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Modeling of Perceived Musical Rhythms using Electrocorticography

Michael Dexheimer1, Garett D. Johnson2, Jerry J. Shih3, Christian Herff4, Dean J. Krusienski1

Abstract— Numerous studies have explored the neural corre-
lates of musical rhythms using various neuroimaging modalities.
Non-invasive neuroimaging modalities lack either the spatial or
temporal resolution to reveal the nuances of neural processes
involved in perception of musical rhythms. Intracranial record-
ings of electrophysiological activity such as electrocorticography
(ECoG) can jointly provide spatial and temporal resolution for
improved characterization and modeling of the underlying pro-
cesses. The present study examines anticipatory and perceptual
models that use ECoG recordings to estimate simple perceived
and imagined musical rhythms in human participants. The
resulting models are characterized and compared across partic-
ipants. The results show that the anticipatory and perceptual
models can reconstruct the auditory stimulus envelope with
statistically-significant correlations when trained and tested on
independent listening data. However, these models are unable to
reliably reconstruct the expected rhythm pattern when trained
on listening data and applied to imagining data. This suggests,
similar to recent findings in overt and imagined speech decoding
using intracranial signals, that there are likely distinct neural
substrates activated during listening and imagining of musical
rhythms.

I. INTRODUCTION

Recognition of rhythmic patterns is instinctive in humans
and can evoke many neurological and psychological reac-
tions ranging from anticipatory to emotional. The perception
of syntax, pitch, beat, and timbre all contribute to the
appreciation of music and the processing of language [1],
[2]. Music and language share networks and have their own
distinct mechanisms of neural encoding [2], [3]. Simple
musical rhythms have a consistent, repetitive structure and
are significantly less complex than other commonly studied
auditory stimuli such speech. Through the examination of
simple rhythms, it may be possible to gain insights about
the intricate networks involved in both language and music
processing.

Because a variety of complex speech and auditory sig-
nals (both perceived and imagined) have been successfully
decoded using intracranial recordings [4]–[7], it is conceiv-
able to decode perceived and imagined musical rhythms
from intracranial signals for application to a brain-computer
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interface [8]. Moreover, since the perception of rhythm is
generally ubiquitous in humans across race and culture, such
stimuli can facilitate the identification of a common neural
substrate of rhythm processing.

Numerous previous neuroscientific studies have examined
various aspects of music using scalp EEG [9]–[18] or func-
tional magnetic resonance imaging (fMRI) [19]–[22]. Elec-
trocorticographic (ECoG) recordings from electrodes placed
directly on the surface of the cortex, provide access to broad-
band gamma activity (∼70-250 Hz), which has been shown
to be highly correlated with a wide variety of behavioral,
sensory, and cognitive functions [8]. Recent studies have
demonstrated that ECoG is capable of uniquely resolving
and decoding complex spatiotemporal speech [4], [5], [23]–
[25] and music signals [6], [7], [26]–[31] to a degree that
was previously unattainable by fMRI or EEG/MEG.

The present study develops participant-specific models
to reconstruct perceived imagined rhythms from ECoG
recordings using both anticipatory (causal) and perceptual
(noncausal) models trained on ECoG data acquired during
listening to the rhythm stimulus. The motivation for these
distinct models is to elucidate different neural processes
underlying pure auditory rhythm perception versus the antic-
ipation of upcoming beats, respectively. In contrast to prior
work, the presented stimuli represent very basic rhythmic
drum patterns to better facilitate identification of consistent
neural correlates, while maintaining musicality to promote
user engagement in the task compared to alternate stimuli
such as clicks [12]. The performance of the two models are
evaluated using independent ECoG test data from listening
and imagining conditions, respectively. The resulting models
are characterized and compared across participants.

