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Population monotonicity and egalitarianism

Bas Dietzenbacher∗ Emre Doğan†

April 29, 2024

Abstract

This paper identifies the maximal domain of transferable utility games on which pop-

ulation monotonicity (no player is worse off when additional players enter the game) and

egalitarian core selection (no other core allocation can be obtained by a transfer from a

richer to a poorer player) are compatible, which is the class of games with an egalitarian

population monotonic allocation scheme. On this domain, which strictly includes the

class of convex games, population monotonicity and egalitarian core selection together

characterize the Dutta-Ray solution. We relate the class of games with an egalitarian

population monotonic allocation scheme to several other classes of games.

Keywords: population monotonicity, egalitarian core, Dutta-Ray solution

JEL classification: C71

1 Introduction

In a transferable utility game, players may form coalitions and obtain joint revenues by

cooperation. A characteristic function assigns to each possible coalition its worth reflecting

the economic opportunities when this coalition would form. A solution assigns to a game

an allocation for the grand coalition consisting of all players together. A solution satisfies

population monotonicity if no player is worse off when additional players enter the game.

This elementary solidarity property was originally introduced and studied in the context of

bargaining problems by Thomson (1983a) and Thomson (1983b), but is straightforwardly

reformulated on the domain of transferable utility games.

Rosenthal (1990) showed that the famous Shapley value (cf. Shapley 1953), which assigns

to each player a specific weighted average of its marginal contributions such that the full

worth of the grand coalition is allocated, satisfies population monotonicity on the specific

class of convex games (cf. Shapley 1971). On this class, the Shapley value selects from the

core, i.e. subcoalitions are not better off by allocating their worth among their members.
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If a solution satisfies population monotonicity and core selection, then it induces for

each game a population monotonic allocation scheme (cf. Sprumont 1990). Such a scheme,

describing for each coalition how to fully allocate the worth among its members such that each

player’s payoff is nondecreasing as coalitions grow, is obtained by applying the corresponding

solution to each subgame. Moulin (1990) introduced the population monotonic core, i.e. the

set of all population monotonic allocation schemes of a game. Sprumont (1990) described

games with a population monotonic allocation scheme as positive linear combinations of

monotonic simple games with veto control. A dual description was provided by Norde

and Reijnierse (2002). The class of games with a population monotonic allocation scheme

contains the class of convex games, where the Shapley value satisfies population monotonicity

and core selection, and consequently induces for each convex game a population monotonic

allocation scheme. Getán et al. (2014) characterized convex games by means of population

monotonic allocation schemes. Existence of a population monotonic allocation scheme, i.e.

a nonempty population monotonic core, is a necessary condition for a game to allow for a

solution that satisfies population monotonicity and core selection. Remarkably however, we

show that population monotonicity and core selection are incompatible on the class of games

with a population monotonic allocation scheme.

The economic doctrine of egalitarianism is characterized by the belief that all humans

are fundamentally equal in terms of value, status, and rights. A common evaluation for

distributional egalitarianism is the Lorenz criterion. An allocation Lorenz dominates another

allocation if it assigns to each subgroup of the poorest at least what the other does. The

Lorenz dominating allocation of a single amount of money would simply be equal division.

This is considered extreme in the context of cooperative games, where it ignores any of the

potential roles that players may take in other coalitions. A well-known compromise between

plain egalitarianism and coalitional externalities in transferable utility games is the Dutta-

Ray solution (cf. Dutta and Ray 1989). Based on a framework where individuals believe

in equality as a desirable social goal, although private preferences dictate selfish behavior,

this solution assigns to each game the Lorenz undominated allocation in the Lorenz core.

Although such allocation is unique whenever it exists, only sufficient conditions for existence

are known, the central one being convexity of the underlying game.

For convex games, the Dutta-Ray solution prescribes the Lorenz dominating core allo-

cation. Hougaard et al. (2001) studied the set of all Lorenz undominated core allocations

for general games with a nonempty core, to which we refer as the strong egalitarian core. A

further extension is the egalitarian core introduced by Arin and Iñarra (2001), which con-

sists of all core allocations from which no other core allocation can be obtained by a transfer

from a richer to a poorer player. On the class of convex games, egalitarian core selection

characterizes the Dutta-Ray solution. Other axiomatic characterizations of the Dutta-Ray

solution for convex games were provided by Dutta (1990), Klijn et al. (2000), Arin et al.

(2003), and Calleja et al. (2021a).
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Dutta (1990) showed that the Dutta-Ray solution for convex games satisfies popula-

tion monotonicity. Several generalizations of the Dutta-Ray solution on the class of convex

games have been proposed in the literature. The sequential Dutta-Ray solutions (cf. Hokari

2000), the monotone-path Dutta-Ray solutions (cf. Hokari 2002), and the generalized Lorenz

solutions (cf. Hougaard et al. 2005) all satisfy population monotonicity.

