s1√
x∗s1

.

Thus, substituting gives

∂F (x, y)

∂x
(x∗s1, y

∗
s1) = rs(

1

2
−
√
x∗s1√
K

) < 0,

by using
√
x∗s1 >

√
K/2.

2, ∂F (x,y)
∂y (x∗s1, y

∗
s1) < 0. This is shown by simply taking

∂F (x, y)

∂y
= −γ(1− εs)

√
x < 0,

for all x > 0.

3, ∂G(x,y)
∂x (x∗s1, y

∗
s1) > 0. This is shown by taking

∂G(x, y)

∂x
= ri

a

2
√
x

y2

(L+ a
√
x)2

> 0,

for all x, y > 0.

4, ∂G(x,y)
∂y (x∗s1, y

∗
s1) < 0. This is shown by taking

∂G(x, y)

∂y
= ri −

2y

L+ a
√
x
.

At the steady state we have y∗s1 = L+a
√
x∗s1, thus ∂G(x,y)

∂y (x∗s1, y
∗
s1) = ri−2ri = −ri <

0.
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So, qualitatively, we have

J(x∗s1, y
∗
s1) =

(
− −
+ −

)
,

meaning that Tr(J(x∗s1, y
∗
s1)) < 0, and Det(J(x∗s1, y

∗
s1)) > 0, thus the steady state

(x∗s1, y
∗
s1) is stable for deviations in x and y. �

Lemma 5.A.1. For the steady state, (x∗c1, y
∗
c1, 1), it holds that

x∗c1√
K(L+ ad

ri
x∗c1)

>
γ(1− εc)

rc
.

Proof. At (x∗c1, y
∗
c1, 1), the zero isocline of y intersects that of x from below. Hence,

the derivative of the former, evaluated at the steady state, is greater:

√
x∗c1(

1

2
−
√
x∗c1√
K

)
rc

γ(1− εc)
<
a

2

√
x∗c1 −

δ

2ri
L
√
x∗c1 − a

δ

ri
x∗c1. (5.12)

At the same time, since the point (x∗c1, y
∗
c1) lies upon both isoclines we have

y∗c1 =
√
x∗c1(1−

√
x∗c1√
K

)
rc

γ(1− εc)
= L+ a

√
x∗c1 −

δ

ri
L
√
x∗c1 − a

δ

ri
x∗c1.

Hence, we get

√
x∗c1(1−

√
x∗c1√
K

)
rc

γ(1− εc)
− L+ a

δ

ri
x∗c1 = a

√
x∗c1 −

δ

ri
L
√
x∗c1.

Applying 5.12 gives

√
x∗c1(1−

√
x∗c1√
K

)
rc

γ(1− εc)
− L+ a

δ

ri
x∗c1 > 2

√
x∗c1(

1

2
−
√
x∗c1√
K

)
rc

γ(1− εc)
+ 2a

δ

ri
x∗c1.

After rearranging we have

x∗c1√
K

rc
γ(1− εc)

− L− a δ
ri
x∗c1 > 0.

A final rearrangement gives

x∗c1√
K(L+ ad

ri
x∗c1)

>
γ(1− εc)

rc
,

as stated. �

Proposition 5.3.11 Let Dc > 0. If x∗c1 >
K
4 , then (x∗c1, y

∗
c1, 1) is linearly stable in x

and y.
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Proof. The system is as follows.

ẋ = rc(1−
√
x

K
)x− γ(1− εc)

√
xy = F (x, y),

ẏ = ri(1−
y

L+ a
√
x

)y − δ
√
xy = G(x, y).

Again, consider the Jacobian of the problem.

J(x∗c1, y
∗
c1) =

(
∂F (x,y)
∂x

∂F (x,y)
∂y

∂G(x,y)
∂x

∂G(x,y)
∂y

)
(x∗c1, y

∗
c1).

As before, we have 1, ∂F (x,y)
∂x (x∗c1, y

∗
c1) = rc(1−

3
√
x∗c1

2
√
K

)− y∗c1
2
√
x∗c1
γ(1−εc) = rc(

1
2−
√
x∗c1√
K

).

2, ∂F (x,y)
∂y (x∗c1, y

∗
c1) = −γ(1−εc)

√
x∗c1. Since (x∗c1, y

∗
c1) is on the zero-growth isocline

of x we have γ(1− εc)
√
x∗c1y

∗
c1 = rc(1−

√
x∗c1√
K

)x∗c1, hence

∂F (x, y)

∂y
(x∗c1, y

∗
c1) = −rc(1−

√
x∗c1√
K

)
x∗c1
y∗c1

.

