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EPILEPSY 

Epilepsy is one of the most prevalent neurological disorders worldwide. It affects 1-2% 
percent of the population at some point in their lives. In the Netherlands alone, 
approximately 110,000 persons have some form of epilepsy at any given moment 
(NEF, 2009).  
An epileptic seizure is defined as the paroxysmal manifestation of symptoms due to 
abnormal excessive or synchronous neuronal discharges in the brain (Fisher et al., 
2005; Berg et al., 2010). Clinically, a person is given a diagnosis of epilepsy after at 
least two unprovoked epileptic seizures (Blume et al., 2001), although there are 
several circumstances after which the diagnosis is made after one seizure (for 
example when EEG confirms absence seizures in children) and in some epilepsies 
seizures are rare or even absent such as in the Landau Kleffner syndrome. There are 
many possible different causes and clinical expressions of epilepsy and it is therefore 
not a single disease entity, but rather a description of a large number of diseases with 
common symptoms (Panayiotopoulos, 2002). 
Epileptic seizures are typically classified by both the underlying cause and the location 
and nature of the seizure origin according to the classification of the International 
League Against Epilepsy (ILAE) (ILAE, 1989).  
The underlying etiology can be classified as either genetic or structural/metabolic, but 
is in many cases of unknown cause (Berg et al., 2010). Genetic epilepsies are best 
understood as the direct result of a known or presumed genetic defect in which 
seizures are the core symptom of the disorder. Epilepsies with a structural of 
metabolic cause are characterized by the presence of a distinct structural lesion, 
metabolic condition or disease that has been demonstrated to be associated with a 
substantially increased risk of developing epilepsy. This does not preclude that there is 
no genetic contribution, however there is a separate disorder interposed between the 
genetic defect and the epilepsy, such as the occurrence of a stroke or a tumor. The 
epilepsies of unknown cause (which are also known as non-symtomatic or cryptogenic 
epilepsy), designates the epilepsies for which the nature of the underlying cause is as 
yet unknown. The epilepsy may have a fundamental genetic defect at its core or it 
may be the consequence of a separate as yet unrecognized disorder. 
Seizures can be classified by the mode of seizure onset. Here a distinction can be 
made between generalized seizures and focal seizures. Generalized epileptic seizures 
originate at some point within, and rapidly engaging bilaterally distributed networks. 
Such bilateral networks can include cortical and subcortical structures, but do not 
necessarily include the entire cortex. Critically, the localization and lateralization are 
not consistent between one seizure and another. Focal epileptic seizures, on the other 
hand, originate within networks limited to one hemisphere. They may be discretely 
localized or more widely distributed. Focal seizures may originate in subcortical 
structures. For each seizure type, ictal onset is consistent from one seizure to another. 
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The unpredictability and sudden occurrence of a seizure frequently creates a great 
social burden to the patient and those who surround him. Consciousness is often lost 
during a seizure and can therefore cause physical harm to the patient. Furthermore, 
living with the uncertainty of not knowing when or whether the next seizure will occur 
can cause psychological stress. In addition, epilepsy patients may be hindered in their 
daily live by driving and working restrictions, the side-effects of the medication and 
psychological and cognitive complications. Although all of the above mentioned 
problems can be serious, many patients rank their cognitive impairments highest on 
their list of complaints (Chaplin et al., 1992; Baker et al., 1997; Fisher et al., 2000; 
Vlooswijk et al., 2010). 

EPILEPSY AND COGNITION 

Cognitive problems, or cognitive co-morbidity, are reported on virtually all cognitive 
domains in epilepsy. Classically, temporal lobe epilepsy (TLE) has been associated with 
memory deficits, ranging from impairments in verbal long-term consolidation and 
retrieval, verbal learning, short term working memory and spatial memory (Vlooswijk 
et al., 2010). In frontal lobe epilepsy (FLE), cognitive deficits and behavioral 
disturbances range from impaired attention to difficulties with the more complex 
behaviors involved in planning, selecting goals, anticipating outcomes, and initiating 
actions (Braakman et al., 2011). However, all sorts of epilepsies may be associated 
with so called encephalopathy: “the epileptic activity itself may contribute to severe 
cognitive and behavioral impairments above and beyond what might be expected 
from the underlying pathology alone,…, and these can worsen over time” (Berg et al., 
2010). 
Currently, little is known about the mechanisms that cause cognitive deficits in 
patients with epilepsy. Naturally, much research has focused on clinical factors that 
might contribute to the development of cognitive disorders. For instance, the role of 
seizure frequency and seizure severity (Dodrill, 2002), age at onset of the seizures 
(Hermann et al., 2002), drug use (Vermeulen and Aldenkamp, 1995) and status 
epilepticus (persistent interictal epileptic brain activity) (Aldenkamp and Arends, 
2004). However, results have been mixed and as yet no solid relationship between 
cognitive decline and clinical factors has been demonstrated.  This issue is further 
complicated by studies indicating that cognitive deficits can already be present before 
occurrence of the first epileptic seizure (Hermann et al., 2006; Taylor et al., 2010). 
Therefore, the question of causality between seizures and cognitive deficits is raised. 
Do seizures cause cognitive problems or are seizures and cognitive problems both 
symptoms of the same underlying pathology? To address this question recent 
research (including this thesis) has focused on the neuronal mechanism underlying 
cognitive deficits. 
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BRAIN AND COGNITION 

The term cognition (“cognoscere” in Latin, which means, "to know", "to 
conceptualize" or "to recognize") refers to the mental functions, mental processes 
(thoughts) and states of an intelligent being. But how are cognitive functions 
produced by the brain?  Historically, most investigations have focused on the location 
of brain regions that support a cognitive function. The earliest traces of serious 
investigation from the “localizationists” view go back to John Hughlings Jackson (1835-
1911) who investigated epilepsy patients with brain damage and proposed that 
specific functions were localized to specific areas of the brain, or to Paul Broca (1824-
1881) and Carl Wernicke (1848-1905) who’s research on patients with specific 
language problems led to the detection of the language areas of the brain. 
Much of the early research in this field was only possible by studying the post-mortem 
brain of patients with specific lesions, or by performing lesion studies in animal 
models (Geschwind, 1965b, a; Luria, 1976; Damasio and Damasio, 1989). Only with 
the invention of the EEG in the early 20th century (Haas, 2003), did it become possible 
to link large-scale electrical recordings of the brain to behavior and cognition 
(Niedermeyer, 1997). Much can be said about EEG research and the brain, especially 
in the field of epilepsy where EEG is now the standard clinical tool for seizure 
diagnosis and classification. However, it is beyond the scope of this chapter to provide 
an elaborate discussion on EEG, epilepsy and cognition. Instead, the focus of this 
thesis is on another non-invasive neuro-imaging technique, Magnetic Resonance 
Imaging (MRI). In the next sections of this chapter an introduction will be given to this 
technique, how it can be used to probe brain functionality and axonal organization 
and how it might be used to investigate patients with epilepsy and cognitive 
problems. 

MRI 

Magnetic Resonance Imaging is a noninvasive method to obtain a detailed view of 
structures, such as the brain, in the living body. Due to its many contrast mechanisms 
(e.g. T1, T2, proton density) reflecting the magneto kinetic properties of various brain 
structures, MRI is able to highlight different structural and functional aspects of the 
brain. 
Historically, MRI has mainly been used to study the complex anatomical structure of 
the brain. In epilepsy, high resolution T1 and T2 images have enabled the detection of 
for example cerebro-vascular lesions, brain tumors, developmental disorders and 
traumatic lesions (Salmenpera and Duncan, 2005; Urbach, 2005), see Figure 1.1. This 
has had a significant impact on clinical research and practice, by establishing better 
diagnosis, treatment decisions and monitoring of treatment effects (Kuzniecky and 
Jackson, 2005). 
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Although macro-structural imaging can provide images of the brain with high detail, 
the image is inherently static: a snapshot is made, which does not provide information 
on the ever-ongoing dynamics in the brain. Functional Magnetic Resonance Imaging is 
an MR technique that can provide information on the activity of brain regions and 
networks.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1  MR visible lesions associated with epilepsy. (A) Coronal fluid-attenuated inversion recovery 

(FLAIR) image; arrow marks the hippocampal sclerosis. (B) Coronal inversion recovery T1-
weighted image; arrow marks the focal cortical dysplasia. 

FUNCTIONAL IMAGING: BOLD SIGNAL 

Functional MR techniques can potentially be implemented using many different 
contrast mechanisms (Belliveau et al., 1991; Kwong et al., 1992; Brown et al., 2007), 
although for neuroscience applications this is usually done with Blood Oxygenation 
Level Dependent (BOLD) signal imaging (Ogawa et al., 1990; Turner et al., 1991; 
Kwong et al., 1992). This technique utilizes the physiological mechanism where neural 
activity triggers an increase in supply of fresh (oxygenated) blood to the active region, 
and is thus an indirect measurement of neuronal activity. The change in ratio between 
oxygenated and (paramagnetic) de-oxygenated blood can be measured with MRI (T2* 
weighted imaging). By utilizing MR techniques that can image the entire brain volume 
in a matter of seconds (Stehling et al., 1991; Tsao, 2010), a pattern of activation over 
time of the entire brain can be obtained. 
The first (and still foremost) application of functional imaging was that of localization 
of functionally specialized regions in the brain (Kwong et al., 1992). In a typical fMRI 
experiment a subject, while lying in the scanner, is asked to perform a certain task 
which is contrasted with periods of rest. The difference in signal intensity between the 
task and rest conditions can then be calculated and regions where the signal intensity 
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is significantly higher during the task than during rest can be said to be activated. This 
type of experiment has provided a vast amount of information on the functional 
topography of the human brain (Fox and Lancaster, 2002): for most tasks it is now 
known what brain regions they activate. 
This kind of functional localization in the brain rests upon the statistical analysis of a 
model signal of brain responses (the regressor) and the measured BOLD signal. Based 
upon the experimental paradigm (for instance a task-rest block design), a model signal 
is constructed and regressed against the BOLD signal time course of all brain voxels. 
The voxels where the association between the model signal and measured signal is 
highly significant are then said to be activated by the experimental task. See Figure 
1.2A. However, with this type of analysis each location in the brain is tested separately 
for activation. As such, conventional fMRI is not able to provide information on 
communication between brain regions. This could be highly relevant for the study of 
abnormal brain organization in neurological disorders such as epilepsy, as will be 
discussed in the next section. 

FUNCTIONAL CONNECTIVITY MRI 

Several researchers have noted that in addition to the model signal in conventional 
fMRI, the intrinsic BOLD signal fluctuation of a brain region can also be used as a 
regressor (Friston, 1994; Biswal et al., 1995), see Figure 1.2B. By measuring the 
association (or level of synchronicity) between different brain regions we can obtain 
insights into the large-scale functional organization of the brain. One of the first 
experiments in this field showed that, during rest, left and right hemispheric regions 
of the primary motor cortex had a high functional connectivity: the BOLD time signals 
showed a high level of correlation even though the subject was not engaged in any 
sort of motor activity (Biswal et al., 1995). At present day, these findings have been 
replicated over and over and functional connectivity between a large number of brain 
regions and systems have been reported (Smith et al., 2009). 
Still, the exact origin of functional correlation in the BOLD signal is incompletely 
understood (Fox and Raichle, 2007). It is generally thought that functional correlations 
of the BOLD signal are closely related to the inherently ongoing activity of the 
underlying neuronal populations. This neuronal basis is supported by reports that 
have directly linked spontaneous BOLD fluctuations to fluctuations in neuronal firing 
rate (He et al., 2008; Shmuel and Leopold, 2008). Also, functional correlations have 
been found between brain regions that are also co-activated in several tasks, for 
example regions known to be involved in motor and visual functions and the default 
mode network (regions that are de-activated by task fMRI) (Biswal et al., 1995; 
Damoiseaux et al., 2006; Smith et al., 2009). 
An important question in this field is how the pattern of functional connectivity during 
rest or task is shaped and constrained by the underlying white matter connectivity 
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(Honey et al., 2007). This question can be answered directly thanks to another recent 
development in MRI called Diffusion Weigthed Imaging (DWI). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2  (A) Functional activation and the BOLD signal. In this panel, the principle of BOLD activation 

imaging is depicted. The top row shows actual BOLD (T2*weighted) images over time. The 
red/yellow overlay displays where significant activation is found. The lower row displays the 
design of the task by yellow and purple panels, representing task and rest epochs, 
respectively. The green l ine is the regressor based on the task design. Basically, this is the 
block pattern of the task (yellow/purple panels) convoluted with the Hemodynamic Response 
Function (HRF). Note how the green l ine is somewhat delayed compared to the actual onsets 
of task and rest blocks. This compares nicely to the actual measured BOLD signal (the red 
line). The BOLD signal is a vascular response which is indeed slow. (B) Functional correlation. 
Here a similar setup as in panel A is used. However, a resting state fMRI scan is shown, and 
thus there is no task design. The top row again displays the actual BOLD images over  time. 
The red and blue squares indicate from what region of the brain the BOLD signal is shown in 
the lower panel (red and blue l ines). It is apparent that the two BOLD signals (spontaneous 
fluctuations) are not equal but are highly synchronous. This indicates that the red and blue 
regions are functionally connected. 
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DIFFUSION WEIGHTED IMAGING 

