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Abstract
The frequently reported high theta/beta ratio (TBR) in the electroencephalograms (EEGs) of children with attention-deficit/
hyperactivity disorder (ADHD) has been suggested to include at least two distinct neurophysiological subgroups, a subgroup 
with high TBR and one with slow alpha peak frequency, overlapping the theta range. We combined three large ADHD cohorts 
recorded under standardized procedures and used a meta-analytical approach to leverage the large sample size (N = 417; age 
range: 6–18 years), classify these EEG subtypes and investigate their behavioral correlates to clarify their brain-behavior 
relationships. To control for the fact that slow alpha might contribute to theta power, three distinct EEG subgroups (non-slow-
alpha TBR (NSAT) subgroup, slow alpha peak frequency (SAF) subgroup, not applicable (NA) subgroup) were determined, 
based on a halfway cut-off in age- and sex-normalized theta and alpha, informed by previous literature. For the meta-analysis, 
Cohen's d was calculated to assess the differences between EEG subgroups for baseline effects, using means and standard 
deviations of baseline inattention and hyperactivity-impulsivity scores. Non-significant, small Grand Mean effect sizes 
(-0.212 < d < 0.218) were obtained when comparing baseline behavioral scores between the EEG subgroups. This study 
could not confirm any association of EEG subtype with behavioral traits. This confirms previous findings suggesting that 
TBR has no diagnostic value for ADHD. TBR could, however, serve as an aid to stratify patients between neurofeedback 
protocols based on baseline TBR. A free online tool was made available for clinicians to calculate age- and sex-corrected 
TBR decile scores (Brainmarker-IV) for stratification of neurofeedback protocols.

Keywords  ADHD · Biomarker · TBR · EEG · Stratified Psychiatry

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is the most 
common childhood psychiatric disorder, affecting approx-
imately 5% of children worldwide (Faraone et al., 2015). 
About 40–60% of these individuals continue to experience 
symptoms into adolescence and adulthood (Faraone et al., 
2006). ADHD is characterized by persistent symptoms of 
inattention, hyperactivity and/or impulsivity that may inter-
fere with daily functioning in academic, occupational, and 
social settings (Faraone et al., 2015). The underlying causes 
of ADHD are not fully understood, but research suggests 
that genetic and environmental factors interact in its etiology 
(Thapar et al., 2012). To gain more insight into the under-
lying neurophysiology of ADHD, electroencephalography 
(EEG) has been used over the past decades to investigate 
the neural activity of individuals with and without ADHD.
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Most children with ADHD exhibit an aberrant pattern of 
baseline cortical activity, characterized by elevated slow-
wave activity primarily in the theta band and reduced fast-
wave activity mainly in the beta band. These patterns often 
occur concomitantly and are referred to as high theta/beta 
ratio (TBR) (Barry et al., 2003). During wakeful rest, slow-
wave theta activity may indicate fatigue or drowsiness, while 
activity in the beta band is generally associated with mental 
activity and concentration (Loo & Arns, 2015). The low beta 
activity, as is typically found in ADHD, could be indicative 
of a cognitive processing dysfunction (Hobbs et al., 2007; 
Markovska-Simoska & Pop-Jordanova, 2017). Originally, 
TBR was proposed as a diagnostic biomarker to discriminate 
individuals with ADHD from healthy controls and was even-
tually approved by the Food and Drug Administration (FDA) 
as a diagnostic biomarker (Monastra et al., 1999, 2001; Sny-
der et al., 2008, 2015; Suffin & Emory, 1995). However, a 
meta-analysis (Arns et al., 2013) showed that TBR could not 
differentiate between children with and without ADHD and 
is therefore not a reliable diagnostic biomarker for ADHD. 
Still, elevated TBR has been suggested as predictor for dif-
ferent treatment outcomes (Arns et al., 2008, 2012; Clarke 
et al., 2002; Janssen et al., 2016), suggesting prognostic 
value.

Another EEG metric that has shown promising results 
as an age- and sex-standardized biomarker is the individual 
alpha peak frequency (iAF) (Voetterl et al., 2022), the modal 
frequency of an individual’s alpha oscillations. Alpha activ-
ity is generated in the thalamocortical feedback circuitry 
(Silva, 1991; Steriade et al., 1990), implying that iAF may 
be indicative of bidirectional information flow between the 
cortex and thalamus. A higher iAF may indicate faster infor-
mation processing and is associated with enhanced cognitive 
performance (Clark et al., 2004; Jin et al., 2006; Klimesch, 
1996). In contrast, slow iAF is frequently observed in men-
tal disorders, such as Alzheimer’s, mild cognitive impair-
ment (Rodriguez et  al., 1999), psychosis/schizophrenia 
(Murphy & Öngür, 2019; Yeum & Kang, 2018) and ADHD 
(Bazanova et al., 2018). Moreover, slow iAF was tradition-
ally related to non-response to treatment with stimulants in 
ADHD (Arns et al., 2008, 2018). However, recent studies 
have shown that iAF has potential to differentially predict 
outcome to different treatments and that iAF stratification 
between methylphenidate (MPH) and neurofeedback (NFB) 
might enhance remission rates (Krepel et al., 2020a; Voetterl 
et al., 2022).

