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analysis of risk factors based on both data sources has a similar goal: To design 

interventions for the main population, which is most at risk for specific health problems. 

This approach is inherent for both, planning and allocation of healthcare and prevention 

strategies, which are the scope of this dissertation.  

For demand-based planning and allocation of healthcare, understanding broader, 

population-based processes, such as the association between ageing of the population, 

neighbourhood deprivation and the prevalence of chronic diseases helps to model the 

expected demand for healthcare. This in turn helps to allocate financial resources where 

they will be needed most (2, 3).  

For prevention strategies however, the analysis of individual and contextual risk 

factors are both important to target specific behavioural as well as demographic and 

socio-economic risk factors.  Traditionally, risk factors of diseases on an individual level 

are often analysed through surveys (18), questionnaires (19) and cohort studies (20). 

Although these study designs provide important insights how individual characteristics 

affect well-being and disease occurrence (22-24), there are important shortcomings 

associated with these study designs where GIS can provide an added value: 

Analyses of individual risk factors through surveys, questionnaires and cohort 

studies seldom account for geographic aspects of the environment that are beyond the 

influence of the individual and have thus only limited use for the design of long-term 

public health policies. The majority of these study designs is non-spatial in nature, thus 

the results of these studies imply that incidence or prevalence estimates as well as the 

association to possible risk factors are equal across the study area (25). In reality 

however, diseases and associated risk factors are often heterogeneously distributed 

across space and are dependent upon their geographical context (1, 26). Finding areas 

with statistically significant higher rates of diseases is important to facilitate cost-

effective prevention strategies and to target those population groups who are most in 

need in specific locations (1). Behavioural risk factors - which are often the main focus of 

questionnaires, surveys and cohort studies - are often challenging to include in practical 

prevention strategies as the identification of persons belonging to behavioural risk 

groups is challenging in the first place. Targeting specific demographic and socio-

economic population characteristics has shown to be more effective to include in 

practical prevention strategies (27). However, individual socio-economic characteristics 

are seldom available in secondary data due to privacy protection. Ecological analyses 

based on aggregated disease counts are therefore increasingly used to make inferences 



12 CHAPTER 1: General introduction 

about demographic and socio-economic risk factors as this information is widely 

available in small-scale population data (1, 4).  

The ecological analysis of epidemiological data can be divided into three basic 

steps: a) the identification of spatial patterns of diseases; b) the detection of areas with 

significantly elevated rates above average and c) the analysis of risk factors based on 

aggregated population, environmental or healthcare related area characteristics (1, 4). 

Regression models at the ecological level are typically used to evaluate the 

strength of association between the occurrence of a disease and population-based area 

characteristics. However, the vast majority of ecological regression methods are global 

in nature and estimate only one single coefficient per explanatory variable, averaged 

over the entire study region (16, 28). In reality however, the association between the 

occurrence of a particular disease and population-based area characteristics varies 

considerably over space due to cultural, social and environmental processes on an 

individual and ecological level (1).  

It is well documented that the prevalence of chronic diseases within the 

population increases with age (3, 29). However, not all elderly persons exhibit the same 

risk of developing a chronic condition. Persons ageing in socially disadvantaged 

neighbourhoods are at higher risk of developing chronic conditions, often irrespective of 

individual characteristics (30). Health policies targeting all elderly would be very cost-

ineffective. The insight, that the association between the proportion of elderly and the 

prevalence of chronic conditions is stronger in more socially disadvantaged 

neighbourhoods, helps to facilitate demand-based planning and allocation of healthcare 

and to design more targeted prevention strategies. A similar problem applies to the 

identification of high-risk groups for infectious diseases as not all persons with specific 

socio-demographic characteristics automatically exhibit the same risk of infection (31, 

32).  

Spatial ecological studies should logically not only be capable of analysing who is 

at risk, but also who is where at risk. This critical information is important to facilitate 

cost-effective, demand-based planning and allocation of healthcare and targeted 

prevention strategies. This approach can be considered a core capacity of GIS in public 

health. This thesis therefore aims to evaluate the use of GIS and spatial epidemiological 

methods for planning and allocation of healthcare and targeted prevention strategies.  
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main interest as risk factors are typically analysed separately in the subsequent 

regression analysis  (3, 44, 48).  

 

Local cluster tests 

Although the cartographic visualization of disease risk is an important first step 

to visualize heterogeneity of disease risk within a region, a prioritization of areas for 

public health interventions based on the cartographic visualization of disease risk alone 

is error-prone for following reasons: In areas with few inhabitants, the incidence of a 

disease may be high although the underlying number of cases is fairly small. Pure visual 

inspection of the disease incidence may lead to small administrative units in urban areas 

being overlooked, while large rural administrative units with few cases may be more 

dominant on the map. As a consequence, more sophisticated methods are necessary to 

overcome these limitations and to justify the selection of areas for interventions. In this 

context, local cluster tests have become an important tool in public health (11). A local 

cluster test is a statistical test to evaluate the location and the significance of areas with 

higher than expected disease rates. Several local cluster tests exist with the local 

indicator of spatial association, the Besag-Newell test and the spatial scan statistic being 

the most widely used (11).  

 

Spatial regression modelling 

A major issue for spatial regression modelling is the presence of spatial 

dependence, often termed spatial autocorrelation (49). Spatial autocorrelation refers to 

values in a specific area displaying similar values in nearby areas and is inherent in most 

spatial datasets. Thus, the assumption of independence of observations, which the basic 

ordinary least squares (OLS) regression model assumes, is violated. This may lead to 

exaggerated estimates of the regression coefficients and global clustering of the 

residuals, deteriorating the reliability of the regression model (50). A spatial regression 

modelling approach differs from a non-spatial regression approach as spatial regression 

models assume strong variations and spatial dependence of areas as inherent in the data 

and an important feature, which should be accounted for (51). Non-spatial regression 

models in contradiction, treat strong variations and particularly outliers as nuisance, 

which should be removed (52). Spatial dependency of disease rates is rather the norm 

than the exception as the majority of diseases are clustered in space (1, 3, 47, 53). The 

acknowledgement of spatial dependency among observations can be considered as 
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Mellitus in Germany and pertussis in the Netherlands were conducted. For the third aim, 

the use of spatial epidemiological modelling and space-time cluster detection to identify 

possible pertussis outbreaks in the Netherlands was evaluated.   

 

Research questions 

This thesis aims to answer the following specific research questions: 

1. Is there an added value of the spatial scan statistic to identify areas for 

prevention strategies (chapter 2, 3, 4, 6)? 