II. METHODOLOGY

A. Participants

ECoG data were recorded from six patients (ages 22-
27, one female) with intractable epilepsy undergoing the
localization of epileptogenic zones and eloquent cortex prior
to surgical resection. No patients reported having hearing
deficits or any form of formal musical training. No brain
tumors or lesions were indicated in the clinical evaluations
and therefore did not impact the ECoG recordings. All
participants in this study gave written informed consent and
the study protocol was approved by the institutional review
boards of Mayo Clinic Florida and Old Dominion University.

Each patient was implanted with subdural electrode grids
based exclusively on their clinical need. All electrode lo-
cations were verified by co-registering preoperative MRI



and postoperative computerized tomography scans. The elec-
trode locations for each participant are shown in Figure 1.
Electrode locations and activations were generated using the
Neural Act package [32].

Fig. 1. Electrode grid locations for the six participants.

B. Stimuli and Task

In order to maintain simplicity while promoting ecolog-
ical validity as musical stimuli, only fixed-pitch kick and
snare drum sound samples were used to create the musical
rhythms, each being of simple meter [26]. An experimental
trial lasted 120 seconds, consisting of six continuous 20-
second blocks. The first block represented the fundamental
rhythm pattern, the second block added a single beat to the
fundamental rhythm, and the third block added an additional
beat to the rhythm from the second block. Blocks 4-6
repeated the patterns from blocks 1-3 in reverse order.

Participants were instructed to passively listen to and
follow the rhythm being presented through research-grade
earbuds while ECoG was simultaneously recorded. During
each block, after at least 8 measures, the audio randomly
ceased (i.e., became silent) for 4-8 measures during which
the participant was instructed to continue imagining the
beat. The intervals containing the audible rhythm are herein
refereed to as listen and the silent intervals are referred to
as imagine.

Four trials were performed, each consisting of a rhythm
with a distinct tempo (120 or 140 bpm) and fundamental
rhythmic pattern. Additional trials were performed represent-
ing silent, resting baseline; white noise; active tapping with
the beat; and random sequences of beats using the same drum
samples, respectively. For this preliminary investigation, only
the data corresponding to blocks 1 and 6 (the fundamental
rhythm) for the 120 bpm condition were analyzed. For this
condition, a measure is 1 second in duration.

C. Data Collection

Data from the electrode grids or strips (Ad-Tech Medical
Instrument Corporation, 1-cm spacing) were digitized at
1200 Hz using g.USB amplifiers (g.tec Medical Engineering,
Austria). Data recording and stimulus presentation were
controlled by BCI2000 [33].

D. Data Analysis

A high-pass filter with a cutoff frequency of 0.01 Hz
was applied to the ECoG data to remove any low-frequency
trends. For each participant, the data was re-referenced using
a spatial common average reference to suppress activity that
is common across the channels. To extract the broadband
gamma power, each ECoG channel was bandpass filtered
between 70 and 170 Hz using a 360-tap FIR bandpass filter
with zero-phase filtering. An IIR elliptic notch filter was
applied to attenuate the second harmonic of the 60-Hz line
noise at 120 Hz. The Hilbert transform was then used to
extract the instantaneous amplitude envelope. The resulting
broadband power envelope was smoothed using a low-pass
filter with a cutoff frequency of 8 Hz and zero-phase filtering.

The identical procedure was performed to compute the
envelope of the acoustic waveform of the musical rhythm
stimulus, except the Hilbert envelope was smoothed using
a low-pass filter with a cutoff frequency of 6 Hz and zero-
phase filtering based on the characteristics of the signal.

1) Model Development and Training: For each partici-
pant, two linear multiple regression models were developed
and trained using Lasso regression [34]. The first is a causal,
anticipatory model that uses the past 250 ms of ECoG
data to reconstruct the current stimulus envelop (listened or
imagined). The second is a non-causal, perceptual model
that uses the future 250 ms of ECoG data to reconstruct
the current stimulus envelop. The anticipatory model ex-
amines the potential to predict the rhythms in real-time for
application to brain-computer interfaces, while the perceptual
model highlights the effects of actual or imagined perceptual
feedback on the ongoing brain activity.