Llerena and Mauri (2017) introduced the larger class of exact partition games and shows

that the Dutta-Ray solution for exact partition games behaves as for convex games. In

line with this statement, Dietzenbacher and Yanovskaya (2020) and Dietzenbacher and

Yanovskaya (2021) showed that the Dutta-Ray solution for exact partition games inherits

many properties, structures, and axiomatizations from the class of convex games. Recently,

Dietzenbacher and Yanovskaya (2023) generalized this to exact partition games with non-

transferable utility. However, we show that the Dutta-Ray solution for exact partition games

does not satisfy population monotonicity.

This paper studies the compatibility of population monotonicity and egalitarian core se-

lection. Dietzenbacher (2021) identified the maximal domain of transferable utility games

on which aggregate monotonicity and egalitarian core selection are compatible. In the same

spirit, the current paper identifies the maximal domain of transferable utility games on

which population monotonicity and egalitarian core selection are compatible. This turns

out to be the class of games with an egalitarian population monotonic allocation scheme. In

other words, existence of such a scheme is a necessary and sufficient condition for a game

to allow for a solution that satisfies population monotonicity and egalitarian core selection.

The class of games with an egalitarian population monotonic allocation scheme contains the

class of convex games and is contained in the class of exact partition games. Interestingly,

on this class, population monotonicity and egalitarian core selection together characterize

the Dutta-Ray solution. This means that if an egalitarian population monotonic allocation

scheme exists, it is unique and can be obtained by applying the Dutta-Ray solution to each

subgame.

This paper is organized as follows. Section 2 provides some preliminary notions and

notations for transferable utility games. Section 3 studies the compatibility of population

monotonicity and egalitarian core selection. Section 4 relates this to aggregate monotonicity.

Section 5 formulates some concluding remarks and suggestions for future research.
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2 Preliminaries

Let N be a nonempty and finite set. Denote 2N = {S | S ⊆ N}. An allocation x ∈ RN

describes a payoff xi ∈ R for each i ∈ N . An allocation scheme (xS)S∈2N\{∅} describes an

allocation xS ∈ RS for each S ∈ 2N \ {∅}. For each allocation x ∈ RN , define Rx
0 = ∅ and

Rx
k = {i ∈ N | ∀j∈N\Rx

k−1
: xj ≤ xi} for all k ∈ N. Then Rx

k−1 ⊆ Rx
k for all k ∈ N, and

Rx
k = N if k ≥ |N |. For each two allocations x, y ∈ RN with

∑
i∈N xi =

∑
i∈N yi, x Lorenz

dominates y, denoted by x ≻L y, if minS∈2N :|S|=k

∑
i∈S xi ≥ minS∈2N :|S|=k

∑
i∈S yi for each

k ∈ {1, . . . , |N |}, with at least one strict inequality.

A transferable utility game is a pair (N, v), where N is a nonempty and finite set of

players and v : 2N → R assigns to each coalition S ∈ 2N its worth v(S) ∈ R with v(∅) = 0.

The subgame (T, vT ) of (N, v) on T ∈ 2N \ {∅} is defined by vT (S) = v(S) for all S ∈ 2T .

Let Γall denote the class of all games. Throughout this paper, Γ denotes a generic class of

games.

Let (N, v) ∈ Γall. The core C(N, v) ⊆ RN consists of all allocations of the worth of the

grand coalition such that no coalition could be better off by itself, i.e.

C(N, v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N),∀S∈2N :
∑
i∈S

xi ≥ v(S)

}
.

The egalitarian core EC(N, v) ⊆ RN (cf. Arin and Iñarra 2001) consists of all core allocations

from which no other core allocation can be obtained by a transfer from a richer to a poorer

player, i.e.

EC(N, v) =

{
x ∈ C(N, v)

∣∣∣∣∣ ∀i,j∈N :xi>xj∃S∈2N :i∈S,j /∈S :
∑
h∈S

xh = v(S)

}
.

The strong egalitarian core SEC(N, v) ⊆ RN (cf. Hougaard et al. 2001) consists of all core

allocations from which no other core allocation can be obtained by a sequence of transfers

from a richer to a poorer player, i.e.

SEC(N, v) =
{
x ∈ C(N, v)

∣∣ ∀y∈C(N,v) : y ⊁L x
}
.

Note that SEC(N, v) ⊆ EC(N, v) ⊆ C(N, v). Moreover, SEC(N, v) ̸= ∅ if C(N, v) ̸= ∅.
Let (N, v) ∈ Γall. The game (N, v) is balanced if C(N, v) ̸= ∅, and totally balanced if

C(T, vT ) ̸= ∅ for all T ∈ 2N \{∅}. The game (N, v) is an exact partition game (cf. Llerena and

Mauri 2017) if there exists x ∈ C(N, v) such that
∑

i∈Rx
k
xi = v(Rx

k) for all k ∈ N. The game

(N, v) is convex (cf. Shapley 1971) if v(S)+v(T ) ≤ v(S∪T )+v(S∩T ) for all S, T ∈ 2N . Let

Γbal, Γtotbal, Γexp, and Γconv denote the classes of balanced games, totally balanced games,

exact partition games, and convex games, respectively. Then Γconv ⊂ Γtotbal ⊂ Γbal ⊂ Γall

and Γconv ⊂ Γexp ⊂ Γbal ⊂ Γall.
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A solution f on Γ assigns to each game (N, v) ∈ Γ an allocation f(N, v) ∈ RN . Through-

out this paper, f denotes a generic solution.