Information on white matter networks of the brain can be obtained in-vivo, by 
acquiring diffusion weighted imaging data and subsequently performing fiber 
tractography. DWI is an MRI technique which enables the measurement of water 
diffusion in multiple spatial directions. In the brain, the movement of extracellular 
water molecules is hindered by cellular barriers present in biological tissue such as 
myelinated axons. Due to directional differences in water diffusion in different 
structures, DWI is able to provide information on the orientation of white matter. One 
of the most widely used methods to capture orientation information from DWI data is 
the Diffusion Tensor model (Le Bihan et al., 2001). For this, a three dimensional 
ellipsoid form is fitted to the DWI signal. Consequently, the principal axis of the 
ellipsoid (the direction in which the ellipsoid is most stretched, and most water 
diffusion has occurred) is assumed to represent the direction of the underlying white 
matter fiber bundles. Other quantities can also be derives from the diffusion tensor, 
such as the fractional anisotropy (FA) and mean diffusivity (MD). See Figure 1.3. 
FA and MD can provide valuable clinical information on local abnormalities related to 
various pathologies including Alzheimer's disease (Sundgren et al., 2004) and epilepsy 
(Yogarajah and Duncan, 2008). MD and FA yield information on the architecture of 
brain tissue at the voxel level, these parameters do not provide information on the 
projection of nerve fiber bundles between cerebral areas. Recently, a number of 
techniques have been developed to investigate the continuity of fiber orientations 
from voxel to voxel (e.g., streamline tractography) on a whole-brain basis. 
The foremost use of fiber tractography is to reconstruct the pathways of the major 
white matter fiber bundles in the brain. The white matter derives its name from the 
fact that the myelin surrounding axons is a fatty substance and thus appears white to 
the eye. The name, however, is somewhat misleading as it suggests a homogeneous 
substance (matter), while in fact the axonal projections of neurons compose an 
intricate and complex structural network. Fiber tractography enables us to delineate 
the white matter into the large fiber bundles of which it is composed. In other words, 
where white matter displays a more or less uniform intensity on conventional 
structural MR images, fiber tractography uniquely brings contrast to the white matter. 
It is, however, not straightforward to derive fiber bundles from diffusion weighted MR 
images. 
The local micro-architecture of the white matter can be derived from models relating 
measured water diffusion to fiber orientation. As discussed above, the diffusion 
tensor is one of the most used and most simple models. Recently a number of other 
models have been proposed, that not only model the principal diffusion direction and 
thus only one fiber orientation, but model several fiber orientations (Parker et al., 
2003; Behrens et al., 2007) or a continuum of fiber orientations (the fiber orientation 
distribution, FOD, or orientation distribution function ODF) (Alexander, 2005; Tournier 
et al., 2007). These models depart from the naïve assumption that the white matter in  
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Figure 1.3  Diffusion weighted imaging and fiber tractography. This composite figure depicts some of the 

concepts of diffusion weighted imaging and fiber tractography. In panel (Ai), a number of 
diffusion weighted (echo-planar) images are shown. For each image diffusion is measured in a 
different direction. The values from a voxel (black square) are fitted to the Diffusion Tensor 
model (Aii). From this tensor a number of parameters can be derived. The Apparent Diffusion 
Coefficient (Aiii) (a.k.a the Mean Diffusivity) is the average over the magnitude of the 
eigenvectors of the tensor, 𝐴𝐷𝐶 = (𝜆1+ 𝜆2 + 𝜆3) 3⁄ . The Fractional Anisotropy (Aiv) 
quantifies the anisotropy of the tensor (i .e. the discrepancy between the largest eigenvector  
and the other two), 𝐹𝐴 = �3/2 ∗ �(𝜆1 − 〈𝜆〉)2 + (𝜆2− 〈𝜆〉)2 + (𝜆3 − 〈𝜆〉)2/�𝜆1

2 + 𝜆2
2 + 𝜆3

2. 
The principle diffusion direction (Av) is simply the largest eigenvector of the tensor v1 . Panel 
(B) shows the principle of fiber tractography and fiber quantification. The principal diffusion 
direction (Bi) (derived from the tensor or more advanced models for fiber directionality) is 
followed from voxel to voxel creating fiber tracts as shown in the middle (Bii). By applying 
selection criteria a set of fibers connecting different parts of the brain can be obtained (Biii). A 
tract can be quantified by various parameters such as the number of fibers (Biv), the volume 
of the tract (Bv), the mean FA value of the voxel in the tracts (Bvi) or the mean ADC within the 
tract (Bvii). 
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a voxel is oriented along a single direction. In fact, it has been shown that as much as 
two third of the white matter contains at least two fiber bundles with different 
orientations (Behrens et al., 2007; Jeurissen et al., 2010). With fiber tractography, the 
direction of fiber bundles is followed from voxel to voxel, thus enabling the 3D 
reconstruction of white matter fiber bundles. By modeling more than one fiber 
direction per voxel, fiber tracking algorithms are better able to track through regions 
of the white matter with complex architecture. 

BRAIN NETWORKS 

Thanks to the recent developments made in MR imaging and particularly 
computational image data analysis methods, it is now possible to measure how 
macroscopic brain regions are functionally connected and whether and how they are 
connected by white matter fiber bundles. Figure 1.4 illustrates the principles of what 
is imaged with the previously mentioned MRI techniques, functional MRI and 
Diffusion Weighted MRI. The in-vivo mapping of brain connections in human beings at 
a high spatial resolution was previously not possible. This opens up new opportunities 
for researches to investigate the properties of the human brain network, how they 
relate to cognitive functions, and how connectivity is affected by disease. 
The term “network” has been used informally in brain research and in the first part of 
this chapter. But what do we mean by a network? Intuitively a network is a collection 
of entities that are somehow connected and thus the term network can be applied to 
a large number of systems like the brain, the internet, or groups of socially interacting 
humans. From the field of applied mathematics, a more formal definition of a network 
exists; here a network is often called a graph which is composed of its individual 
elements called the nodes and the links between nodes called the edges. A full 
description of the graph is given by its nodes and the existent edges and in some cases 
edge weights that quantify the strength of the link between the edges. Historically, 
the first use of a graph to solve a real world problem was that of the Seven Bridges of 
Königsberg (Euler, 1741; Stam et al., 2010). The city of Königsberg in Prussia (now 
Kaliningrad, Russia) was set on both sides of the Pregel River, and included two large 
islands which were connected to each other and the mainland by seven bridges. The 
problem was to find a walk through the city that would cross each bridge once and 
only once. This problem was solved by the famous mathematician Leonhard Euler in 
1735, who reformulated the problem as a collection of nodes (representing the 
landmasses) and a set of edges (the bridges) and could thus show that no such walk 
existed (see Figure 1.5). With his solution he laid the foundation for modern graph 
theory. 
The anatomical configuration of brain networks at multiple scales (from inter-
neuronal connectivity to inter-regional connectivity) has long been the subject of 
much empirical neuroscience (Cajal et al., 1995; Swanson, 2011). However, only in the 
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last decade, scientists have begun to explore the use of graph theoretical tools to 
study the configuration of brain networks (Bullmore and Sporns, 2009). This shift has 
primarily been made possible thanks to advantages made in theoretical networks 
sciences (Watts and Strogatz, 1998; Albert and Barabási, 2002; Girvan and Newman, 
2002; Börner et al., 2007). Graph theoretical measures offer new and diverse ways to 
quantitatively characterize brain networks. The most widely known are the so called 
small-world parameters. A network has a small-world organization when it is highly 
clustered (e.g. group of nodes that share connections) and when the overall distance 
between nodes (the number of edges between any pair of nodes) is small. These 
properties can be quantified by the cluster coefficient (C) and the characteristic path 
length (L). There are many more graph parameters that can capture aspects of the 
network, such as modularity, node degree, and efficiency. Figure 1.6 shows a 
graphical presentation of several of these parameters. In graph terms, the brain can 
be thought of as a collection of nodes and edges at multiple scales. At the microscopic 
scale, individual neurons can be modeled as the nodes and axonal or dendritic 
projections can be the edges. At the mesoscopic scale nodes can be groups of neurons 
arranged in cortical columns and edges embody the functional or structural 
connection with other cortical columns. At the macroscopic scale the nodes of the 
brain graph relate to brain regions and the edges represent the functional 
connectivity between regions or the connection of white matter fiber bundles 
between regions. Micro- and mesoscopic scales remain difficult to measure non-
invasively. The macroscopic scale is the one currently measurable with MRI. The 
question is now, what can graph theory of large-scale networks measured with MRI 
reveal about the organization of large-scale brain networks in health and disease? 
In the last decade, researchers have begun to explore the topological properties of the 
structural and functional brain network at the macroscopic scale. It has been shown 
that the human brain network can indeed be regarded as small-world (Achard et al., 
2006; Hagmann et al., 2008; Supekar et al., 2008; van den Heuvel et al., 2008; 
Bullmore and Sporns, 2009) and highly non-random (Sporns, 2011). Furthermore, 
several regions show exceptionally high connectivity (hub regions) (Achard et al., 
2006; Hagmann et al., 2008; Iturria-Medina et al., 2008; Gong et al., 2009). 
An important question in neuroscience is whether graph measures change in 
neurological disorders (Bassett and Bullmore, 2009). A growing body of literature is 
emerging, showing that the topological organization of large-scale brain networks is 
indeed abnormal in a variety of neurological and psychiatric disorders. Abnormal 
networks have been found in schizophrenia (Liu et al., 2008; Alexander-Bloch et al., 
2010; van den Heuvel et al., 2010; Wang et al., 2011; Zalesky et al., 2011), Alzeimer’s 
disease (Supekar et al., 2008; Buckner et al., 2009; Lo et al., 2010; Sanz-Arigita et al., 
2010), Attention Deficit Hyperactivity Disorder (ADHD) (Wang et al., 2009), depression 
(Zhang et al., 2011a), stroke (Wang et al., 2010; Crofts et al., 2011) and even blindness 
(Shu et al., 2009). 
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Figure 1.4  Biological mechanism behind functional and diffusion MRI. Panel (A) displayed a section of 

the human brain, where the gray (blue rectangle) and white (red rectangle) matter is clearly 
visible.  

  Left side: functional MRI (the BOLD signal) measures the physiological effects of neuronal 
activity. The cortex is highly perfused by blood vessels as shown in panel (Bi). When neurons 
become active, a mechanism is triggered that increases the blood flow to the activated 
region. This fresh blood contains oxyhaemoglobin, as oxygen consumption of neural tissue is 
smaller than the supply of fresh (oxygenated) blood, a relative decrease in de-
oxyhaemoglobin results (Bii). As de-oxyhaemoglobin is paramagnetic, it distorts the local 
magnetic field, and thereby the measured signal (phase coherence), a relative decrease in de-
oxyhaemoglobin causes an increase in MR signal intensity. Therefore, in BOLD imaging, neural 
activity is associated with an increase in signal. Panel (Biii) displays and example of an 
activation map overlayed in color on a high-resolution anatomical scan. 

  Right side: The white matter of the adult human brain (red square in A) is organized in fiber 
bundles with highly coherent organization of myelinated axons (Ci). Water molecules can 
diffuse freely parallel to the axons but diffusion is hindered perpendicular to the axons (red 
arrows). Diffusion weighted imaging can be used to perform fiber tractography, as shown in 
panel (Cii). 
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Figure 1.5  Konigsberg Bridges.(A) An antique map of Konigsberg with the river (blue) and bridges (green) 

examplified. (B) The graph representation of Konigsberg and its bridges. The red dots (nodes) 
relate to the landmasses and the black lines (edges) to the bridges. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.6  Graph theoretical measures. Different types of networks with distinct topology are shown. (A)  

A regular network (a.k.a. lattice network) consists of nodes that are only connected to their 
direct neighbors. As a consequence this type of network has a high clustering. A high path 
length arises from the fact that on average a large number of nodes has to be traversed to go 
from one node to another. (C) A network where all  edges are placed at random is 
characterized by a low clustering; it is unlikely that highly interconnected nodes will  emerge in 
a random setting. The path length of a random network is low, as many edges exist that 
connect different parts of the network. (B) The properties of high clustering and low path 
length are combined in a small-world network. A small-world network can be generated by 
adding a few ‘long range’ connections to a regular network. (D) A different concept that is not 
fully captured by clustering and path length is network modularity. This expresses the extent 
to which a network can be divided into modules (i .e. communities) that are highly 
interconnected but have little connectivity with the rest of the network. The concepts of 
clustering, path length and modularity are displayed as yellow edges, blue edges and gray 
outlines respectively in the bottom graph. 
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RATIONAL FOR NETWORK IMAGING OF IMPAIRED 
COGNITION 

As mentioned previously, one of the major complaints of patients with epilepsy are 
their cognitive problems. Abnormalities in the topological properties of brain 
networks have also been investigated for some types of epilepsy. Liao et al. (Liao et 
al., 2010) investigated functional networks in adult patients with temporal lobe 
epilepsy and found smaller clustering and shorter path length compared to healthy 
controls. A combination of functional and structural network analysis has also been 
performed in patients with idiopathic generalized epilepsy (Zhang et al., 2011b). 
However, the relation between cognitive impairment and the topological properties 
of brain networks in epilepsy has not been studied yet. Why would it be interesting to 
study this relation? First, cognitive functions are thought to rely on the orchestrated 
activity of a network of brain regions (Bressler and Menon, 2010; Deary et al., 2010). 
Furthermore, a relation between intelligence levels and graph theoretical measures 
has recently been shown (Li et al., 2009; van den Heuvel et al., 2009). Second, the 
expression of cognitive deficits in epilepsy is very heterogeneous (Braakman et al., 
2011) and it is therefore unlikely that brain abnormalities will be localized at one 
specific location in the brain at the population level. Moreover, there is recent 
evidence that regions not directly affected by macroscopic lesions may show 
connectional abnormalities (He et al., 2007), as seen in stroke (Crofts et al., 2011) and 
epilepsy (Focke et al., 2008; Meador and Hermann, 2010). Taken together, these 
findings motivate an approach to studying cognition and epilepsy that is not targeted 
at finding localized abnormalities but rather focuses on abnormalities in large-scale 
networks. 

