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Introduction 

The research described in this thesis investigates the relationship between human brain ac-
tivity and the perception of natural sounds. Most experimental studies in the field of audito-
ry neuroscience use synthetic sounds. These sounds are useful because they allow experi-
menters a great level of control over their physical parameters, which makes them most 
suitable for investigating the neural processing of basic acoustic features. However, for stud-
ying the auditory system “in action”, more complex and ecologically valid sounds may be 
more appropriate because they engage the cortex and the brain in meaningful processing. 
The research reported in this thesis uses natural sounds in combination with functional brain 
imaging to examine two relevant aspects of audition. The first aspect relates to the ability of 
humans and animals to recognize sounds in natural environments. What are the cortical 
mechanisms enabling this sound recognition? Does the brain have specific representations 
of natural sound categories? How do these putative representations relate to the physical 
properties of the sounds? These research questions are addressed experimentally using 
functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) in com-
bination with advanced data analysis techniques (chapters 2 and 3). 
 The second part of the thesis deals with the so-called ‘auditory scene analysis’ problem. 
Auditory scene analysis refers to the processes required for deriving descriptions of individ-
ual sources (‘auditory objects’ or ‘auditory streams’) from mixtures of simultaneous sounds 
(Bregman, 1990). Because natural environments typically involve multiple sound sources, 
auditory scene analysis represents a crucial aspect of human (and animal) hearing, which lies 
at the heart of the ability to select and respond to relevant acoustic stimuli even when these 
are masked by competing sound sources or background noise. How are sounds extracted 
from the mixture of other overlapping sounds? Does the auditory cortex use spatial infor-
mation for segregating overlapping sounds? How does the representation of a sound in a 
mixture relate to the representation of the same sound presented against a silent back-
ground? These questions are considered in the second part of the thesis, which includes two 
fMRI studies employing respectively binaural natural scenes and musical recordings as 
stimuli (chapters 4 and 5). 

The human auditory system 

The auditory system translates the acoustic input at the ears into the experience of hearing. 
Sound waves that enter the ear are first filtered in the outer ear and middle ear before they 
are transmitted further to the inner ear (cochlea). The cochlea contains hair cells that trans-
late the physical motion produced by the sound wave into electrochemical signals. Each cell 
responds maximally to a specific part of the auditory frequency spectrum, the so-called best 
frequency of that cell. The hair cells are arranged across the longitudinal axis of the cochlea 
such that cells with neighboring best frequencies are located adjacently. This arrangement is 
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on sophisticated models (Hari et al., 2010), which significantly decreases the spatial resolu-
tion of the measurements. 

Analysis methods 

FMRI studies conventionally use experimental setups where specific events, such as stimuli 
or behavior (e.g., button responses) occur sequentially and fMRI measurements are done 
simultaneously. The events and measurements are repeated several times to increase the 
number of samples obtained per experimental condition, which increases the power of sta-
tistical tests applied to the obtained data. FMRI data analysis typically begins by modeling 
the expected BOLD responses to the experimental events using a general linear model 
(GLM). To that end, the time courses of the different events are convolved with a function 
that describes the expected shape of the hemodynamic response (HRF) (Friston et al., 1995). 
The modeled BOLD responses are then fitted to the obtained BOLD responses using least 
squares regression. The resulting regression weights are taken as an estimate of the brain’s 
response to the different events. These analyses are done separately for each voxel. Each 
voxel represents a local fMRI measurement from a different small subvolume of the imaged 
tissue. Statistical tests are then applied to the regression weights in order to assess whether 
brain responses to events resembling different experimental conditions differ significantly.  
 MEG data analysis involves similar procedures. However, additional assumptions need to 
be made in order to estimate the location of the neural sources that produce the activity 
measured at the scalp. One way to do this is using equivalent current dipoles (ECDs) (Hämä-
läinen et al., 1993). An ECD represents the hypothesized location, orientation, and strength 
of a net current in an activated brain region. Typical source analyses focus on only a subset 
of ECDs – those that can explain more than some fixed percentage (e.g. 85%, see chapter 3) 
of the variance in the local magnetic field that is obtained at the scalp during the response 
peak. The head of the subject is usually modeled as a homogeneous sphere or using more 
complex shapes derived from anatomical images of the head obtained with MR imaging (see 
chapter 3). 
 As described above, most standard fMRI data analyses are conducted separately for 
each voxel. A limitation of such univariate analyses is that they do not take into account cor-
relations between different voxels. Each voxel is therefore characterized separately from the 
others. In contrast, multivariate analyses exploit the correlations between different voxels so 
as to characterize differences in neural processing based on distributed (rather than local-
ized) activation patterns. This allows the detection of smaller effects, e.g. produced by per-
ceptual differences between stimulus categories (Rasmussen and Williams, 2006; Tipping, 
2001). The analyses involve a training stage in which the multivariate model is estimated 
based on a subset of the obtained data (training dataset) and a testing stage where the reli-
ability of the model is assessed based on another subset of the obtained data (test dataset). 
The training stage is accomplished by a machine learning algorithm that aims at disclosing a 
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relationship between brain activation and experimental conditions. The testing phase is fun-
damental in assessing the validity of the model. Probabilistic models (such as Relevance Vec-
tor Machines (Formisano et al., 2008b)) and Gaussian Processes (Valente et al., 2011), are 
particularly suited for these applications, as they are designed to prevent over-fitting of the 
training data and have already proven considerably accurate in decoding brain states from 
fMRI measurements. 

Specific Aims and outline of this thesis 

Sound categories can be characterized by a unique mix of basic physical sound properties 
and higher-order harmonic information, or timbre. Interestingly, the auditory system is ca-
pable to categorize sounds that produce different timbres even when the lower level prop-
erties of these sounds are relatively similar (e.g. similar notes played on different instru-
ments). Previous research supports a hierarchical model in which the processing of sound 
features relevant for sound recognition proceeds through a number of functionally special-
ized brain areas before culminating in category-selective processing modules that operate in 
the ‘what’ auditory cortical pathway.  
 The first two studies presented in this thesis challenge this hierarchical model and un-
derline an alternative model that postulates rather parallel and distributed processing 
mechanisms in the human auditory system. The first experiment (Chapter 2) investigates 
whether neural representations of highly controlled natural sounds belonging to different 
categories can be differentiated by comparing BOLD responses to the different sounds using 
univariate, as well as multivariate methods.  
The experiment described in Chapter 3 aims at investigating the temporal aspects of brain 
activation during natural sound perception. To that end MEG is used in combination with the 
stimuli from experiment 1. Compared to experiment 1, the physical differences between 
these stimuli are further minimized so as to create ambiguous stimuli that still evoke cate-
gorically different percepts. 
 As mentioned before, most natural auditory scenes contain many different, overlapping 
sounds that typically belong to different categories, e.g. male and female voices at a cocktail 
party. Fortunately, the auditory system may allow listeners to attend selectively to a single 
sound source and thereby enhance that sound’s audibility. However, it is still unclear how to 
the auditory system achieves this feat. Besides timbre, another important cue for segregat-
ing a sound source from simultaneous sources is the spatial location of the source. The fMRI 
study in Chapter 4 investigates neural mechanisms for auditory stream segregation based on 
spatial cues, using binaural in-ear recordings of natural mixtures of voices and environmental 
sounds. In the fMRI study presented in Chapter 5, even more complex sound mixtures are 
employed to study the brain mechanisms underlying auditory scene analysis. Studio record-
ings from a band playing two pieces of music are used as stimuli during fMRI recordings. 
Specifically, the recordings are presented either separately (as individual instruments) or 
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together (i.e. as a composite mix) to investigate auditory stream segregation, during music 
perception. Using advanced data analysis methods (massively multivariate regression) we 
estimate the auditory cortical representations of a sound source (i.e. a musical instrument or 
a voice) that are robust to changes of the acoustic environment. 
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CHAPTER 2 

Sound categories are represented as 
distributed patterns in the human auditory 
cortex 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Based on: 
Staeren, N., Renvall, H., De Martino, F., Goebel, R., Formisano, E. Sound categories are rep-
resented as distributed patterns in the human auditory cortex. Current Biology (Volume 19, 
Issue 6, 498-502, 05 March 2009). 
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Summary 

How does the brain recognize the sounds that populate our daily life? Previous research 
supports a hierarchical model of ‘what’ auditory cortical processing with category-selective 
modules. Processing of sound features relevant for sound recognition is assumed to proceed 
through a number of functionally-specialized areas, culminating in cortical modules where 
category-specific processing is carried out. Here we challenge this model by combining func-
tional MRI and a novel machine learning algorithm, which is able to reveal both local as well 
as distributed neural representations. Sounds from four categories (cats, female singers, 
acoustic guitars, and tones) were controlled for their time-varying spectral characteristics 
and presented to subjects at three different pitch levels. Sound category information - not 
detectable using voxel-by-voxel analysis - could be detected and mapped with multivoxel 
pattern analyses. Processing of sound ‘category’ was spatially distributed over a large ex-
panse of the supratemporal cortices, whereas a more localized pattern was observed for 
processing of ‘pitch’ laterally to primary auditory areas. Our findings indicate that distributed 
neuronal populations within the human auditory areas entail categorical representations of 
sounds, beyond their physical properties. A ‘categorical’ representation of a sound emerges 
from the joint encoding of information occurring not only in this small set of higher-level 
selective areas but also in the auditory areas conventionally associated with lower-level au-
ditory processing. 
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Introduction 