2. How can GIS and spatial regression modelling facilitate demand-based allocation 

of healthcare (chapter 4)? 

3. Is geographically weighted regression modelling a suitable method to identify 

location-specific risk groups for targeted prevention strategies (chapter 3, 4)? 

3.1. Which statistical properties of geographically weighted regression 

modelling have to be considered to obtain useful results (chapter 6)? 

3.2. What are current limitations of geographically weighted regression 

modelling (chapter 6)?  

4. Can geographically weighted regression and space-time cluster detection 

facilitate the detection of possible pertussis outbreaks in the Netherlands 

(chapter 5)? 

 

 

Research design 

This thesis was based on four quantitative, spatial epidemiological studies. 

Question 1 was answered through the case studies on acute undifferentiated fever in 

India, Hepatitis C in the Netherlands and type 2 Diabetes Mellitus in Germany. The 

general relevance of local cluster tests is discussed in chapter 6. Question 2 was 

answered through the analysis of type 2 Diabetes Mellitus based on data of a large 

German health insurance provider. Question 3 was answered through the case studies 

on Hepatitis C in the Netherlands and type 2 Diabetes Mellitus in Germany. Questions 

3.1. and 3.2. are discussed in chapter 6 based on the gained knowledge of the case 

studies applying GWR. Question 5 was answered through the case study on pertussis in 

the Netherlands. 
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Thesis outline 

Chapter 1: This chapter introduces the aim of this thesis with specific focus on the use 

of GIS and spatial epidemiological methods in public health 

Chapter 2 presents the first case study on acute undifferentiated fever in India 

Chapter 3 presents the second case study on Hepatitis C in the Netherlands 

Chapter 4 presents the third case study on type 2 Diabetes Mellitus in Germany 

Chapter 5 presents the fourth and last case study on pertussis in the Netherlands 

Chapter 6 discusses the main findings of this thesis  
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CHAPTER 2 

Case study on Acute Undifferentiated Fever in 

India 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

published as: 

Kauhl, B., Pilot, E., Rao, R., Gruebner, O., Schweikart, J., & Krafft, T. (2015). Estimating the 

spatial distribution of acute undifferentiated fever (AUF) and associated risk factors 

using emergency call data in India. A symptom-based approach for public health 

surveillance. Health & place, 31, 111-119. 



26 CHAPTER 2: Case study on Acute Undifferentiated Fever in India 

Abstract: 

The System for Early-warning based on Emergency Data (SEED) is a pilot project 

to evaluate the use of emergency call data with the main complaint acute 

undifferentiated fever (AUF) for syndromic surveillance in India. While spatio-temporal 

methods provide signals to detect potential disease outbreaks, additional information 

about socio-ecological exposure factors and the main population at risk is necessary for 

evidence-based public health interventions and future preparedness strategies. The goal 

of this study is to investigate whether a spatial epidemiological analysis at the ecological 

level provides information on urban-rural inequalities, socio-ecological exposure factors 

and the main population at risk for AUF. Our results displayed higher risks in rural areas 

with strong local variation. Household industries and proximity to forests were the main 

socio-ecological exposure factors and scheduled tribes were the main population at risk 

for AUF. These results provide additional information for syndromic surveillance and 

could be used for evidence-based public health interventions and future preparedness 

strategies. 
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Introduction 

The burden of disease in India is currently changing from being dominated by 

communicable diseases to chronic life-style related diseases. The overall burden of 

disease accounts for approx. 269 million disability adjusted life years (DALY) in India. 

Despite the epidemiological transition, communicable diseases still account for 50% of 

DALYs followed by 33% for non-communicable diseases and 17% for injuries (1). 

Infectious and parasitic diseases are the major contributor to communicable diseases 

followed by respiratory infections, diarrhoeal diseases and childhood diseases (1). Acute 

undifferentiated fever (2) is a first indicator for infectious diseases and is a major public 

health problem in India. The aetiology of AUF is fairly diverse and includes a wide range 

of infectious diseases such as dengue (3), malaria (4), typhoid (5), tuberculosis (6), 

hantavirus (7) and Japanese encephalitis (8).  

Socio-economic disparities are a key driver not only of high rates of infectious 

diseases (9, 10), especially in rural areas (11), but also of a wide range of other health 

problems including neonatal mortality (12), inequalities in immunization coverage (13), 

mental disorders (14) and low birth-weight (15). The vulnerability to infectious 

diseases among various disadvantaged population sub-groups such as scheduled castes 

and scheduled tribes varies widely among and within the states of India (16), depending 

on the local interplay between agent, host and environmental factors (1). A spatial 

epidemiological approach using Geographic Information Systems (GIS) is therefore 

essential to estimate the impact of socio-economic and environmental (socio-ecological) 

characteristics on the incidence of infectious diseases. Such an approach has shown to 

deliver substantial background information for evidence-based public health 

interventions (17-19). However, reliable and complete surveillance data is scarce in 

India (20, 21), making the application of spatial epidemiological methods more 

challenging. 

The federal structure of the Indian public health system with its variety of 

stakeholders and institutions, the increase of the private medical sector, the missing 

collaboration between the institutions and the multiplicity of vertically organized 

surveillance programs with their different systems of data collection complicate a 

uniform surveillance system (21). The Integrated Disease Surveillance Project (IDSP) 

was initiated in 2004 by the Ministry of Health and Family Welfare (MOHFW) with 

financial help of the World Bank and technical assistance of the World Health 

Organization (WHO) and the US Centers for Disease Control and Prevention (CDC). The 
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goal of this project was to connect all district hospitals and medical colleges to establish 

a decentralized, state-based disease and syndromic surveillance system (22). However, 

this approach is not spatially inclusive as the IDSP still faces problems to include data 

from the private medical sector and therefore underestimates the burden of disease. The 

current approach to estimate the burden of disease relies on fragmentary databases 

derived usually from public medical facilities that serve only a small fraction of the 

population (21). The importance of including the private medical sector into disease 

surveillance can best be described by the following numbers: After the turn of the 

millennium, 67% of all hospitals, 63% of all pharmacies and 78% of all doctors were 

employed within the private medical sector (11). Additionally, the IDSP still remains 

suboptimal for the control of infectious diseases. The surveillance data is often delayed, 

unreliable, inconsistent and the reporting rates display strong regional differences (23). 