For each participant, ECoG segments corresponding to the
listen intervals of stimulus blocks 1 and 6 were used for
training the model. Continuous ECoG data corresponding to
the listen intervals were further segmented into three non-
overlapping sets: (1) ∼18 seconds for training the model,
(2) ∼4 seconds for optimizing the regularization parameter
of the Lasso regression, and (3) ∼4 seconds for testing
the model on listen data. Additionally, the model was also



Fig. 2. Example of trial data segmentation with respect to the stimulus
envelope for training, model optimization, and testing (listen and imagine).

tested on an equivalent duration of imagine data. An example
segmentation of the stimulus data is shown in Figure 2.

For the anticipatory model, the instantaneous broadband
gamma envelope for each ECoG channel was lagged at 0,
50, 100, 150, 200, and 250 ms prior to the current time point
and used as inputs to the model to predict the current value of
the acoustic stimulus envelope. This yielded 5 x # channels
features for training the respective models. The perceptual
model setup was identical except that the ECoG data at 0,
50, 100, 150, 200, 250 ms after to the current time point and
used as inputs to the model to predict the current value of
the acoustic stimulus envelope.

The regularization parameter of Lasso regression [34] was
optimized for each model by iterating the parameter on the
independent validation data, labeled as ‘Optimize’ in Figure
2, and selecting the value that achieved the maximum Spear-
man correlation of the model output and rhythm envelope.

2) Model Evaluation: The models were applied to both
the listen and imagine test segments corresponding to the
same trial data used to train the respective model (see Figure
2). The resulting reconstructions were compared to the
expected rhythm envelope using Spearman’s rank correlation.
The expected rhythm envelope for the imagine test data
simply represents the original stimulus pattern before the
silence intervals were inserted.

To evaluate the statistical significance of the resulting
Spearman correlation coefficients, a randomization test was
performed where the ECoG data from the silent, resting base-
line trial for each participant were used as the input to the
respective models and the Spearman’s correlation coefficient
was computed between the model output and the stimulus
envelope, which does not have a natural temporal alignment
with the baseline ECoG data. The baseline ECoG data was
circularly shifted, temporally, by a random factor and the
process was repeated 1000 times. The empirical distribution
of the resulting correlation coefficients was used to compute
the p-value of the correlation coefficients obtained during the
actual listing and imagine test conditions.

III. RESULTS

The Spearman correlation coefficients for the anticipatory
and perceptual models for the listen condition are shown
in Figure 3. Except for Participant 6, all perceptual models
generated statistically significant correlations for the listen
condition. This is also the case for the anticipatory models

except for Participants 4 and 6. Examining the average across
participants, the anticipatory models performed marginally
lower than the perceptual models (p=0.1562, Wilcoxon
signed rank test).

Fig. 3. Bar graph of the correlations for the anticipatory and perceptual
models for the listen condition. The asterisks indicate the level of signifi-
cance based on the randomization tests.

The Spearman correlation coefficients for the anticipatory
and perceptual models for the imagine condition are shown
in Figure 4. Only the perceptual model from Participant 4
was significant for the imagine condition.

Fig. 4. Bar graph of the correlations for the anticipatory and perceptual
models for the imagine condition. The asterisks indicate the level of
significance based on the randomization tests.

Figure 5 shows an example reconstruction from Participant
5 for the perceptual model that generated the highest corre-
lation for the listen condition. Figure 6 shows a topography
of the model weights that associated with the reconstruction
in Figure 5. As expected for such a perceptual model, the
largest model weights are over the auditory cortex from 50



to 100 ms, with negligible feature contributions at 0 ms or
beyond 200 ms. There is also some contribution from the
posterior parietal area around 150 ms, which is consistent
with prior findings examining perceived rhythm [35], and
has been linked to encoding and retrieval of music/rhythmic
patterns [30], [36].