The ability to recognize sounds allows humans and animals to efficiently detect behaviorally 
relevant events, even in the absence of visual information. Anatomical and invasive electro-
physiological studies in the macaque monkey (Kaas and Hackett, 1999; Rauschecker and 
Tian, 2000; Romanski et al., 1999) have suggested that auditory information relevant for 
sound recognition (“what”) and localization (“where”) is processed in two specialized and 
anatomically segregated streams of cortical areas. These processing streams originate in the 
anterior and posterior parts of the auditory cortex, respectively, and project to non-spatial 
and spatial domains of the frontal cortex. In humans, lesion (Adriani et al., 2003), electro-
physiological (De Santis et al., 2007) and functional imaging studies (Alain et al., 2001; Arnott 
et al., 2004; Scott, 2005) have proposed the existence of similar streams for ‘what’ and 
‘where’ auditory processing. Furthermore, specialized sub-systems for processing of other 
dimensions of auditory information, e.g. “how” (Belin and Zatorre, 2000) and “do” (Warren 
et al., 2005b), have been suggested. 
 The human auditory ‘what’ processing stream seems to include regions in the superior 
temporal cortex, located laterally to the primary auditory fields in the Heschl’s gyrus (HG) 
(Formisano et al., 2003) and extending along the posterior-anterior direction of the superior 
temporal gyrus (STG) and sulcus (STS) (Alain et al., 2001; Warren and Griffiths, 2003). Pro-
cessing of sound features relevant for sound recognition is assumed to proceed hierarchical-
ly through a number of functionally-specialized areas in this stream, culminating in cortical 
modules where category-specific processing is carried out. So far, strongest evidence for this 
modular model of functional architecture comes from fMRI studies that employed human 
and animal vocalizations as stimuli. Regions in the bilateral upper bank of the STS and adja-
cent STG exhibit a larger blood oxygenation level dependent (BOLD) response to vocal 
sounds than to non-vocal human-generated sounds (Belin et al., 2004; Belin et al., 2000; 
Warren et al., 2006). Similarly, the middle portions of the left and right STG (mSTG) are acti-
vated more during the categorization of animal vocalizations than tool sounds (Lewis et al., 
2005). Recently, localized voice-selective BOLD responses have also been reported in the 
monkey cortex (Petkov et al., 2008). However, detailed functional architecture underlying 
the early stages of cortical processing of auditory ‘what’ information remains open. For ex-
ample, it is not established whether these auditory regions are specialized for processing of 
human (and animal) vocalizations, or whether they account for a more general representa-
tion of sound categories, with voices being, for reasons both of acoustical complexity and 
behavioral relevance, the most prominent case. Results from studies using sounds other 
than voices have been less conclusive with respect to the early processing stages of the pu-
tative ‘what’ auditory stream. Indeed, previous studies that employed categorical compari-
sons between non-vocal sounds reported increased activation for these sounds in regions 
outside the areas that are typically defined as ‘auditory’. For example, environmental sounds 
activated preferentially the bilateral posterior middle temporal gyrus (pMTG) (Lewis et al., 
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2004) and hand-manipulated tool sounds a widespread, predominantly left-hemispheric 
network including frontal and parietal areas of the ‘mirror-neuron system’ (Lewis et al., 
2005). These regions can be considered multimodal in terms of both anatomical and func-
tional properties, and they probably represent a later processing stage than the supratem-
poral regions surrounding HG. 
 In the present high-resolution (2 x 2 x 2mm3) fMRI study, we investigated the represen-
tation and processing of auditory categories within the human supratemporal cortex. In par-
ticular, we asked whether the areas around the primary auditory cortex would code for 
sound categories irrespective of their physical attributes, and if so, whether these represen-
tations would be localized in specialized areas or rather distributed across the auditory cor-
tex. 
 Our investigation differs from previous studies of the ‘what’ auditory processing stream 
in terms of both stimulus design and data analysis strategy. First, sounds from different cat-
egories tend to differ also acoustically: Thus changes in the cortical responses between cate-
gories may also reflect merely their acoustic properties. Use of synthetic sounds would allow 
a more precise control over the acoustic properties of the stimuli (Patterson et al., 2002; 
Warren et al., 2005a). However, natural and synthetic sounds unavoidably differ in terms of 
ecological validity and familiarity, properties that are relevant for auditory neurons (Nelken, 
2004; Wang et al., 2005). Ideally, one would like to compare cortical responses to sounds 
from different natural categories that are acoustically as similar as possible. Along these 
lines, we selected sounds from three ‘real life’ categories (female voices, cats, guitars) that 
were originally acoustically similar: All sounds were tonal with same fundamental frequency 
and similar harmonic structure (see Figure 1 and Methods). Besides being matched in terms 
of various physical properties like duration, root mean-square (RMS) power and temporal 
envelope, our stimuli were further manipulated by matching the temporal profile of their 
fundamental frequencies. This novel stimulus manipulation is particularly relevant as it en-
sured that the perceptual “pitch” dimension, mainly dependent on the sound fundamental 
frequency, was matched across categories. 
 Second, we employed an advanced analysis strategy based on an iterative machine 
learning algorithm (De Martino et al., 2008) that allows modeling of spatially distributed as 
well as localized response patterns. All previous studies on the ‘what’ auditory processing 
stream have utilized statistical univariate contrast-based analyses which are inherently 
bound to produce results in terms of ‘specialization’ or ‘selectivity’ for a certain stimulus 
attribute or category. Contrast-based methods can detect only localized surplus of hemody-
namic activity for one condition compared with another, therefore ignoring the potential 
information of non-maximal responses. In an fMRI study of the object-vision pathway, Haxby 
and colleagues (Haxby et al., 2001) demonstrated that information on visual categories is not 
only encoded in the maximally responsive regions, but also in a spatially wide and distribut-
ed pattern of responses in the ventrotemporal cortex (the visual ‘what’ stream). Whether a 
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similar situation holds for the ‘what’ auditory processing stream is not known. For example, 
tool sounds that evoke smaller responses than voices in the superior temporal areas, may 
still exhibit response patterns that “code” for the category as informatively as the larger re-
sponses evoked by human or animal voices. Utilizing our recursive method for multivoxel 
pattern analysis we can directly address the issue of localized vs. distributed coding of audi-
tory categories in STS/STG. 
 

 

Figure 1. Spectrograms of exemplary stimuli. The four stimulus categories at High (920 Hz; top) and Medium (480 
Hz; bottom) fundamental frequency levels. The time-varying fundamental frequency of the cat sound (purple 
rectangle) was imposed onto the other stimuli. The harmonic structure of the sounds was modified according-
ly. 

Results 

During the fMRI measurements, subjects (n = 8) listened to sounds from three ‘real life’ cat-
egories (Singers, Cats, Guitars) and synthetic control sounds (Tones). All sounds were deliv-
ered binaurally via headphones in blocks of four at a comfortable listening level, using a clus-
tered-volume acquisition technique that allowed for presentation of auditory stimuli in si-
lence between subsequent volume acquisitions (see Experimental Procedures). Sounds with-
in a block were from the same category and had the same of three possible fundamental 
frequencies (250 Hz = Low, 480 Hz = Middle and 920 Hz = High), resulting in altogether 
twelve experimental conditions. Examples of the stimuli can be found as Supplementary 
Audio files online. 

Univariate statistical analysis 
Figure 2 shows the responses to Singers, Guitars, Cats, and Tone stimuli compared with the 
baseline for a representative subject S2. All stimuli evoked significant BOLD responses in a 
large expanse of the auditory cortex, including bilateral HG, STG, and the upper bank of STS. 
With conventional univariate statistical contrasts, consistent differences were detected in 
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the superior temporal regions only for the Cats vs. Tones comparison (see Figure 3). At a 
rather lenient voxel-wise threshold of P = 0.01 (uncorrected), this contrast revealed signifi-
cant differences in six out of the eight subjects. Any other univariate contrasts did not lead 
to statistically significant effects. Our control on the acoustic sound properties presumably 
reduced the voxel-by-voxel differences of BOLD responses evoked by the different sound 
categories. 

Multivariate pattern recognition - Learning of sound ‘category’ 
After this initial analysis, we used a statistical pattern recognition approach and tested the 
hypothesis that the overall spatial patterns of observed responses would convey information 
on the sound being presented. In each subject, we conducted six pair-wise classification ex-
periments in which sound-evoked response patterns were labeled according to their catego-
ry (Singers, Cats, Guitars, Tones), irrespective of their fundamental frequency. We examined 
whether our learning algorithm, after being trained with a subset of labeled brain responses 
(20 trials), would accurately classify the remaining unlabeled responses (10 trials, see Meth-
ods). 
 For all classifications, the recursive algorithm was able to learn the functional relation 
between the sounds and corresponding evoked spatial patterns and classify the unlabeled 
sound-evoked patterns significantly above chance level (0.5), with a mean classification cor-
rectness across subjects of 0.69 for Singers vs. Guitars (P = 2.8401 · 10-4, two-sided t test, n = 
8), 0.69 for Singers vs. Cats (P = 2.5552 · 10-5), and 0.70 for Guitars vs. Cats (P = 2.6351 · 10-4) 
(Figure 4, left). The mean classification for Singers vs. Tones, correctness was 0.73 (P = 
4.7427 · 10-7), 0.69 for Guitars vs. Tones (P = 1.3517 · 10-4), and 0.85 for Cats vs. Tones (P = 
3.53 · 10-6) (Figure 5, left). These results suggest that spatially distributed patterns encoded 
information on sound category in the superior temporal regions. 
 Our method for the multivariate analysis of response patterns allows generating discrim-
inative maps, i.e. maps of the locations that contribute most to the discrimination of condi-
tions (see Methods). Figures 4 and Figure 5 depict the discriminative group maps of the clas-
sification between categories and between each category and control tones, respectively. It 
is important to note that for Cats vs. Tones the discriminative regions overlapped with the 
regions identified by the univariate contrast (see Figure 3). 
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Figure 2. Auditory cortical responses to natural sounds (using univariate statistics). Activation maps for the con-
trasts between BOLD responses to Singer, Guitar, Cat, and Tone stimuli and the baseline in subject S5. All 
stimuli evoked significant BOLD responses (q(FDR) < 0.05) in a large expanse of the auditory temporal cortex, 
including the bilateral Heschl’s gyrus (HG), the superior temporal gyrus (STG) and the superior temporal sulcus 
(STS). 
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Figure 3. Univariate contrast Cats vs. Tones. Contrast map and the event-related averages illustrating the uni-
variate statistical comparison of Cats vs. Tones. At a voxel-wise threshold of P = 0.01 (uncorrected), this con-
trast revealed significant differences in six out of the eight subjects (data in the Figure refer to subject S7). At 
the same threshold, all other univariate contrasts did not lead to statistically significant effects. 