The System for Early-warning based on Emergency Data (SEED) is a pilot project set up 

by GVK Emergency Management Research Institute (GVK EMRI), India`s largest private 

emergency medical service provider, and GEOMED Research to evaluate the use of 

emergency call data with the main complaint fever for syndromic surveillance of 

infectious diseases in India (24, 25). The project is closely linked to the European 

Emergency data-based System for Information on, Detection and Analysis of Risks and 

Threats to Health (SIDARTHa), (26). 

GVK EMRI currently operates in 14 states and 2 union territories of India, 

providing a chance to set up a large-scale syndromic surveillance system covering a 

large part of the population. The emergency call data are automatically captured using 

Computer Telephone Integration technology. These data are standardized, available in 

near real-time, spatially inclusive at fine geographic scales for the covered areas and 

allow the use of symptom-based data on AUF to estimate the burden of infectious 

diseases in areas where reliable surveillance data are not available (4, 8, 24).  

While the general use of syndromic surveillance lies in the observation of spatial 

variations of common illnesses over time (27, 28) and the detection of potential disease 

outbreaks (24, 29), a purely spatial, cross-sectional epidemiological analysis at the 

ecological level may provide additional information about socio-economic and 

environmental risk factors (8, 17, 30).  

Infectious diseases presenting with symptoms of fever such as malaria, dengue 

and typhoid are driven by socio-economic, demographic and environmental 

characteristics (19, 31, 32) and typically display higher rates in rural areas of India (11). 
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Location-based knowledge on socio-ecological exposures and the population at risk is 

critical to allocate scarce financial resources (11). Such knowledge informs future 

preparedness strategies, for example through targeted distribution of insecticide treated 

bed nets. 

The goal of this study is therefore to examine whether a spatial epidemiological 

analysis at the ecological level provides background information on the main socio-

ecological exposure factors and the population at risk for evidence-based public health 

interventions and future preparedness strategies. Specifically, we hypothesize (i) that 

AUF displays higher rates in rural areas as compared to urban areas (ii) that AUF is 

distributed unequally across space and (iii) that AUF is associated with lower socio-

economic status.  

 

Methods 

Study area 

SEED was set up as a pilot project in three districts of Andhra Pradesh (AP), India. 

These three districts were selected by GVK EMRI based on their proportion of infant 

mortality rates, female literacy, urbanization, proportion of reported fever and infection 

cases and proportion of scheduled caste and scheduled tribe population to ensure a 

representative sample within Andhra Pradesh (25). Srikakulam district was chosen for 

this study because it has the largest proportion of fever among the three selected 

districts. A community level household survey estimated the prevalence of fever to be 

16.7%. A more detailed analysis revealed that 18% of these fever cases were 

attributable to malaria, 8% to typhoid and 4% to dengue and the remaining 72% to AUF 

(25). The district is characterized by a long coastline in the east and forested areas in the 

northern and north-western parts. Srikakulam has a population of 2.54 mio inhabitants 

according to the Census of India 2001 (33). The smallest administrative units in rural 

areas of India are villages, which can be defined as areas with (i) a maximum population 

of 5,000 inhabitants, (ii) a maximum of 75% of the male population employed in the 

non-agricultural sector and (iii) a maximum population density of 400 inhabitants per 

km2 (33). Mandals are the smallest administrative unit in AP for which a wide variety of 

population statistics are available and comprise between 27,141 and 187,132 

inhabitants in Srikakulam district (33). The district is predominantly rural and contains 

11% of urban population, which is far lower than the average of 27.3% in Andhra 

Pradesh (33). The literacy rate may be considered as low with only 54% as compared to 
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60% for the AP average. Srikakulam has a lower proportion of scheduled caste 

population with 9.5% as compared to the AP average of 16.0%. The proportion of 

scheduled tribes is slightly higher with 7.1% than the AP average of 7%.  

 
Fig.1: Study Area, 2008 

 

Data  

Outcome variable 

Emergency call data with the main complaint AUF were used as indicator for 

infectious diseases. The emergency call data were provided by GVK EMRI and were 

available for the time period January 1st to December 31st, 2008. 8,062 AUF calls were 

recorded for the year 2008 in Srikakulam district. The emergency call data were 

available on village level and were aggregated to mandal level to be able to use 

population data, which were obtained from the Census of India 2001 (33). The 

calculated risk expressed as the number of AUF cases for 2008 per 100,000 inhabitants 

for each mandal was used as the dependent variable in the regression model.  

 

Explanatory variables 

We included environmental factors associated with vector-borne diseases 

resulting in AUF such as rainfall (34, 35) and proximity to forests (36, 37). Annual 

Rainfall data were obtained for the year 2008 based on mandal level from the 
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Directorate of Economics and Statistics, Hyderabad, Andhra Pradesh, India. Data on 

forest cover were downloaded from Open Street Map (38). We visually checked the 

accuracy of the Open Street Map layer. Although not 100% accurate, we found this 

dataset superior than available raster datasets and sufficient for our analysis. The 

distance to forests was calculated as distance of the AUF emergency calls on village level 

to forest, averaged per mandal. To determine whether AUF follows a distinctive socio-

economic gradient, we included several socio-economic variables from the Census of 

India 2001. An overview over all candidate explanatory variables is given in table 1. 

These variables include the sex ratio for the total population as well as for the child 

population (aged 0-6) measured as number of female persons per 1,000 male persons. 

The proportion of scheduled caste and scheduled tribes represents the lowest socio-

economic status since these two population groups are historically disadvantaged and 

have the lowest socio-economic status within the Indian society (39). Literacy rate 

contains all persons aged seven and older, who are able to read and write in any 

language. Literacy rate is an important predictor for understanding health-education 

messages and awareness of health-programs (40). Employment status was split in 

several categories: General work participation and proportion of main workers were 

included as indicator for the ability to pay for health-related costs. The variable non-

workers includes persons with no personal income and is therefore an indicator for the 

proportion of persons unable to pay out of pocket for medical expenses. Cultivation and 

agricultural labour were included as potential predictors for exposure to zoonotic 

diseases resulting in AUF (7, 41). Household industries are traditionally home-based and 

are characterized by their high level of exploitation and are another indicator of low 

socio-economic status (16). Other workers was included as indicator for a higher socio-

economic status since this category encompasses work, which requires higher levels of 

education and therefore generates higher wages such as teachers, municipal servants 

and government employees. The variable population density was calculated as number 

of inhabitants per km2. All socio-economic variables and their definitions were obtained 

from the Census of India 2001 (33). Although the census data used in this study are from 

2001, new data from the Census of India were not yet available on mandal level during 

the time of the analysis.  
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Table 1: Candidate explanatory variables. N = 38 

 