A solution satisfies population monotonicity if no player is worse off when additional

players enter the game.

Population monotonicity

for all (N, v) ∈ Γ and all T ∈ 2N \ {∅}, we have (T, vT ) ∈ Γ and

fi(T, vT ) ≤ fi(N, v) for all i ∈ T .

A solution satisfies core selection if it assigns an element of the core, egalitarian core

selection if it assigns an element of the egalitarian core, and strong egalitarian core selection

if it assigns an element of the strong egalitarian core.

Core selection

for all (N, v) ∈ Γ, we have f(N, v) ∈ C(N, v).

Egalitarian core selection

for all (N, v) ∈ Γ, we have f(N, v) ∈ EC(N, v).

Strong egalitarian core selection

for all (N, v) ∈ Γ, we have f(N, v) ∈ SEC(N, v).

Note that strong egalitarian core selection implies egalitarian core selection, and egalitarian

core selection implies core selection. If a solution satisfies efficiency, i.e.
∑

i∈N fi(N, v) =

v(N) for all (N, v) ∈ Γ, then population monotonicity implies core selection. We have delib-

erately excluded efficiency from the definition of a solution to separate these two properties.

The Dutta-Ray solution DR on Γexp (cf. Dutta and Ray 1989) assigns to each exact

partition game (N, v) ∈ Γexp the unique allocation1

DR(N, v) ∈

x ∈ C(N, v)

∣∣∣∣∣∣ ∀k∈N :
∑
i∈Rx

k

xi = v(Rx
k)

 .

Llerena and Mauri (2017) showed that the Dutta-Ray solution for exact partition games is

characterized by strong egalitarian core selection. As the following example shows, it is not

characterized by egalitarian core selection.

1Llerena and Mauri (2017) showed that this definition is equivalent to the original definition of Dutta and
Ray (1989).
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Example 1

Let N = {1, 2, 3, 4} and let (N, v) ∈ Γtotbal ∩ Γexp be given by

v(S) =


4 if S = {1, 2, 3, 4};

2 if S ∈ {{1, 3}, {1, 4}, {2, 3}, {2, 4}} or |S| = 3;

0 otherwise.

Then EC(N, v) = conv({(2, 2, 0, 0), (0, 0, 2, 2)}) and SEC(N, v) = {(1, 1, 1, 1)}. This means

that, in contrast to strong egalitarian core selection, egalitarian core selection does not

characterize a unique solution on the class of exact partition games. △

3 Population monotonicity and egalitarianism

This section studies the compatibility of population monotonicity and egalitarian core selec-

tion for solutions for transferable utility games. If a solution satisfies population monotonicity

and egalitarian core selection, then it satisfies population monotonicity and core selection.

If a solution satisfies population monotonicity and core selection, then it induces for each

game a population monotonic allocation scheme (cf. Sprumont 1990).

Population monotonic allocation scheme

A game (N, v) ∈ Γall is a game with a population monotonic allocation scheme if there exists

(xS)S∈2N\{∅} with xS ∈ C(S, vS) for all S ∈ 2N \ {∅} such that for all S, T ∈ 2N \ {∅} with

S ⊆ T , we have

xS
i ≤ xT

i for all i ∈ S.

Let Γpmas denote the class of games with a population monotonic allocation scheme.

Then Γconv ⊂ Γpmas ⊂ Γtotbal ⊂ Γbal ⊂ Γall. As in Example 1, totally balanced games

and exact partition games are not necessarily games with a population monotonic allocation

scheme. Moreover, as the following example shows, population monotonic allocation schemes

are not necessarily unique.

Example 2

Let N = {1, 2, 3} and let (N, v) ∈ Γpmas with two of its population monotonic allocation

schemes be given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 2 2 0 3

xS (0, ·, ·) (·, 0, ·) (·, ·, 0) (1, 1, ·) (1, ·, 1) (·, 0, 0) (1, 1, 1)

xS (0, ·, ·) (·, 0, ·) (·, ·, 0) (2, 0, ·) (2, ·, 0) (·, 0, 0) (3, 0, 0)
△
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If a solution satisfies population monotonicity and core selection, then it induces for

each game a population monotonic allocation scheme. Remarkably, as the following example

shows, population monotonicity and core selection are not compatible on the class of games

with a population monotonic allocation scheme.

