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Abstract—Speech neurprostheses have the potential to provide
severely paralyzed patients with a means of communication. To
enable the best possible decoding of speech processes from neural
data, it is important to chose a representation of speech that is
both meaningful to the decoding process and represented well in
the neural recordings.

Previously, acoustic, articulatory, and textual representations
of speech have been decoded from neural recordings. Semantic
representations of speech could add additional information about
the content of the produced speech. In this study, we show that
semantic embeddings for individual words, as extracted by a
word2vec-model, can be used to reconstruct neural activity during
speech production across wide-spread cortical and subcortical
areas. We elucidate the temporal dynamics of reconstruction
quality and show that a slight right hemisphere preference exists.
These findings could be used to add semantic information into
speech neuroprostheses in the future.

Index Terms—stereotactic EEG, Brain-Computer Interfaces,
NLP, BCI, semantics, word2vec

I. INTRODUCTION

Speech neuroprostheses [1]–[4] are envisioned to provide
a means of communication to patients who lost the ability
to speak, due to a stroke or neurodegenerative diseases. Such
a speech neuroprosthesis would measure neural activity and
decode meaningful representations of speech that can then
be reproduced in textual or acoustic form. Consequently, it is
crucial to identify meaningful representations of speech that
can be decoded from neural activity.

Textual representation of speech that comprises of
phonemes that are combined to build words have been de-
coded from electrocorticography (ECoG) [5]–[9], stereotactic
EEG (sEEG) [10] and Utah arrays [11]. Subsequently, these
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approaches have been implemented in anarthric patients using
both ECoG [12] and microelectrode arrays [13].

Instead of a textual representation, other approaches have
targeted an articulatory representation of speech, in which the
configuration of the articulatory tract, including lips, larynx,
tongue and jaw, is decoded. Reliable representations of ar-
ticulator movements and configurations have been decoded
[14] and described [15] in ECoG recordings. Similarly, lip
movements, recorded by video, have been decoded from ECoG
recordings [16].

A third representation of speech that has been thoroughly
studied is acoustics. In this approach, a spectral representation
of the audio waveform is usually decoded. The spectrogram is
then re-synthesized to an audio waveform by a Vocoder that
recreates the missing phase information. Several studies have
reconstructed spectrograms of speech from ECoG [17]–[20],
sEEG [21] and microarrays [11]. A simplified version of this
approach has even been used to synthesize imagined speech
processes in real-time [22].

These three representations of speech all come with advan-
tages and disadvantages for the use in speech neuroprostheses.
A textual representation carries a lot of the information content
and the decoding process can be greatly aided by the addition
of language models and dictionaries. The use of this additional
knowledge sources, however, restricts the expressive power of
the user to certain words or common phrases. Furthermore, a
textual representation does not carry all the other information
of speech, such as intonation, prosody and accentuation [23].
The full expressive power of speech can be realized by
decoding an articulatory or acoustic representation, but these
high-dimensional representations are more error-prone and
cannot benefit from additional knowledge sources as easily. All
these previously investigated representations miss a semantic
representation of the content of the spoken words. Semantic
representation can add to the advantages of the other repre-



sentation by supplying information about the meaning of the
spoken words. Ideally, this could mean that words might not
be perfectly decoded, but semantically similar words can be
extracted. Potentially, this could be used for expressive speech
BCIs or in combination with one of the other approaches.

Semantic representations of perceived natural sounds have
been investigated by linking different intermediate-to-semantic
level features, extracted using different embeddings models
from Natural Language Processing (NLP) to sound-to-event,
to recorded fMRI activity [24]. In [25], the authors used a
wav2vec-model to provide embeddings of audio to explain
the cortical fMRI responses to perceived speech. In an ECoG
study, Goldstein et al. [26] used the embeddings of the large
language model GPT2 to predict high-gamma time series
of electrodes to perceived audio books. In another study
employing GPT2, Cai et al. [27] modelled cortical activity
in sEEG electrodes in natural conversations. By employing
natural conversations, instead of simple listening conditions,
the author demonstrated that neural activity can not only be
predicted during listening, but also during speech production.
Furthermore, the authors provide insights into the transition
periods between speech perception and production.

In this study, we investigate if semantic representations of
word production can be found in stereotactic EEG even when
only individual words are produced. In single word production,
words are not embedded into meaningful sentences and thus
lack a lot of the semantic grounding. Stereotactic EEG is
ideally suited for this investigation as it supplies a sparse
coverage across cortical and sub-cortical areas [28], which is
necessary for the expected scattered representation of semantic
encoding [29].