AIM AND OUTLINE OF THE THESIS 

The main goal of this thesis is to develop and explore the use of graph analysis 
methods for finding a neuronal correlate of cognitive impairment in epilepsy. 
When the research for this thesis was started, the literature on applying graph 
analysis tools to large-scale brain networks was very limited (Sporns et al., 2005; 
Achard et al., 2006), and not much was known on the methodological issues that 
should be taken into consideration when constructing whole brain networks. 
Therefore, to gain insight into some of the factors that could influence brain network 
measures; in chapter 2 the effect of several imaging parameters on the reproducibility 
of graph metrics from networks constructed with fiber tractography is investigated. 
As mentioned above, there are many different types of epilepsy. In this thesis, two 
different populations of patients are investigated and compared to healthy controls. 
Chapter 3 and 4 are based on the population from the CODICE (COgnitive 
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Deterioration In Cryptogenic Epilepsy) study. In this study adult patients with 
localization related but cryptogenic epilepsy (i.e. no visible lesions on standard MRI) 
are included. Although all patients have a seizure onset in the frontal or temporal 
lobe, their epilepsy is of unknown origin. Chapters 5 and 6 are based on another 
cohort: the IMAGing In Epilepsy (IMAGINE) study. Here, children with localization 
related epilepsy, also without MR visible lesions are included. All patients have a 
seizure focus in the frontal lobe. 
Both these study populations have in common that the patients have localization 
related epilepsy, but normal appearing brains on standard imaging. As such, these 
patients are generally not candidates for epilepsy surgery when their seizures cannot 
be controlled by medication (refractoriness). At present, it is difficult for the clinician 
to give a prognosis to these patients: clinical variables such as age at onset of the 
epilepsy and seizure history do not provide reliable predictors for the long term 
outcome. Patients and relatives cannot be informed about whether cognition will 
remain intact and whether a certain anti-epileptic drug (AED) will successfully control 
seizures. Therefore, diagnostic tools to identify patients at risk of cognitive 
impairment and refractoriness are needed. Such tools could potentially be provided 
by biomarkers based on MR network imaging. 
In chapter 3, measures of cognitive decline in patients with cryptogenic localization-
related epilepsy are related to the topological properties of the entire functional 
cerebral network. In chapter 4, in the same patient cohort, these measures of 
cognitive decline are related to properties of the structural cerebral network. In 
chapter 5, graph theoretical measures of the modular organization of the entire 
cerebral network is investigated and related to cognitive variables in the same cohort 
of children with FLE. Finally, in chapter 6, the relation between the functional and 
structural cerebral network properties are investigated in children with FLE. The 
sensitivity of the two modalities is explored together with the similarities and 
discrepancies of the two conceptually different connectivity measures. This thesis 
ends with a general discussion of the results and conclusions from the constituting 
chapters. 
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ABSTRACT 

Advances in computational network analysis have enabled the characterization of 
topological properties in large scale networks including the human brain. Information 
on structural networks in the brain can be obtained in-vivo by performing 
tractography on diffusion tensor imaging (DTI) data. However, little is known about 
the reproducibility of network properties derived from whole brain tractography data, 
which has important consequences for minimally detectable abnormalities or changes 
over time. Moreover, acquisition parameters, such as the number of gradient 
directions and gradient strength, possibly influence network metrics and the 
corresponding reproducibility derived from tractography data. The aim of the present 
study is twofold: (i) to determine the effect of several clinically available DTI sampling 
schemes, differing in number of gradient directions and gradient amplitude, on small-
world metrics and (ii) to evaluate the interscan reproducibility of small-world metrics. 
DTI experiments were conducted on six healthy volunteers scanned twice. 
Probabilistic tractography was performed to reconstruct structural connections 
between regions defined from an anatomical atlas. The observed reproducibility of 
the network measures was high, reflected by low values for the Coefficient of 
Variation (< 3.8%), advocating the use of graph theoretical measurements to study 
neurological diseases. Small-world metrics were dependent on the choice of DTI 
gradient scheme and showed stronger connectivity with increasing directional 
resolution. The interscan reproducibility was not dependent on the gradient scheme. 
These findings should be considered when comparing results across studies using 
different gradient schemes or designing new studies. 
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INTRODUCTION 

Recently it has been shown that the topology of the structural network is linked to the 
dynamic behavior (or functional connectivity) of the brain (Honey et al., 2007; Park et 
al., 2008; Greicius et al., 2009). It is therefore interesting to study structural 
connectivity in the brain and relate it to functional connectivity, which might be 
reflected in behavioral data. For instance, it has recently been shown that topological 
properties of structural brain networks are related to intelligence (Li et al., 2009). 
Topological properties of large scale networks, including the human brain, can be 
characterized using methods from computational network analysis. One popular 
method in network analysis is the small-world model (Watts and Strogatz, 1998). 
Small-world networks are characterized by a topology in which most nodes are not 
neighbors of each other, but can be reached through a small number of steps. Recent 
studies have revealed that brain networks may possess small-world attributes (Sporns 
and Zwi, 2004; Bassett and Bullmore, 2006; Stam and Reijneveld, 2007; Hagmann et 
al., 2008). These attributes may be used to characterize the overall integrity of brain 
networks and may thus serve as clinical markers for several pathologies (Liu et al., 
2008; Supekar et al., 2008).  
Information on structural networks in the brain can be obtained in-vivo, by acquiring 
diffusion tensor imaging (DTI) data and subsequently performing tractography. DTI is 
an MRI technique which enables the measurement of water diffusion. In the brain, 
the movement of extra-cellular water molecules is hindered by cellular barriers 
present in biological tissue such as myelinated axons. Due to directional differences in 
water diffusion in different structures, DTI is able to provide information on the 
orientation of white matter (Le Bihan et al., 2001). Quantitative values derived from 
DTI data such as mean diffusivity (MD) or fractional anisotropy (FA) can provide 
valuable clinical information on local abnormalities related to various pathologies 
including Alzheimer’s disease (Sundgren et al., 2004) and epilepsy (Yogarajah and 
Duncan, 2008). 
Although DTI can provide parameters such as MD and FA, which yield information on 
the architecture of brain tissue at the voxel level, these parameters do not provide 
information on the projection of nerve fiber bundles between cerebral areas. 
Recently, a number of techniques have been developed to investigate the continuity 
of fiber orientations from voxel to voxel (e.g. streamline tractography). In this 
approach, the neuronal fiber orientation is assumed to be collinear with the principal 
direction of the diffusion tensor. However, this relationship is anatomically ambiguous 
and these methods are strongly affected by noise. Probabilistic tractography is an 
extension of streamline tractography that exploits the inherent uncertainty in 
principle diffusion direction to calculate the probability of connection from a seed 
voxel to other voxels in the brain (Behrens et al., 2003; Parker et al., 2003). This 
method is more robust to noise and is better able to cope with issues such as merging 
branching and dividing fiber bundles. 
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Tractography studies can reveal localized network abnormalities by investigating one 
or more specific white matter tracts, whose existence and location are often 
supported by evidence from post mortem dissection or tracer studies (Bridge et al., 
2008; Rilling et al., 2008). For this approach, accurate localization and quantification of 
the white matter pathways under investigation are important. However, in some 
pathologies such as epilepsy (Powell et al., 2007), Alzheimer (Supekar et al., 2008) and 
schizophrenia (Liu et al., 2008), the impairment does not necessarily reflect an 
abnormality of a single set of white matter tracts, and the exact location of the 
abnormality might be unknown. Since individual analysis of a large number of tracts is 
very impractical, a different type of analysis is needed where the integrity of the 
entire brain network can be assessed and quantified. This is where computational 
network analysis can play a critical role. However, little is known about the accuracy 
and reproducibility of network properties derived from tractography data, which has 
important consequences for the assessment of minimally detectable abnormalities or 
changes over time. Moreover, acquisition parameters, such as the number of gradient 
directions and the gradient strength, possibly influence network metrics and the 
corresponding accuracy derived from tractography data. As patient burden in terms of 
scan time is often an important aspect in clinical research, it is important to 
investigate clinically available DTI protocols with acceptable scan times. 
In the process from DTI acquisition to the quantification of whole brain network 
metrics a large number of intermediate steps is involved. Each step adds to the 
variability of the outcome measures. A full characterization of the variability and 
reproducibility of the whole pipeline from image acquisition to network quantification 
requires for each step a careful analysis of the different possible settings, strategies 
and resulting parameters. Figure 2.1 schematically illustrates a number of the relevant 
steps and the sources of variation. In the current study, we investigated to which 
extent variations in image data acquisition, including diffusion gradient and test-retest 
variations, affect the resulting network metrics. 
The aim of the present study is twofold: (i) to determine the effect of several clinically 
available DTI sampling schemes, differing in number of gradient directions and 
gradient amplitude, on small-world metrics and (ii), to evaluate the interscan 
reproducibility of small-world metrics that can be derived from whole brain structural 
connectivity data.  
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Figure 2.1  Sources of variation in the diffusion tensor image acquisition and processing pipeline. 
Diffusion tensor imaging is subject to a large number of sources of variation, including test-
retest variations, image distortion due to strong diffusion gradients and EPI acquisition, noise, 
and body motion. Part of the noise is reduced by image co-registration, which also partially 
corrects for eddy current distortions and motion. 

  Acquisition and processing steps for the T1-weighted image give rise to additional sources of 
variation, due to imperfect data and shortcomings of the segmentation and normalization 
methods. As a result, individual differences in brain anatomy might not be captured properly, 
leading to potential inaccurate placement of ROIs. Estimation of the fiber orientation PDF is 
based on numerical estimation and several modeling assumptions, possibly leading to a poor 
fit of the data. Tracking algorithm characteristics, such as spatial interpolation, and noise at 
the voxel level accumulate to some extent in the iterative steps of the tracking algorithm, 
further increasing possible errors. 

  Global network analysis captures properties of large scale networks in a small number of 
parameters, these summary measures appear to be less sensitive to errors from previous 
levels than more regional measurements. 

METHODS 

Data acquisition 
DTI experiments were conducted in six healthy volunteers (5 male, 1 female, aged 23-
28 years) , as previously described by Tijssen et al. (Tijssen et al., 2008). Every subject 
was scanned twice on different days, with an average interval between the scan 
sessions of 14 ± 8 days. Subjects signed informed consent prior to participation. 
Each scan session consisted of a series of DTI measurements in which six sampling 
schemes were employed in randomized order. The six sampling schemes varied in 
number of diffusion directions (Ndir = 32, 15 and 6) and gradient strength (unit-sphere 
or overplus). By combining the available gradient strength from each of the physical 
gradient axes of the scanner, the overplus schemes can employ stronger gradient 
strengths, which enables a shorter echo time (TE), and a higher signal-to-noise ratio 
(SNR). 
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Acquisitions were performed on a 3T whole body scanner, release 2.0 (Philips Achieva, 
Philips Medical Systems, Best, the Netherlands) using a body coil for RF transmission 
and an 8-element SENSE head coil (SENSE-factor 2) for signal detection. The number 
of signal averages (NSA) was chosen such that the scan times of all the sampling 
schemes matched. All DTI datasets were obtained using a diffusion-weighted single-
shot spin echo echo planar imaging (SE-EPI) sequence with a b-value of 800 s∙mm -2. 
One b = 0 s∙mm -2 measurement per signal average was acquired for all sampling 
schemes. The echo time was 66 ms for the unit-sphere schemes and 56 ms for the 
overplus sampling schemes. The repetition time (TR) was set to 7600 ms. All acquired 
images consisted of 52 contiguous axial slices, with a slice thickness of 2.5 mm, a 
matrix size of 112 x 112, and a field of view set to 230 x 230 mm. Through 
interpolation, a matrix size of 128 x 128 and a final resolution of 1.8 × 1.8 × 2.5 mm3 
were achieved. DTI parameters are summarized in Table 2.1. 
 
Table 2.1  Differences in applied gradient schemes. Acquisition protocols, ‘+’ indicates that the 

‘overplus’ setting was used. The ‘overplus’ gradient scheme combines available gradient 
strength from each of the physical gradient axes to achieve stronger gradient strength (Gamp) 
and thereby reducing echo time (TE). Number of gradient direction (Ndir) varied between 6  
and 32.All  schemes were matched for total scanning time (Tacq) by adjusting the number of 
signal averages (NSA). Condition numbers for the acquisition protocols were also calculated, 
lower condition number increases quality of the tensor estimation (Skare et al., 2000). 

 

 

Data analysis 

The processing of the DTI data consisted of a number of steps: (1) combined motion 
correction of the diffusion weighted images and corresponding gradient rotations, (2) 
volume of interest (VOI) definition, (3) tractography from the defined VOIs, and (4) 
post-processing of the generated tracts to derive quantitative tract measures and 
small-world metrics. 

Step 1: Motion and eddy current distortion correction 

Each data set was spatially co-registered to the b = 0 image with an affine 
transformation to correct for head motion and eddy-current distortions utilizing 
CATNAP (Co-registration, Adjustment, and Tensor-solving, a Nicely Automated 
Program, version 1.3) (Farrell et al., 2007; Landman et al., 2007). Co-registration of 

Gradient scheme 6 6+ 15 15+ 32 32+ 

Ndir 6 6 15 15 32 32 

Gamp (mT/m) 31 44 31 44 31 44 

TE (ms) 66 56 66 56 66 56 

NSA 14 14 6 6 3 3 

Tacq (min:s) 13:04 13:04 12:56 12:56 14:01 14:01 

Condition number 2.4 2.7 1.3 2.9 1.3 3.0 
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images may correct for discrepancies between spatial orientations, but alters the 
original orientation relative to the diffusion direction. To correct for discrepancies 
between the relative orientation of the DW images and the diffusion gradient, the set 
of gradient vectors was adjusted according to the rotation of the individual images, as 
implemented in the CATNAP software. 