Example 3

Let N = {1, 2, 3} and let (N, v), (N, v′) ∈ Γpmas with their unique population monotonic

allocation schemes be given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 12 12 0 12

xS (0, ·, ·) (·, 0, ·) (·, ·, 0) (12, 0, ·) (12, ·, 0) (·, 0, 0) (12, 0, 0)

and

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v′(S) 0 0 0 12 0 12 12

xS (0, ·, ·) (·, 0, ·) (·, ·, 0) (0, 12, ·) (0, ·, 0) (·, 12, 0) (0, 12, 0)

Let f be a solution on Γpmas satisfying population monotonicity and core selection. By

core selection, f(N, v) = (12, 0, 0) and f(N, v′) = (0, 12, 0). By population monotonicity

and core selection, f({1, 2}, v{1,2}) = (12, 0, ·) and f({1, 2}, v′{1,2}) = (0, 12, ·). However,

v{1,2} = v′{1,2} so this is not possible. This means that population monotonicity and core

selection are incompatible on the class of games with a population monotonic allocation

scheme. △

Similarly, if a solution satisfies population monotonicity and egalitarian core selection,

then it induces for each game an egalitarian population monotonic allocation scheme.

Egalitarian population monotonic allocation scheme

A game (N, v) ∈ Γall is a game with an egalitarian population monotonic allocation scheme

if there exists (xS)S∈2N\{∅} with xS ∈ EC(S, vS) for all S ∈ 2N \ {∅} such that for all

S, T ∈ 2N \ {∅} with S ⊆ T , we have

xS
i ≤ xT

i for all i ∈ S.

Let Γepmas denote the class of games with an egalitarian population monotonic allocation

scheme. Clearly, all games with an egalitarian population monotonic allocation scheme are

games with a population monotonic allocation scheme. However, as in Example 3, games

with a population monotonic allocation scheme are not necessarily games with an egalitarian

population monotonic allocation scheme.
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Example 3 (continued)

Let (xS)S∈2N\{∅} with xS ∈ EC(S, vS) for all S ∈ 2N \ {∅}. Then (xS)S∈2N\{∅} is given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 12 12 0 12

xS (0, ·, ·) (·, 0, ·) (·, ·, 0) (6, 6, ·) (6, ·, 6) (·, 0, 0) (12, 0, 0)

Then x
{1,2}
2 > x

{1,2,3}
2 and x

{1,3}
3 > x

{1,2,3}
3 . This means that (N, v) is not a game with an

egalitarian population monotonic allocation scheme, i.e. (N, v) /∈ Γepmas. △

On the class of convex games, the Dutta-Ray solution satisfies population monotonicity

and egalitarian core selection. This means that the Dutta-Ray solution induces for each

convex game an egalitarian population monotonic allocation scheme. However, as in Exam-

ple 2, games with an egalitarian population monotonic allocation scheme are not necessarily

convex.

Example 2 (continued)

The unique egalitarian population monotonic allocation scheme is given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 2 2 0 3

xS (0, ·, ·) (·, 0, ·) (·, ·, 0) (1, 1, ·) (1, ·, 1) (·, 0, 0) (1, 1, 1)

We have v({1, 2}) + v({1, 3}) > v({1, 2, 3}) + v({1}). This means that (N, v) ∈ Γepmas but

(N, v) is not convex, i.e. (N, v) /∈ Γconv. △

We have Γconv ⊂ Γepmas ⊂ Γpmas ⊂ Γtotbal ⊂ Γbal ⊂ Γall. Population monotonicity

cannot be satisfied on the class of exact partition games since this class is not closed under

subgames, i.e. subgames of exact partition games are not necessarily exact partition games.

Nevertheless, we could take the closure with respect to subgames and define the class of total

exact partition games.

Total exact partition games

A game (N, v) ∈ Γall is a total exact partition game if (S, vS) ∈ Γexp for all S ∈ 2N \ {∅}.

Let Γtotexp denote the class of total exact partition games. It turns out that the class of

games with an egalitarian population monotonic allocation scheme is also contained in the

class of total exact partition games.

Lemma 3.1

All games with an egalitarian population monotonic allocation scheme are total exact parti-

tion games.
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Proof. Let (N, v) ∈ Γepmas. Let (xS)S∈2N\{∅} with xS ∈ EC(S, vS) for all S ∈ 2N \ {∅} be

such that for all S, T ∈ 2N \ {∅} with S ⊆ T , we have xS
i ≤ xT

i for all i ∈ S. For the sake of

a proof by induction, assume that for all S ∈ 2N \ {∅, N}, we have
∑

i∈RxS

k

xS
i = v(RxS

k ) for

all k ∈ N, so (S, vS) ∈ Γexp. For the sake of a proof by induction, let k ∈ N and assume that∑
i∈RxN

k−1

xN
i = v(RxN

k−1). If R
xN

k = N , then
∑

i∈RxN

k

xN
i = v(RxN

k ). Suppose that RxN

k ̸= N .

Let i ∈ RxN

k and let j ∈ N \ RxN

k . Then xN
i > xN

j and there exists S ∈ 2N with i ∈ S and

j /∈ S such that
∑

h∈S xN
h = v(S). We have

v(S) =
∑
h∈S

xS
h ≤

∑
h∈S

xN
h = v(S),

so xS
h = xN

h for all h ∈ S. Then there exists R ⊆ S with i ∈ R and R ⊆ RxN

k such that∑
h∈R xS

h = v(R). We have

v(R) =
∑
h∈R

xR
h ≤

∑
h∈R

xS
h = v(R),

so xR
h = xS

h for all h ∈ R. This means that x
RxN

k
i ≥ xR

i = xS
i = xN

i . In general, x
RxN

k
i ≥ xN

i

for all i ∈ RxN

k . We have

v(RxN

k ) =
∑

i∈RxN

k

x
RxN

k
i ≥

∑
i∈RxN

k

xN
i ≥ v(RxN

k ).