II. MATERIAL AND METHODS

A. Participants

Ten patients (5 female, 5 male) with intractable epilepsy
between 16 and 50 years of age participated in our exper-
iment. Patients underwent surgery in the clinical treatment
for their epilepsy. Participation in the experiment occured on
a voluntary basis and participants provided written informed
consent. The experiment received ethical approval from both
Institutional Review Boards at Maastricht Unviversity and
Epilepsy Center Kempenhaeghe.

B. Experiment Design

Participants read out individual words shown on a computer
screen. Each word was displayed for 2 seconds followed by a
relaxation interval of 1 second. Words were taken from the IFA
dutch corpus [30] enriched with the numbers one through ten.
A total of 100 randomly chosen words were recorded, resulting
in a total dataset length of 300 seconds per participant.

C. Data Recording

Each participant was implanted with between 5 and 19
platinum-iridium stereotactic EEG electrode shafts (Microdeep
intracerebral electrodes; Dixi Medical, Beçanson, France).
Electrode locations are purely determined by clinical necessity

Fig. 1. Electrode locations for all 10 participants warped to a standard MNI
brain. Each color indicates locations for one participant. Colors match colors
in the results Fig 3a.

and are not influenced by the experiment at all. Each shaft
(diameter of 0.8 mm) has a varying number of electrode
contacts with a length of 2mm each, resulting in a total
of between 54 and 127 electrode contacts per participant.
Combined, we analyzed data from 1103 contacts (543 in
the left and 557 in the right hemisphere). Electrode data
was recorded using Micromed SD LTM amplifiers (Micromed
S.p.A., Treviso, Italy) with a sampling rate of 1024 or 2048
Hz. Simultaneously, we recorded audio data from the build-in
microphone of the recording notebook. Experimental timing,
audio data and neural data were synchronized using Lab-
StreamingLayer [31]. Audio data was not analyzed for this
study. We previously made all data used in this study available
[32].

D. Electrode Localization

Electrodes were localized by co-registering a pre-surgical
MR (T1-weighted) and post-surgical CT. The MR image is
then parcellated into cortical areas using the Destrieux atlas
[33] in freesurfer [34]. Electrode locations are marked in the
CT using img pipe [35]. This yields anatomical labels for each
electrode contact. Cortical meshes and electrode locations are
then warped to a standard MNI-Brain for joint visualization
(see Fig. 1).

E. Signal Processing

We focused our analysis on the broadband gamma (70-170
Hz) range, as it is known to exhibit highly localized infor-
mation for a variety of cognitive processes, including music
perception and imagination [36], speech [37] and language
[38] tasks and is thought to reflect ensemble spiking [39]. To
extract broadband gamma, we bandpass filtered the signals



Fig. 2. Study overview: Words are presented to a participant, who is then asked to say the word aloud. We record intracranial EEG from stereotactic
electrodes during this word production. Word embeddings are generated for the presented words. We train a prediction model to reconstruct neural activity
during speech production based on these word embeddings. For a new word, the neural activity can then be predicted from the word embedding (orange time
series) and compared to the original neural activity (blue time series).

between 70 and 170 Hz using a zero-phase IIR bandpass
filter (filter order 4). Subsequently, we attenuated the first and
second harmonic of the 50 Hz line noise by applying two
IIR bandstop filters (filter order 4). Neural features were then
extracted by averaging the absolute of the Hilbert transform
in windows of 200 ms with a window shift of 25 ms.

For each spoken word, we extracted the entire speech pro-
duction period (2 seconds) and assigned it to the corresponding
cued word. This resulted in 75 time points for each electrode
contact in each trial.

F. Semantic Embeddings

Semantic representations of the Dutch words were generated
by a word2vec-model [40]–[42] trained on a dump of the
Dutch wikipedia with 392 million words. The word2vec em-
bedding provides a numerical representation of Dutch words
that captures the semantic and syntactic qualities of words
and ensures that semantically similar words have smaller
cosine-similarities than non-similar words. The trained model
is publicly available [43] and provides a 160 dimensional
embedding vector for a given Dutch word. Word embeddings
were available for 85 out of the 100 words produced by each
participant. We discarded words without a word embedding
available.

G. Encoding Model

We trained an ordinary least squares linear regression to
predict the time series of a single electrode contact from the
embedding of the cued word (see Fig. 2). This means that a
160 dimensional embedding vector is multiplied with a matrix
β with shape [160, 75] to predict the broadband gamma activity
of one electrode contact during speech production.

H. Evaluation

We train and evaluate the linear regression predictor for each
electrode contact individually in a 10-fold cross validation. We
then calculate the Pearson correlation across all trials for each
individual time point relative to word presentation. This means
that we are looking at the differences in average response to
word presentation in each time point as opposed to looking at
the average response during speech production.