Variable Source Mean SD 

Children aged 0-6 Census of India 13.4% 0.9% 

Sex ratio total population Census of India 1014 38 

Sex ratio child population Census of India 969 22 

Scheduled caste Census of India 9.4% 4.1% 

Scheduled tribe Census of India 7.1% 14.6% 

Literacy rate Census of India 54% 6.7% 

Work participation Census of India 48.5% 4.3% 

Main workers Census of India 35.1% 4.9% 

Cultivation labour Census of India 23% 6.4% 

Agricultural labour Census of India 47.7% 8.8% 

Household industries Census of India 4% 1.5% 

Other workers Census of India 25.3% 12.3% 

Population density Census of India 420.6 172.9 

Annual Rainfall / mandal Dir. of Econ. and Stat. 1027mm 331mm 

Distance to forests Open Street Map 9.5km 8.1km 

 

Analytical methods 

The methodology applied in this study follows closely the recommendations of 

the CDC to investigate suspected clusters of cancers (42) and has also been widely 

applied in a comparable manner to investigate clusters of infectious diseases (8, 17): We 

created a thematic map displaying the relative risk for each administrative unit; 

determined spatial clusters where the number of observed cases is higher than the 

expected cases; and applied a kernel density estimation to visualize the number of cases 

on village level. We then determined significant explanatory variables through OLS 

regression. 

 

Exploratory disease mapping 

To facilitate visual interpretation of the underlying disease process, the relative 

risk (RR) was calculated for each administrative unit. A map of the RR displays the ratio 

of observed to expected cases for each administrative unit and represents how much 

more common an event in this location is as compared to the global average (43). Spatial 
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Empirical Bayes smoothing of the relative risk was considered useful in this study since 

the population at risk displayed a strong variation between the administrative areas. 

This leads to a large variance of the relative risk in areas where the underlying 

population is small and a small variance in areas where the underlying population is 

large (44). The RR estimates were smoothed towards a local mean by using a nearest 

neighbour approach. The neighbours were defined as areas sharing a common edge or 

boundary (45). We preferred a locally weighted Empirical Bayes smoothing approach 

over a global approach due to the occurrence of local clusters inherent in our data. The 

computation was carried out using the EBlocal function of the spdep package available 

in R (46, 47). For visualisation, the results were then imported in ESRI ArcGIS 10.1.  

 

Local cluster detection 

To determine administrative areas where the number of observed cases is 

significantly higher than the expected cases, the spatial scan statistic was applied to 

search for local clusters of elevated RR. We used the Poisson model where, under the 

null hypothesis, the cases of AUF follow an inhomogeneous Poisson process (48). We 

selected the number of AUF cases in 2008, population from the census of India 2001 and 

the centroid coordinates for each mandal as necessary input data. The spatial scan 

statistic imposes a circular scanning window over the study area, flexibly in size and 

position. In this study, we evaluated clusters with 10% of the population at risk. This 

was done to detect spatial clusters as precisely as possible since the default setting of 

50% is more likely to produce results of no practical use (49). The spatial scan statistic 

compares the observed and expected number of cases inside the scanning window to 

the area outside the scanning window. The calculation of the maximum likelihood is 

based on the number of observed and expected cases inside and outside the scanning 

window. The scanning window with the maximum likelihood and more cases than 

expected is the most likely cluster. The statistical significance is based on 999 Monte-

Carlo replications where the null hypothesis of complete spatial randomness is rejected 

in this study if the p-value is less than 0.05 (50). The application of the spatial scan 

statistic was performed in Kulldorf`s SaTScan software version 9.2 (51).  

 

Kernel density estimation 

The kernel density estimation was used as a complementary tool to visualize the 

spatial distribution of AUF emergency calls within the spatial clusters. The mandals to 
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calculate the RR are fairly large spatial units and therefore mask important variations on 

village level. The kernel density estimation is an interpolation technique that creates a 

continuous surface derived from a point pattern that allows an easier identification of 

densely distributed features. This is done by placing a symmetrical mathematical 

function over each point, the so-called kernel, which has its peak directly over the point 

with decreasing intensity towards the edge of the function. The distance from the point 

towards the edges is the bandwidth and determines the amount of smoothing inherent 

in the kernel density estimation (52). Of the 8,062 fever emergency calls in 2008, 7,366 

(91.4%) could be successfully matched with an already existing geodatabase, which 

contained the coordinates of the village centroids. These village coordinates served as 

input point pattern for the analysis. In this study, we chose a quartic distribution as 

mathematical function for the kernel and evaluated bandwidths of 1, 3 and 5 kilometres. 

We found that a bandwidth of 3 km yielded the best results for our analysis.  The 

calculation of the kernel density estimation was performed using the CrimeStat III 

software (53). The results were imported in ESRI ArcGIS 10.1 and were displayed 

together with the layers for forest cover.  

 

Regression analysis 

The next step of our analysis was to model the influence of potential explanatory 

variables on the incidence of AUF. We specified our explanatory variables using 

following criteria: The coefficients are statistically significant and have the expected 

sign; the explanatory variables do not display multicollinearity and the residuals are 

normally distributed and are not spatially autocorrelated (54). In order to achieve 

normality of the dependent variable, the dependent variable was transformed using a 

natural log-transformation (55, 56). To find a meaningful model, we used a data-mining 

tool called Exploratory Regression, which is available in ESRI ArcGIS 10.1. This tool is 

comparable to a step-wise regression. However, this tool identifies variable 

combinations in an OLS regression model that meet all requirements outlined above (18, 

57). The most parsimonious model with the lowest AIC value was used for further 

analysis. We then applied OLS regression in OpenGeoDa 1.2.0 (58). The calculation of 

Moran`s I to detect spatial autocorrelation of the residuals was based on first order 

queen contiguity where neighbours share a common edge or corner (54).  
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Results  

Difference between urban and rural risks for acute undifferentiated fever 

The overall incidence of AUF was 317 per 100,000 inhabitants. Higher risks could 

generally be observed in purely rural areas (RR = 1.20, 95% CI: 0.64 - 1.75) as compared 

to mandals containing urban areas (RR = 0.66, 95% CI: 0.36 - 0.96).  