Hence,
∑

i∈RxN

k

xN
i = v(RxN

k ) for all k ∈ N, (N, v) ∈ Γexp, and (N, v) ∈ Γtotexp.

However, as the following example shows, total exact partition games are not necessarily

games with an egalitarian population monotonic allocation scheme. In fact, population

monotonicity and egalitarian core selection are incompatible on the class of total exact

partition games.

Example 4

Let N = {1, 2, 3} and let (N, v) ∈ Γtotexp be given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 2 6 0 6

Let f be a solution on Γtotexp satisfying population monotonicity and egalitarian core selec-

tion. By egalitarian core selection, f({1, 2}, v{1,2}) = (1, 1, ·) and f({1, 3}, v{1,3}) = (3, ·, 3).
Then f(N, v) ≥ (3, 1, 3) by population monotonicity. This contradicts egalitarian core se-

lection, which means that population monotonicity and egalitarian core selection are incom-

patible on the class of total exact partition games. △
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We have Γconv ⊂ Γepmas ⊂ Γtotexp ⊂ Γtotbal ⊂ Γbal ⊂ Γall and Γconv ⊂ Γepmas ⊂
Γtotexp ⊂ Γexp ⊂ Γbal ⊂ Γall. In Example 2, population monotonic allocation schemes are

not unique but there is a unique egalitarian population monotonic allocation scheme. The

latter holds for all games with an egalitarian population monotonic allocation scheme.

Lemma 3.2

A game has at most one egalitarian population monotonic allocation scheme.

Proof. Let (N, v) ∈ Γepmas. Let (xS)S∈2N\{∅} with xS ∈ EC(S, vS) for all S ∈ 2N \ {∅} be

such that for all S, T ∈ 2N \ {∅} with S ⊆ T , we have xS
i ≤ xT

i for all i ∈ S. For the sake

of a proof by induction, assume that xS is uniquely defined for all S ∈ 2N \ {∅, N}. For all

i ∈ N ,

xN
i ≥ max

S⊂N :i∈S
xS
i .

If v(N) =
∑

i∈N maxS⊂N :i∈S xS
i , then xN

i = maxS⊂N :i∈S xS
i for all i ∈ N . Suppose that

v(N) >
∑

i∈N maxS⊂N :i∈S xS
i . Then xN

i > maxS⊂N :i∈S xS
i for some i ∈ N . For all i ∈ N

with xN
i > maxS⊂N :i∈S xS

i and all S ⊂ N with i ∈ S, we have∑
j∈S

xN
j >

∑
j∈S

xS
j = vS(S) = v(S).

Then xN ∈ EC(N, v) implies that xN
i ≤ xN

j for all i, j ∈ N with xN
i > maxS⊂N :i∈S xS

i . This

means that for all i ∈ N , we have

xN
i = max

{
max

S⊂N :i∈S
xS
i , λ

}
,

where λ ∈ R is such that
∑

i∈N xN
i = v(N).2 Hence, xN is uniquely defined.

If a solution satisfies population monotonicity and egalitarian core selection, then it in-

duces for each game an egalitarian population monotonic allocation scheme. This means

that each domain of games on which population monotonicity and egalitarian core selection

are compatible is necessarily contained in the class of games with an egalitarian population

monotonic allocation scheme. Lemma 3.2 and its constructive proof essentially show that

each egalitarian population monotonic allocation scheme recursively defines a solution satis-

fying population monotonicity and egalitarian core selection. Lemma 3.1 and its proof show

that this is the Dutta-Ray solution. This means that, in contrast to the class of games with

a population monotonic allocation scheme where population monotonicity and core selection

are incompatible, population monotonicity and egalitarian core selection are compatible on

the class of games with an egalitarian population monotonic allocation scheme and together

characterize the Dutta-Ray solution. Hence, the main theorem follows directly.

2In other words, we are applying constrained welfare egalitarianism (cf. Calleja et al. 2021b). A similar
process was used by Doğan and Esmerok (2024) in the context of minimum cost spanning tree problems.
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Theorem 3.1

(i) The maximal domain on which population monotonicity and egalitarian core selection

are compatible is the class of games with an egalitarian population monotonic allocation

scheme.

(ii) The Dutta-Ray solution is the unique solution satisfying population monotonicity and

egalitarian core selection on the class of games with an egalitarian population monotonic

allocation scheme.

Unfortunately, we could neither prove nor disprove that population monotonicity and

egalitarian core selection are independent on the class of games with an egalitarian popu-

lation monotonic allocation scheme. In particular, it is an open question whether or not

egalitarian core selection implies population monotonicity on the class of games with an

egalitarian population monotonic allocation scheme, which could be shown by proving that

the egalitarian core is actually single-valued on that domain.