Several studies comparing the EEG between children 
with and without ADHD used traditional fixed frequency 
ranges to estimate EEG power rather than individual fre-
quency ranges (Chabot et al., 1999; Clarke et al., 2002, 
2003). However, it has been suggested that the low alpha 
range overlaps with the theta range (Doppelmayr et al., 1998; 
Klimesch, 1999), leading to the potential misinterpretation 

of slow alpha as theta activity. At least two distinct EEG sub-
types in ADHD, a subgroup with high TBR and a subgroup 
with slow alpha peak frequency, might thus contribute to 
the observed increase in "theta" power, and consequently, 
a higher TBR (Arns et al., 2008). In a paper by Lansber-
gen et al. (2011), the increased TBR was replicated in boys 
with ADHD using fixed frequency ranges, but this effect 
was lacking when TBR was based on individualized fre-
quency ranges informed by the iAF. This result also suggests 
that findings of high TBR in children with ADHD might 
depend on a slow alpha subgroup and that clear dissocia-
tion between high TBR and slow iAF is needed as these 
two subtypes have completely different etiologies (Steriade 
et al., 1990). In line with this, a review that summarized 
research investigating the presence of patient clusters based 
on EEG differences, concluded that EEG profiles of ADHD 
patients represent the heterogeneity of the disorder (Clarke 
et al., 2020). A study investigating EEG phenotypes already 
suggested that different subtypes responded differentially to 
stimulant medication (Arns et al., 2008). Still, the question 
remains whether iAF and TBR combined can aid in correctly 
classifying these subtypes, reflected in behavioural traits.

Here, we calculated the age- and sex-corrected iAF 
(Brainmarker-I, for details also see: Voetterl et al. (2022)), 
and applied the same corrections to TBR (referred to as 
Brainmarker-IV) using a large lifespan database of N > 4000. 
Next, we investigated behavioral correlates of these bio-
marker-based EEG subtypes including clinical samples of 
children and adolescents with ADHD from several large 
ADHD trials that utilized standardized methodology and 
equipment (iSPOT-A, N = 278; ICAN, N = 90; and the 
TDBRAIN + , N = 49), facilitating combination of these 
samples using a meta-analytical approach. We used a dimen-
sional approach focused on symptoms measured by AHDH 
rating scales, allowing us to leverage a large combined 
sample size and potentially achieve greater sensitivity. For 
comparability to prior research, we examined two-way divi-
sions by segregating individuals based on high versus low 
Brainmarker-I and high versus low Brainmarker-IV. Addi-
tionally, we implemented a three-way grouping approach, 
comprising a subgroup with non-slow-alpha TBR (NSAT), 
a subgroup with slow alpha peak frequency (SAF) and a 
subgroup which shows neither slowed alpha nor excessive 
theta, termed not applicable (NA) subgroup. Since an earlier 
study suggested a correlation between slow alpha peak fre-
quency and hyperactivity-impulsivity (Stevens et al., 1968), 
we expected higher levels of baseline hyperactivity-impul-
sivity in the SAF compared to the NA subgroup. Based on 
a study by Arns et al. (Arns et al., 2008), which argued that 
individuals with high TBR are specifically those with the 
inattentive component, we expected that the NSAT subgroup 
will show higher baseline inattention scores compared to the 
NA subgroup.
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Materials and Methods

Datasets

Data that was collected for the International Study to Pre-
dict Optimized Treatment in ADHD (iSPOT-A), the Interna-
tional Collaborative Neurofeedback Study (ICAN) and the 
TDBRAIN + -Neurofeedback Study was used. Data from the 
different datasets was measured using the same EEG equip-
ment, and EEG preprocessing was conducted in the same 
way to reduce variance. Full details of the study protocols 
can be found elsewhere (Arns et al., 2018; Group et al. 2021; 
Krepel et al., 2020b).

iSPOT‑A Study

The iSPOT-A Study was a phase-IV, multi-site, inter-
national, open-label effectiveness trial, which consisted 
of 336 individuals with ADHD and 158 healthy controls 
(6–18 years) from seven international research sites. ADHD 
patients were treated with MPH for 6  weeks and were 
required to have a minimum treatment duration of 4 weeks. 
The ADHD-Rating Scale-IV (ADHD-RS) was administered 
by a non-prescribing clinician before and after treatment 
with MPH to assess ADHD symptoms. EEG assessments 
were completed before treatment start.