 

Spatial inequalities of acute undifferentiated fever 

Higher risks were concentrated in the northern parts of the district in close 

proximity to forests (Fig. 2). The spatial scan statistic detected two clusters. The most 

significant cluster was located in Seethampeta mandal (p<0.001, RR = 9.7, 1621 cases), 

which is characterized by a high proportion of forest cover. The second cluster consisted 

of the three mandals Meliaputti, Nandigam and Tekkali (p<0.001, RR = 1.74, 943 cases), 

which are also characterized by their high proportion of forest cover. The kernel density 

estimation revealed that AUF cases were concentrated in close proximity to, and within 

a forest in Seethampeta mandal. Especially Seethampeta village stands out with 824 AUF 

cases. This village contains the largest number of AUF cases per village within the study 

area. The second largest number of AUF cases within Seethampeta mandal was observed 

in Pedarama village with 131 cases in close proximity to Seethampeta village. In the 

second spatial cluster, three concentrations stand out: The town Tekkali with 160 cases, 

the village Nandigam with 74 cases and the village Meliaputti with 108 cases. A spatial 

pattern from Meliaputti heading into the forest is visible, leading through the village 

Padda with 41 cases and Nelabonthu with 29 cases. 
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Fig. 2: Spatial clustering of AUF in Srikakulam District, 2008. Crosshatched areas 

indicate local clusters detected by the spatial scan-statistic. 

  

Socio-ecological exposure factors for acute undifferentiated fever 

The model with the lowest AIC value and the most plausible explanation was 

used as the final OLS regression model, which included three explanatory variables: 

Percentage of scheduled tribe population, distance to forests and proportion of 

household industries. This model explained 66.2% of the variation in AUF emergency 

calls (Adj. R-squared: 0.6619). The model met all requirements for a properly specified 

OLS model: The model performance was overall statistically significant (F-statistic: 

25.151, p<0.001). The coefficients had the expected signs (table 2) and did not display 

multicollinearity (multicollinearity condition number 7.408). The residuals were 

normally distributed (Jarque-Bera test: 1.186, p>0.05) and were not spatially 

autocorrelated (Moran`s I: 0.611, p>0.05). The Lagrange multiplier tests (LM-lag and 

LM-error) did not show any spatial dependence (LM-lag: 0.511, p>0.05; LM-error: 0.199, 

p>0.05) implying that a spatial error model or a spatial lag model would not enhance the 
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analysis. The coefficients revealed that the incidence of AUF is positively associated with 

the proportion of scheduled tribes. An increase of 1% of scheduled tribes population will 

increase the incidence of AUF by 3%. Proportion of household industries was also 

positively associated with the incidence of AUF. An increase of 1% of household 

industries will increase the incidence of AUF by 11.6%. The distance to forest was 

negatively associated with the occurrence of AUF. 1km more distance to forests will 

decrease the incidence of AUF by 0.047%.  

 

Table 2: Ordinary least squares (OLS) regression coefficients 

 

Variable Coefficient Standard error Probability 

Scheduled tribes  3.04758 0.58251 <0.001 

Househ. industries 11.60569 5.50590 <0.05 

Dist. to forest (m) -0.04664 0.01055 <0.001 

 

By examining the spatial distribution of scheduled tribes (fig. 3), it becomes 

evident that the proportion of scheduled tribes has a strong link to the incidence of AUF. 

Especially Seethampeta mandal stands out. In this area, the relative risk is almost 10 

times as high as the district average while the proportion of scheduled tribes with 87% 

is almost 12 times as high as the district average. Comparable findings can also be 

observed for Meliaputti and Pathapatnam; the incidence of AUF and the proportion of 

scheduled tribes in these mandals are twice as high as compared to the district average. 

In contradiction, in the mandals around Srikakulam city, very low relative risks and very 

low proportions of scheduled tribes can be observed. The association between 

household industries (fig. 4) however, are not as clear as for scheduled tribes. While it is 

obvious that household industries have no influence on the occurrence of AUF in 

Seethampeta mandal, the influence in the mandals Meliaputti, Pathapatnam and the 

northern mandals Kaviti and Kanchili is probably higher. The incidence of AUF shows a 

strong link to forested areas, especially in the most significant cluster in Seethampeta 

mandal but also in the second significant cluster in the mandals Meliaputti, Nandigam 

and Tekkali.  
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Fig. 3: Proportion of scheduled tribes 

 

 

Fig. 4: Proportion of household industries 

 

Discussion 

The main findings of this study were that (i) rural areas display higher risk 

towards AUF as compared to urban areas (ii) that AUF is unequally distributed across 

mandals in Srikakulam and (iii) that scheduled tribes are the main population at risk 
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and  household industries and proximity to forests are important socio-ecological risk 

factors for AUF. 

 

Higher risk of acute undifferentiated fever in rural areas 

Our results suggest that the risk of AUF is higher in rural areas as compared to 

urban areas. These results correspond to previous findings for infectious diseases 

resulting in fever and corresponds well to the current health situation in rural India 

(11). A nationally representative survey estimated the spatial distribution of the 

incidence of deaths attributable to malaria in India. 90% of estimated deaths 

attributable to malaria occurred in rural areas and displayed strong local variation (59). 

Dengue fever in contrast, changed over time from being predominantly urban in India to 

gaining a strong impact in rural areas, especially in areas with dense forest (60). A wide 

range of other diseases such as diarrhoeal diseases and diseases carried through the air 

are more common in rural areas than in urban areas such as typhoid and tuberculosis 

and are attributable to unclean water, exposure to unhealthy living conditions and poor 

nutrition (11). The high correlation between the proportion of AUF emergency calls to 

the total emergency demand and the proportion of fever within the population as 

indicated through the community level household survey (25) indicates that AUF 

emergency calls might be a realistic indicator to estimate the burden of infectious 

diseases within the population. The spatial inclusiveness of these data is not only likely 

to show a higher incidence of infectious diseases than surveillance data would suggest 

but provides additionally a more reliable foundation to analyse risk factors associated 

with AUF than the current data of the IDSP, which is suffering from unreliable and 

strong regional differences in reporting rates (23).  

 

Spatial inequalities of acute undifferentiated fever 

The disease mapping approach and the spatial scan statistic revealed that AUF 

displays strong local variation, both on mandal level as well as on village level. This 

variation at local level as well as the occurrence of local clusters corresponds well to 

previous findings analysing infectious diseases using the spatial scan statistic (61-63). 

However, the full potential of the spatial scan statistic was not employed here as we 

followed a purely spatial approach and did not search for spatio-temporal clusters. A 

prospective spatio-temporal cluster detection might provide an additional value for an 
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early-warning system based on EMS data to detect potential disease outbreaks as early 

as possible (29).   