4 Relation with aggregate monotonicity

This section relates the maximal domain on which population monotonicity and egalitarian

core selection are compatible to the maximal domain on which aggregate monotonicity and

egalitarian core selection are compatible. By Theorem 3.1, the maximal domain on which

population monotonicity and egalitarian core selection are compatible is the class of games

with an egalitarian population monotonic allocation scheme. Dietzenbacher (2021) showed

that the maximal domain on which aggregate monotonicity and egalitarian core selection

are compatible is the class of PES stable games, i.e. games where the procedural egalitarian

solution (cf. Dietzenbacher et al. 2017) selects from the core. This solution is based on an

egalitarian procedure where players iteratively fix their payoffs.

Let (N, v) ∈ Γall. Before the procedure, P v,0 = ∅ since no player has acquired a fixed

payoff yet. Let k ∈ N be an iteration. The function χv,k assigns in each coalition S ∈ 2N \{∅}
the fixed payoffs to the corresponding members, and divides the remaining worth equally

among the other members,

χv,k
i (S) =

γv,k−1
i if i ∈ S ∩ P v,k−1;

v(S)−
∑

j∈S∩Pv,k−1 γv,k−1
j

|S\Pv,k−1| if i ∈ S \ P v,k−1.

The collection Av,k ⊆ 2N \ {∅} consists of all coalitions of which no member is allocated a

higher payoff in any other coalition,

Av,k =

{
S ∈ 2N \ {∅}

∣∣∣∣∣ ∑
i∈S

χv,k
i (S) = v(S),∀i∈S∀T∈2N :i∈T : χv,k

i (T ) ≤ χv,k
i (S)

}
.
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The set P v,k ∈ 2N \ {∅} consists of all members of these coalitions P v,k =
⋃

S∈Av,k S, and

γv,k ∈ RPv,k

describes their corresponding fixed payoffs γv,k
i = χv,k

i (S) for each i ∈ P v,k,

where S ∈ Av,k and i ∈ S. Let nv ∈ {1, . . . , |N |} be the first iteration where all players

have acquired a fixed payoff nv = min{k ∈ N | P v,k = N}. The egalitarian claims γ̂v ∈ RN

are the fixed payoffs γ̂v = γv,nv

. The egalitarian admissible coalitions Âv ⊆ 2N \ {∅} are

the coalitions where the egalitarian claims of all members are attainable Âv = Av,nv

=

{S ∈ 2N \ {∅} |
∑

i∈S γ̂v
i = v(S)}. The strong egalitarian claimants Dv ∈ 2N are the

players which are member of all the inclusion-wise maximal egalitarian admissible coalitions

Dv =
⋂
{S ∈ Âv | ∀T∈Âv : S ̸⊂ T}. The procedural egalitarian solution PES(N, v) ∈ RN

assigns to all strong claimants their egalitarian claims and divides the remaining worth of

the grand coalition as equally as possible among the other players, provided that they do

not get more than their egalitarian claims,

PES(N, v) =
(
(γ̂v

i )i∈Dv , (min{γ̂v
i , λ})i∈N\Dv

)
,

where λ ∈ R is such that
∑

i∈N PESi(N, v) = v(N). The maximal domain on which the

procedural egalitarian solution satisfies core selection is the class of PES stable games (cf.

Dietzenbacher et al. 2017).3

PES stability

A game (N, v) ∈ Γall is PES stable if N ∈ Âv.

Let ΓPES denote the class of PES stable games. Dietzenbacher (2021) showed that the

class of PES stable games is the maximal domain on which aggregate monotonicity and

egalitarian core selection are compatible. It turns out that the class of PES stable games

not only contains all convex games, but also all exact partition games. For the proof, we use

that the vector of egalitarian claims is an aspiration (cf. Bennett 1983).

Lemma 4.1 (cf. Dietzenbacher 2021)

Let (N, v) ∈ Γall. Then
∑

j∈S γ̂v
j ≥ v(S) for all S ∈ 2N and for each i ∈ N there exists

S ∈ 2N with i ∈ S such that
∑

j∈S γ̂v
j = v(S) and γ̂v

i ≤ γ̂v
j for all j ∈ S.

Lemma 4.2

All exact partition games are PES stable.

Proof. Let (N, v) ∈ Γexp. Let x ∈ C(N, v) be such that
∑

i∈Rx
k
xi = v(Rx

k) for all k ∈ N. For
the sake of a proof by induction, let k ∈ N with Rx

k−1 ̸= N and assume that γ̂v
i = xi for all

i ∈ Rx
k−1. Suppose for the sake of contradiction that there exists i ∈ Rx

k with γ̂v
i > xi. Let

S ∈ 2N with i ∈ S be such that
∑

j∈S γ̂v
j = v(S) and γ̂v

i ≤ γ̂v
j for all j ∈ S, which exists by

Lemma 4.1. Then γ̂v
j = xj for all j ∈ S ∩Rx

k−1, and γ̂v
j ≥ γ̂v

i > xi ≥ xj for all j ∈ S \Rx
k−1.