3, ∂G(x,y)
∂x (x∗c1, y

∗
c1) = ri

a

2
√
x∗c1

y2c1
(L+a
√
x∗c1)2

− δ

2
√
x∗c1
y∗c1. Since the steady state is on

the zero-growth isocline of y we have ri(1− y∗c1
L+a
√
x∗c1

) = δ
√
x∗c1, hence

∂G(x, y)

∂x
(x∗c1, y

∗
c1) =

1

2
ri(a

√
x∗c1

y∗c1
(L+ a

√
x∗c1)2

+
y∗c1

L+ a
√
xc1
− 1)

y∗c1
x∗c1

.

4, ∂G(x,y)
∂y = ri(1 − 2y

L+a
√
x

) − δ
√
x. Using the steady-state condition, i.e. ri(1 −

y∗c1
L+a
√
x∗c1

) = δ
√
x∗c1 gives

∂G(x,y)
∂y (x∗c1, y

∗
c1) = −ri y∗c1

L+a
√
x∗c1

.

As before, Tr(J(x∗c1, y
∗
c1)) < 0, for x∗c1 > K/4. For the determinant, we calculate

∂F (x, y)

∂x
(x∗c1, y

∗
c1)

∂G(x, y)

∂y
(x∗c1, y

∗
c1) =− rcri(

1

2
−
√
x∗c1√
K

)
y∗c1

L+ a
√
x∗c1

,

=

−1

2
rcri(1−

√
x∗c1√
K

)(a
√
x∗c1

y∗c1
(L+ a

√
x∗c1)2

+
y∗c1

L+ a
√
xc1
− 1).
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Therefore, the determinant is as follows:

Det(J(x∗c1, y
∗
c1))

=
1

2
rcri

(√
x∗c1√
K
− 1−

√
x∗c1√
K

a
√
x∗c1y

∗
c1

(L+ a
√
x∗c1)2

+
a
√
x∗c1y

∗
c1

(L+ a
√
x∗c1)2

+

√
x∗c1√
K

y∗c1
L+ a

√
xc1

)
,

=
1

2
rcri

(
(1−

√
x∗c1√
K

)(
a
√
x∗c1y

∗
c1

(L+ a
√
x∗c1)2

− 1)) +

√
x∗c1√
K

y∗c1
L+ a

√
xc1

)
.

We use the fact that the steady state lies along the zero-growth isocline of x and

substitute y∗c1 =
√
x∗c1(1−

√
x∗c1√
K

) rc
γ(1−εc) into the last bracketed term to get

Det(J(x∗c1, y
∗
c1)) =

1

2
rcri(1−

√
x∗c1
K

)

(
x∗c1
K

rc
γ(1− εc)

1

L+ a
√
x∗c1

+
y∗c1a

√
x∗c1

(L+ a
√
x∗c1)2

− 1

)
.

Now we use the zero-growth isocline of y and substitute y∗c1 = (L+a
√
x∗c1)(1− δ

ri

√
x∗c1),

which gives

Det(J(x∗c1, y
∗
c1)) =

1

2
rcri(1−

√
x∗c1√
K

)

(
x∗c1√
K

rc
γ(1− εc)

1

L+ a
√
x∗c1

+ a
√
x∗c1(1− δ

ri

√
x∗c1)

1

L+ a
√
x∗c1
− 1

)

therefore, Det(J(x∗c1, y
∗
c1)) > 0 if and only if we have

x∗c1√
K

rc
γ(1− εc)

+ a
√
x∗c1(1− δ

ri

√
x∗c1) > L+ a

√
x∗c1.

Rearranging gives the condition as

x∗c1√
K(L+ ad

ri
x∗c1)

>
γ(1− εc)

rc
.

By Lemma 5.A.1, this holds, hence the proof is complete. �
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Valorization

“We must know. We will know.”

David Hilbert

This addendum discusses the value-creation opportunities of the research presented in

this dissertation. According to the Regulation Governing the Attainment of Doctoral

Degrees of Maastricht University, examples of value-creation include “patents, licences,

open source tools, software, making models and systems available, co-publications

with social and/or economic stakeholders, publications in journals and newspapers,

non-academic publications, appearances in the media, contributions to public debates,

advice for social organisations or companies, projects for the SME portal, policy rec-

ommendations for governments, training programmes for professionals, public-sector

workers, organisations or companies, participation in Top Institutes, in United Brains

Limburg, collaborations in BioPartner, the Chemelot Campus, the Maastricht Health

Campus, Campus Greenport Venlo, the Smart Services Campus, spin-offs and start-up

companies, special collections, putting together exhibitions and/or catalogues, partic-

ipation in administrative bodies.”

Of the twenty-one items listed (counting the collaborations with the various local

institutes as one), one is directly applicable to the body of work presented: publications

in journals and newspapers. The paper based upon Chapter 5 was published in the

Journal of Theoretical Biology in 2018, while the paper based upon Chapter 2 is, at

the moment of writing, in submission. The papers based upon Chapters 3 and 4 are

planned for submission in early 2019.