Step 2: VOI definition 

Only voxels on the boundary of the grey-white matter interface were used for 
initiating tractography. Selecting only voxels on the grey-white matter interface (with 
a relatively high FA value), reduces the number of false positives in the tractography 
results, since grey matter voxels usually yield unreliable tracts. The grey-white matter 
boundary was defined by first performing a probabilistic tissue segmentation on the 
subjects’ T1-weighted images (FAST, FMRIB's Automated Segmentation Tool) and then 
selecting voxels where the joint tissue probability (T) for grey and white matter was 
above a certain threshold (T>0.2). The results were transformed from the subjects’ T1-
weighted image space to diffusion image space, using a rigid body transformation (FSL 
FLIRT (Smith et al., 2004)). 
A brain atlas (WFUpick atlas (Maldjian et al., 2003)) was used to define all Brodmann 
areas (BA) in standard stereo taxis (MNI) space. The BAs were then transformed to DTI 
space of every individual, by applying a nonlinear transformation (SPM (Ashburner 
and Friston, 1999)). Next, each voxel in the grey-white matter boundary was labeled 
according to its shortest Euclidean distance to any of the Brodmann areas. This 
process is illustrated in Figure 2.2. 
In this way, a VOI consisting of grey-white matter voxels labeled to the nearest 
Brodmann area, was obtained for each DTI data set, which is then used as input for 
the tractography. 

Step 3: Tractography 

Probabilistic tractography was performed in original DTI space according to previously 
described methods (Parker et al., 2003) using the CAMINO toolbox (Cook et al., 2006). 
The Probabilistic Index of Connectivity (PiCO) algorithm was used to track from the 
defined VOIs in the original space. This method models uncertainty, due to noise, in 
fiber orientation with probability density functions (PDFs). This method is based on 
streamline tractography, but incorporates Monte Carlo sampling methods to generate 
maps of connection probabilities from selected seed regions. One thousand tracts 
were generated for each seed voxel and tracts were terminated using a curvature 
threshold of 60° (Toosy et al., 2004). Tractography was performed in original DTI 
space. 
For all subjects, an individual cerebrum mask was created by applying the Brain 
Extraction Tool (BET (Smith, 2002)) on the b = 0 diffusion image. This mask was used 
to limit the tractography to within the cerebrum. 
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Tractography was initiated from all voxels in the grey-white matter VOI. Subsequently, 
cortico-cortical connections were calculated by counting the number of tracts 
reconstructed between all pairs of cortical areas.  
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2  Preprocessing steps. (A) The gr ey-white matter interface (red) derived from a tissue 

segmentation of the T1-weighted image (bottom) is overlaid on an anatomical atlas 
containing the Brodmann areas (BA) (top). Both images are combined to construct an 
individual ROI containing the BAs mapped to the GM-WM interface. (B) Tractography is 
initiated from the GM-WM interface. (C) Resulting connections strengths between all  pairs of 
brain regions are stored in the connection matrix (with the different BAs on the axes) which is 
subsequently thresholded to form the brain graph. The color temperature indicates the 
number of connections (hot is more connections). (D) Brain regions are displayed as black 
circles, circle size and thickness are scaled to node degree and cluster coefficient, respectively, 
of the corresponding brain region. Connections between brain regions are plotted as lines 
with a thickness increasing with number of fiber connections. 



 Reproducibility of small-world brain connectivity 37 

Step 4: Small world network analysis 

Computational networks measures were used to evaluate the cortical connections 
obtained from tractography (Watts and Strogatz, 1998; Strogatz, 2001; Sporns and 
Zwi, 2004; Bassett and Bullmore, 2006; Stam and Reijneveld, 2007; Gong et al., 2008). 
The connection strength between two areas i and j was calculated by counting the 
number of tracts originating from area i and reaching area j. A binary connection 
matrix A was formed by setting all elements (i.e. connections) where at least one tract 
was reconstructed to 1 and all others to 0. The connection matrix A is a numerical 
representation of a graph, which is an abstract data structure, consisting of nodes 
connected by edges. In the graph, a node is related to a brain region and is equal to a 
row or column from the connection matrix. An edge 𝑒𝑖,𝑗 in the graph is a connection 
between brain areas i and j, provided that 𝐴𝑖.𝑗 > 0. The degree k of node i is the 
number of connections to other areas: 𝑘𝑖 =  ∑ 𝐴𝑖,𝑗𝑁

𝑗=𝑖,𝑗≠𝑖 , where N is the total number 
of nodes (i.e. considered brain regions) in the graph. In the network analysis individual 
graphs were thresholded to create graphs with an equal number of nodes and edges 
(Stam et al., 2007). This was achieved by selecting the Te strongest connections 
(connections with the highest fiber count) and setting all other connections to zero. 
The threshold value was expressed as a sparsity value relating the number of edges 
maintained in the network to the total number of edges possible (Achard and 
Bullmore, 2007). Let Te be the number of edges maintained in the network, then the 
sparsity is defined as:  

 𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = (𝑁2 −  𝑁−  𝑇𝑒)/ (𝑁2−  𝑁 )  (1) 

The graph theoretical metrics mean node degree (K), characteristic path length (L) and 
cluster coefficient (C) were calculated to perform analysis on the constructed brain 
graphs. Mean node degree is the average node degree over all nodes in the graph (G), 
and is defined as:   

 𝐾 =  1
𝑁

 ∑ 𝑘𝑖𝑖      (2)  

Characteristic path length is defined as the average distance, in number of edges, 
connecting any two nodes in the graph: 

 𝐿 =  1
𝑁 (𝑁−1)

 ∑ 𝑑𝑖,𝑗𝑖,𝑗∈𝐺,𝑖≠𝑗     (3) 

where 𝑑𝑖.𝑗  is the length of the shortest path between nodes i and j. The characteristic 
path length is a measure of how well connected a network is. Small characteristic path 
length indicates an average short distance between any two nodes, i.e. they can be 
reached through a small number of steps. The cluster coefficient is defined as the 
number of actual edges connecting the neighbors of a node divided by the maximum 
number of edges possible between neighboring nodes, 

 𝐶 =  1
𝑁
∑ ∑ 𝐴𝑖,𝑗𝐴𝑗,𝑚𝐴𝑚,𝑖𝑗,𝑚

𝑘𝑖 (𝑘𝑖−1)𝑖 .    (4) 
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The cluster coefficient of a network is a measure of how many local clusters exist in 
the network. A high cluster coefficient indicates that the neighbors of a node are 
often also directly connected to each other, i.e. they form a cluster. 
To be able to determine whether a network has small-world properties, the values of 
L and C must be scaled to values from generated random networks (Watts and 
Strogatz, 1998). Small world networks are characterized by having characteristic path 
lengths that are similar to those of comparable random networks (𝐿𝑟𝑎𝑛𝑑𝑜𝑚) but with 
increased cluster coefficients (𝐶𝑟𝑎𝑛𝑑𝑜𝑚): 𝜆= 𝐿/𝐿𝑟𝑎𝑛𝑑𝑜𝑚 ≈ 1 and 𝛾 = 𝐶/𝐶𝑟𝑎𝑛𝑑𝑜𝑚 >
1. The value 𝜎 =  𝛾/𝜆 can be used to signify the ‘small-worldness’ of a network and is 
typically larger than 1 for small-world networks (Humphries et al., 2006). Random 
networks were generated by considering each existing edge in the original network 
between the nodes i and j, 𝑒𝑖.𝑗  and connecting it to another randomly chosen node 𝑗2, 
with the condition that 𝑒𝑖,𝑗2 was not present in the original network (Maslov and 
Sneppen, 2002). This process ensures that the node degree and node distribution of 
the random network is similar to the original network. 
We investigated both non-thresholded networks and thresholded networks. The non-
thresholded networks do not necessarily have an equal number of edges between 
subjects and scans. As the number of edges, or similarly the node degree K, strongly 
influences the small-world metrics (Stam et al., 2007), these metrics can only be 
compared in a meaningful way when the number of edges is held constant over 
subjects and scans. For this reason the small-world metrics L, C, λ, γ and σ were only 
calculated for the thresholded networks as a function of the same number of edges. 
As the number of edges found in the networks might also provide useful information, 
we also analyzed the average node degree for the non-thresholded networks. 

Quantification of tract length 
A previous study (Tijssen et al., 2008) indicated that a lower number of gradient 
directions resulted in lower FA values for the white matter. This effect might also 
negatively affect the tractography results, especially tract length, as lower FA values 
and more randomly distributed principal diffusion directions can result in an earlier 
termination in the fiber tracking algorithm. To investigate this effect, the average tract 
length was computed for all gradient schemes. Termination of fibers can be caused by 
a low FA value (FA < 0.2), a tract curvature greater than a certain angle (threshold 
angle, 60°) or by reaching a voxel outside the cerebrum. 

Quantification of reproducibility 
To characterize the interscan reproducibility, three quantities were used: the 
Coefficient of Variation (CV), the Repeatability Coefficient (RC) and the Intra Class 
Correlation (ICC). 
The CV used here is a pooled within group coefficient of variation (Lachin, 2004) and is 
defined as the mean within subject standard deviation (𝜎𝑤𝑠) divided by the overall 
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measurement mean. The CV gives an indication of minimum percentage signal change 
detectable in repeated measures. 
The RC is defined as 1.96 ∙ √2 ∙ 𝜎𝑤𝑠(Bland and Altman, 1986), where 𝜎𝑤𝑠 is the within-
subject standard deviation. The RC represents the minimum detectable difference of a 
measurement method. The difference between two measurements of the same 
subject is expected to be less than the RC in 95% of the observations. 
The ICC can be interpreted as the proportion of total variance accounted for by the 
between-subject variation (Lachin, 2004). The ICC is calculated as 

 𝐼𝐶𝐶 = 𝜎𝑏𝑠
2

𝜎𝑏𝑠
2 + 𝜎𝑤𝑠2

,     (5) 

where 𝜎𝑏𝑠2 is the variance between subjects, and 𝜎𝑤𝑠2  is the pooled variance within 
subjects. 

Statistical analysis 

The effect of gradient scheme on values of K, L and C and the reproducibility 
measures, were analyzed using a two-way ANOVA test with a Tukey HSD post hoc test 
in the commercial software application SPSS (version 16.0, SPSS Inc., Chicago, IL). 
Factors included were the number of directions (Ndir) and gradient strength (Gamp) 
of the applied gradient schemes. 

RESULTS 

Atlas based parcellation 
A total of N = 111 (out of the 150 regions available) regions of interest were mapped 
to the grey white matter interface, consisting of Brodmann areas and sub cortical 
structures as defined in the WFU pickatlas anatomical atlas. This yielded a network 
with a maximum number of edges equal to N⋅(N-1) = 12210. The threshold values Te 
ranged from 3323 to 1722 edges in 27 steps. This corresponds to a sparsity value 
ranging from 0.728 to 0.859. These values were chosen such that Te was smaller than 
the lowest number of edges found in any of the networks (number of edges = 3383) 
but not so low that any of the networks became disconnected (this occurs when one 
or more nodes are not connected to the rest of the network). VOI sizes (mean 226 
voxels; range 12-1480 voxels) were consistent between the two different 
measurements in the same subject (a paired sample t-test between the VOI sizes of 
two different measurements showed no significant difference: p=0.35). 
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Tractography results 

To visualize the results of the basic tractography method, a combination of two BAs 
(BA 6 left – BA 19 right and BA 28 left – BA 10 left) were selected and the connecting 
tracts were calculated. The tractography results were averaged over all subjects and a 
maximum intensity plot was made (Figure 2.3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.3  Tractography examples. (A) Maximum intensity projection rendering of fiber tracts (blue) 

connecting Brodmann areas BA 28 left connecting with BA 10 right, and (B) BA 13 left with BA 
37 right. Displayed data is from the group average in MNI space over all  gradient schemes. 
Only voxels where in at least 4% of the total number of available scans a tract was found are 
shown. The background image shows the MNI T1 template.  

Effect of gradient scheme on small world metrics 

Non-thresholded networks 

For the non-thresholded networks, the average node degree K increased significantly 
with directional resolution (p<0.001). 
In Figure 2.4 a histogram of the tract lengths is plotted. Lower directional resolution 
was associated with fewer long range tracts. Visual inspection revealed that the 
histograms of tract length mainly differed in the tails of the distributions, i.e. tract 
length >40 mm. To quantify these differences, the 80% quantile tract length value of 
the distribution was calculated. The 80% quantile is a certain tract length, such that 
80% of all tract lengths are shorter than this 80% quantile. Results for the statistical 
analysis (ANOVA) of the quantiles are shown in Table 2.2. There was a significant 
effect (ANOVA) for both Ndir and Gamp on the quantiles (p<0.001 and p<0.02, 
respectively). 
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Figure 2.4  Histogram of tract lengths. Histogram distributions of the number of tracks plotted as 

function of the tract length for each scheme, averaged over all subjects. Low (6 directions) 
schemes are in blue, medium (15 directions) schemes in red, and high (32 directions) schemes 
are in green. Overplus schemes are indicated with continuous lines, whereas no-overplus 
schemes are indicated with broken l ines. It can be appreciated that higher directional 
resolution is associated with more long tracts. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.5  Small-world metrics as a function of gradient scheme. Graph the reproducibility (CV) of 

average path length (L) and cluster coefficient (C) over a range of sparsity values. Higher 
sparsity values indicate that mor e edges were removed from the network. (A) Higher sparsity 
values are associated with an increase in L. (B) A higher sparsity yields a decrease in C. (C) The 
CV of path length slightly increases with increasing sparsity, although CV values remain low. 
(D) The CV of C increases somewhat as a function of sparsity, although CV values remain low 
over all  sparsity values. 
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Table 2.2  The effect of gradient scheme on fiber tract length. ANOVA table for the effect of the number  
of gradient directions (Ndir) and gradient amplitude (Gamp) on the 80% quantile of tract 
length distribution. Both Ndir and Gamp had a significant effect on the tract length 
distribution. 
 