In order to quantify the consistency of the discriminative maps across subjects, group-level 
maps were generated (Figures 4, 5 and 6) by cortical realignment (Goebel et al., 2006) of 
individual discriminative maps. Single-subject maps included only voxels that “survived” the 
recursive elimination of irrelevant features in the algorithm (see Methods), and thus the 
group maps can be interpreted as a representation of spatial patterns that were consistently 
informative across subjects. A colored vertex indicates that the colored location was present 
in at least 60% (5/8) of the individual discriminative maps. At the group level, the distributed 
activation patterns that differentiated Singers from Guitars were located at the anterolateral 
HG, the planum temporale (PT), and the posterior STG and/or STS in the left hemisphere and 
at the lateral HG and the middle-posterior STG and/or STS in the right hemisphere. Singers 
were differentiated from Cats at the HS, the PT, and the posterior STG in the left hemisphere 
and at the middleposterior STG and the PT in the right hemisphere. Guitars were differenti-
ated from Cats at the left anterolateral HG, the HS, and the posterior STG and at the right 
anterolateral HG, the PT, and the middle-posterior STG and/or STS. These results suggest 
that spatially distributed patterns encoded information on sound category in the superior 
temporal regions. The multivariate distributed activation patterns that discriminated be-
tween sound categories and tones are shown in Figure 5. Singers were differentiated from 
Tones in the left anterolateral HG, HS and posterior STG and in the right middle STG. Guitars 
were differentiated from Tones in the left middle-posterior STG, the right middle STG, and 
the right posterior STG/STS. Cats were differentiated from Tones in the left anterolateral HG, 
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HS, posterior STG/STS, and in the right-hemispheric anterolateral HG and medial posterior 
STG/STS. It is important to note that the regions for the Cats vs. Tones discrimination that 
achieved the highest classification correctness, overlapped with the regions identified by the 
univariate contrast (see Figure 3). 
 

 

Figure 4. Multivariate pattern recognition - Learning of sound ‘category’. Group averaged classification accura-
cies (left) and group discriminative maps (right) for between-category comparisons. For all binary discrimina-
tions, the black dots indicate the classification accuracy of test trials for each individual category, and the col-
ored dots the classification accuracy averaged over the two categories. Error bars indicate the standard errors. 
For all classifications, the recursive algorithm was able to learn the functional relation between the sounds and 
corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns significantly above 
chance level (0.5). Discriminative patterns are visualized on the inflated representation of the auditory cortex 
resulting from the realignment of the cortices of the eight participants. A location was color-coded if it was 
present on the individual maps of at least five of the eight subjects. 

Multivariate pattern recognition - Learning of sound ‘fundamental frequency’ 
Because the stimuli were presented at three different fundamental frequency levels, we 
conducted a second analysis to investigate the regions that were most discriminative with 
respect to this second stimulus dimension. In this case, the same sound-evoked response 
patterns as used in the first analysis were labeled according to their fundamental frequency 
(High, Medium, Low), irrespective of their category. The recursive algorithm was then 
trained to discriminate the fundamental frequencies.  
 Figure 5 shows the resulting group discriminative maps and the corresponding correct-
ness of 0.66 for Low vs. Medium (P = 1.8187 · 10-4, two-sided t test, n = 8), 0.68 for Low vs. 
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High (P = 2.3 · 10-3) and 0.68 for Medium vs. High (P = 1.224 · 10-4). As shown by the group 
discriminative maps, patterns related to fundamental frequencies were more clustered than 
the category discrimination maps, and they were circumscribed to the most lateral portion 
of HG. The group discriminative maps related to fundamental frequencies were more clus-
tered than the category discriminative maps, and they were circumscribed to the most lat-
eral portion of HG and/or HS bilaterally and to the posterior STG. This finding is in accord-
ance with previous studies indicating this location as relevant for pitch processing using 
regular interval sounds (Griffiths, 2003; Patterson et al., 2002). Figure 7 summarizes the 
group discriminative maps obtained for the discrimination of categories (blue) and funda-
mental frequencies (red). 
 

 

Figure 5. Multivariate pattern recognition – Classification of ‘categories vs. tones’. Group averaged classification 
accuracies (left) and group discriminative maps (right) for the discrimination between categories (Singers, Gui-
tars, Cats) and control Tones. For all binary discriminations, the black dots indicate the classification accuracy of 
test trials for each individual category, and the colored dots the classification accuracy averaged over the two 
categories. Error bars indicate the standard errors. For all classifications, the recursive algorithm was able to 
learn the functional relation between the sounds and corresponding evoked spatial patterns and classify the 
unlabeled sound-evoked patterns significantly above chance level (0.5). Discriminative patterns are visualized 
on the inflated representation of the auditory cortex resulting from the realignment of the cortices of the eight 
participants. A location was color-coded if it was present on the individual maps of at least five of the eight 
subjects. 
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Figure 6. Multivariate pattern recognition - Learning of sound ‘fundamental frequency’. Group averaged classifi-
cation accuracies (left) and group discriminative maps (right) for between-frequency comparisons. For all bina-
ry discriminations, the black dots indicate the classification accuracy of test trials for each individual frequency, 
and the colored dots the classification accuracy averaged over the two frequencies. Error bars indicate the 
standard errors. For all classifications, the recursive algorithm was able to learn the functional relation between 
the sounds and corresponding evoked spatial patterns and classify the unlabeled sound-evoked patterns signif-
icantly above chance level (0.5). Discriminative patterns are visualized on the inflated representation of the 
auditory cortex resulting from the realignment of the cortices of the eight participants. A location was color-
coded if it was present on the individual maps of at least five of the eight subjects. 
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Figure 7. Comparison of discriminative maps. The cortex-based aligned group discriminative maps for category 
(blue) and fundamental frequency (red) discrimination. Category and fundamental frequency discriminative 
maps were obtained by the combination of the discriminative maps (logic OR) corresponding to the three bina-
ry classifications (Figures 4 and 6, respectively). A vertex was color-coded if it was present on the individual 
maps of at least five of the eight subjects. This corresponds to a false discovery rate-corrected threshold of q = 
7.9·10-3 for the category map and q = 2.6·10-3 for the fundamental frequency map (see Methods). Note that the 
discrimination map for fundamental frequency was more clustered than that for category. 

Discussion 

Localized vs. distributed representation of sound categories 
Our results indicate, similarly to the representation of visual object categories in the ventral 
temporal cortex (Haxby et al., 2001), that representations of sound categories in the superi-
or temporal cortex are widely distributed and overlapping. The discriminative activation pat-
terns extended bilaterally over a large expanse of the auditory cortex and included the ante-
rior lateral portion of HG bilaterally, the posterior STG including the PT (mostly in the left 
hemisphere), the middle and anterior STG (mostly in the right hemisphere) and regions 
along the right STS. These locations overlap with – but are not limited to – locations that 
have been indicated in the previous investigations as functionally specialized areas for hu-
man (Belin et al., 2000) and animal (Lewis et al., 2005) vocalizations. In these studies, human 
voices were compared with other sound categories and phase scrambled sounds with similar 
global spectral aspects of the stimuli (Belin et al., 2000), and animal vocalizations were com-
pared to tool sounds (Lewis et al., 2005). Thus the reported differences might reflect not 
only the real preference for a specific category but also unavoidable acoustic differences 
between test and control groups of stimuli. 
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 In the present study, we have minimized the potential acoustical confounds. Our exper-
imental sounds were controlled with respect to many acoustic dimensions, including their 
duration, average RMS level, amplitude envelope, harmonic-to-noise ratio (Boersma, 2001; 
Lewis et al., 2005) and the temporal profile of the sound spectrum. Removing most of the 
physical differences between categories diminished the differences between localized 
evoked BOLD responses, as reflected by the absence of between-category effects in our uni-
variate analysis. Nevertheless, our iterative multivariate classification analysis showed that 
the activation patterns could be decoded into categories. Information in the spatially dis-
tributed patterns of activity may thus reflect a more abstract perceptual level of representa-
tion of sounds. 
 These findings put forward a revision of previous models of neuronal representation of 
complex sounds in the auditory cortex, which have implied a hierarchical functional architec-
ture of auditory processing. In these models the superior temporal cortex is organized in 
specialized areas among which the neural processing of a sound hierarchically proceeds from 
the analysis of its low level physical constituents to higher perceptual dimensions. Within 
these models, auditory areas with a clear selectivity for a given category (e.g., voice) are 
seen as the functional units in which a more abstract representation of a sound is formed, 
independent of its specific acoustic features. However, it is a common observation in fMRI 
experiments that these ‘higher level’ areas show a vigorous BOLD response also to relatively 
simple stimuli (see the response to tones in Figure 2), implying sensitivity to low level prop-
erties of a sound as well. Based on our findings, we suggest that a ‘categorical’ representa-
tion of a sound emerges from the joint encoding of information occurring not only in this 
small set of higher-level selective areas but also in the auditory areas conventionally associ-
ated with “lower-level” auditory processing. This suggestion is not without prerequisites: 
The temporal auditory areas are anatomically heavily interconnected (Tardif and Clarke, 
2001), and, even in the “early” auditory areas, neurons exhibit complex dependencies on the 
auditory input (Nelken, 2004; Wang et al., 2005). Furthermore, a distributed cortical coding 
of sound properties may explain why in human brain imaging several auditory regions have 
been implicated in the processing of many different auditory attributes (Griffiths and War-
ren, 2002). For example, PT has been attributed to motor transformation of auditory stimuli 
(Warren et al., 2005b), initial analysis of pitch (Patterson et al., 2002) and of auditory attrib-
utes relevant for sound localization and recognition (Griffiths and Warren, 2002). 