Given the theoretical nature of the research in this dissertation, other opportuni-

ties of value-creation – in the sense that the term was used in the regulations – are

indirect and speculative. The remainder of this addendum hypothesizes on the value

of each chapter, possibly falling in the contributions to public debates, advice for social

organizations or companies, and policy recommendations for governments categories.
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Fulfilling some other categories, such as software, making models and systems available,

co-publications with social and/or economics stakeholders, non-academic publications,

and appearances in the media, might follow from this body of research, but are impos-

sible to speculate.

Chapter 2 considers the properties of the Nash equilibrium in network games. The

relevance and value of the Nash equilibrium is, as I was led to believe, beyond dispute.

With applications in many distinct fields of science, such as economics, computer sci-

ence, and biology, the same seems true for networks. The chapter’s main result states

that, in a setting featuring sequential updates, if each player’s update takes him closer

to his current best choice, then for any initial condition and for any weighted network

the play of the game approaches equilibrium. This result ties in, somewhat indirectly,

with one of the most important central policy questions in economics, whether mar-

kets should be nationalized, regulated, or left alone. The first step in answering this

question for a given market is figuring out the implications of a laissez-faire approach.

This chapter’s result states that weighted network games do not require regulations to

reach an equilibrium state.

The core issue in Chapter 3 is the value of foresight in network games. The

level of the agents’ foresight is a central characteristic of the agents of financial and

economic models. The existence and convergence results of the chapter guarantee

that the value of foresight can be calculated for any simple graph. Additionally, the

convergence results ensure that the main results of Chapter 2 remain true in case of

a single farsighted player whenever the network is characterized by a simple graph.

Finally, the chapter’s results allow for a qualitative description of the change in the

value that the farsighted player receives upon the addition or the removal of a link.

Part of the final result, the fact that the farsighted player is better off if two of his

neighbors sever contact, is reminiscent of a type of jealousy, implying an indirect but

nonetheless interesting connection between network games and psychology.

The topic of Chapter 4 is very similar to that of Chapter 2. It focuses on the

effect of introducing non-reciprocal relationships into the game, represented by a more

general class of graphs, called directed networks. The chapter’s main result identifies

two classes of networks in which best-response cycles cannot exist, and hence, with

some permissive assumptions, the convergence results of Chapter 2 remain true in these

two classes as well. This result also extends the implications made on the laissez-faire

approach in Chapter 2 to situations where the players’ relationship is hierarchical,

or when the own effects of the players are larger than their external effects. It is

noteworthy, however, that convergence is not generally established for the whole class
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of directed networks, hence the results, and therefore the implications, of Chapter 2

may not be robust for non-reciprocal relationships.

Chapter 5 is written with a specific application, cancer therapy, in mind. While

it remains a theoretical work, the potential for value-creation is more direct and less

general. The chapter’s main result is that immunotherapy of cancer may worsen the

patient’s prognosis if it causes the tumor to switch from a selfish immune evasion

strategy – such as hiding from the killer T-cells – to a cooperative one – such as

immunosuppression. It is left for future research to assess the practical extent of this

result and address it in a change in therapy as necessary. The model itself is part of a

growing strand of literature aiming to understand cancer by the tools and paradigms

of game theory, adding to the value of both research fields.

I conclude this addendum by a reflection on the value-creation process of science.

Given the many global problems that humanity will need to solve for a sustainable,

prosperous, and healthy existence, I fully sympathize with the goal of making science

useful. There are two issues to note, however. The first is that no discovery exists in a

vacuum; the value of individual pieces of research may not be immediately visible, may

be uncertain at the time of their writing, or may come in a way that no one, including

the researcher, expects. By having researchers focus on creating value in the short run,

society deprives itself from broader discoveries and a deeper understanding, maybe even

from value, in the long run. The second is that, as David Hilbert’s quote also seems

to suggest, human curiosity is tricky; the drive for discovery is often separate from the

drive to create value. I find it therefore a non-trivial question whether any focus on

value-creation is needed, be it in the short- or the long-run, in order to maximize the

societal value of research.

I do not make these points to criticize any particular standing policy. However,

I do find it troublesome when researchers self-select on the basis of the perceived

usefulness or uselessness of their fields because it interferes with the communication

between disciplines. If I am advocating for anything, it is for theorists to try to be

interested in some of the more practical questions. Their more abstract thinking may

make a connection that an applied person is too focused to make. On the other hand,

I wish to reiterate the concerns that a friend of mine had against, as he/she called

it, the “marginalization of fundamental research”. Even if the amount of theoretical

knowledge that will ever prove itself useful for humans is finite, I am quite positive we

have not reached it yet. We should keep going.
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academic career as a post-doctoral researcher at Université Grenoble Alpes.
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