ICAN Study

The ICAN Study was a double-blind randomized con-
trolled trial, which consisted of 140 children (6–12 years) 
with ADHD who were selected based on a high TBR value 
equal to or above 4.5. Children were blindly randomized to 
a multimodal treatment of sleep and nutrition counseling 
along with either TBR NFB (MM-NFB) or NFB admin-
istered based on a prerecorded EEG (control) to facilitate 
blinding of all. The study compared the effects of MM-NFB 
to the control treatment for up to 38 treatments in a 14-week 
period, with 6-, 13-, and 25-month follow-up. Primary out-
come was inattentive symptom severity measured by the C-3 
Parent and Teacher DSM-V inattention subscales (Conners 
et al., 2011).

TDBRAIN + ‑Neurofeedback Study

The TDBRAIN + -Neurofeedback Study was an open-label, 
naturalistic, multi-site study, which consisted of 114 chil-
dren, adolescents (< 18 years) and adults (≥ 18 years) with 
ADHD. Treatment data was collected from five clinics in the 
Netherlands, Germany and Australia, and analyses were per-
formed post-hoc. Patients were treated with standard NFB 

protocols in combination with coaching and sleep hygiene 
advice. The choice for a particular NFB protocol was based 
on the individual neurophysiology of the patient, assessed 
by quantitative electroencephalogram (QEEG) before treat-
ment. The Kooij and Buitelaar ADHD rating scale (Kooij & 
Buitelaar, 1997) was assessed at baseline, every 10th ses-
sion, and at outtake.

EEG Data Collection and Preprocessing

EEG data collection and preprocessing was consistent with 
other studies (Dijk et al., 2022; Voetterl et al., 2022). In 
short, EEGs were recorded from 26 channels in agreement 
with the 10–20 electrode international system (Quikcap, 
NuAmps) and following the standardized protocol devel-
oped by Brain Resource Ltd. Measurements consisted of 
a resting-state measurement of 2-min eyes open (EO) and 
2-min eyes closed (EC) recordings, with participants being 
instructed to fixate on a dot at the center of the computer 
screen during EO. Data were recorded with a ground at AFz, 
a linked-mastoids reference and a sampling rate of 500 Hz. 
Prior to digitization, a low-pass filter with an attenuation of 
40 dB/decade above 100 Hz was applied. Horizontal eye 
movements were monitored using electrodes placed 1.5 cm 
lateral to the outer canthus of each eye, whereas vertical 
eye movements were recorded with electrodes placed 3 mm 
above the midpoint of the left eyebrow and 1.5 cm below the 
midpoint of the left bottom eyelid. Skin impedance was kept 
below 10 kΩ for all electrodes. In the preprocessing phase, 
data were demeaned and bandpass-filtered between 0.5 to 
100 Hz and the notch-frequency of 50 Hz was removed. 
Custom-built Python software (Harris et al., 2020; Hunter, 
2007; Virtanen et al., 2020) was used to automatically detect 
and remove artifacts in accordance with de-artifacting proce-
dures described in previous studies (Dijk et al., 2022; Voet-
terl et al., 2022).

Brainmarker‑I and Brainmarker‑IV Determination

Calculation of Brainmarker-I followed the same procedure 
as Voetterl et al. (2022). In summary, iAF was computed 
by performing the fast Fourier transform (FFT) on pre-
processed, artifact-free data, segmented into 5 s segments. 
In each individual EEG, the highest peak within the fre-
quency range of 7 to 13 Hz was identified as the person’s 
iAF. To determine standardized, age-independent iAF val-
ues, non-linear regression models were derived on the TD-
BRAIN + data (N = 4126), separately for sex and electrode 
site (Fz, Pz and Oz). The models were compared to a linear 
model (null hypothesis) and models with the highest R2 were 
identified as best fit. Divergence values, which indicate how 
each individual’s iAF differs from the mean iAF at the indi-
vidual’s age and sex, were calculated based on the resulting 
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models by subtracting the model-derived average iAF for 
each individual’s age from the individual’s actual iAF. To 
ensure the elimination of the age effect, correlations between 
resulting divergence values and age were performed. Subse-
quently, divergence values were ranked from low to high and 
divided into deciles to improve interpretability. Brainmarker-
I data from electrode Fz were used for further analysis based 
on prior literature (Arns et al., 2018).

Since iAF is based on the EC condition, in the present 
study TBR is calculated on the EC data rather than follow-
ing the standard method of TBR calculation in EO, thereby 
ruling out differences due to recording condition. This is in 
line with Lansbergen et al. (2011), who calculated TBR from 
both EO and EC data and found a significant effect in the EC 
condition, but not in the EO condition.