Univariate vs. multivariate modeling of responses 
Machine learning methods allow modeling of distributed patterns of cortical activations. 
These methods provide increased sensitivity compared with the conventional univariate sta-
tistical analysis by exploiting and integrating information from many spatial locations, thus 
allowing the detection of smaller effects, e.g. produced by perceptual differences between 
stimulus categories (Haynes and Rees, 2005; Kamitani and Tong, 2005). 
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 We want to mention two aspects of our multivariate analysis. The first concerns the in-
terpretation of accuracy levels, discriminative maps and their relation to univariate results. 
In cases in which significant differences between conditions could be detected already at 
single-voxel level, high classification accuracies were obtained. As expected, in these cases 
the multivariate discriminative maps and the univariate contrast maps overlapped (see, e.g., 
the Cats vs. Tones univariate contrast map in Figure 3, and the corresponding discrimination 
map in Figure 4). Discriminative maps, however, included additional sets of locations, whose 
joint activity and correlations were equally informative with respect to the classification of 
conditions. In the between-category discriminations, accuracy levels – albeit lower – were 
above chance in all our subjects and were obtained in the absence of significant univariate 
effects. Importantly, corresponding discriminative patterns were highly consistent across 
subjects. Taken together, these results suggest a genuine multivariate effect in which the 
accurate discrimination of categories was driven by information in spatially distributed pat-
terns. Besides other methodological aspects (see below), the minimization of acoustical dif-
ferences between categories and the absence of univariate effects may also explain why 
accuracy levels reached in our analyses are lower than those obtained in analogous analyses 
in the visual domain (Cox and Savoy, 2003; Haxby et al., 2001) in which physical differences 
between stimuli of visual categories were not accounted for. 
 Second, with our method, a multivariate analysis does not invariably lead to distributed 
results. For instance, in our analyses, re-labeling of the stimuli based on their fundamental 
frequency led the same learning algorithm used in the analysis of categories to find substan-
tially different discriminative maps, with informative voxels clearly clustered in the lateral 
HG. In accordance with previous results (Griffiths, 2003), these findings support the notion 
that the processing of the fundamental frequency of a complex sound (and thus of percep-
tual ‘pitch’) is more localized. The discriminative maps of ‘category’ and ‘fundamental fre-
quency’ overlapped substantially, thus suggesting that regions encoding relatively basic at-
tributes of sounds, such as pitch, or higher level properties, such as category, are not mutu-
ally exclusive. 

Limitations of present stimuli and extension to auditory scenes 
The present stimuli were relatively simple and tonal by nature: For example, even though 
our Singers stimuli were real voices, their complexity was minimal compared with e.g. spo-
ken language. Although this resulted in greater stimulus control, it also restricted the spec-
tral richness and ecological validity of our stimuli. It remains to be proved that our findings 
are also valid for more complex natural sounds. It should be noted, however, that it will be 
challenging to carry out such an investigation while controlling for the acoustical differences 
of the sounds. To ensure enough acoustical variability to our stimuli, we presented all exem-
plars at three different fundamental frequencies. An accurate classification of novel sounds 
indicates that the machine-learning algorithm was able to extract a relation among stimuli 
(and corresponding activation patterns), which we assume to be at the level of ‘category’. It 
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should be noted, however, that despite our efforts in equalizing low-level acoustic proper-
ties, the degree of acoustical similarities between sounds of the same category is higher than 
for sounds of different categories. It is thus possible that the level of representation driving 
the learning process may reflect the decoding of complex combination of spectral and tem-
poral features that characterize what we have defined as ‘sound category’. The question of 
high order representation of a natural sound may be addressed by testing the ability of a 
brain-based classifier to generalize its performance in realistic situations that require ab-
straction from low-level features, e.g. in recognizing a voice in a noisy scene after training 
the classifier with voices presented in silence. 

Experimental Procedures 

Subjects 
We studied, with informed consent, one Belgian and eight Dutch subjects (mean age ± SD 24 
± 5 yrs; 8 females and one male; all right-handed). The subjects were undergraduate univer-
sity students who were paid for their participation. Subjects had no history of hearing or 
neurological impairments, and were naïve to the experimental setup. The study received a 
prior approval by the Ethical Committee of the Faculty of Psychology and Neuroscience, Uni-
versity of Maastricht. 

Auditory stimuli 
The stimuli were 800-ms sounds (sampled at 44.1 kHz) from four sound categories: cats, 
singers (singing female voices), acoustic guitars and tones. Each category except the tones 
consisted of three different representatives (e.g. three different singers). All sounds were 
transposed to three different fundamental frequencies (250, 480 and 920 Hz), thus resulting 
in altogether twelve conditions. The values of fundamental frequencies were chosen so as to 
ensure that stimuli were clearly recognizable and to avoid pure octave pitch differences (e.g. 
250, 500 and 1000 Hz). 
 To equalize the spectrotemporal profiles and the perceptual pitch of the stimuli, the 
time-varying fundamental frequency of the cat sounds was extracted on 25 time points with-
in each stimuli with Praat software (Boersma, 2001) and applied continuously to all other 
sounds with Adobe Audition™. Note that not only the fundamental frequency of manipulat-
ed sounds was adjusted, but all related harmonics (see Figure 1 and online Supplementary 
Audio Files). Cat sounds were chosen as reference stimuli because of relatively small tem-
poral variations in their fundamental frequency. The acoustic guitar and female singers were 
chosen as the other categories because for these sounds continuous pitch changes are natu-
ral (e.g., sliding in between two tones when singing, or bending a guitar string) and thus they 
were still clearly recognizable after the pitch matching procedure. Tones were used as con-
trol sounds. The sounds were low-pass filtered at 14 kHz for five subjects, and to further 
minimize the acoustical differences between sound categories, at 7 kHz for three subjects. 
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No significant differences between the results of these groups were found in the univariate 
and multivariate statistical analysis, and thus subjects were grouped together in reported 
results. The sound amplitude envelopes and average root-meansquare levels were matched 
using MATLAB 7.0.1 (The MathWorks, Inc., Natick, MA, USA). The harmonic-to-noise ratio 
(Boersma, 2001; Lewis et al., 2005) was significantly different only between tones and sound 
categories (P < 0.001), not between categories (P > 0.05). 
 Before the fMRI measurements, all subjects underwent a training session. Subjects were 
asked to listen to the stimuli until they subjectively felt they were able to clearly categorize 
the stimuli. Typically the subjects listened to all the sounds 2~3 times. Data from one subject 
were discarded from further analysis on the basis of incorrect interpretation of the task in-
structions. Hearing thresholds for different categories and pitch levels were tested individu-
ally for each subject, and stimuli were adjusted accordingly. Following the fMRI sessions (see 
below), subjects were enquired on the difficulty of attributing the stimuli to a given category 
during the scanning. All subjects indicated that categorization was easy for all stimuli. 

fMRI measurements 
Brain imaging was performed with a 3 Tesla Siemens Allegra (head setup) at the Maastricht 
Brain Imaging Center. In each subject, two runs of 488 volumes were acquired with a T2-
weighted gradient-echo planar imaging (EPI) sequence (TR = 3610 ms, voxel size = 2 x 2 x 2 
mm3, TE = 30 ms, FOV 256 x 256; matrix size 128 x 128, 23 slices covering the perisylvian 
cortex). Each run consisted of 15 blocks per sound category and lasted approximately 30 
min. Anatomical images were obtained using a 1 x 1 x 1 mm3 resolution T1-weighted se-
quence between the functional runs. 
 During the measurements, the stimuli were delivered binaurally via MR compatible 
headphones (Commander XG, Resonance Technology, Northridge, CA) in blocks of four at a 
comfortable listening level. To minimize the effect of scanner noise, the sounds were pre-
sented during 1600-ms silent periods between 2000-ms scans; the 800-ms sounds were pre-
ceded and followed by a 400-ms silence, using a clustered volume EPI technique that al-
lowed for presentation of auditory stimuli in silence between subsequent volume acquisi-
tions (Jancke et al., 2002; Riecke et al., 2007; van Atteveldt et al., 2004). The stimuli within a 
block were from the same category and frequency level, resulting in altogether twelve ex-
perimental conditions. The experimental blocks had duration of 14.4 s. The conditions were 
repeated in a pseudo-random order, and were followed by rest period of identical length, at 
the beginning of which the subjects were asked to respond with a button press whether the 
last two sounds in the block were the same (50% of the catch trials). The response hand was 
alternated across subjects. 