 

Socio-ecological exposure factors for acute undifferentiated fever 

Based on the OLS regression, we found that proportion of scheduled tribes, 

proportion of household industries and proximity to forests were predictors of AUF and 

explained 66.2% of the spatial variation of risk towards AUF. AUF risk was strongly 

associated with the proportion of scheduled tribes and is therefore highly correlated to 

the most disadvantaged population group. These results correspond to other findings 

from the literature showing that low socio-economic status is an important predictor of 

elevated rates of infectious diseases in India (9, 64, 65), especially in rural areas (10, 11).  

Indigenous population groups belong to the poorest and most disadvantaged population 

groups in India and research on the health of this population group is often restricted to 

a sample of a specific indigenous population group (66).   Indigenous people are living 

often close to forest areas and are disease prone as access to health services often is 

limited (67). Our results deliver statistical evidence for this relationship. Resulting 

interventions could be aimed directly at remote tribal populations to identify the 

underlying reasons that lead to a high vulnerability to infectious diseases. These reasons 

might consist of adverse distribution and poor treatment capacities of public primary 

healthcare facilities (68), lower willingness to attend public or private health care 

facilities due to high out of pocket costs and loss of productivity due to absence from 

work (69). The detection of spatial clusters might indicate areas for collecting blood 

samples to identify the underlying pathogens causing AUF (70). The significant 

association of AUF to scheduled tribes and household industries in turn might lead to 

initiatives such as the provision of insecticide treated bed nets (71) or indoor residual 

spraying (72). 

 

Limitations 

Our study has several limitations: The emergency calls with the main complaint 

AUF comprise a very broad category of potential underlying infectious diseases. This 

allows only an estimation of the impact of socio-economic and environmental 

determinants on the general incidence of certain infectious diseases but does not 

necessarily allow a first clue about the underlying disease itself. As shown in other 

studies, the complaint fever could be divided into more specific syndromes such as acute 
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encephalitis syndrome (AES) (4). Such an approach has shown to allow a detailed spatial 

analysis of landscape risk-factors associated with Japanese encephalitis (8) and could 

result in more detailed knowledge about contributing ecological factors. The use of 

emergency calls for this study limits the explanatory power for urban areas. Due to the 

higher availability of transportation as well as higher availability of medical 

infrastructure in urban areas, the use of emergency medical services may not be the first 

option to use. (73). This highlights the need to incorporate other data-sources as well. 

Urban Malaria is a major public health problem in India (64) and a strong contributor to 

the overall number of AUF cases in Srikakulam (25). Another limitation could be the 

knowledge of GVK EMRI`s 108 toll free emergency hotline. We were unable to verify if 

the service is equally popular within the district or if there are any notable spatial gaps 

of advertisement. Potentially, this could lead in areas with high advertisement to more 

frequent use and in areas with low advertisement to an under-utilization of this service. 

It would be interesting to compare the results of our analysis with results based on 

laboratory confirmed cases of infectious diseases to see whether our results differ 

widely from results conducted using laboratory confirmed cases. However, given the 

current scenario of disease surveillance in India, such a comparison is not possible (21). 

The number of explanatory variables available from the Census of India on mandal level 

was very limited. We would have favoured to include different age groups as additional 

explanatory variables to analyse which age group is most at risk. Additionally, other 

important variables such as bed-net use, housing materials, accessibility to health care 

providers and distance to water bodies as indicator for a potential vulnerability to 

vector-borne diseases (18) were not available for this study. The administrative units 

we used in this study are fairly large areas. Although we displayed the number of cases 

on village level using a kernel density estimation, we could not display the incidence rate 

or create a spatial regression model on this scale since the necessary census data were 

not available on village level during the time of the analysis. This limitation decreases 

the explanatory power of the kernel density estimation. Additionally, we would have 

favoured a Geographically Weighted Regression (GWR) to account for spatial 

heterogeneity. However, since our study area consisted only of 38 administrative units, 

the results would have been unreliable. Páez et al. point out that the use of GWR for 

small datasets with less than 160 administrative is not advisable (74). Current studies 

benefitting from the application of GWR usually focus on fairly large datasets (17, 18, 30, 

75). This limitation underlines, that future research on risk factors should focus on 
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analysing AUF emergency calls on larger areas such as whole states to be able to capture 

spatial heterogeneity of socio-economic and environmental determinants within 

regression models. Such an approach could enhance the use of symptom-based data to 

explain the range of contributing factors to AUF.  

 

Conclusions 

We used EMS data with the main complaint acute undifferentiated fever as 

indicator for infectious diseases and linked AUF to socio-ecological exposure factors.  

Our results display that the spatial distribution of AUF follows closely the current 

scenario of infectious diseases in India as it reflects a higher vulnerability to fever in 

rural areas, spatial heterogeneity at local levels and a strong association with lower 

socio-economic status. This in turn highlights the value of AUF emergency calls to 

monitor the spatial distribution of infectious diseases in areas where reliable 

surveillance data are not available. Additionally, our approach shows that an 

epidemiological analysis at the ecological level using emergency call data could be used 

to identify main socio-ecological exposure factors and the main population at risk. These 

results might be relevant for future preparedness strategies and targeted, evidence-

based public health interventions and provide additional information for syndromic 

surveillance. Our approach also stresses the importance and possibilities of including 

private medical institutions in surveillance activities. We hypothesize that our approach 

is useful not only for Srikakulam district, but also could be an effective way of guiding 

evidence-based public health interventions and future preparedness strategies in India 

where spatial EMS data are available.  
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Abstract 

Background: Hepatitis C Virus (HCV) infections are a major cause for liver 

diseases. A large proportion of these infections remain hidden to care due to its mostly 

asymptomatic nature. Population-based screening and screening targeted on 

behavioural risk groups had not proven to be effective in revealing these hidden 

infections. Therefore, more practically applicable approaches to target screenings are 

necessary. Geographic Information Systems (GIS) and spatial epidemiological methods 

may provide a more feasible basis for screening interventions through the identification 

of hotspots as well as demographic and socio-economic determinants. 

Methods: Analysed data included all HCV tests (n=23,800) performed in the 

southern area of the Netherlands between 2002-2008. HCV positivity was defined as a 

positive immunoblot or polymerase chain reaction test. Population data were matched 

to the geocoded HCV test data. The spatial scan statistic was applied to detect areas with 

elevated HCV risk. We applied global regression models to determine associations 

between population-based determinants and HCV risk. Geographically weighted Poisson 

regression models were then constructed to determine local differences of the 

association between HCV risk and population-based determinants. 