TBR-based Brainmarker-IV was computed in line with 
Voetterl et al. (2022) and van Dijk et al. (2020). For TBR 
calculation, power spectral estimations of theta and beta 
were computed using the FFT on preprocessed, artifact-
free segments. The theta range was defined as frequencies 
in the range of 4 to 8 Hz; the beta range was defined as 
the frequencies between 13–21 Hz (Monastra et al., 1999). 
As recommended by van Dijk et al. (2020), the trial-based 
averaging method was used for the calculation of TBR, com-
puting the ratio between theta and beta power for each 2-s 
epoch. Then, the average ratio of theta to beta was computed 

over the complete session, allowing for correction of fluc-
tuations in theta and beta power over time. The resulting 
data was strongly skewed and was, thus, log-transformed 
to the base of 10 to yield a normal distribution of the 
data. Following the biomarker development as detailed in 
Voetterl et al. (2022), curve fitting was conducted on the 
TD-BRAIN + dataset for males and females separately, to 
identify non-linear regression models that best fit the data 
for electrode Cz (Fig. 1). Further steps were in line with 
the Brainmarker-I development (as detailed above). Brain-
marker-IV was developed in the same large heterogeneous 
clinical sample as Brainmarker-I, as the development of 
Brainmarker-I showed that the heterogenous dataset general-
ized better to a normative dataset than the other way around 
(Voetterl et al., 2022). Brainmarker-IV data was calculated 
on electrode Cz since this is the electrode site most com-
monly used in TBR research (Arns et al., 2013).

EEG Subgroups

The frequency overlap between alpha (7–13 Hz) and theta 
(4–8 Hz) results in interdependence of iAF and TBR. In a 
subject with a slow iAF, high power in the low alpha band 
might be misinterpreted as theta rhythm and thereby contrib-
ute to high theta power (Doppelmayr et al., 1998; Klimesch, 
1999). Findings of Doppelmayer et al. (1998) and Klimesch 

Fig. 1   Flattening the log-transformed TBR-age curve for males (left) 
and females (right) separately at electrode location Cz. Upper sub-
plots depict log-transformed TBRs and the optimized two-way decay 
model fit. Lower subplots depict the age-standardized divergence val-

ues and a LOESS fit through the data. Examples of the derived bio-
marker (Brainmarker-IV) based on the final age- and sex-standardized 
decile scores are visualized in the middle
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(1999) indicate that theta frequency varies as a function of 
alpha frequency and suggest using iAF as a common ref-
erence point for adjusting both alpha and theta frequency 
ranges.

To differentiate between slow iAF and high TBR, indi-
viduals were assigned to one of the EEG subgroups based 
on decile scores (Fig. 2). In line with Brainmarker-I, a decile 
cut-off point of 5 was chosen for Brainmarker-IV, with decile 
score 1 to 5 considered a low and decile score 6–10 a high 
value. This decision is supported by Voetterl et al.(2022), 
which showed that the cut-off point of decile 5 provided 
optimal stratification for Brainmarker-I. In brief the EEG 
subgroups were:

(1)	 SAF subgroup: individuals that have a slow alpha peak 
frequency, but not a high TBR. Individuals with low 
values on Brainmarker-I (low iAF) and Brainmarker-IV 
(decile 1 to 5; low-TBR) fall into this subgroup.

(2)	 NSAT subgroup: individuals were classified to this sub-
type when they had both relatively high Brainmarker-I 
(normal-high iAF) and Brainmarker-IV (high-TBR) 
values (decile 6–10). The high decile score for Brain-
marker-I (i.e., a fast alpha peak outside the theta range) 
indicates that their elevated TBR represents real theta 
activity and cannot be attributed to slow alpha.

(3)	 NA subgroup: this subtype shows neither a slowed 
alpha rhythm nor excessive theta. Individuals with this 
subtype have decile scores between 6–10 for Brain-

marker-I (normal-high iAF), and decile scores between 
1–5 for Brainmarker-IV (low-TBR).

The fourth potential combination involving low Brain-
marker-I and high Brainmarker-IV (other subgroup; see 
Fig. 2) was excluded from the subgroup analysis due to 
inability to dissociate between slow iAF and high TBR 
(iSPOT-A ADHD: 25%, ICAN Full Sample: 27% and 
TDBRAIN + -Neurofeedback Study: 22%).

Statistics

Curve fitting was conducted in GraphPad Prism version 
9.5.1. for MacOS (GraphPad Software, La Jolla California 
USA, www.​graph​pad.​com). All other analyses were per-
formed using IBM SPSS Statistics 28.

Extra sum-of-squares F tests were performed to compare 
the final best model fit to a linear fit, and to test whether one 
curve adequately fit both the female and the male datasets 
compared to their respective individual curves.