  80% quantile 

   p-value 

Between subject effect Ndir  <0.001 

 Gamp  0.016 

  Mean difference p-value 

Least significant difference Ndir 6-15 -13.5 <0.001 

 6-32 -28.2 <0.001 

 15-32 -14.8 <0.001 

Thresholded networks 

The effect of gradient scheme was similar for the range of edge thresholds 
investigated, therefore we only report numerical values and statistical results of the 
small-world values for one representative threshold at sparsity = 0.74. The full range 
of threshold values is presented in Figure 2.5. For L, the effect of number of gradient 
directions was significant over the whole range of sparsity values. The effect of 
number of gradient directions was significant for C over a sparsity range of 0.73 to 
0.76. Values for λ, γ and σ can be found in supplementary Figure S.2.1. 
For a sparsity value of 0.74, the cluster coefficient C increased significantly (p<0.005) 
with directional resolution (for 6 and 15 gradient directions and 6 and 32 gradient 
directions, no significant difference between 15 and 32 gradient direction was found). 
Characteristic path length L showed significant decrease (p<0.005) with directional 
resolution. Gradient amplitude did not have a significant effect on any of the metrics. 
The results of the statistical tests for this sparsity value are summarized in Table 2.3. 
All reconstructed networks showed small world properties when compared to 
randomly generated networks of the same size and average node degree. 
Characteristic path lengths were very close to those of random networks. The mean 
for all gradient schemes was λ = 1.020 (range, 1.019-1.023). Cluster coefficients were 
much larger than those of random networks, with a mean γ =2.28 (range, 1.26-2.30). 
 

Reproducibility of small world metrics 

Non-thresholded networks 

A summary of the reproducibility measures for all small world metrics can be found in 
Table 2.4. For average node degree (K) CV was < 3.2% for all DTI gradient schemes, 
and RC was < 3.68. Mean (standard deviation) of the ICC values for K were 0.63 (0.20). 
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Table 2.3  The effect of gradient schemes on small-world metrics. Analysis of variance (ANOVA) 
assessing the effect of number of gradient directions (Ndir) and gradient amplitude (Gamp) on 
small world metrics average node degree (K), path length (L) and cluster coefficient (C). Ndir 
had a significant effect, while Gamp did not have a significant effect. 

 

Small world 

metric 

 K   L   C  

  p-value   p-value   p-value 

Between 

subject effect 

Ndir  <0.001   <0.005   <0.005 

Gamp  0.2   0.7   0.8 

 

  Mean 

difference 

p-value  Mean 

difference 

p-value  Mean 

difference 

p-value 

Least significant 

difference Ndir 

6-15 -6.175 <0.001  0.003 <0.019  -0.007 <0.002 

6-32 -9.017 <0.001  0.004 <0.002  -0.006 <0.012 

15-32 -2.843 <0.001  0.01 0.436  0.001 0.568 

Thresholded networks 

The CV of the network metrics was low over the whole range of thesholds as can be 
seen from Figure 2.5. Therefore we only report numerical values of reproducibility for 
one representative threshold at sparsity =0.74. Generally, CV values were low (smaller 
than 0.5% for L and smaller than 1.9% for C), with a slight increase in CV values for 
increasing sparsity for both L and C. Graphs for CV of λ, γ and σ can be found in 
supplementary Figure S.2.1. 
Average pathlength (L) at sparsity = 0.74 showed a CV < 0.17% and an RC < 0.01, for all 
DTI gradient schemes. For the cluster coefficient (C) CV was < 1.47% and RC was < 
0.03. Mean (standard deviation) of the ICC values for L and C, were 0.64 (0.20) and 
0.47 (0.31), respectively. 
Both Ndir and Gamp did not have a significant effect on CV, RC and ICC values. 

Comparison of small world analysis with individual connections 
The reproducibility of tracts count (connection strength) from connections between 
brain regions was compared to reproducibility values of network metrics. In Figure 
2.6, a histogram of CV values for connection strength of all pairs of brain regions (from 
the non-thresholded networks) is compared to the CV histogram of node degree and 
cluster coefficient of all brain regions. The CV for connection strength has a wide 
distribution and was generally larger than 10 %, indicating that most individual 
connections cannot be reliably reconstructed. CV values for node degree and cluster 
coefficient are much lower. Histograms of ICC values can be found in the 
supplementary Figure S.2.2. 
In Figure 2.7, a Bland-Altmann plot is shown for the small world metrics and 
connection strength. In this plot, the agreement between two measurements in 
relation to their mean value can be appreciated. The scatter plots show that there is 
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no obvious relation between measurement errors and effect size for any of the 
diffusion measures. That is, with an increased magnitude of the metrics, the 
measurement error does not significantly change. 
 
 
Table 2.4  Reproducibility values of the small-world metrics. Mean, standard deviation (SD), coefficient 

of variation (CV), repeatability coefficient (RC), and intra class correlation (ICC) for small world 
metrics node degree (K), characteristic path length (L), and cluster coefficient (C). Number of 
gradient directions (Ndir) is 6, 15 or 32, ‘+’ indicates the use of scan parameter ‘overplus’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Ndir mean SD CV% RC ICC 

K (Non-thresholded)  

32 44.65 2.17 2.81 3.46 0.70 

32+ 43.64 2.49 2.11 2.54 0.70 

15 41.91 2.17 2.19 2.54 0.77 

15+ 40.69 2.72 3.78 4.24 0.64 

6 35.03 1.57 1.44 1.39 0.23 

6+ 
 

35.21 1.62 2.09 2.03 0.76 

L (Thresholded sparsity = 0.74) 

32 1.6235 0.0054 0.25 0.0077 0.41 

32+ 1.6240 0.0042 0.14 0.0056 0.67 

15 1.6243 0.0049 0.17 0.0061 0.69 

15+ 1.6252 0.0043 0.07 0.0024 0.94 

6 1.6291 0.0030 0.13 0.0057 0.42 

6+ 
 

1.6267 0.0032 0.12 0.0053 0.70 

C (Thresholded sparsity = 0.74) 

32 0.6550 0.0069 0.68 0.0102 0.73 

32+ 0.6568 0.0084 1.12 0.0168 0.37 

15 0.6588 0.0088 1.03 0.0163 0.55 

15+ 0.6556 0.0091 1.55 0.0265 0.00 

6 0.6484 0.0048 0.53 0.0087 0.88 

6+ 0.6510 0.0084 1.09 0.0158 0.35 
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Figure 2.6  Histogram of coefficients of variation. Histogram of coefficients of variation for (A) connection 

strength of pairs of brain regions, (B) mean node degree of individual nodes, (C) cluster 
coefficient for individual nodes. CV for connection strength is more widely distributed and on 
average higher, indicating that connection strength is not well  reproducible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.7  Bland-Altman plots for small-world metrics and tract connection strength. Bland-Altman plots 

showing the difference in measured quantities from the two sessions (y-axis) as function of 
the average measured quantities (x-axis) for (A) node degree, (B) characteristic path length (at 
sparsity = 0.74), (C) cluster coefficient (at sparsity = 0.74), and (D) connection strength. The 
values for connection strength in (D) are from the fiber connections between BA 6 left to BA 
19 right. The mean of the group measurement differenc es (y-axes) and one standard 
deviation (errorbar) against the mean of the group measurement means (x-axes) is also 
represented (fi lled markers and error bars). The bias introduced by choice of gradient scheme 
can be appreciated. 
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DISCUSSION 

This is, to our knowledge, the first report on the assessment of the reproducibility of 
structural brain network characteristics derived from tractography data. The observed 
interscan reproducibility of the network measures used in this study was high, 
advocating the use of graph theoretical measurements to study neurological diseases. 
The influence of DTI gradient scheme on tractography and the corresponding 
computational measures from structural brain networks was investigated. Small-world 
metrics were dependent on the directional resolution, but not the amplitude, of the 
gradient scheme. The interscan reproducibility did not depend on choice of the 
gradient scheme. 

Effect of DTI protocol on small world metrics 

Non-thresholded networks 

Mean node degree for the non-thresholded networks varied with the applied gradient 
scheme. Utilization of fewer gradient directions was associated with shorter tracts. 
This also had an effect on small world metrics: long range connections were found less 
often in the gradient schemes with fewer directions. The reduced number of 
connections due to a lower number of gradient directions was apparent through the 
decreased K. A decrease in K implies that, on average, nodes appear to be connected 
to fewer nodes.  

Thresholded networks 

For the thresholded networks, an increase in average path length between brain areas 
was notable through an increased L value. The cluster coefficient for these networks 
also showed a decrease, implying that fewer clusters were found in the network. The 
effect of number of gradient directions on C was less significant than on L values 
(Table 2.3). Most clusters are local, thus are formed by anatomically close brain areas, 
these are influenced less by the absence of long range connections. This is suggested 
by the skewed distribution of tract lengths shown in Figure 2.4, where an abundance 
of short tracts is visible. 
The metrics discussed above were the absolute values of L and C. When investigating 
whether a network has small-world properties, the values of L and C should be 
compared to values generated from random networks. The values of 𝜆 = 𝐿𝑟𝑒𝑎𝑙/𝐿𝑟𝑎𝑛𝑑 
and 𝛾 =  𝐶𝑟𝑒𝑎𝑙/𝐶𝑟𝑎𝑛𝑑 show significant difference with directional resolution (p<0.001).  
In addition to the angular resolution it might be expected that the network resolution 
(i.e. number and size of nodes) of the image analysis and the spatial resolution (i.e. 
voxel size) of the image acquisition affect the network metrics. Zalesky et al. (Zalesky 
et al., 2009) and Hagmann et al. (Hagmann et al., 2008) recently showed that the 
parcellation scale strongly influences the network metrics. However, it is also reported 
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that this strong dependence does not suggest that any given parcellation scale is more 
optimal than another. Regarding the spatial resolution it is a priori not clear whether 
smaller voxel sizes will influence the network metrics, as smaller voxels exhibit a lower 
signal-to-noise ratio (leading to a larger cone of uncertainty) but a more 
homogeneous within-voxel fiber distribution (leading to a smaller cone of uncertainty) 
(Parker et al., 2003). Preliminary investigations reveal that these mechanisms appear 
to compensate to a large extent and therefore do not strongly affect the network 
metrics (see supplementary Figure S.2.3). 

Reproducibility of small world metrics 

The network metrics all produced very low coefficients of variation (< 3.8%), 
advocating the applicability of these measures in clinical studies to detect small 
effects. Even though differences in absolute values of the small world metrics were 
evident, there was no significant difference in CV between different gradient sampling 
schemes. All sampling schemes were matched for total scan time, resulting in an 
increased number of signal averages for the schemes with lower directional 
resolution. Most likely, the averaging of an increased number of images compensated 
for the increased directional bias resulting from a low number of gradient directions. 
ICC values varied greatly and were not as high as one might desire at first sight. Taking 
into consideration that the study population was very homogeneous (healthy young 
adults, with comparable age, educational level and demographics), the between 
subject variation in this sample is expectedly much lower than for the general 
(healthy) population or a specific patient population, which gives rise to low ICC. 
Furthermore, the ICC values found in our study are comparable to the ICC values 
reported in (Deuker et al., 2009), in which the reproducibility of graph metrics from 
whole brain MEG functional networks were investigated in healthy volunteers. 

Comparison of small world and tract metrics 

Compared to quantitative measures of number of tracts, the small world metrics show 
much lower CVs (Figure 2.6). This indicates that network measurements from the 
brain graph are more reliable than connection strengths between pairs of brain 
regions.  
Local tract based quantifications are in practice hard to accomplish as precise, possibly 
observer dependent, VOI placement and multiple VOI approaches are required 
(Wakana et al., 2007). Global analysis approaches such as the one presented in this 
paper, are more robust against errors induced by preprocessing steps such as co-
registration and normalization as shown in Figure 2.1. The network metrics are 
calculated from measurement data from the whole brain comprising many tracts and 
thus are less affected by noise compared to single tracts which only result from a 
small amount of the total data. This is reflected in the lower CV values for small-world 
metrics compared to single tract connection strength (Figure 2.6). 
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Limitations 

As illustrated in Figure 2.1, various factors of the data processing steps influence the 
determined small-world metrics. The results are dependent on the quality and 
accuracy of the VOI placement. The labeling of grey-white matter voxels to a certain 
Brodmann area is subject to inaccuracies in the inverse normalization step. Also the 
definition of the grey-white matter interface depends on the quality of the tissue 
segmentation and co-registration step. Furthermore, it is not clear whether the 
definition of the Brodmann areas is indeed a good representation of a structural node 
in the brain network. However, the subject of accurate brain parcellation based on 
tractography is still an active area of research and at present remains unfeasible for 
whole brain data (Johansen-Berg et al., 2004). 
The highest number of gradient directions in the present study is 32.This number is 
generally thought to be insufficient to accurately model multiple fiber directions per 
voxel (Alexander et al., 2002; Behrens et al., 2007) and for use in more advanced 
diffusion reconstruction models, such as Q-ball (Tuch, 2004) or DOT (Ozarslan et al., 
2006). Such non-tensor methods might have great consequences for tractography and 
the influence on small-world metrics needs to be explored. In the current study, the 
differences in small world metrics appear to decrease with increasing number of 
diffusion directions (Figure 2.5). Therefore, further increasing the number of diffusion 
directions is expected to yield even smaller differences that converge to asymptotic 
values. With the current data it is not possible to investigate this. However, the 
gradient schemes investigated are clinically available, have relatively short scan times 
and appear to provide reproducible network parameters. This greatly increases the 
applicability of the current results for clinical studies, were constraints on patient 
scanning time are an important issue. 
In this study only six healthy subjects were imaged twice. For more accurate 
estimations of the reproducibility measures more subjects and more than two 
repeated measurements would be required. It would also be important to investigate 
whether reproducibility values are similar in relevant patient groups, where inter-
subject variations are likely to be much higher. 