fMRI Data Analysis: pre-processing and univariate statistics 
Functional and anatomical images were first analyzed with BrainVoyager QX (Brain Innova-
tion, Maastricht, The Netherlands). Preprocessing consisted of slice scan-time correction 
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(using sinc interpolation), linear trend removal, temporal high-pass filtering to remove non-
linear drifts of seven or less cycles per time course, and 3-dimensional motion correction. 
Temporal low pass filtering was performed using a Gaussian kernel with FWHM of two data 
points. Moderate spatial smoothing with a Gaussian kernel of FWHM of three millimeters 
was performed on the volume time series. Functional slices were co-registered to the ana-
tomical data, and both data were normalized to Talairach space (Talairach and Tournoux, 
1988). 
 Conventional univariate statistical analysis of the fMRI data was based on the general 
linear modeling (GLM) of the time series. For each subject, a design matrix was formed using 
a predictor for each stimulus category. The predicted time courses were adjusted for the 
hemodynamic response delay by convolution with a canonical double gamma) hemodynam-
ic response function. Contrast maps were thresholded on the basis of False Discovery Rate (q 
= 0.05) when comparing sound categories with the baseline (Figure 2), or at an exploratory 
threshold of P = 0.01 (uncorrected for multiple comparison) in the case of direct comparison 
between sound categories (Figure 3). 

fMRI Data Analysis: multivariate pattern recognition 
Multivoxel patterns of sound-evoked BOLD responses were analyzed using a method that 
combines machine learning with an iterative, multivariate voxel selection algorithm, Recur-
sive Feature Elimination (RFE) (De Martino et al., 2008). This method allows estimating max-
imally discriminative response patterns without a priori definition of regions of interest. In 
brief, starting from the entire set of measured voxels our method uses a training algorithm 
(least square support vector machine, ls-SVM) iteratively to eliminate irrelevant voxels and 
to estimate the informative spatial patterns. Correct classification of the test data increases, 
while features/voxels are pruned on the basis of their discrimination ability. We have recent-
ly validated and compared this method to other approaches of multivoxel pattern analysis 
and demonstrated its greater sensitivity by means of simulations. A short description of the 
method is given below, together with steps and parameters specific to the analysis of pre-
sent data. A more complete account of the implementation and validation of the method 
can be found in (De Martino et al., 2008). Pre-processed functional time series were first 
divided into “trials” (one trial per block) and labeled either according to the category (learn-
ing of ‘category’) or the fundamental frequency (learning of ‘fundamental frequency’) of the 
sounds presented in the block. This gave rise, in each subject, to a total of 30 trials per condi-
tion for category discrimination, and 40 trials per condition for fundamental frequency dis-
crimination. For each trial, a multivoxel pattern response was generated. An estimate of the 
response at every voxel was obtained by fitting a general linear model with one predictor 
coding for the trial response and one linear predictor accounting for a within-trial linear 
trend. The trial response predictor was obtained by convolution of a boxcar with a double 
gamma hemodynamic response function. The corresponding regressor coefficient (beta) was 
taken to represent the voxel trial response and responses from all voxels were combined to 
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form multivoxel patterns. Multivoxel pattern responses were analyzed using the iterative ls-
SVM-based classification algorithm. For each pair of categories (or fundamental frequen-
cies), trials were divided into a training set (20 trials per condition for the category discrimi-
nation and 30 trials per condition for the fundamental frequency discrimination) and a test 
set (10 trials per condition). The training set was used for estimating the maximally discrimi-
native patterns with the iterative algorithm; the test set was only used to assess the correct-
ness of classification of unseen trials (i.e. not used in the training). 
 Starting from all the cortical voxels included in a subject-by-subject defined anatomical 
mask (including temporal pole, STG, STS, MTG), the most active voxels per condition (as de-
fined on the training set alone) were initially selected. The threshold for this initial activa-
tion-based voxel selection was optimized for each subject by using a cross validation within 
the training data, and the threshold ranged between 1000 and 1500 voxels per condition.  
 Voxels were further reduced using the iterative RFE algorithm. At each iteration, RFE 
included two steps. First, a subset of the training data (10 trials per condition for the catego-
ry discrimination and 20 trials per condition for the fundamental frequency discrimination) 
was used to train an ls-SVM classifier. As a result of this training, a map coding for the rela-
tive contribution of each voxel to the discrimination of conditions (discriminative maps) was 
obtained as in (Mourao-Miranda et al., 2005). Second, these discrimination weights were 
ranked and voxels corresponding to the smallest ranking were discarded. Voxels with the 
highest discriminative values were used for training in the next iteration. These two steps 
were repeated ten times (Nit = 10, on different subsets of the training data), each time with 
a 30% reduction in the number of voxels. The correctness of the classification corresponding 
to the current set of voxels and the discriminative weights were assessed using the external 
test trials. The entire iterative procedure was repeated with cross validation ten times 
(Nsplits = 10), each time leaving out a different subset of trials per condition. The reported 
correctness for each single class and each binary comparison was computed as an average 
across the ten splits (Figure 4, 5 and 6). Single-subject discriminative maps corresponded to 
the voxel-selection level that gave the highest average correctness. These maps were then 
sampled on the reconstructed cortex of each individual subject and binarized in order to 
visualize only the best 20% of the vertices. 
 To examine the spatial consistency of the discriminative patterns across subjects, group-
level discriminative maps were generated after cortex-based alignment (Goebel et al., 2006) 
of single-subject discriminative (binarized) maps (Formisano et al., 2008). In these group-
level discriminative maps, a cortical location (vertex) was color-coded if it was present in the 
corresponding individual discriminative map of at least five of the eight subjects. Assuming 
that the discriminative maps for category and fundamental frequency follow a binomial dis-
tribution, the likelihood of finding the same locations by chance in five subjects corresponds 
to an “uncorrected” p = 8.4·10-4 for the category map and an “uncorrected” p = 1.3·10-4 for 
the fundamental frequency map. To account for the multiple tests performed to create 
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these maps, we calculated the proportion of expected false positive in each of the maps 
(False Discovery Rate, q) that correspond to these p values. This resulted in q = 7.9·10-3 for 
category and q = 2.6·10-3 for fundamental frequency. These q-values were computed using a 
statistical method that ensures robust estimates also in the case of discrete distribution of p-
values and onesided tests (Pounds and Cheng, 2006). 
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Introduction 

The ability to rapidly recognize and categorize sounds is essential, not only for understanding 
and reacting to our surroundings, but for daily communication and social interaction. Studies 
in macaque monkeys have suggested that auditory information relevant for sound recogni-
tion in general is processed in a specialized and anatomically segregated stream of cortical 
areas (Kaas and Hackett, 1999; Rauschecker and Tian, 2000; Romanski et al., 1999). Corre-
spondingly in humans, sound recognition activates regions located laterally to the Heschl’s 
gyrus and extending along the posterior–anterior direction of the superior temporal gyrus 
(STG) and sulcus (STS) (Alain et al., 2001; Warren and Griffiths, 2003). Within these areas, 
sound categories are encoded in a spatially distributed manner (Formisano et al., 2008; 
Staeren et al., 2009). 
 In humans, both animal and human vocalizations constitute rapidly and effortlessly rec-
ognizable auditory categories that are learned early in childhood and share many spec-
torotemporal features. Vocalizations activate specific auditory networks: Regions in the bi-
lateral STS and STG exhibit a larger blood-oxygenation-level-dependent response to vocal 
than to non-vocal human sounds (Belin et al., 2004; Belin et al., 2000; Warren et al., 2006), 
and the middle portions of the STG are bilaterally more activated during the categorization 
of animal vocalizations than tool sounds (Lewis et al., 2005). Furthermore, sub-regions at 
these areas show species-specific reactivity to vocalizations (Fecteau et al., 2004). 
 In functional magnetic resonance imaging (fMRI) studies, minimizing the low-level 
acoustic differences between stimuli abolishes conventional univariate differences between 
responses to different sound categories (Staeren et al., 2009). Exemplars of separate catego-
ries differ from each other temporospectrally, and time-sensitive electroencephalographic 
(EEG) and magnetoencephalographic (MEG) responses are especially sensitive to such devia-
tions. In a recent EEG study, responses to human voices differed from those to bird songs 
and environmental sounds at ~200 ms bilaterally at the fronto-temporal electrodes, but the 
results were speculated to be at least partly due to differences between the experimental 
stimuli (Charest et al., 2009). Another EEG study, in which the sound spectrograms and pow-
er spectra did not statistically significantly differ between sound categories, demonstrated 
stronger activity to human than animal vocalizations at 169–219 ms over the right temporal 
areas (De Lucia et al., 2010). However, the same ~200-ms time window has been related to 
general processing of spectral fine structure of any complex sound (Altmann et al., 2008), 
and the nature of auditory categorical processing has remained unclear. 
 Here we used MEG in combination with acoustically well-controlled human and cat vo-
calizations to study cortical processing of auditory categories beyond the processing of low-
level features. As an important addition to previous studies, the temporal profiles of our 
stimuli were equated for their harmonic structures. This manipulation ensures that the 
sounds have a similar “perceptual pitch” profile over time, behaviourally relevant for sound 
categorization (Staeren et al., 2009). Furthermore, we used an adaptation paradigm in which 
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During the MEG session, the behavioural responses were too scarce for statistical inference. 
Therefore, in a separate behavioural session prior to the MEG experiment, all subjects un-
derwent a short behavioural session (Presentation 9.3™). First the subject listened twice to 
all nine “easy” cat and voice stimuli presented with an ISI of 2 s, together with visual infor-
mation on the stimulus category. Subsequently, the same stimuli were presented randomly 
three times without visual aid and interspersed with the ambiguous stimuli, and the subject 
was asked to respond with a button press whether the stimulus was a cat or a female voice. 
Finally, the subjects listened to the sounds as they would be presented in the MEG experi-
ment, i.e. four sounds in a row, and they were asked to respond after each trial whether the 
all four sounds belonged to the same category (yes/no). 
 The percentage of correct cat and voice sound recognition was � 97 ± 2 % (mean ± SEM). 
Subjects’ responses to the ambiguous sounds were at the chance level: The percent correct 
(the subject responded ‘voice’) was 39 ± 12% when the sounds were presented after cat 
sounds, and 63 ± 14% after voice sounds (p > 0.35 compared with 50%), and the responses 
did not differ statistically significantly from each other (p = 0.15). 