For the iSPOT-A Study, Chi-square tests were conducted 
to examine the differences in the number of individuals for 
Brainmarker-I and Brainmarker-IV separately between 
ADHD patients and healthy controls. For this, a two-way 
division of decile scores (low (1–5) vs high (6–10) decile) 
was introduced for both Brainmarker-I and Brainmarker-IV. 
Next, Brainmarker-I and Brainmarker-IV were combined 
into the EEG subgroups specified above, and Chi-square 

Fig. 2   Visualization of the different EEG subgroups based on iAF 
and TBR-derived Brainmarker-I and Brainmarker-IV. Individuals 
were assigned to one of the subgroups based on their decile scores for 

Brainmarker-I and Brainmarker-IV. The other subgroup (greyed out) 
was excluded from the analyses

http://www.graphpad.com
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tests were conducted to determine the differences in the 
number of individuals between ADHD patients and healthy 
controls among these three subgroups.

To examine the differences in the number of individuals 
for Brainmarker-I and Brainmarker-IV, both separately and 
combined, between children (aged 6–12 years) and adoles-
cents (aged 13–18 years), the iSPOT-A dataset was merged 
with the TDBRAIN + -Neurofeedback dataset and Chi-
square tests were performed. The ICAN Study was excluded 
from this analysis, due to the limited age range.

To draw an overall conclusion and minimize type-II error, 
meta-analyses were conducted including iSPOT-A, ICAN 
and the TDBRAIN + -Neurofeedback Study. First, ESs were 
calculated as Cohen’s d (d) using the pooled SD and the 
mean baseline difference (hyperactivity-impulsivity and 
inattention) for the two-way division of both Brainmarker-I 
and Brainmarker-IV. Second, ESs were calculated for the 
SAF compared to the NA subgroup and for the NSAT com-
pared to the NA subgroup. A grand mean ES was calculated 
with a 95% confidence interval (CI) providing the weighted 
mean ES for all studies. Furthermore, heterogeneity of ESs 
(Q-statistic) were calculated. Sensitivity analyses were con-
ducted for boys only, due to the limited sample size of girls.

For the ICAN Study, analyses were focused on parent-
rated baseline scores, as previous research suggested that 
teacher-rated scores are less reliable (Arns et al., 2020; 

Minder et al., 2018). Furthermore, all children with ADHD 
from the ICAN Study were included in the analysis of base-
line effects. For the TDBRAIN + -Neurofeedback Study, 
analyses were focused on baseline scores in the children/ado-
lescents (< 18 years) subsample to increase comparability.

Results

Datasets

Table 1 provides a summary of the basic demographic char-
acteristics as well as the two-way and EEG subgroup distri-
bution across all datasets.

Biomarker Discovery Phase

Of a number of different models tested, a two-phase decay 
model, i.e. a curve modelling fast initial decrease of a 
variable followed by a slower decrease, best explained 
the data (males: r2 = 4.7%; females: r2 = 4.2%), and mod-
elled the data significantly better than a linear model (H0; 
F(3,4483) = 221.3, p < 0.0001). A comparison of fit showed 
that female and male data required distinct models and 
could not be appropriately described by the same curve 
(F(5,4478) = 5.547, p < 0.0001).

Table 1   Demographic 
characteristics and distribution 
of the different datasets

Sample sizes reflect the number of people for whom both Brainmarker-I and Brainmarker-IV decile scores 
could be computed. All children in the ICAN study had ADHD and 90 had sufficiently clean EEG data to 
be included in the analysis. For the TDBRAIN + -Neurofeedback Study, the subsample of children/adoles-
cents (< 18 years) was used
iSPOT-A = International Study to Predict Optimized Treatment in ADHD; ICAN = International Collabo-
rative Neurofeedback Study; SD = standard deviation; MPH = methylphenidate; MM-NFB = multimodal 
treatment of sleep/nutrition counseling along with TBR neurofeedback; SAF = slow alpha peak frequency; 
NA = not applicable; NSAT = non-slow alpha TBR
a Decile score 1 to 5
b Decile score 6 to 10

iSPOT-A
ADHD

iSPOT-A
Control

ICAN
Full Sample

TDBRAIN + -
Neurofeedback Study

Sample size, N 278 136 90 49
Age, years, mean (SD) 12.2 (3.2) 12.2 (3.3) 8.6 (1.2) 11.2 (3.3)
Males, N (%) 196 (71%) 94 (69%) 70 (78%) 40 (82%)
Treatment MPH - MM-NFB and control MM-NFB
Two-way division, N (%)
   Low Brainmarker-Ia 126 (45%) 64 (48%) 37 (41%) 17 (35%)
   High Brainmarker-Ib 152 71 53 32
   Low Brainmarker-IVa 167 82 41 25
   High Brainmarker-IVb 111 (40%) 54 (40%) 49 (54%) 24 (49%)

EEG Subgroups (%)
   SAF 57 (27%) 32 (31%) 11 (17%) 6 (16%)
   NA 110 (53%) 50 (49%) 30 (45%) 19 (50%)
   NSAT 42 (20%) 21 (20%) 23 (35%) 13 (34%)
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Divergence values, denoting the discrepancy between 
each individual’s TBR and the mean TBR at the individual’s 
respective age and sex, scattered around 0 (Fig. 1), indi-
cating that the TBR age effect is eliminated effectively for 
Brainmarker-IV.