3Dietzenbacher et al. (2017) called such games egalitarian stable.
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This means that

v(S) =
∑
j∈S

γ̂v
j >

∑
j∈S

xj ≥ v(S).

This is a contradiction, so γ̂v
i ≤ xi for all i ∈ Rx

k . Then

v(Rx
k) ≤

∑
i∈Rx

k

γ̂v
i ≤

∑
i∈Rx

k

xi = v(Rx
k).

This means that γ̂v
i = xi for all i ∈ Rx

k . Hence, γ̂v = x, N ∈ Âv, and (N, v) ∈ ΓPES .

As the following example shows, PES stable games are not necessarily exact partition games.

Example 5

Let N = {1, 2, 3} and let (N, v) ∈ ΓPES with the corresponding egalitarian procedure be

given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 3 3 0 0 0 0 6

χv,1(S) (3, ·, ·) (·, 3, ·) (·, ·, 0) (0, 0, ·) (0, ·, 0) (·, 0, 0) (2, 2, 2)

χv,2(S) (3, ·, ·) (·,3, ·) (·, ·, 0) (3,3, ·) (3, ·,−3) (·,3,−3) (3,3, 0)

χv,3(S) (3, ·, ·) (·,3, ·) (·, ·,0) (3,3, ·) (3, ·,0) (·,3,0) (3,3,0)
...

...
...

...
...

...
...

...

In the first iteration, the worth of each coalition is equally divided among its members. The

payoff of 3 to players 1 and 2 is fixed since no member of coalitions {1} and {2} is allocated

a higher payoff in any other coalition. This means that Av,1 = {{1}, {2}}, P v,1 = {1, 2},
and γv,1 = (3, 3, ·). In the second iteration, players 1 and 2 are allocated their fixed payoff

of 3 in each coalition they belong to, and the remaining worth is equally divided among

the other members. The payoff of 3 to players 1 and 2 and the payoff of 0 to player 3 is

fixed since no member of coalitions {1}, {2}, {3}, and {1, 2, 3} is allocated a higher payoff in

any other coalition. This means that Av,2 = {{1}, {2}, {3}, {1, 2, 3}}, P v,2 = {1, 2, 3}, and
γv,2 = (3, 3, 0). Moreover, nv = 2, the egalitarian claims are γ̂v = (3, 3, 0), the egalitarian

admissible coalitions are Âv = {{1}, {2}, {3}, {1, 2, 3}}, the strong egalitarian claimants are

Dv = {1, 2, 3}, and the procedural egalitarian solution is given by PES(N, v) = (3, 3, 0).

In fact, the core is given by C(N, v) = {(3, 3, 0)}. This means that (N, v) is not an exact

partition game, i.e. (N, v) /∈ Γexp. △

We have Γconv ⊂ Γexp ⊂ ΓPES ⊂ Γbal ⊂ Γall. Dietzenbacher (2021) showed that the

procedural egalitarian solution is one of several solutions satisfying strong egalitarian core

selection on the class of PES stable games. This means that the procedural egalitarian

solution coincides with the Dutta-Ray solution on the class of exact partition games. Di-

etzenbacher et al. (2017) showed that this is not the case on the full class of PES stable

games.
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The class of PES stable games is not closed under subgames. We define the closure as

the class of totally PES stable games.

Total PES stability

A game (N, v) ∈ Γall is totally PES stable if (S, vS) ∈ ΓPES for all S ∈ 2N \ {∅}.

Let ΓtotPES denote the class of totally PES stable games. Clearly, all totally PES

stable games are totally balanced. However, as in Example 3, totally balanced games are

not necessarily totally PES stable.

Example 3 (continued)

The egalitarian procedure is given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v(S) 0 0 0 12 12 0 12

χv,1(S) (0, ·, ·) (·, 0, ·) (·, ·, 0) (6, 6, ·) (6, ·, 6) (·, 0, 0) (4, 4, 4)

χv,2(S) (6, ·, ·) (·,6, ·) (·, ·,6) (6,6, ·) (6, ·,6) (·,6,6) (6,6,6)
...

...
...

...
...

...
...

...

We have Av,1 = {{1, 2}, {1, 3}}, P v,1 = {1, 2, 3}, and γv,1 = (6, 6, 6). Moreover, nv = 1,

γ̂v = (6, 6, 6), Âv = {{1, 2}, {1, 3}}, Dv = {1}, and PES(N, v) = (6, 3, 3), so N /∈ Âv

and consequently PES(N, v) /∈ C(N, v). This means that (N, v) is not PES stable, i.e.

(N, v) /∈ ΓPES . △

By Lemma 4.2, all total exact partition games are totally PES stable. In fact, the class

of total exact partition games coincides with the class of totally PES stable games.

Theorem 4.1

A game is a total exact partition game if and only if it is a totally PES stable game.

Proof. Let (N, v) ∈ Γtotexp. Then (S, vS) ∈ Γexp for all S ∈ 2N \ {∅}. Then Lemma 4.2

implies that (S, vS) ∈ ΓPES for all S ∈ 2N \ {∅}. Hence, (N, v) ∈ ΓtotPES .