MEG experiment 
In the MEG experiment, the sounds were delivered to the subjects binaurally at a comforta-
ble listening level through plastic tubes and ear pieces. They were presented in trains of 
four, and the subject’s task was to attend to all sounds carefully, and decide whether the 
sounds belonged to the same category (cat or voice). The experiment is described schemati-
cally in Figure 2. The stimuli within a train were presented with ISIs of 600 ms (from offset to 
onset), resulting in a trial duration of 4920 ms, and they were followed by an inter-trial in-
terval of 2700 ms. 
 The experiment consisted of six conditions utilizing the stimuli described above (nine 
voice sounds, nine cat vocalizations and four ambiguous sounds). In the congruent condi-
tions, four cat (or voice) sounds were presented in a row. In the incongruent conditions, 
three voice (cat) sounds were followed by a cat (voice) sound. In the ambiguous conditions, 
three voice (or cat) stimuli were followed by an ambiguous stimulus. To minimize build-up of 
purely acoustic memory traces during the trials and to avoid mismatch responses elicited by 
infrequent sounds among otherwise monotonous stimulation (Näätänen, 1992), the three 
first stimuli in a train were selected each from a different filtering level. The last sound in a 
row could be either from the same or different filtering level as the preceding third sound; 
MEG responses were pooled across the different filtering and pitch levels. The different 
stimulus trains were presented in a random order, and the same condition was not allowed 
to occur more than twice in succession. 
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mated for each channel from the neighbouring channels (Medendorp et al., 2007); Planar 
gradients give the maximum signal just above the source area (Hämäläinen et al., 1993). 
Root mean square of the horizontal and vertical planar gradient fields was then calculated 
(combined planar gradient). Subsequently areal mean averages were calculated over the 
central, left and right temporal, left and right frontal, and left and right occipito-parietal re-
gions. 

Source analysis: equivalent current dipole modeling 
For source analysis, the head was modelled as a homogeneous spherical volume conductor. 
The model parameters were optimised for the intracranial space obtained from MR images 
that were available for all subjects. The neurophysiological responses were analyzed by first 
segregating the recorded sensor-level signals into spatiotemporal components, by means of 
manually-guided multi-dipole current modelling (equivalent current dipole, ECD; (Hämä-
läinen et al., 1993). The analysis was conducted separately for each subject using Elekta Neu-
romag (Elekta Oy) software package, following standard procedures (Hansen et al., 2010; 
Salmelin et al., 1994). The parameters of an ECD represent the location, orientation, and 
strength of the current in the activated brain area. The ECDs were identified by searching for 
systematic local changes, persisting tens of milliseconds, in the measured magnetic field pat-
tern. ECD model parameters were then determined at those time points at which the mag-
netic field pattern was clearly dipolar. The software identifies the sensor measuring the 
strongest signal at the channels covering the field pattern, and uses a location below this 
sensor as a seed point for the following ECD model parameter estimation. The parameter fit 
does not depend on the exact selection of the seed point in the local neighbourhood of the 
maximum signal. Only ECDs explaining more than 85% of the local field variance during each 
dipolar response peak were accepted in the multidipole model. Based on this criterion, 3–4 
spatiotemporal components were selected into the individual subjects’ models. The analysis 
was then extended to the entire time period, and all MEG channels were taken into account: 
The previously found ECDs were kept fixed in orientation and location while their strengths 
were allowed to change. 
 For optimizing the accuracy of the spatial fits, the orientation and location of the ECDs 
were estimated in each individual in the condition with the strongest signals in the time 
windows of the main experimental effects suggested by the sensor level data. However, the 
variability in the signal-to-noise ratios between conditions was very small, and, on the basis 
of visual inspection and on the calculated goodness-of-fit values obtained by comparing the 
original data and the data predicted by the fitted sources, the same sources explained well 
the responses in the other conditions. 
 Due to the variability of the response shape across individuals, the 250-ms response am-
plitudes were estimated as an average over a 50-ms (for ambiguous sounds) or 100-ms win-
dow (separately for congruent and incongruent conditions) around the individual response 
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Figure 4. Responses at the 275 MEG channels averaged over all subjects for the incongruent (black) and congru-
ent (red) conditions. The inserts depict the maximum channels over the left and right hemispheres. 

 

Figure 5. MEG source analysis in one subject. The locations (dots) and orientations (tails) of the ECDs used to 
model the N100m responses (A, white dots), and of the right-hemispheric 250-ms responses in incongruent 
and congruent conditions (B, blue dots) in one subject, superimposed on the subject's MNE dSPM distributions. 
The inserts (right) depict the corresponding ECD time courses in a time window of -100 ms to 450 ms with re-
spect to the stimulus onset. 
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observed, although bilaterally, in earlier auditory MEG studies on processing syllables, spo-
spoken words, and environmental sounds (Bonte et al., 2006; Renvall et al., 2012; Uusvuori 
et al., 2008). These responses do not seem to react to, e.g., phonetic or semantic task 
manipulations (Bonte et al., 2006; Uusvuori et al., 2008). Future studies are needed to 
explore whether these responses are related e.g., to accessing templates for different 
auditory categories regardless of stimulus type, possibly with different hemispheric 
emphasis for speech-like sounds. 
 The careful stimulus control can also be considered the main limitation of our present 
study: The stimuli were simple and they were constructed as continua from two exemplars. 
Even though their variability was increased by filtering and transposing them to different 
pitches, their ecological validity remains limited, compared with e.g., spoken words or 
environmental sounds. In future studies, the representation of auditory categories should be 
addressed also using more realistic auditory scenes, for example by modifying stimulus 
recognizability with varying level of superimposed noise (Renvall et al., 2012) and using a 
wider range of stimulus categories. 
 Although at the behavioral level the categorical context did not statistically significantly 
affect the categorization of ambiguous sound stimuli, the cortical responses to these sounds 
differed greatly depending whether they were presented after cat or voice sounds. 
Specifically, the right-hemispheric 250-ms responses were statistically significantly greater to 
sounds presented in the voice than cat context although the ambiguous sounds were 
acoustically closer to the voice stimuli. This finding could suggest that human voices as 
potentially more meaningful stimuli for the listener generated a stronger contextual effect, 
and thus resulted in a greater categorical mismatch for sounds that could not be un-
ambiguously attributed to one of the two categories. This suggests a more established status 
for processing of human voices in the human auditory cortex than e.g. animal vocalizations 
(Fecteau et al., 2004). However, further studies are evidently needed for establishing the 
complex interactions between context and target sounds. Specifically if the target sounds 
such as the ambiguous sounds here do not belong to any natural category, different cortical 
mechanisms may also apply. 
 In conclusion, our present results suggest that, after careful matching of acoustic 
stimulus features and behavioral demands, auditory categories for vocalizations are 
accessed by ~250 ms, preferably in the right posterotemporal cortex. This activity may 
reflect the detailed spectral analysis needed in the auditory categorical distinction of 
vocalizations. 
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Summary 

The segregation of an auditory object from a sound mixture (or auditory scene) requires the 
interplay between bottom-up processing of the acoustic scene elements and top-down 
processes of attentive selection and binding. Spatial hearing contributes to this analysis by 
providing cues on location and motion of the sound sources. This study investigates the 
cortical processing of spatial cues during listening of natural auditory scenes. Using the 
technique of binaural recording and in-ear microphones, we recorded realistic auditory 
scenes containing two concurrent sound sources, a voice centrally located in front of the 
listener (foreground), and an environmental sound located at different locations at the 
background. During fMRI measurements subjects were instructed to attend one of the 
sound sources (“Voice” vs “Environment”), under two distinct playback conditions: 1) Stereo 
playback which preserves the spatial acoustic information of the original recordings 
(“Spatial”) or 2) Mono playback, which removes spatial information (“Non-spatial”). Our 
analyses show that processing of the spatial cues - independently of the attention condition 
- corresponded with significantly increased brain activation at the bilateral posterior superior 
temporal areas. These regions are known for processing spatial and motion information 
(“where” stream). However, we also observed significant activation differences in the Spatial 
vs Non-spatial comparison that depended on the attention target. When listeners attended 
to environmental background sounds, we found significant differences in left planum 
temporale and left inferior frontal gyrus. Conversely, when listeners attended to vocal 
sounds, we found significant activation differences in bilateral clusters of middle superior 
temporal gyrus and sulcus, which overlap with voice sensitive regions. These attention-
dependent effects suggest that – in order to segregate an auditory source from a sound 
mixture - spatial cues are integrated with other relevant spectral and temporal cues in 
cortical locations specifically involved in the recognition of sounds.  
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Introduction 