ADHD Versus Healthy Controls: iSPOT‑A

In line with Arns et al. (2013), in iSPOT-A no differences in 
number of individuals were found between ADHD and con-
trols for the two-way division of Brainmarker-IV (Table 1; 
p = 0.965). In addition, there were no differences in number 
of individuals for the two-way division of Brainmarker-I 
(p = 0.636). Combining Brainmarker-I and Brainmarker-IV 
into EEG subgroups also yielded no differences in number of 
individuals between patients and controls (p = 0.750).

Children Versus Adolescents

In the merged iSPOT-A and TDBRAIN + -Neurofeedback 
Study, no differences were found in the number of children 
versus adolescents for the two-way division of Brainmarker-
I (p = 0.140), the two-way division of Brainmarker-IV 
(p = 0.359) and between the EEG subgroups (p = 0.115).

Meta‑Analysis

Table 2 provides the mean hyperactivity-impulsivity and 
attention scores for the EEG subgroups across the datasets. 
For an overview of the meta-analyses performed, see Fig. 3.

•	 High versus low Brainmarker-I: a random-effects model 
meta-analysis yielded no significant heterogeneity tests 

and ESs for baseline inattention (Q = 0.334 d = 0.040, 
p > 0.685) and hyperactivity-impulsivity (Q = 1.421, 
d = 0.105, p > 0.289) scores.

•	 High versus low Brainmarker-IV: heterogeneity tests 
and ESs were not significant for baseline inattention 
(Q = 2.887 d = -0.212, p > 0.099) and hyperactivity-
impulsivity (Q = 1.403, d = -0.133, p > 0.181).

•	 SAF versus NA subgroup: the heterogeneity test 
(Q = 1.593, p = 0.451) and ES (d = 0.014, p = 0.921) 
were not significant for baseline inattention. Similarly, 
the heterogeneity test for baseline hyperactivity-impul-
sivity was non-significant (Q = 3.920, p = 0.141), as was 
ES (d = -0.075, p = 0.767).

•	 NSAT versus NA subgroup: showed a non-significant 
ES of 0.218 (p = 0.164) and a non-significant heteroge-
neity test (Q = 3.031, p = 0.220) for baseline inattention 
and hyperactivity-impulsivity (Q = 3.459, d = 0.019, 
p > 0.177).

Figure  3 shows that there are some opposite effects 
between the datasets that might be due to heterogeneity, 
such as different disorder severity, different treatments, 
restricted age range for ICAN and participants recruited 
based on high TBR in ICAN. For the sensitivity analyses, 
random-effects model meta-analyses yielded no significant 
heterogeneity tests and ESs for baseline inattention and 
hyperactivity-impulsivity scores in boys (-0.180 < d < 0.260, 
0.835 < Q < 3.412, p > 0.145).

Discussion and Conclusions

Here, we have taken a novel approach utilizing Brainmarker-
I and Brainmarker-IV-informed subtypes to investigate dif-
ferences in behavioral traits including three clinical sam-
ples of ADHD patients. In the development of TBR-derived 
Brainmarker-IV, we obtained age- and sex-normalized val-
ues for TBR expressed in decile scores. The added value 
of this marker is that we could accurately normalize the 
strong non-linear changes across age, as visualized in Fig. 1, 
thereby eliminating the need to covary or otherwise statis-
tically control for age- and sex-related differences (where 
assumptions of linearity would be violated). The small and 
non-significant ESs extracted from the meta-analyses sug-
gest that there is no consistent association between Brain-
marker-I and Brainmarker-IV, separately and combined, for 
baseline hyperactivity-impulsivity and inattention behavioral 
traits.