Results: HCV prevalence varied geographically and clustered in urban areas. The 

main population at risk were middle-aged males, non-western immigrants and divorced 

persons. Socio-economic determinants consisted of one-person households, persons 

with low income and mean property value. However, the association between HCV risk 

and demographic as well as socio-economic determinants displayed strong regional and 

intra-urban differences. 

Discussion: The detection of local hotspots in our study may serve as a basis for 

prioritization of areas for future targeted interventions. Demographic and socio-

economic determinants associated with HCV risk show regional differences underlining 

that a one-size-fits-all approach even within small geographic areas may not be 

appropriate. Future screening interventions need to consider the spatially varying 

association between HCV risk and associated demographic and socio-economic 

determinants. 
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HCV infections is not attributable to any of the aforementioned risk groups and is 

therefore not included in screening interventions targeted at risk groups (16). Although 

the prevalence of HCV in the US is higher with an estimated 2% (19), the Center for 

Disease Control (CDC) similar to the WHO advises screening of persons in risk groups 

(IDU, blood transfusion or organ transplant recipients before July 1992, health care 

personnel with history of exposure and born to an HCV-positive mother) (20). However, 

these criteria appeared also in the US difficult to include in practical screening 

interventions (10). As a result, future screening interventions need to find 

characteristics of HCV that are more practically applicable than the risk groups and 

behavioural factors outlined above.  

Other relevant factors than behavioural and demographic risk factors associated 

with HCV are socio-economic characteristics. As for many infectious diseases, including 

HCV, lower socio-economic status tends to be associated with higher prevalence (1, 13, 

21, 22). The identification of socio-economic determinants provides a more practically 

applicable basis for screening interventions (10), as population characteristics are 

typically available within population data (23). The application of Geographic 

Information Systems (GIS) is essential to display the spatial heterogeneity of disease risk 

and to quantify the impact of socio-economic determinants on the incidence of 

infectious diseases (22, 24). 

Exploratory disease mapping and local cluster tests have shown to help 

identifying areas with statistically significant high risks (often referred to as hotspots or 

clusters) for prioritizing future interventions for Hepatitis C in the mainland of China 

(25) as well as many other infectious diseases including HIV (26),  Chlamydia 

trachomatis and Neisseria gonorrhea (27).  

The increasing availability of a wide range of population-based variables allows a 

detailed analysis of demographic and socio-economic determinants of disease risk using 

spatial regression models at the ecological level (24, 28, 29).  

With respect to HCV, it has been shown that not only prevalence varies between and 

within countries, but also the association between risk factors and HCV prevalence (13), 

highlighting the necessity to account for local variation in spatial regression models for 

HCV.  

In settings where strong local variation of the association between disease risk 

and possible determinants can be expected, geographically weighted Poisson regression 

models (GWPR) have proven to be very effective to measure the spatially varying 
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association between possible determinants and disease risk. This in turn, often led to the 

conclusion that the determinants of a specific disease depend largely where infected 

populations live, allowing public health preventions to be targeted directly at those 

population groups, that are most at risk in a specific location (30-32).  

The aim of this paper is therefore to (i) determine hotspots for future screening 

interventions using the spatial scan statistic and (ii) to assess demographic and socio-

economic determinants of HCV risk within these hotspots using GWPR to facilitate 

targeted, evidence-based screening interventions aimed directly at risk-groups. 

 

Data and Methods 

Ethics Statement 

The medical ethics committee of the Maastricht University Medical Centre 

(Maastricht, the Netherlands) approved the study (11-4-136) and waived the need for 

consent to be collected from participants. Since retrospective data originated from 

standard care (in which one can opt-out for the use of their data for scientific research) 

and were analyzed anonymously, no further informed consent for data analysis was 

obtained. 

 

Dependent Variable 

The dependent variable consisted of the HCV diagnoses that were made in the 

southern part of the province Limburg, the Netherlands between January 1st, 2002 and 

December 31st, 2008, comprising an adult population of 500,955 in 2008 (10, 33). The 

diagnoses were retrieved from HCV test data that were provided by three hospital 

laboratories, which perform tests on HCV upon request of nearly all care providers 

serving the area. In total 23,800 HCV tests were conducted of which 823 unique patients 

were tested positive. According to screening procedures in the Netherlands, HCV 

antibodies were detected with an ELISA. Confirmation was performed with an 

immunoblot and/or polymerase chain reaction (PCR). When an acute infection was 

suspected or when the patient was HIV positive or on hemodialysis, only PCR was used 

for screening. In the current study, we defined a positive confirmation test or PCR as a 

positive case. Of these 823 unique positive individuals, 781 had valid postal codes 

assigned and were included in the analysis. Next to postal code and HCV test result, the 

laboratory dataset included sex and age (10).  
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Explanatory Variables 

We assessed several demographic and socio-economic variables for their 

association with HCV risk. The data for these variables were downloaded from the 

Central Bureau for Statistics Netherlands. In this study, we used data and map sources 

from the Statline database 2009 (33) (Table 1). The data were available on 

neighbourhood level and had to be matched to the four-digits postal codes of the HCV 

data. A neighbourhood is a part of a municipality with a homogenous socio-economic 

structure (33, 34). Due to privacy restrictions, socio-economic data on neighbourhood 

level is only available for neighbourhoods with more than 50 persons, 200 persons, 10 

households and 70 households, depending on the respective variable (33). We therefore 

aggregated to the four-digits postal codes based on those neighbourhoods, for which 

socio-economic data was made available.  

Demographic variables included stratified population data for 2012 on four-digits 

postal code level (10) (16). The population data was extracted from customised data by 

Statistics Netherlands (Extraction date: 20/02/2013). 

 Socio-economic variables included marital status (proportion of residents that 

were married, unmarried, divorced, or widowed)(35), proportion of non-western 

immigrants (16), proportion of one-person households, proportion of households 

without children, average income (10, 36), proportion of persons having low income 

(36) (defined as an income below 19,200 Euro per year (33)), households having low 

purchasing power (defined as households having less than 9,250 Euro available per year 

(33)), households having low income (36) (defined as households with an annual 

income below 25,100 Euro (33)), households below social minimum and mean property 

value as indicator for potential area deprivation (10, 33). 

 

Table 1: Explanatory variables.  

 

Variable Average Min Max 

Married (%) 44.7 1.0 62.0 

Unmarried (%) 40.9 96.0 15.0 

Divorced (%) 3.8 0.0 10.6 

Widowed (%) 6.8 0.0 48.0 

Non-western immigrants (%) 4.8 0.0 14.2 
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high HCV prevalence are close to other postal code areas with high HCV prevalence. For 

this study, we defined adjacency as postal code areas sharing a common edge or corner. 