Clinical applicability 
The repeatability coefficient (RC) gives an indication of smallest detectable differences 
that are biologically relevant. As such, it can be compared to known values from 
literature reporting on differences between healthy and diseased subjects. In Table 
2.5 small world metrics from literature (Liu et al., 2008; Supekar et al., 2008; Shu et 
al., 2009) are shown and compared to RC values calculated in the present study. RC 
values are in all cases comparable and in most cases smaller that the reported 
differences. These findings support the notion presented in this paper that small 
world metrics derived from whole brain tractography data has potential as a clinical 
disease marker. 
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There have been several studies reporting on network measures from whole brain 
data and even though these involve different imaging modalities such as fMRI (Liu et 
al., 2008; Supekar et al., 2008) and EEG (Stam et al., 2007), which measure different 
physiological properties of the brain, the current results can be compared with these 
studies. The agreement between small world metrics derived from structural 
(tractography) and functional (fMRI and EEG correlation) networks indicates a strong 
correspondence between the default mode functional network and the underlying 
structural network (Park et al., 2008; Skudlarski et al., 2008). In a recent paper by Li et 
al. (Li et al., 2009), a relation between brain structural network properties and 
intelligence was shown. Cognitive impairment or decline is often an important marker 
in neurological diseases and if these markers are directly related to quantitative 
networks metrics from tractography data, the assessment of small world brain 
connectivity might play an important role in the development of a more mechanistic 
understanding of the relation between cognitive abilities and micro-structural 
properties of the brain and how it is affected by disease. 
In the work by Itturia (Iturria-Medina et al., 2008) and Gong (Gong et al., 2008), DTI 
measurements were also used to determine small-world metrics. There are 
considerable differences in methodology between these studies and ours, including 
gradient sets, brain atlas and tractography method. However, the results reported in 
this study agree with those studies to some extent. The differences might in part be 
explained by the number of gradient directions applied, as the values for L, C and λ in 
those studies show the same effect for number of gradient directions as found in our 
study (6 and 12 for Itturia et al. and Gong et al. respectively). For instance, λ increases 
with number of gradient directions. A summary of the reported values in the above 
mentioned studies can be found in Table 2.6. 
All applied DTI protocols give rise to a high interscan reproducibility and are therefore 
suitable for studies comparing patient groups with controls or longitudinal studies. 
This overall high reproducibility does not mean that there is no preference for any of 
the protocols. The small world metrics were dependent on the number of gradient 
directions applied. As the average node degree reveals stronger connectivity for 
gradient schemes with increasing number of directions, the largest scheme is 
expected to be the most accurate. 

CONCLUSIONS 

The choice of gradient acquisition scheme had a significant effect on tractography of 
DTI data and the resulting small world metrics. More gradient directions resulted in 
longer tracts and more densely connected graphs. Even though choice of gradient 
scheme did not influence the reproducibility of the measurements, the relative 
absence of long range tracts in the acquisition schemes with low directional resolution 
makes these schemes less favorable. The high reproducibility of the graph theoretical 
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measurements of structural connectivity found in this study advocates their clinical 
applicability. As the number of gradient directions applied potentially introduces a 
bias in the network results, the use of any gradient scheme should be carefully 
considered when comparing results across studies or designing new studies. 
 
Table 2.5  Comparison of Repeatability Coefficient with published differences of small-world metrics. 
The repeatability coefficient (RC) for characteristic path length (L), Cluster coefficient (C), 𝜆 = 𝐿/
𝐿𝑟𝑎𝑛𝑑𝑜𝑚, 𝛾 =  𝐶/𝐶𝑟𝑎𝑛𝑑𝑜𝑚, (see text) and 𝜎 =  𝛾/𝜆, for the ‘32’ scheme at sparsity = 0.74, is compared with 
reported differences from control and disease groups. An ‘*’ indicated the values were significantly 
different between patient and control group. 
 

1 fMRI Resting State (Supekar et al., 2008). 
2 fMRI Resting State (Liu et al., 2008). 
3 Tractography (Shu et al., 2009). 
 
Table 2.6  Comparison of small-world metric from selected l iterature and our study. Small-world metrics 

(characteristic path length (L), Cluster coefficient (C), 𝜆 =  𝐿/𝐿𝑟𝑎𝑛𝑑𝑜𝑚, 𝛾 =  𝐶/𝐶𝑟𝑎𝑛𝑑𝑜𝑚, and 
𝜎 =  𝜆/𝛾) from the ‘32’ scheme at sparsity=0.74 compared with published values from 
literature. 

 
 L C λ γ σ Imaging modality 
Present study 1.62 0.65 1.02 2.28 2.24 DTI / Probabilistic Tractography 
Ituria1 - - 1.12 1.85 1.64 DTI / Deterministic Tractography 
Gong2  2.32 0.49 1.15 4.07 - DTI / Deterministic Tractography 
Li3 2.81 0.49 1.14 2.07 - DTI / Deterministic Tractography 
Shu4 2.17 0.50 1.08 1.73 1.60 DTI / Deterministic Tractography 
Hagmann5 - - - - 1.54 DTI / Deterministic Tractography 
Liu6 - - 1.02 1.57 - RS-fMRI 
Superkar7 - - 1.05 1.74 - RS-fMRI 
Stam8  - - 1.07 1.58 - EEG 
Archard9 2.49 0.525 1.08 2.38 2.19 RS-fMRI 

 
1 Tractography (Iturria-Medina et al., 2008). 
2 Tractography (Gong et al., 2008). 
3 Tractography (Li et al., 2009). 
4 Tractography (Shu et al., 2009). 
5 Diffusion sprectrum imaging (DSI) tractography (Hagmann et al., 2008). 
6 fMRI resting state (Liu et al., 2008). 
7 fMRI resting state (Supekar et al., 2008). 
8 EEG (Stam et al., 2007). 
9 fMRI (Achard and Bullmore, 2007). 
 

  

 L C γ σ Imaging modality 
Present study 0.007 0.010 0.090 0.100 DTI / Probabilistic 

Tractography 
Supekar1  
   (control – patient) 

- - 0.18* 0.16* RS-fMRI  
 

Liu2  
   (control – patient) 

-0.051* 
 

0.023 / 0.013* 0.068 0.06* RS-fMRI 

Shu3  
   (control – patient) 

-0.069* 
 

-0.0013 -0.01 -0.09 DTI / Deterministic  
Tractography 
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SUPPLEMENTARY DATA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S.2.1 Values and CV for λ, γ and σ as a function of sparsity. Sub panels A, B and C show the values 

for λ, γ and σ, respectively. All three metrics increase with sparsity, indicating a shift away 
from the topology of a random network. Subpanels D, E and F show the corresponding CV 
values. The CV for all  three metrics is low and only slightly increases with sparsity. 
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Figure S.2.2 Histogram of ICC values for (A) connection strength of pairs of brain regions, (B) node degree 

of individual nodes and (C) cluster coefficient for individual nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S.2.3 Small world metrics L (A) and C (B)  as a function of number of edges for different acquired 

voxel sizes obtained in a healthy subject. Note that there is no strong effect of the voxel size 
on L or C. 
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ABSTRACT 

To study the relation between possibly altered whole brain topology and intellectual 
decline in chronic epilepsy, a combined study of neurocognitive assessment and graph 
theoretical network analysis of fMRI was performed. 
Forty-one adult patients with cryptogenic localization-related epilepsy and 23 healthy 
controls underwent an intelligence test and fMRI with a silent-word generation 
paradigm. A set of undirected graphs was constructed by cross-correlating the signal 
time series of 893 cortical and subcortical regions. Possible changes in cerebral 
network efficiency were assessed by performing graph theoretical network analysis. 
Healthy subjects displayed efficient small world properties, characterized by high 
clustering and short path lengths. On the contrary, in patients with epilepsy a 
disruption of both local segregation and global integration was found. An association 
of more pronounced intellectual decline with more disturbed local segregation was 
observed in the patient group. The effect of antiepileptic drug use on cognitive decline 
was mediated by decreased clustering. 
These findings support the hypothesis that chronic localization-related epilepsy causes 
cognitive deficits by inducing global cerebral network changes instead of a localized 
disruption only. Whether this is the result of epilepsy per se or the use of antiepileptic 
drugs remains to be elucidated. For application in clinical practice, future studies 
should address the relevance of altered cerebral network topology in prediction of 
cognitive deficits and monitoring of therapeutic interventions. 
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INTRODUCTION 

In chronic epilepsy, patients often experience cognitive problems (Fisher et al., 2000) 
extending from memory deficits (Helmstaedter and Kurthen, 2001) to language 
problems (Vlooswijk et al., 2010a) and intellectual impairment (Oyegbile et al., 2004). 
Clinical factors such as antiepileptic drugs (AED) (Jokeit et al., 2005), and high seizure 
frequency (Thompson and Duncan, 2005) cannot always predict the individual 
cognitive course. 
To understand the neurobiological mechanisms of cognitive dysfunction in 
localization-related epilepsy, functional MRI (fMRI) research has focused on changes 
in activation patterns. Most fMRI studies report an association of cognitive 
dysfunction with either decreased activation (Meletti et al., 2003; Cheung et al., 2006; 
Powell et al., 2007) or a shift of activation (Dupont et al., 2001; Weber et al., 2006; 
Vlooswijk et al., 2010b). 
The focus of fMRI research in epilepsy and cognition has changed to analyzing 
dysfunctional networks. Most studies measure functional connectivity by correlating 
signal time-courses of different cerebral regions (Waites et al., 2006). Typically, higher 
functional connectivity is associated with better cognitive performance (Addis et al., 
2007; Bettus et al., 2009; Zhang et al., 2009). 
With conventional functional connectivity methods applying a priori selection of 
specific networks unexpected abnormalities outside these networks can remain 
undetected. With graph theoretical analysis the organization of the whole brain 
network can be investigated (for a review, see (Stam and Reijneveld, 2007)). A 
distinction can be made between a ‘small-world’ and a random topology. Most 
studies (Bullmore and Sporns, 2009) demonstrate that brain networks are organized 
as ‘small-world’ networks which are more efficient than ‘random’ networks (van den 
Heuvel et al., 2009). 
We aimed to investigate the changes in functional networks using graph theoretical 
network analysis in patients with epilepsy in relation to intellectual performance and 
possible decline. We hypothesize that: (i.) patients will have lower intellectual 
performance; (ii.) patients will have a less efficient organized network than healthy 
controls; and (iii.) network abnormalities will be more pronounced in those patients 
with lowest IQ and distinct intellectual decline.  

METHODS 

Participants 
Inclusion criteria for the patients were: localization-related epilepsy with an epileptic 
focus in the frontal or temporal lobe, absence of structural cerebral lesions other than 
mesiotemporal sclerosis (MTS), no history of status epilepticus and no other disease 



60Chapter 3 

that could cause cognitive decline. The final study population included 41 patients (21 
women; mean age 40 years; range 22-63) and 23 healthy controls (14 women; mean 
age 40 years; range 18-58). See Supplemental Table S.3.1 for an overview of the 
clinical characteristics of the patients and healthy controls. 

Standard protocol approvals, registrations, and patient consents  
This study was approved by the Institutional Review Board of the Maastricht 
University Medical Center. All subjects gave written informed consent. 

Neuropsychological testing 

For intelligence, the third Wechsler Adult Intelligence Scale (WAIS-III) was used 
(Wechsler, 1997). An estimate of premorbid intelligence levels was made according to 
the formula proposed by Schoenberg et al (Schoenberg et al., 2002). Intelligence 
discrepancy scores were calculated by subtracting premorbid full-scale IQ (FSIQ) 
estimates from actual FSIQ, resulting in IQ discrepancy scores (see Supplemental data 
for details).  

MRI protocol 
All subjects underwent a clinical epilepsy protocol on a 3.0-T unit with an 8-channel 
head coil. Functional MRI data were acquired using echo-planar imaging pulse 
sequence (TR = 2 s, TE = 5 ms, FA = 90°, voxel size 2 x 2 x 4 mm) and 196 volumes per 
acquisition. For anatomic reference, a T1-weigthed 3D fast gradient echo was 
acquired (TR = 9.91 ms, TE = 4.6 ms, TI = 3 s, FA = 8°, voxel size 1 x 1 x 1 mm). 

fMRI activation paradigm 

In the word generation paradigm, subjects had to covertly generate as many words as 
possible starting with a visually presented letter (U-N-K-A-E-P). The paradigm 
consisted of six word-generation condition blocks (one letter per 30 s block) 
alternated with baseline rest condition blocks (30 s). Afterwards, all subjects were 
able to sufficiently reproduce words generated during the task.  

Image analysis 

Image preprocessing  

Analysis of the time-series data was performed in the Statistical Parametric Mapping 
(SPM2) software application (Wellcome Department of Cognitive Neurology, UK). 
Dynamic images were slice-timed and realigned to correct for head movement. The 
corrected images were transformed into standard MNI space and spatially smoothed 
(6-mm kernel). 
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Whole brain network construction 

The preprocessed and normalized fMRI images were parcellated into a high resolution 
network consisting of N=893 cortical and subcortical brain regions (see Supplemental 
data for details on the parcellation scheme). Characteristic time-series were 
calculated by averaging the signal intensities from all voxels in a region. To reduce the 
effect physiological noise and movement related noise (Van Dijk et al., 2010), the 
time-series were filtered by applying standard linear regression with the movement 
parameters as a co-variate and by applying a bandpass filter (0.01-0.1 Hz). 