The lack of associations between the EEG subgroups 
and the baseline ADHD symptoms found in this study 
further confirms previous findings by Arns et al. (2013), 
indicating that TBR has no diagnostic value for ADHD. 
Whereas Arns et al. (2013) primarily focused on the EO 

Table 2   Mean hyperactivity-impulsivity and inattention scores of the 
different datasets

Hyperactivity-impulsivity and inattention scores of the SAF, NA and 
ACT groups in the three different datasets
iSPOT-A = International Study to Predict Optimized Treatment in 
ADHD; ICAN = International Collaborative Neurofeedback Study; 
SD = standard deviation; SAF = slow alpha peak frequency; NA = not 
applicable; NSAT = non-slow alpha TBR

iSPOT-A
Study

ICAN
Study

TDBrain + -
Neurofeedback Study

Hyperactivity-impulsivity mean (SD)
  SAF 16.21 (7.81) 1.72 (.60) 4.83 (2.64)
  NA 14.46 (8.29) 1.81 (.55) 6.32 (1.89)
  NSAT 16.67 (7.05) 1.78 (.63) 5.38 (2.43)

Inattention, mean (SD)
  SAF 21.18 (4.61) 1.90 (.32) 6.33 (2.16)
  NA 20.72 (4.51) 2.06 (.53) 6.26 (2.33)
  NSAT 21.74 (3.93) 2.04 (.45) 7.69 (1.49)
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condition, this study investigated the EC condition as a 
novel aspect. The concept of TBR as a diagnostic meas-
ure for ADHD was first reported by Lubar (1991), and 
many studies investigating this further indicated that TBR 
could distinguish ADHD individuals from healthy con-
trols (Clarke et al., 1998; Monastra et al., 1999, 2001; 
Suffin & Emory, 1995). Findings from Snyder et  al. 
(2015), which suggested that TBR might help improve 
the accuracy of ADHD diagnosis, even resulted in TBR 
being FDA-approved as a diagnostic marker. However, 
the meta-analysis by Arns et al. (2013) suggested that the 
TBR is not reliable in discriminating between individuals 
with and without ADHD for diagnostic purposes, and van 
Dijk et al. (2020) and Kerson et al. (2019) showed that 
different methods for EEG signal processing can result in 

significantly different TBRs, making TBR an unreliable 
stand-alone tool for ADHD diagnosis.

The use of TBR as a diagnostic measure was further criti-
cized when the FDA approved the Neuropsychiatric EEG-
Based ADHD Assessment Aid (NEBA), a device that was 
developed to aid in the ADHD diagnosis relying on TBR 
(Arns et al., 2016). Arns et al. (2016) shed light on the meth-
odological weaknesses of the clinical study (Snyder et al., 
2015) that resulted in the NEBA FDA approval, making it 
difficult to determine the value of TBR as a diagnostic tool 
and the clinical value of the NEBA device. Our findings, 
yet another attempt to demonstrate the diagnostic value of 
TBR, using three datasets with a large, combined sample 
size (N = 417), also failed to confirm the diagnostic value of 
TBR regarding ADHD. In light of this criticism and our own 

Fig. 3   Forest plots of the different meta-analyses with the ES per 
study and the Grand Mean ES for all studies. The lines represent 
the 95% CI. Plots with a light purple background illustrate the pre-
vious two-way division of Brainmarker-I and Brainmarker-IV. Plots 
with a dark purple background represent the newly implemented 

three-way grouping approach. Abbreviations: ES = effect size; 
iSPOT-A = International Study to Predict Optimized Treatment in 
ADHD; ICAN = International Collaborative Neurofeedback Study; 
SAF = slow alpha peak frequency; NA = not applicable; NSAT = non-
slow alpha TBR
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findings, it is clear that TBR is inadequate for diagnosing 
ADHD and is not recommended for clinical use.

Still, Brainmarker-IV may be useful as a prognostic tool. 
Several studies showed that a subgroup with high TBR 
responded better to MPH (Arns et al., 2008; Clarke et al., 
2002; Suffin & Emory, 1995). Moreover, it has been reported 
that baseline excess theta was associated with a favorable 
response to TBR NFB (Arns et al., 2012; Holger et al., 2009; 
Janssen et al., 2016; Monastra et al., 2002), which suggests 
that TBR NFB is a preferred treatment option for the sub-
group with high TBR and that TBR can be used to stratify 
individuals into different NFB protocols or medication. 
Pimenta et al. (2021) proposed that tailoring NFB param-
eters to individual differences was associated with superior 
treatment outcomes relative to randomization of individu-
als to standard, one-size-fits-all NFB protocols. Employing 
a stratification approach based on EEG is likely to improve 
clinical response to standard NFB protocols, likely as a result 
of better signal-to-noise ratio. For instance, it is expected that 
theta can be better down-trained in individuals that have high 
theta (and thus likely high TBR); conversely when TBR is 
low, a sensorimotor rhythm (SMR) protocol meant to tar-
get a rhythm in the low beta/high alpha range found in the 
sensorimotor cortex, which is known for improved sleep, 
focus and working memory (Pimenta et al., 2021), might 
yield better results. Essentially, this approach enhances the 

signal-to-noise ratio for NFB, thereby increasing the train-
ability of the signal. It would thus be valuable to assign 
patients to a specific NFB protocol based on Brainmarker-IV. 
When Brainmarker-IV is below a decile score of 5, indicating 
low theta activity, it is preferable to treat patients with SMR 
or slow cortical potential (SCP) NFB protocols. Conversely, 
for individuals with high Brainmarker-IV, TBR NFB is pref-
erable as treatment. A study by Voetterl et al. (2022) already 
showed that Brainmarker-I is capable of differentially inform-
ing stratification to MPH and MM-NFB treatment.