A natural environment rarely contains one sound. Overlapping voices, mechanical 
background noise, a phone ringing; in most cases the acoustic signal at our ears comprises 
sounds from several sources. Automatic and effortless for most of us, segregation of the 
sources from a complex sound mixture (or auditory scene), is a formidable example of the 
computational capabilities of our auditory system. Processing of a scene into perceptual 
auditory objects is determined by the interplay between bottom-up processing of the 
spectral and temporal relations of the acoustic scene elements and top-down processes of 
attentive selection and enhancement of the relevant sounds (Bregman, 1990). 
 Spatial hearing also contributes to the processing of auditory scenes by providing 
information on location and motion of the sound sources. As there is no explicit 
representation of auditory space on the receptor surface, the auditory system derives the 
information on the location and motion of the sources from various acoustic cues. Locations 
in the vertical plane and in the front-back direction are resolved from the direction-
dependent modifications of spectral profile generated by the outer ear and the head 
(spectral cues). Horizontal localization of the sound sources relies on timing and level 
differences at the two ears (interaural timing [ITD] and level [ILD] difference). Perception of 
sound motion relies on the analysis of dynamic changes of these cues. 
 The neural analysis of spatial acoustic cues starts in the brain stem at level of the 
superior olivary complex (SOC). At the level of the inferior colliculus (IC), all the individual 
spatial acoustic cues have been processed and filtered (Groh et al., 2003). These separate 
cues are then integrated in the next synaptic levels of the thalamo-cortical system. In the 
cortex, the location of a sound source is represented by populations of distributed and 
broadly tuned neurons (Recanzone et al., 2000). When comparing the spatial selectivity of 
neurons in different fields of the auditory cortex in the macaque, a sharper spatial tuning is 
found in caudal fields (CM (Tian et al., 2001), (Recanzone et al., 2000) and CL (Recanzone et 
al., 2000), (Miller and Recanzone, 2009)) compared to A1 or to antero-lateral fields. 
Furthermore, deactivation of the posterior auditory field, in the cat, causes behavioral 
dysfunctions in sound localization (Lomber and Malhotra, 2008). These results provide 
strong support to the proposal of a dorsal (‘where’) stream of auditory areas specialized for 
the processing of spatial information. Anatomical studies indicate that extensive connections 
exist between these caudal auditory fields and spatial domains of the prefrontal cortex 
(Romanski et al., 1999). 
 Results from neuroimaging studies in humans are generally supportive of this 
hypothesis. Several studies investigating the cortical basis of sound localization (Alain et al., 
2001; Altmann et al., 2007; Barrett and Hall, 2006; Warren and Griffiths, 2003) and motion 
(Baumgart et al., 1999; Hart et al., 2004; Krumbholz et al., 2005a; Krumbholz et al., 2005b; 
Pavani et al., 2002; Warren et al., 2002; Warren et al., 2005) have reported a selective 
activation of posterior temporal regions (planum temporale, [PT] and posterior superior 
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temporal gyrus [pSTG]), and of regions at the temporal – parietal boundaries (Lewis et al., 
2000). Activation of these regions appears to be prominent when subjects are actively 
involved in a task of sound localization (Zatorre et al., 2002) and in the presence of sound 
motion (Getzmann and Lewald, 2010; Warren et al., 2002). 
 However, this interpretation of posterior temporal activation in terms of functional 
specialization for spatial audition is not univocal. For example, it has been suggested that the 
activation of the PT does not reflect spatial processing per se but rather the integration of 
spatial information with auditory object information (Zatorre et al., 2002). This alternative 
interpretation is supported by the findings that manipulation of the number of auditory 
objects in a scene produces effects in PT similar to spatial manipulations (Smith et al., 2010). 
 In the present study we examined the cortical processing of spatial cues embedded in 
realistic auditory scenes. Using ear-insert microphones, we recorded a set of naturalistic 
scenes that contained a vocal sound centrally located in front of the listener and an 
environmental sound located at the peripheral background (e.g. a voice with a car passing). 
During functional MRI (fMRI) measurements, subjects attentively listened to the auditory 
scenes, under two distinct playback conditions: 1) Stereo playback (“Spatial”) which 
preserves the spatial acoustic information of the original recordings (e.g. motion of the 
sound on the background) or 2) Mono playback, which removes spatial information (“Non-
spatial”). Furthermore, we manipulated the top-down context for processing the auditory 
scenes by directing the subjects’ attention either to the voice in the foreground or to the 
background sounds (“Voice” vs “Environment”). This design allowed us to examine the 
relation between mechanisms for the analysis of spatial cues and attention mechanisms 
responsible for selecting and segregating sound objects from a scene. In particular, we 
aimed at distinguishing cortical regions involved in the automatic (i.e. attention-
independent) analysis of spatial cues from regions involved in integrating spatial and sound 
object information during auditory scene analysis. 

Experimental Procedures 

Subjects 
We studied, with informed consent, 10 adults (mean age ± SD: 28 ± 4 yrs; 4 females, 6 males, 
one left-handed). All subjects were graduate university students and were paid for their 
participation. Subjects had no history of hearing or neurological impairments, and were naive 
to the experimental setup. The study received a prior approval by the Ethical Committee of the 
Faculty of Psychology, Maastricht University. 

Stimuli 
Eighty auditory scenes were created by using excerpts from audio recordings from 12 vocal 
actors and 30 environments. Sounds were recorded binaurally using two in-ear microphones 
(FG-23652-P16, Knowles Electronics, Itasca, Illinois, U.S.A.) and a portable digital recorder 
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(96 Khz, 24bit, M-Audio MicroTrack 24/96 Pocket Digital Recorder). After recording, sounds 
were down-sampled to 44.1 KHz/16 bit using Adobe Audition (Adobe Systems, Inc., CA, 
USA). The duration of the sounds was between 450 and 2635 ms (mean length ± SD: 1306 ± 
565 ms); amplitude envelopes and average root-mean-square levels of the sounds were 
matched using MATLAB 7.0.1 (The MathWorks, Inc., Natick, MA, USA). 
 Auditory scenes for the “Spatial” condition were created by mixing separately the two 
audio channels; a monaural version of the same scenes was created by merging the two 
audio channels. All stimuli in this study were recorded inserting the microphones in the ear 
canal of two listeners that did not take part in the fMRI measurements, and were played to 
the subjects via the MR-compatible headphones (see below). It is known that - because of 
inter-individual differences in head and external ear shape – non-individualized recordings as 
used in this study do not produce the same perceptual quality as individualized recordings. 
However, we choose not to record the stimuli individually because of the difficulty of 
recreating natural complex scenes for each subject. We assessed the quality of spatial 
perception in behavioral pre-tests. All listeners that participated in the fMRI measurements 
reported a clear spatial perception of our auditory stimuli outside and inside the MR 
scanner. 

fMRI experimental design 
A 2 x 2 block design with space (“Spatial” vs “Non-Spatial”) and attention (“Voice” vs 
“Environment”) as factors was used. The experiment consisted of 2 functional runs during 
which auditory scenes in the four different conditions were presented according to a block 
design. Each of the two runs (22 min/run) included 9 blocks per condition and four target 
blocks (see below); the sequence of conditions was randomized and blocks were separated 
by a fixation period of three TRs. Each block consisted of four TRs (TR= 4640 ms, total = 18.5 
s) and an auditory scene was presented for each trial. Every block was preceded by a cue 
presented at the fixation point indicating the attention condition (“E” or “V”). Subjects were 
instructed to respond with a button press in case the attended sound in two consecutive 
auditory scenes was the same. This occurred in 10% of the cases (“target blocks”); there 
were 2 target blocks per conditions (4 blocks/run). The response hand was alternated across 
subjects.  

fMRI measurements 
Brain imaging was performed with a 3 Tesla Siemens Allegra (head setup) at the Maastricht 
Brain Imaging Center. In each subject, two runs of 282 volumes were acquired with a T2*-
weighted gradient-echo planar imaging (EPI) sequence (TR = 4640 ms, voxel size = 2,5 × 2,5 × 
2,5 mm3, TE = 30 ms, FOV 256 × 256; matrix size 96 × 96, 32 slices covering the cortex). 
Anatomical images (1 × 1 × 1 mm3) were collected between the two functional runs using a 
3D-MPRAGE T1-weighted sequence. During the measurements, the stimuli were delivered 
binaurally via MR compatible headphones (Commander XG, Resonance Technology, 
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Northridge, CA) at a comfortable listening level. To minimize the effect of scanner noise, the 
sounds were presented during silent periods using a clustered volume EPI technique that 
allowed for presentation of auditory stimuli in silence between subsequent volume 
acquisitions (Riecke et al., 2007; van Atteveldt et al., 2004). 

fMRI Data Analysis: pre-processing and univariate statistics 
Functional and anatomical images were analyzed with BrainVoyager QX (Brain Innovation, 
Maastricht, The Netherlands). Preprocessing consisted of slice scan-time correction (using 
sinc interpolation), linear trend removal, temporal high-pass filtering to remove nonlinear 
drifts of seven or less cycles per time course, and 3-dimensional motion correction. 
Temporal low pass filtering was performed using a Gaussian kernel with FWHM of two data 
points. Functional slices were co-registered to the anatomical data, and both data were 
normalized to Talairach space (Talairach and Tournoux, 1988). 
 Statistical analysis of the fMRI data was based on voxel-by-voxel general linear modeling 
(GLM) of the time series. For each subject, a design matrix was formed using a predictor for 
each experimental condition (“Spatial-Voice”, “Spatial-Environment”, “Non Spatial-Voice”, 
“Non Spatial-Environment”) and for the target blocks. The predicted time courses were 
adjusted for the hemodynamic response delay by convolution with a canonical 
hemodynamic response function (sum of two gamma functions). 
 Cortex-based realignment was performed for aligning the functional time series of 
individual subjects and to perform random effect group-based statistics (Goebel et al., 
2006). Statistical maps were thresholded and corrected for multiple comparisons (alpha = 
0.05) on the basis of cluster-level statistical threshold estimation performed on the cortical 
surface data (Forman et al., 1995; Goebel et al., 2006). 