The presence of global clustering justified the subsequent local cluster analysis. The 

computation of Moran`s I was carried out in OpenGeoDa 1.2.0 (40) 

 
Local Cluster Detection 

The spatial scan statistic has been widely applied in several spatial-

epidemiological studies to detect local clusters with statistically significant elevated risk 

of infectious diseases (22, 26, 42, 43). The spatial scan statistic is a local cluster test, 

which identifies the location and the statistical significance of local clusters (26). We 

applied a Poisson purely spatial model where the number of HCV cases follows an 

inhomogeneous Poisson process (44). The input data for this model consisted of the 

number of positive individuals per postal code, the number of adults aged between 16 

and 65 and the centroid coordinates for each area. The spatial scan statistic imposes a 

circular scanning window, which is flexibly in size and position and gradually moves 

over all coordinates, evaluating all potential cluster locations and sizes up to either a 

user-defined maximum radius, a user defined maximum percentage of the population at 

risk or the default value of up to 50% of the population at risk (45).  

In our study, the purpose of the spatial scan statistic was to detect areas with 

significantly elevated risk of diagnosed HCV, which can serve as a basis for the 

prioritization of future screening interventions (46, 47). We set the maximum 

population at risk to not exceed 5% of the adult population. This was done to detect 

local clusters as precisely as possible since the default settings of 50% of the population 

at risk are more likely to produce clusters of no practical use (48). The computation was 

carried out using the SaTScan software version 9.2 (45). 

 
Spatial Regression 

Ordinary Least Squares Regression 

To specify a meaningful geographically weighted Poisson regression model, we 

conducted several steps: First, we performed a natural log-transformation of the 

dependent variable. We then used a data-mining tool called Exploratory Regression in 

ESRI ArcGIS 10.1. to determine potential candidate explanatory variables. This tool 

evaluates all possible variable combinations that form a properly specified ordinary 
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least squares (OLS) regression model. Exploratory regression is comparable to a step-

wise regression (31). However, it evaluates all possible variable combinations based on 

following criteria: (i) the coefficients are statistically significant, (ii): the explanatory 

variables are free from multicollinearity, (iii): the residuals are normally distributed and 

(iv): the residuals do not display spatial autocorrelation (31, 49, 50). 

Based on the results of the exploratory regression, we determined overall model 

significance, the presence of heteroscedasticity and a wide range of diagnostics by 

creating an OLS regression model in OpenGeoDa 1.2.0 (40) with the same dependent 

and explanatory variables as suggested by the exploratory regression.  

 

Geographically Weighted Regression 

Since the OLS regression is a global regression model, it estimates the strength of 

the relationship between the dependent variable and the explanatory variables 

averaged over the whole study area. However, the larger the study area, the more 

unlikely it is that one single coefficient per explanatory variable reflects the true 

underlying spatial relationship between the dependent variable and the explanatory 

variable since spatial data tend to vary over space. Global statistics tend to lead to the 

conclusion that relationships between variables are equal across the entire study area 

whereas local statistics can show the falsity of this assumption by displaying how the 

relationships vary across space (51). The geographically weighted regression (GWR) 

method is therefore an extension to the traditional standard regression methodology 

and estimates a wide range of local parameters and diagnostics.  

The Poisson distribution within the GWR framework is currently the most 

suitable for disease data, especially if observed counts of cases are low in specific areas 

(52-54). The dependent variable was specified within the geographically weighted 

Poisson regression (GWPR) as the observed number of HCV cases per postal code and 

the offset variable was specified as the number of adult persons per postal code. The 

GWPR model calculates an additional global Poisson regression model, which can be 

compared to the results of the global OLS model to test the hypothesis that a Poisson 

regression is more suitable for HCV than the traditional OLS regression. The explanatory 

variables for the global and local Poisson regression models were the same variables 

that were found to be significant as specified by the OLS model. The centroids of each 

postal code were used as input coordinates. The GWPR model then uses a kernel and fits 

for each coordinate a regression equation where the coordinate in the centre of the 
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kernel is the regression point.  The data points inside the kernel are weighted from the 

centre of the kernel towards the edge of the kernel. Data points outside the kernel 

receive a weight of zero and are not included in the regression equation. For each 

coordinate, the data points are weighted differently so that each regression point has a 

unique regression equation. We used an adaptive kernel size so that in rural areas 

where data points are sparse, the kernel bandwidth will increase in size and will 

decrease in urban areas where data points are plentiful. The size of the bandwidth for 

each kernel and regression point is optimized using Akaike`s Information Criterion 

(AIC) (51). To facilitate interpretation of the regression coefficients of the GWPR, the 

coefficients were exponentiated to show an increase or decrease of the relative risk of 

the dependent variable per one-unit change in the respective explanatory variable (52). 

Statistical significance for each coefficient per postal code was calculated using pseudo t-

values (51). The statistic behind the GWPR method is described in detail elsewhere (52). 

The computation of the GWPR was carried out using the GWR4 software (55). 

 

Results 

Spatial Distribution of Hepatitis C Prevalence Among Adults 

The prevalence and the risk estimates between the postal code areas varied 

widely, ranging from 0 to 1.02% of the adult population per postal code. The overall 

prevalence rate among adults was 0.19% of the total adult population. There was a clear 

urban-rural divide within the study area. Areas with higher risks were strongly 

concentrated within the urban areas of Heerlen, Maastricht and to a lower extent in 

Sittard-Geleen (Fig. 1). Moran`s I revealed significant positive global autocorrelation of 

the HCV prevalence (Moran`s I = 0.43, p<0.001), indicating that postal codes with higher 

risks are close to each other.   

The spatial scan statistic detected five significant local clusters (Fig. 1). These are 

postal codes with statistically significant elevated risk of diagnosed HCV. All clusters 

could be observed within the three urban areas of the study area (Table 2). In total, 

these clusters contain 268 (34%) of all observed HCV infections in the study area. 
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Table 2: Significant clusters with high HCV risk as determined by the spatial scan 
statistic. 

 

Cluster nr.  Location RR Cases P-value 

1 Southern part of Heerlen (3 postal codes) 4.30 91 <0.001 

2 Northern part of Heerlen (2 postal codes) 2.83 60 <0.001 

3 Northern part of Maastricht (1 postal code) 4.03 31 <0.001 

4 Centre of Maastricht (3 postal codes) 1.91 71 <0.001 

5 East. part of Sittard-Geleen (1 postal code) 3.29 15 <0.05 
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