Network parameters 

Graph theoretical parameters were used to evaluate the functional networks (Watts 
and Strogatz, 1998; Bassett and Bullmore, 2006; Stam and Reijneveld, 2007). A 
connection matrix A was formed by calculating Pearson correlation coefficients 
between all pairs of brain regions. In the brain graph, a node is related to a brain 
region, an edge is a connection between brain areas i and j. 
The brain graph of each individual was thresholded to create graphs with an equal 
number of nodes and edges across subjects (Stam et al., 2007). This was achieved by 
selecting the Tk connections with the highest correlation coefficient and removing all 
other connections. The threshold value Tk was expressed as a sparsity value relating 
the number of edges maintained in the network to the total number of edges possible 
(N2-N) (Achard and Bullmore, 2007). Let Tk be the number of edges maintained in the 
network, then the sparsity (s) is defined as:  

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = (𝑁2 −  𝑁−  𝑇𝑘)/ (𝑁2− 𝑁)  (1). 

As there is no theoretical criterion for which sparsity value is the most biologically 
meaningful, here we explored network parameters over a range of sparsity values. To 
guarantee high correlation coefficients of the remaining connections, the sparsity 
range was chosen to be higher than 0.87, which yielded an average correlation 
coefficient of 0.66. 
The graph theoretical metrics characteristic path length (L) and cluster coefficient (C) 
as well as local and global efficiency were calculated to perform analysis on the 
constructed brain graphs. The characteristic path length is a measure of how well 
connected a network is. The cluster coefficient of a network is a measure of how 
many local clusters exist in the network. Parameters related to characteristic path 
length are global efficiency (Eglobal) and local efficiency (Elocal). Eglobal is defined as the 
average inverse shortest path length, Elocal is defined as the mean of the global 
efficiencies of subgraphs consisting of the immediate neighbours of a particular node 
(Achard and Bullmore, 2007). To be able to determine whether a network has small-
world properties, the values of L and C must be scaled to values from generated 
random networks (Watts and Strogatz, 1998). Small world networks are characterized 
by having L close to random: 𝜆 = 𝐿/𝐿𝑟𝑎𝑛𝑑𝑜𝑚 ≈  1, but with C higher than random: 
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𝛾 = 𝐶 𝐶𝑟𝑎𝑛𝑑𝑜𝑚⁄ > 1. See Supplemental data for a more elaborate description of these 
metrics. 

Statistical analysis 

Group differences of graph theoretical network parameters were assessed with the 
Student’s t-test. The associations between clinical variables (age, age at onset and 
drugload), cognitive variables (FS-IQ and IQ discrepancy) and network parameters 
were analyzed using Pearson’s correlation coefficients. The relation between clinical 
seizure variables and graph theoretical parameters with intellectual decline was 
examined using a mediator–model approach (Baron and Kenny, 1986). With this 
model, it is investigated whether network parameters mediate the relation between 
clinical and cognitive characteristics. Analyses were performed with graph theoretical 
network parameters and drug load (the clinical variable with the strongest link to 
cognition in this dataset) as independent and intellectual decline as the dependent 
variable. If the relation between drug load and intellectual decline becomes non-
significant when network parameters are entered in the model, this parameter can be 
considered a mediator of the relation between drug load and intellectual decline. 

RESULTS 

Neuropsychological assessment 
Patients had lower FSIQ than controls (96±15 vs 113±15, p<0.01). In the patient group, 
IQ discrepancy scores were significantly lower than in the controls, indicating 
intellectual decline in the patient group as a whole (mean ± standard deviation IQ 
discrepancy score -8.6±6.5 in patients vs. -3.6±8.8 in controls, p=0.02). For the 
individual patients, seven had lower IQ discrepancy scores than the minimum score in 
the control group; they had evident intellectual decline (impaired group). 

Functional MRI results  

Activation map results 

Activation maps of the word-generation paradigm revealed significantly activated 
clusters in the left inferior and left middle frontal cortex (Broca region), the right 
middle frontal cortex, and the anterior cingulate cortex for both groups. No significant 
differences were found between controls and patients with epilepsy (see (Vlooswijk et 
al., 2010a) for details). 
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fMRI graph theoretical network parameters 

Both patient and control networks showed a topology in the small-world regime with 
values for λ close to 1 and values for γ higher than 1. Patients displayed significantly 
lower values (p<0.05) for γ, Eglobal and Elocal over almost the entire sparsity range 
(Figure 3.1). A trend towards higher λ values was observed in the patient group, which 
was significantly higher for high sparsity values (s=0.96-0.97). For C, patients also had 
lower values for the highest sparsity values. The network parameters of the impaired 
group revealed significant lower values for C over a broader sparsity range as 
compared with unimpaired patients and controls. Impaired patients displayed 
significantly higher values than controls for L (s=0.94-0.95) and λ (s=0.94-0.96) 
(Supplemental Figure S.3.1). 
Summarizing, all the encountered differences point toward a disruption of network 
integrity characterized by a more random network topology in the patient group. 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Network parameters for the whole brain networks of the patient group (red lines) and the 

control group (green l ines) as function of sparsity. Black triangles indicate for which sparsity 
values the groups differed significantly, demonstrating consistently lower values for Eg, El and 
γ and higher values for λ in the patient group. Grey areas indicate standard error of the mean. 
(A) Local efficiency, (B) global efficiency, (C) λ, and (D) γ. 
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Figure 3.2 3D projection of the network nodes. Green circles indicate where the nodal values of γ were 

significantly lower in the patient group (p<0.005). The affected nodes are distributed 
throughout the whole brain, not restricted to specific lobes or functional networks. S = 
superior; I = inferior; L = left; R = right; A = anterior; P = posterior. 

Regional analysis of network parameters 

Additional analysis was carried out to investigate whether the majority of identified 
network abnormalities are localized in certain brain regions or networks. Results are 
only shown for γ, since γ was the network parameter with the most pronounced 
difference between patients and controls. As can be observed from Figure 3.2, a 
number of regions did show significant differences (p<0.005). However, these regions 
were evenly distributed throughout the whole brain, without evident grouping within 
a specific lobe or recognizable network. When controls were compared to the 
impaired patients only, similar results were obtained. No associations of side of 
seizure focus with distribution of affected regions were observed. 

fMRI graph theoretical network parameters in correlation with neuropsychological 
parameters 

The cluster coefficient was found to be positively associated with FSIQ over a range of 
sparsity values (s=0.87-0.97). This same effect was seen for the association between C 
and IQ discrepancy (s=0.93-0.98). Hence, a decreased amount of clustering in the 
activated patient brain indicates a reduced IQ, and a decreased clustering relates to a 
more pronounced intellectual decline. For the other network parameters, no 
correlation with FSIQ and IQ discrepancy was found. In the control group, there was 
no association between any network parameter and FSIQ. 
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Correlation of fMRI graph theoretical network parameters with clinical factors 

From the clinical factors available, drug load was negatively associated with C, γ and 
Elocal, indicating a more random and less efficient network with higher drug load (for C: 
p<0.03 for sparsity range 0.97-0.99; for γ: p-values range from 0.03 to 0.06 in the 
entire sparsity range; for Elocal: p<0.05 for sparsity range 0.87-0.93). For the other 
clinical characteristics, age and age at onset, no significant associations were found.  

Model for the relation between clinical characteristics, network parameters and 
intellectual decline 

The relation of clinical epilepsy variables and graph theoretical network parameters to 
intellectual decline was examined using the mediator analysis. Since drug load had the 
strongest correlation with intellectual decline (p=0.03), this factor was entered in the 
mediator analysis. The other clinical characteristics did not meet the criteria to be 
entered in a mediator analysis (Baron and Kenny, 1986). Drug load was no longer a 
significant predictor of intellectual decline when the clustering coefficient C was 
included in the model (Supplemental Figure S.3.2). On the contrary, C was the 
mediating factor between drug load and intellectual decline, indicating that 
abnormalities in graph theoretical network parameters, particularly the clustering 
coefficient, mediated the impact of drug load on cognition (s=0.96-0.98). 

DISCUSSION 

In the present study, fMRI time-series data from a language paradigm were used to 
evaluate functional brain networks in patients with chronic epilepsy and healthy 
controls. Graph theoretical network parameters were compared between patients 
and controls and compared with cognitive performance. First, the patients with 
epilepsy displayed disturbed network parameters, such as a lower normalized 
clustering coefficient (γ), and lower local and global efficiencies. Second, for the 
subgroup of patients with most pronounced cognitive decline, lower absolute 
clustering coefficient, and higher absolute and normalized path length were observed. 
Third, cognitive status (IQ) and the degree of intellectual decline (IQ discrepancy 
score) were correlated with graph theoretical network parameters, which revealed 
that poorer cognitive status and more pronounced intellectual decline were 
associated with lower absolute clustering coefficients. Fourth, as expected (Liu et al., 
2008; van den Heuvel et al., 2009), the topological parameters were consistent with a 
small-world organization of the cerebral networks in the control group. 
Lower clustering coefficients (Liu et al., 2008) and an increased path length (Stam et 
al., 2007; Liu et al., 2008) have been demonstrated in neuropsychiatric disorders such 
as Alzheimer’s disease and schizophrenia. These disorders are accompanied with 
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pronounced cognitive deficits, although graph theoretical network parameters have 
not previously been linked directly with cognitive measures. 
Previously, in patients with bilateral mesial temporal lobe epilepsy whole-brain graph 
network analysis with fMRI demonstrated lower absolute and normalized path lengths 
together with a decrease in absolute clustering coefficients (Liao et al., 2010). This was 
interpreted as a disruption of the whole brain network with a more random topology. 
The apparent contradictive results concerning path length are difficult to explain due 
to differences in study population and methodology. For example, patients in the 
latter study were on average much younger which might have influenced the results. 
One might hypothesize that brain networks of younger patients respond differently to 
disease. For instance, young patients might be able to compensate better by acquiring 
alternate brain regions for cognitive processing, while older patients might have lost 
this ability. This could lead to a different expression of networks parameters between 
control and patient groups in different age categories. 
Cognitive functioning depends on several cerebral networks instead of isolated brain 
regions. It is reasonable to assume that in patients with epilepsy a disruption of whole 
brain networks is involved in the development of cognitive deficits, instead of a 
localized disruption at the site of seizure focus only. This is supported by MR studies 
demonstrating volumetric loss (Hermann et al., 2004; Oyegbile et al., 2006), 
microstructural white matter abnormalities (Focke et al., 2008), cortical thinning 
(Bernhardt et al., 2010), and functional abnormalities (Bettus et al., 2009; Vlooswijk et 
al., 2010a) outside the epileptic focus. The application of methods sensitive to 
overlapping localized abnormalities seems to be limited in patient populations with 
heterogeneous seizure foci and cognitive deficits over multiple domains. Graph 
theoretical network analysis allows for analysis of whole brain networks rather than at 
a local level. Hence, it might be better capable of detecting patient specific 
abnormalities in functional brain organization and reorganization than more 
conventional (single connection) analysis methods. Indeed, the disruption of small-
world characteristics in our patient group could not be localized within one or more 
specialized brain regions, which could represent diffuse disruptions throughout the 
whole brain. No global technical differences between patients and controls, such as 
the motion correction parameters, could be identified in this study. The possibility 
that differences in the location of epileptogenic zone or the use of antiepileptic drugs 
contribute to the non-localized abnormalities cannot be ruled out. Furthermore, the 
silent word generation task does not allow for objective assessment of task 
performance. Theoretically, differences in task performance could affect the network 
parameters. Nevertheless, based on post-task performance assessment and careful 
inspection of individual activation maps it is unlikely that salient differences in task 
performance have influenced the fMRI data. 
In normal brain networks, high clustering coefficients (C and γ) and local efficiency 
(Elocal) are parameters which reflect a high local specialization (segregation) of 
information processing. Contrarily, low path length (L and λ) and high global efficiency 
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(Eglobal) express a great ability to integrate information from the whole brain. Optimal 
brain networks possess both features with a balanced segregation and integration of 
information processing (Sporns et al., 2004; Bullmore and Sporns, 2009). In contrast, a 
decrease in clustering coefficient with a decrease in IQ, as found in the patient 
population, is characteristic for more random networks and can be interpreted as a 
loss in network organization. 
In healthy controls, graph theoretical network parameters are related with level of 
intelligence (van den Heuvel et al., 2009) supporting the theory that cognitive 
processes depend on an optimal organization of segregation and integration. To our 
knowledge, this relation has not been investigated before in patients with epilepsy, 
who are prone to suffer from a range of cognitive deficits. It is an interesting 
observation that network topology changes in the presence of epilepsy, and that this 
alteration is associated with a decline of intellectual abilities. 
Of the clinical factors studied, only drug load was associated with network 
parameters. Antiepileptic drugs (AEDs) inhibit the spread of abnormal neuronal firing 
to distant sites, thereby suppressing the occurrence of clinical seizures (Rogawski and 
Loscher, 2004). As AEDs might also have a more generalized suppressive effect 
(Rogawski and Loscher, 2004), an alteration of neuroexcitability may affect local and 
global efficiency parameters such as found in the present study. There is too much 
overlap in AEDs used (Supplemental Table S.3.1) to provide any information on the 
effect of specific AEDs on network topological parameters, which would be of high 
interest for future studies. In an epilepsy population, it is complicated to disentangle 
the effects of AED use and epilepsy per se on network parameters. It would therefore 
be interesting to investigate whether AED use in other patient populations than those 
with epilepsy (e.g. in patients with migraine or neuropathic pain) is also associated 
with change of network parameters. 
Although no other clinical factor could be identified to influence the network 
characteristics, this does not imply that no relation exists. For example, decreased 
local clustering and small-worldness within the epileptogenic temporal lobe has been 
associated with longer duration of temporal lobe epilepsy (van Dellen et al., 2009). 
Moreover, clinical epilepsy factors cannot be viewed as totally independent factors. 
For example, drug load is likely to increase when patients do not achieve seizure 
control. In that case, higher drug load can be a marker for a more severe form of 
epilepsy. Maybe it is not the seizures as such that disturb the cerebral networks, but 
simply the epilepsy itself. This could imply that there is a shared mechanism leading to 
both epilepsy and a disruption of cerebral networks that is associated with cognitive 
decline. 
Network parameters may obtain a role in identifying patients at risk for developing 
cognitive problems. If clinical factors can be identified, this can be beneficial in 
decision making: for example, patients with advantageous network organization may 
need less stringent seizure control than patients with disadvantageous network 
organization. Additionally, network topology might be a more sensitive marker for 
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disease progression: if network parameters change before intellectual decline can be 
measured (normally clinically relevant decline can be observed only after intervals of 
several years), this may also call for more strict treatment of seizures, and/or earlier 
referral for epilepsy surgery. Finally, network topological characteristics might be of 
value in predicting cognitive outcome after epilepsy surgery. 
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SUPPLEMENTARY DATA 

Premorbid FSIQ estimate calculation 
Based on the OPIE-3(4ST) from the Oklahoma Premorbid Intelligence Estimate for the 
WAIS-III Calculation Worksheet (Schoenberg et al., 2002).  
 