I. Randomized Baseline

We evaluated chance level correlations by randomly permut-
ing the embedding vectors and training the encoding model
again exactly as described previously. This procedure was
repeated 1,000 times for each channel and the 95% largest
correlation across all time points and channels was used as
the significance threshold (α = 0.05). As we take the largest



Fig. 3. Results: a Number of significant channels for each participant. b Number of significant contacts per hemisphere for all participants combined. c
Average Correlations of significant channels over time. Shaded areas indicate standard error of the mean.

correlation across all channels and time points, we correct for
multiple comparisons using the max-t correction [44].

III. RESULTS

A. Contacts encoding semantics in almost all participants

The encoding model could predict neural activity during
speech production for at least one contact in all but one
participant (Fig. 3a). This shows that despite the very dif-
ferent electrode locations (Fig 1) and sparse and distributed
sampling of stereotactic EEG, semantic information can be
found. Previous studies in fMRI have also found semantic
representations, albeit in speech perception, tiling the entire
cerebral cortex [29]. In participant 3, the activity of 12% of
all electrode contacts could be reconstructed with significant
correlations.

B. More contacts with semantic encoding in the right hemi-
sphere

Our participants had very balanced coverage of the left
and right hemisphere (543 in the left versus 557 in the right
hemisphere), but 42% more contacts were significant in the
right hemisphere (28 left, 40 right, see Fig. 3b). It is interesting
to see this right hemisphere dominance, despite the fact that
speech production is lateralized to the left in most people [45].
This indicates that the semantic processing is, at least in part,
independent of the actual speech production process.

C. Correlations peak late during speech production

To identify when reconstructed neural activity is most
similar to actual activity during speech production, we look at
the average Pearson correlation across all significant electrode
contacts (Fig. 3c). Average correlation has a first peak 500 ms
after the word cue and a second, larger peak, one second after
the word is shown on the screen. This indicates that neural
responses to semantics are present even after word production,
as participants are usually finished with speaking at that time.

D. Semantic encoding can be found across many cortical
areas

To identify where channels with significant encoding are
located, we visualize them in a joint MNI model (Fig 4).
Significant channels can be found in all lobes on both hemi-
spheres. There is a clear accumulation of significant channels
around the central sulcus and in superior temporal areas,
which are known to be involved in speech production [46],
[47]. Interestingly, the activity of a number of contacts in
occipital and parietal areas can also be reconstructed with
significant correlations. This, once again, points to a wide-
spread representation of semantics as also found in fMRI [29].

IV. DISCUSSION

Semantic representations of individual words can be used to
reconstruct the neural activity during speech production mea-
sured by stereotactic EEG. For the semantic representations,
we used word embeddings generated by a word2vec-model.
Interestingly, the neural activity can still be reconstructed
despite the fact that the words are not grounded into a wider
semantic context (i.e. in full sentences). This indicates how
semantic processing occurs in a wide-spread cortical network
even when semantic processing is not required by the task.

We find electrodes with significant reconstruction in all
but one participant and observe a wide-spread representation
across many cortical and sub-cortical areas. This is in accor-
dance with prior studies into semantic encoding [29]. Even
occipital and parietal contacts could be reconstructed with
significant correlations. This indicates that semantic processing
might already start with the reading of the visually presented
words.

We observe a slight preference for the right hemisphere,
while speech production is traditionally thought to be left
hemisphere dominant. This indicates that semantic processing
recruits additional neural circuitry to mere speech production.



Fig. 4. Locations of channels with significant encoding of semantic information in right, left and top views. Non-significant channels are omitted in this
visualization. Channels with significant encoding can be found across a variety of cortical and sub-cortical areas and not only in regions traditionally associated
with speech production.

From a temporal perspective, we observe that semantic
representation seem to be best encoded shortly after the
word cue and about one second after word production, which
indicates that semantic processing takes place even after the
actual word production.

In the future, it would be of interest to compare these
findings to the encoding of acoustic, textual and articulatory
features to see which regions overlap and which are dis-
tinctively encoding certain aspects of the speech production
process. Potentially, a clear hierarchy in the encoding of these
processes can be identified, as has been previously done in
the processing of articulated, whispered and imagined speech
[48].

The fact that semantic representations can indeed be found
in intracranial recordings points to a potential role in speech
neuroprostheses. Semantic embeddings could be predicted,
instead of used for an encoding model, in the future to
inform speech neuroprostheses about an additional dimension
of intended speech production.

V. CONCLUSION

We have shown that word embeddings of individual words
can be used to predict the neural activity during the speech
production process of these words. These findings have the
potential to add additional information to the decoding process
in speech neuroprosthesis.
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