Although TBR and iAF have been investigated together 
before, this is the first study assessing Brainmarker-I and 
Brainmarker-IV-informed subtypes in clinical samples of 
individuals with ADHD. Arns et al. (2008) and Lansbergen 
et al. (2011) suggested that previous findings of increased 
TBR in ADHD may reflect inclusion of individuals with 
slow iAF in addition to individuals with high theta. The 
Brainmarker-I and Brainmarker-IV-informed subtypes 
allow for the dissociation between slow iAF and high 
TBR. Like Brainmarker-I, Brainmarker-IV only used basic 
demographic information and resting-state EEG data, so 
it can easily be implemented in clinical practice, using an 
algorithm that calculates age- and sex-standardized TBR. 
Therefore, a free online tool has been made accessible for 
clinicians to calculate Brainmarker-IV by entering TBR, age 
and sex at www.​brain​clini​cs.​com/​Brain​marker-​IV (Fig. 4).

Fig. 4   The online Brainmarker-IV tool, which can be accessed at 
www.​brain​clini​cs.​com/​Brain​marker-​IV, allows clinicians to input 
their client's sex, age, and log-transformed TBR. After clicking the 

'submit' button, a graph will be displayed, comparing their client's 
log-transformed TBR with that of thousands of others

http://www.brainclinics.com/Brainmarker-IV
http://www.brainclinics.com/Brainmarker-IV
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Across the EEG literature, EEG processing, montages and 
frequency range definitions vary considerably (Arns et al., 
2013), which can hinder replication of findings and thereby 
implementation of biomarkers in clinical practice. Strong 
elements of this study were the use of clinical datasets pro-
cessed according to the same optimized EEG processing 
method (Dijk et al., 2020) as well as the age- and sex-stand-
ardization of Brainmarker-I and Brainmarker-IV. It might be 
argued that a normative database is needed to validate the 
findings in ADHD patients, however Table 1 provides evi-
dence that Brainmarker-I and Brainmarker-IV separately and 
combined do not differ between ADHD and healthy controls 
for the large clinical iSPOT-A Study. In addition, no differ-
ences were found between children and adolescents in the 
iSPOT-A Study merged with the TD-BRAIN + -Neurofeed-
back Study, indicating that we extracted the developmental 
trajectory by age- and sex-normalizing.

Although this study has several important strengths, 
it should be noted that there are several limitations. We 
only reported the results from ages 6 to 18 years, since the 
absence of adult participants for two of the datasets pre-
vented us from investigating brain-behavior relationships 
for this group. Investigating the brain-behavior relationships 
in adults with ADHD would be valuable as 40–60% of the 
children continue to experience symptoms later in life (Far-
aone et al., 2006). Additionally, because of the restricted 
sample sizes for girls, we did not perform a sensitivity analy-
sis for this subgroup. However, findings in females might 
be particularly important because of the male–female gap 
in ADHD diagnosis and treatment (Bedard & Witman, 
2020), and future research should specifically focus on this 
subgroup.

Several studies already showed that alpha peak fre-
quency-based Brainmarker-I can be used as a transdiagnos-
tic biomarker predicting treatment response to medication 
and NFB for ADHD (Krepel et al., 2020a; Voetterl et al., 
2022). Further research should focus on exploring measures 
beyond TBR to broaden our understanding of the prognostic 
capabilities of these EEG parameters in predicting response 
to treatment. Besides excessive theta, decreased beta activity 
can increase TBR, however low beta has not been broadly 
investigated, and might in fact represent another interesting 
biomarker.

While this study could not confirm consistent associa-
tions between Brainmarker-I and Brainmarker-IV-informed 
subtypes and behavioral traits, alpha peak correction of TBR 
remains important to differentially assign patients to differ-
ent NFB protocols. Individual differences in TBR should be 
acknowledged to establish a clear dissociation between high 
TBR and slow iAF as these subtypes are characterized by 
distinct etiologies (Steriade et al., 1990). Therefore, rather 
than using fixed frequency ranges to estimate EEG power, 
future studies should focus on alpha peak correction of TBR, 

which could potentially lead to optimized characterization 
of subtypes, and subsequent implications for a stratified 
treatment.
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