Fig. 5. An example reconstruction from Participant 5 for the perceptual
model for the listen condition.

Figure 7 shows an example reconstruction from Participant
5 for the anticipatory model that generated the highest corre-
lation for the listen condition. Figure 8 shows a topography
of the model weights that associated with the reconstruction
in Figure 7. For this model, the largest model weights are
from -150 ms to -100 ms, also over the auditory cortex,
similar to the perceptual model. There are negligible feature
contributions at 0 ms or beyond -200 ms. There is also some
contribution from a more anterior parietal area around -50
ms that may also span the region associated with encoding
and retrieval of music/rhythmic patterns [30], [36].

IV. DISCUSSION

As expected, the perceptual models applied to the listen
data yielded the best overall performance. This performance
is largely due to the fact that all participants had some
electrode coverage of the superior temporal gyrus, often
containing primary auditory cortex. This is exemplified by
the selected model weights for this condition, e.g., Figure
6, with the relevant features being represented at time
lags commensurate with typical auditory response times for
ECoG [28]. The anticipatory models also exhibited com-
paratively high correlations for the listen condition, with
feature weights primarily concentrated over the auditory
cortex around 50-150 ms prior to the stimulus. Such a
causal design is necessary in the pursuit of a real-time
brain-computer interface application. It should be noted that
one measure of the rhythm is 1000 ms in duration, with
a beat occurring every 500 ms. Since the neural auditory
response to a beat should resolve within 200 ms after a
beat, and the anticipatory model weights are concentrated
around 50-150 ms prior to the current model output, it is

Fig. 6. Topographies of the normalized model weight magnitudes of the
perceptual model for Participant 5.

Fig. 7. An example reconstruction from Participant 5 for the anticipatory
model for the listen condition.



Fig. 8. Topographies of the normalized model weight magnitudes of the
anticipatory model for Participant 5.

unlikely that the performance of the anticipatory model is
exclusively attributed to perceptual transients. However, the
bandpass filter used to isolate the broadband gamma is 300
ms in duration, which is effectively doubled with zero-phase
filtering. Thus, it is possible that this temporal overlap could
impact the interpretation of the results.

Only one significant correlation was observed for the
imagined condition, which was obtained from the perceptual
model for Participant 4. Curiously, this correlation is nega-
tive. One possible explanation is that the reconstruction may
be out of phase with the correct stimulus envelope alignment.
This could be due to the participant losing synchronization
with the rhythm during the imagine condition. However, it is
perplexing that this negative correlation (ρ = -0.325) is larger
in magnitude than the participant’s perceptual model in the
listen condition (ρ = 0.227), where the neural synchroniza-
tion should be naturally maintained from the audible stimu-
lus. It is conceivable that this significant negative correlation
is merely an aberration of the selected data since limited data
were available to perform a more thorough cross validation.

The general failure of the models for the imagined con-
dition is likely analogous to what has been observed in
imagined speech decoding from intracranial signals, where
models trained on overt speech tend to fail when evaluated
on imagined speech [37]. However, the present protocol does

not provide a sufficient duration of imagine data to conduct
a more comprehensive characterization or to train a model
on imagine for comparison to the models trained on listen.

V. CONCLUSION

This study demonstrates that it is possible to design models
that can reconstruct simple perceived acoustic rhythm pat-
terns from both causal, anticipatory and noncausal perceptual
ECoG recordings made during listening of the rhythms.
While the quality of the reconstructions varied across partici-
pants, the simple linear models were trained with a very lim-
ited amount of data from electrodes in suboptimal locations
for this decoding application. It is expected that the recon-
structions can be significantly improved with better electrode
coverage, larger amounts of data, and more sophisticated
decoding models. While both the anticipatory and perceptual
models trained on listening data fail to reliably reconstruct
the expected imagined patterns, for a proper assessment
and comparison to the models trained with listening data,
additional imagine data is required to train the models.
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