Results 

Listening to auditory scenes induced extensive activations of the superior temporal cortex 
bilaterally, including the Heschl’s gyrus and surrounding regions on the superior temporal 
gyrus and sulcus (see Figure 1a). Additional activation was found in the left middle temporal 
gyrus (MTG), left inferior frontal gyrus (IFG) and bilateral inferior parietal lobule (IPL). This 
overall activation pattern was largely common to both the “Spatial” and “Non spatial” 
conditions.  

“Spatial” vs “Non Spatial” scenes 
To examine the brain regions involved in the processing of spatial cues we first compared 
the activation to “Spatial” vs “Non Spatial” scenes grouped across attention conditions. We 
observed significantly higher BOLD responses for the “Spatial” condition (see Figure 1b) 
bilaterally in the posterior STG regions. In the left hemisphere, this region was located at the 
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adjacency with the temporal-parietal border. In the right hemisphere, an additional cluster 
was present along the STS. 
 We further dissected the “Spatial” vs “Non Spatial” contrast by analyzing the two 
attention conditions separately, i.e. we performed the two orthogonal contrasts “Spatial-
Environment” vs “NonSpatial-Environment” (see blue map in Figure 1c) and “Spatial-Voices” 
vs “NonSpatial-Voices” (see red map in Figure 1c). 
 

 

Figure 1: Results from Cortex-based Aligned Random Effect analysis using the General linear model. a) Overall 
activation map (SpVo + SpEn + NsVo + NsEn > baseline, F-map), b) Spatial versus Non-Spatial stimuli (SpVo + 
SpEn > NsVo + NsEn, c) Spatial versus Non-Spatial stimuli for either the Voice condition (Red, SpVo > NsVo) or 
the Environment condition (Blue, SpEn > NsEn). Voxels where both contrasts are significant (conjunction) are 
highlighted in yellow, d) Interaction maps: Green: SpEn – MoEn > SpVo – MoVo; Orange: SpVo – MoVo > SpEn - 
MoEn. 
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In the right posterior STG, we found a cluster of activation where these two contrasts were 
independently significant (see yellow map in Figure 1c and averaged time courses in Figure 
2a). A similar cluster was also present in the left hemisphere, although it did not survive the 
corrected threshold (see also time courses in Figure 2b). 
 Besides these common clusters, activation clusters were detected specific to the 
different attention targets. When listeners attended to environmental background sounds, 
significant activation differences were found in the left planum temporale and in left inferior 
frontal gyrus (see blue color in Figure 1c). In these regions there was no activation difference 
for the orthogonal contrast (“Spatial-Voice” vs “NonSpatial-Voice”; see time courses in 
Figure 2c and 2d). 
 Conversely, when listeners attended to vocal sounds, we found significant activation 
differences in bilateral clusters of middle STG (left hemisphere) and STS (posterior and 
middle, right hemisphere). In these clusters - that resembled regions reported to be 
selectively activated for voices in previous studies (Belin et al., 2000) – there was no 
activation difference for the orthogonal contrast (“Spatial-Environment” vs “NonSpatial-
Environment”; see time course in Figure 2e and 2f). 
 To test these observations statistically we calculated interaction maps, which are shown 
in Figure 1d. In these maps, of all the regions for which an individual contrast was significant 
(e.g. blue or red regions in Figure 1b) only the regions in the left PT and in the left middle 
STG survived a rigorous threshold (p < 0.05, corrected). 

Attention to “Environment” vs attention to “Voice” 
To examine the brain regions affected by the attention manipulation we compared the 
activation to the scenes grouped across spatial conditions (i.e.”Environment” vs “Voice”). 
We observed significantly higher BOLD responses for the “Environment” condition (see 
Figure 3a) in a largely left-lateralized network of regions including posterior STG, posterior 
STS/MTG and, in the frontal lobe, and the dorsolateral prefrontal cortex (DLPFC). Bilateral 
activation of the posterior parietal cortex (PPC) and the left precentral gyrus (PrG) were also 
observed. No region showed increased activation for “Voice” compared to “Environment”. 
When analyzing the two spatial conditions separately, (“Spatial-Environment” vs “Spatial-
Voice” (see purple map in Figure 3b) and “Non Spatial-Environment” vs “Non Spatial-Voices” 
(see green map in Figure 3b), we observed a similar pattern of overall activation. 
Interestingly, however, there was little overlap between the two maps in frontal and parietal 
regions and only a common cluster of activation in left STS/MTG (see yellow map in Figure 
3b and time course in Figure 3c). 
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Figure 2: Average time courses for relevant clusters of the maps in Figure 1b-1d. The averaged brain activation 
during the “Spatial” conditions (dark blue and red lines) are compared to the brain activation in the “Non-
Spatial” conditions (lighter blue and pink lines) separately for the attention to “Environment” (left column, 
blue) or to “Voice” (right column, red) condition. a) Right Posterior STG: this region was commonly activated for 
“Spatial” vs “Non-spatial” scenes, independent of attention (yellow cluster in Figure 1c), b) Left Posterior STG: a 
similar pattern as in a), however, significance in this cluster was above the corrected threshold, c) Left PT and 
d) Left IFG: in these clusters the “Spatial” vs “Non-Spatial” was significant only during the attention to 
“Environment” condition (blue map in Figure 1c), e) Left middle STG, and f) Right middle STG: in these clusters 
the “Spatial” vs “Non-Spatial” was significant only during the attention to “Voice” condition (red map in Figure 
1c). 
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Figure 3: Results from Cortex-based Aligned Random Effect analysis using the General linear model. a) 
“Environment” versus “Voice” attention condition (merged spatial conditions), b) “Environment” versus 
“Voice” for either the “Spatial” scene condition (Purple) or the “Non-Spatial” condition (Green), c) Time courses 
related to fig. 3b (left posterior STS/MTG, yellow) where “Environment” (Blue and Turquoise lines) vs “Voice” 
(Red and Pink lines) scenes are compared during the “Spatial” (left column) or “Non-Spatial” (right column) 
attention condition: this area was commonly activated for “Environmental” vs “Voice” scenes, independent of 
spatial cues. 
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Discussion 

In this study we investigated the cortical processes related to stream segregation of complex 
natural auditory scenes, with or without spatial acoustic information.  
 Comparing “Spatial” to “Non-Spatial” scenes resulted in a robust increase of regional 
activation in clusters of the right and - to a lesser extent - left posterior auditory cortex. This 
increased activation was present during both attention conditions (voice and environment). 
The anatomical location of these attention-independent activations corresponds to the 
posterior portion of the planum temporale, at a site which is compatible with area Tpt of the 
anatomical classification by (Galaburda and Sanides, 1980) (see also (Sweet et al., 2005)), 
area STA of the classification by (Rivier and Clarke, 1997) (see also (Wallace et al., 2002)) or 
area Te3 in the classification by (Morosan et al., 2005). These locations are also in agreement 
with previous functional neuroimaging studies that investigated sound localization and 
motion using simple sounds presented in isolation (Hart et al., 2004; Krumbholz et al., 
2005a). Thus, in line with the general functional dichotomy between ‘what’ and ‘where’ 
auditory processing streams, our results confirm the indication that posterior auditory 
regions carry out the analysis of spatial cues in complex auditory scenes. Spatial processing 
in these areas seems to be automatic and scarcely influenced by attention, which may be 
particularly relevant for efficient localization of relevant and sudden sounds. It is worth 
noting that our experimental task did not explicitly require listeners to localize the sounds, 
which further highlights the obligatory nature of the observed effects. 
 Besides “automatic” sound localization, spatial acoustic cues from complex auditory 
scenes may also contribute to the processes of sound stream segregation and formation. 
Thus, the observed attention-dependent effects may reflect a second cortical processing 
mechanism, which may be devoted to integration of spatial cues with other spectral and 
temporal cues, with the goal of segregating and forming auditory streams. Such processing is 
expected in cortical locations specifically involved in the recognition of sounds. Also, 
attention is expected to have a relevant role in selecting and grouping the relevant sound 
object in the scene. Our results are highly consistent with this view. In regions of the middle 
portion of left (and right) STG and STS, we observed an effect of the spatial manipulation 
only when “voices” were attended to. These locations clearly resemble the so-called “voice 
sensitive” regions, as reported in previous studies (Belin et al., 2000). On the other end, we 
observed an effect of the spatial acoustic cues in regions of the left posterior Planum 
Temporale, only when attention was directed to background sounds. These regions have 
been associated in a previous study (Lewis et al., 2005) to processing of tool sounds, which in 
fact constitute a large subset of our background sounds. 
 Although consistent with previous studies, our interpretation is not univocal. In fact, in 
our scenes, voices were always located centrally in front of the listener, while the 
environmental sounds were peripheral and more variable. New studies should verify 
whether the observed attention-dependent effects reflect the different sensitivity of 
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