Let (N, v) ∈ ΓtotPES . For the sake of a proof by induction, assume that P vS ,k ∈ AvS ,k

for all S ∈ 2N \ {∅, N} and all k ∈ N. For the sake of a proof by induction, let k ∈ N and

assume that P v,k−1 = P vS ,k−1 and γv,k−1
i = γvS ,k−1

i for all S ∈ 2N \ {∅} with P v,k−1 ⊆ S

and all i ∈ P v,k−1. If P v,k = N , then P v,k ∈ Av,k because N ∈ Âv. Suppose that P v,k ̸= N .

For all S ∈ 2N with P v,k ⊆ S, we have Av,k ⊆ AvS ,k, so P v,k ⊆ P vS ,k. For all S ⊂ N

with P v,k ⊆ S, since P vS ,k ∈ AvS ,k, we have γvS ,k
i = γvS ,k

j for all i, j ∈ P vS ,k \ P vS ,k−1.

For all S ∈ 2N with P v,k ⊆ S, this means that Av,k = AvS ,k, so P v,k = P vS ,k. Moreover,

P v,k ∈ AvS ,k and γv,k
i = γvS ,k

i for all S ∈ 2N with P v,k ⊆ S and all i ∈ P v,k. In particular,

P v,k ∈ Av,k for all k ∈ N. This means that Rγ̂v

k = P v,k and
∑

i∈Rγ̂v

k
γ̂v
i = v(Rγ̂v

k ) for all

k ∈ N. Hence, (N, v) ∈ Γtotexp.
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5 Concluding remarks

This paper studies the compatibility of population monotonicity and egalitarian core selec-

tion for solutions for transferable utility games. If a solution satisfies population monotonicity

and core selection, then it induces for each game a population monotonic allocation scheme.

Remarkably however, population monotonicity and core selection are not compatible on the

class of games with a population monotonic allocation scheme. If a solution satisfies popula-

tion monotonicity and egalitarian core selection, then it induces for each game an egalitarian

population monotonic allocation scheme. The class of games with an egalitarian population

monotonic allocation scheme is the maximal domain on which population monotonicity and

egalitarian core selection are compatible. In fact, on this class, population monotonicity and

egalitarian core selection together characterize the Dutta-Ray solution.

The class of games with an egalitarian population monotonic allocation scheme strictly

contains the class of convex games and is strictly contained in the class of games with a

population monotonic allocation scheme. Moreover, it is strictly contained in the class of

total exact partition games. That class is equivalent to the class of total PES stable games

and is strictly contained in both the class of totally balanced games and the class of exact

partition games. The class of exact partition games is strictly contained in the class of PES

stable games, which is in turn, like the class of totally balanced games, strictly contained in

the class of balanced games. All relations between these classes of games are presented in

the following diagram.

(N, v) ∈ Γconv

(N, v) ∈ Γepmas

(N, v) ∈ Γpmas (N, v) ∈ Γtotexp (N, v) ∈ ΓtotPES

(N, v) ∈ Γtotbal

(N, v) ∈ Γexp

(N, v) ∈ ΓPES

(N, v) ∈ Γbal

(N, v) ∈ Γall

Dietzenbacher (2021) showed that all large core games (cf. Sharkey 1982) and all exact

games (cf. Schmeidler 1972) with at most four players are PES stable. However, these

classes are not closed under subgames. Moulin (1990) showed that all subgames are large

core games if and only if the game is convex. Biswas et al. (1999) showed that all subgames

are exact games if and only if the game is convex.
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Oishi et al. (2016) showed that the Dutta-Ray solution is self-antidual on the class of

convex games. Dietzenbacher and Yanovskaya (2020) showed that the Dutta-Ray solution

is self-antidual on the class of exact partition games. Although the classes of total exact

partition games and games with an egalitarian population monotonic allocation scheme

strictly contain the class of convex games and are strictly contained in the class of exact

partition games, the Dutta-Ray solution is not self-antidual on these classes because their

antidual games do not necessarily belong to the same class. This is shown by the following

example.

Example 2 (continued)

The corresponding antidual game (N, v∗) ∈ Γexp is given by

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
v∗(S) -3 -1 -1 -3 -3 -3 -3

Then C({2, 3}, v{2,3}) ̸= ∅, so (N, v) /∈ Γtotbal. This means that the classes of total balanced

games, games with a population monotonic allocation scheme, total exact partition games,

and games with an egalitarian population monotonic allocation scheme are each not closed

under antiduality. △

Whether other structures, properties, and axiomatizations of the Dutta-Ray solution for con-

vex games and exact partition games are preserved for games with an egalitarian population

monotonic allocation scheme is an interesting question for future research.

To conclude, we would like to point out two other open questions for future research.

Doğan (2016) introduced absence-proofness as a weakening of population monotonicity.

What is the compatibility of absence-proofness with egalitarian core selection? Recently,

Solymosi (2024) characterized assignment games with a population monotonic allocation

scheme. What characterizes assignment games with an egalitarian population monotonic

allocation scheme?
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