Premorbid FSIQ  = 35.348 + .368*(Vocabulary raw score) + .682*(Information raw 

score) + .987*(Matrix Reasoning raw score) + .737*(Picture 
Completion raw score) + .175*(Age) + .656*(Education code) + 
.578*(Ethnicity code).  

  
Coding variables: 
Age  -  in years 
Education - 1=0-8 years 

2 = 9-11 years 
3 = 12 years 
4 = 13-15 years 
5= 16+ years 

Ethnicity - 1 = African-American 
2 = Hispanic 
3 = Other 
4 = Caucasian 
Note that all participants were Caucasian 

Methods 

Parcellation scheme 

The final brain parcellation into 892 regions was derived from the AAL template, 
consisting of 90 regions. We started by dividing each AAL region into two more or less 
equally sized regions by principal component analysis. The first principal component 
(a 3D vector), together with the center of gravity of the voxels within the region (a 3D 
point), defines a plane in 3D space which divides the region into two subregions 
according to the maximum spatial variance of the region (e.g. a “stretched” region will 
be divided along its main longitudinal axis). 
Regions were subsequently subdivided with the criterion that a division must not yield 
a subregion with a size smaller than 125 voxel. The final result was a parcellation of 
892 regions with comparable sizes (of at least 125 voxels). 

Sparsity 

Functional connection strengths between two areas i and j were obtained by 
calculating the Pearson correlation coefficient between the filtered time series of 
those regions. Each element Ai,j of the connection matrix A was defined by the 
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Pearson correlation coefficient between every possible pair of brain regions. The 
connection matrix A is a numerical representation of a graph, which is an abstract 
data structure, consisting of nodes connected by edges. In the graph, a node is related 
to a brain region and is represented by a row and a column in the connection matrix. 
An edge in the graph is a connection between brain areas i and j, provided that Ai,j > 0. 
The brain graph of each individual was thresholded to create graphs with an equal 
number of nodes and edges across subjects (Stam et al., 2007). This was achieved by 
selecting the Tk strongest connections (connections with the highest correlation 
coefficient and removing all other connections. The threshold value Tk was expressed 
as a sparsity value relating the number of edges maintained in the network to the 
total number of edges possible (N2-N), where N is the number of nodes (brain regions) 
in the network (Achard and Bullmore, 2007). Let Tk be the number of edges 
maintained in the network, then the sparsity is defined as:  

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = (𝑁2 −  𝑁−  𝑇𝑘)/ (𝑁2− 𝑁)  (1). 

Theoretically, sparsity can range between 0 (a fully connected graph) and 1 (no 
edges). A low sparsity value (many connections in the network) implies that 
connections with a low correlation coefficient are also allowed to exist in the network, 
which might yield some false positive connections. With a high sparsity value, only 
edges with the highest correlation coefficients (i.e. strongest connections) remain. As 
a consequence, edges with intermediate correlation coefficients might be removed 
albeit being biologically plausible.  

Network metrics 

The degree k of node i is the number of connections to other areas: 

 𝑘 =  ∑ 𝐴𝑖.𝑗𝑁
𝑗=1,𝑗≠𝑖 ,     (2)  

where N is the total number of nodes (i.e. considered brain regions) in the graph.  
The graph theoretical metrics characteristic path length (L) and cluster coefficient (C) 
as well as local and global efficiency were calculated to perform analysis on the 
constructed brain graphs.  
Characteristic path length is defined as the average geodesic distance, in number of 
edges, connecting any two nodes in the graph: 

 𝐿 =  1
𝑁 ( 𝑁−1)

 ∑ ∑ 𝑑𝑖,𝑗𝑁
𝑗=1,𝑖≠𝑗

𝑁
𝑖=1 ,   (3) 

where 𝑑𝑖,𝑗  is the length of the shortest path between nodes i and j. The characteristic 
path length is a measure of how well connected a network is. Small characteristic path 
length indicates an average short distance between any two nodes, i.e. they can be 
reached through a small number of steps.  
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The cluster coefficient is defined as the number of actual edges connecting the 
neighbours of a node divided by the maximum number of edges possible between 
neighbouring nodes, 

 𝐶 =  1
𝑁

 ∑
∑ ∑ 𝐴𝑖,𝑗𝐴𝑗,𝑚𝐴𝑚,𝑖

𝑁
𝑚=1

𝑁
𝑗=1

𝑘𝑖 (𝑘𝑖−1)
𝑁
𝑖=1 ,   (4) 

where i,j and m are summation indices. The cluster coefficient of a network is a 
measure of how many local clusters exist in the network. A high cluster coefficient 
indicates that the neighbours of a node are often also directly connected to each 
other, i.e. they form a cluster. Parameters related to characteristic path length are 
global efficiency (Eglobal) and local efficiency (Elocal). Eglobal is defined as the average 
inverse shortest path length, Elocal is defined as the mean of the global efficiencies of 
subgraphs consisting of the immediate neighbours of a particular node. These 
parameters may be meaningfully computed on disconnected graphs and are a 
superior measure of integration according to some authors (Achard and Bullmore, 
2007).  

Random networks 

To be able to determine whether a network has small-world properties, the values of 
L and C must be scaled to values from generated random networks (Watts and 
Strogatz, 1998). Small world networks are characterized by having L close to random: 
𝜆 = 𝐿/𝐿𝑟𝑎𝑛𝑑𝑜𝑚 ≈ 1, but with C higher than random: 𝛾 = 𝐶/𝐶𝑟𝑎𝑛𝑑𝑜𝑚 > 1. The value 
𝜎 =  𝛾/𝜆 can be used to signify the ‘small-worldness’ of a network and is typically 
larger than 1 for small-world networks (Humphries et al., 2006).  
Random networks were generated by considering each existing edge in the original 
network between the nodes i and j, 𝑒𝑖,𝑗 and connecting it to another randomly chosen 
node 𝑗2, with the condition that 𝑒𝑖 ,𝑗2 was not present in the original network (Maslov 
and Sneppen, 2002). This process ensures that the node degree and node distribution 
of the random network is similar to the original network. Network parameters were 
calculated with routines from the brain connectivity toolbox (Rubinov and Sporns, 
2010).  
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Figure S.3.1 Path length and lambda parameters for the whole brain network including cognitively 

impaired patients. Networks of the impaired patient group (red l ines), the unimpaired patient 
group (blue l ines) and the control group (green l ines) as function of sparsity for (A) path 
length and (B) lambda. Grey areas indicate standard error of the mean for each of the 
analyzed groups. The dashed lines represent significant group differences (annotated with an 
asterisk) or trends (annotated with a triangle) towards group differences for the unimpaired 
versus the control group (u-c, top line), the impaired versus the control group (i-c, middle line) 
and the impaired versus unimpaired group (i-u, bottom line). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S.3.2 The mediator analysis. (A) Drug load as a predictor of intellectual decline when graph 

theoretical network parameters are not considered. (B) When graph theoretical network 
parameters are considered, the cluster coefficient (C) mediates the relation between drug 
load and intellectual decline. P-values represent the values for sparsity value 0.97. 
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Table S.3.1 Clinical characteristics of patients and controls   
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Patients 
1 49 43 LT 2 11-20 1.40 LTG, VPA 78 -16 no abnormalities                                                                                     
2 26 13 RT 0 >100 1.79 LEV, LTG 98 -8 no abnormalities                                                                                     
3 34 6 LF 6 >100 3.74 PHT, LEV, LTG 108 -9 no abnormalities                                                                                     
4 46 13 BT 40 >100 1.70 CBZ, GBP 61 -9 no abnormalities                                                                                     
5 41 13 LF 24 31-40 3.33 CBZ, CLB, LEV 77 -24 no abnormalities                                                                                     
6 23 4 LF 50 >100 4.80 CBZ, LEV, LTG 79 -10 cystic enlargement  

pineal gland                                                                      
7 22 13 BF 35 none 1.38 LEV 85 -12 no abnormalities                                                                                     
8 55 21 BF 33 none 1.67 VPA 70 -3 no abnormalities                                                                                     
9 30 20 LFT 4 31-40 1.45 LEV, LTG 89 -17 no abnormalities                                                                                     
10 46 40 RFT 0 21-30 1.33 VPA 88 -18 no abnormalities                                                                                     
11 49 40 RT 2 51-100 1.97 CBZ, CLB, VPA 100 -15 no abnormalities                                                                                     
12 50 34 LT 3 >100 3.61 CBZ, LEV, LTG 95 -9 no abnormalities                                                                                     
13 28 21 LT 10 >100 0.85 CBZ, CZP 106 -3 atrophy left  

temporal lobe                                                                           
14 59 23 LT 3 31-40 1.74 CBZ, LTG 86 -3 MTS left                                                                                             
15 24 8 LF 17 1-10 2.51 CBZ, LTG 95 -4 no abnormalities                                                                                     
16 61 48 BFT 4 none 0.40 CBZ 111 -5 no abnormalities                                                                                     
17 23 8 LT 500 51-100 1.94 CBZ, LTG 98 -8 no abnormalities                                                                                     
18 56 51 LFT 0 41-50 1.20 OCBZ 113 -10 no abnormalities                                                                                     
19 63 56 LFT 1 >100 1.20 OCBZ 101 0 no abnormalities                                                                                     
20 22 10 BFT 1 >100 2.95 LEV, LTG 96 -10 no abnormalities                                                                                     
21 36 14 RFT 3 >100 1.80 OCBZ 97 -4 no abnormalities                                                                                     
22 51 4 BT 30 >100 2.70 CBZ, CLB, LEV 95 -6 MTS left                                                                                             
23 38 34 LT 2 1-10 0.90 OCBZ 97 0 no abnormalities                                                                                     
24 45 33 LF 3 none 0.60 OCBZ 121 -2 no abnormalities                                                                                     
25 31 7 LFT 8 1-10 0.20 VPA 94 -7 no abnormalities                                                                                     
26 29 29 RFT 0 11-20 1.43 LTG 80 -11 venous angioma  

right frontal                                                   
27 45 14 BF 35 none 2.29 CLB, LTG 121 -3 no abnormalities                                                                                     
28 41 39 BFT 3 11-20 0.80 CBZ 105 -8 no abnormalities                                                                                     
29 30 13 LFT 0 >100 3.03 CLB, OCBZ, VPA 79 -10 no abnormalities                                                                                     
30 36 18 BF 35 1-10 2.20 CBZ, PHT 83 -16 no abnormalities                                                                                     
31 60 39 BF 0 >100 1.94 CBZ, LTG 101 -8 no abnormalities                                                                                     
32 44 25 RT 6 1-10 3.25 PHT, OCBZ 101 -11 increased FLAIR  

signal right HC,  
normal HC volumes                                    

33 35 23 BF 10 >100 1.00 CLB 128 10 no abnormalities                                                                                     
34 27 13 BF 3 none 0.40 CBZ 129 8 no abnormalities                                                                                     
35 52 12 BF 4 >100 1.30 CBZ, PB 97 -11 no abnormalities                                                                                     
36 26 10 RFT 1 1-10 0.50 CLB 104 -7 no abnormalities                                                                                     
37 33 4 RFT 3 11-20 2.00 CLB, LTG 91 -17 no abnormalities                                                                                     
38 58 29 LT 20 >100 2.14 CLB, LTG, OCBZ 91 -17 MTS left                                                                                             
39 43 27 RF 20 1-10 0.90 CLB, VPA 86 -7 no abnormalities                                                                                     
40 37 29 BT 30 1-10 1.20 CLB, VPA 84 -12 no abnormalities                                                                                     
41 55 26 RT 6 41-50 0.40 CBZ 109 -5 no abnormalities                                                                                     
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Continuation Table S.3.1 Clinical characteristics of patients and controls   
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Healthy controls 
42 53 NA NA NA NA NA NA 111 -10 no abnormalities                                                                                     
43 52 NA NA NA NA NA NA 115 -6 no abnormalities                                                                                     
44 45 NA NA NA NA NA NA 106 -8 no abnormalities                                                                                     
45 51 NA NA NA NA NA NA 126 1 no abnormalities                                                                                     
46 32 NA NA NA NA NA NA 107 -16 no abnormalities                                                                                     
47 28 NA NA NA NA NA NA 88 -15 no abnormalities                                                                                     
48 28 NA NA NA NA NA NA 108 -3 no abnormalities                                                                                     
49 46 NA NA NA NA NA NA 108 -7 variant septum 

pellucidum                                                                            
50 32 NA NA NA NA NA NA 112 -6 no abnormalities                                                                                     
51 52 NA NA NA NA NA NA 140 12 no abnormalities                                                                                     
52 23 NA NA NA NA NA NA 138 15 no abnormalities                                                                                     
53 48 NA NA NA NA NA NA 112 -8 no abnormalities                                                                                     
54 24 NA NA NA NA NA NA 122 5 no abnormalities                                                                                     
55 56 NA NA NA NA NA NA 129 3 no abnormalities                                                                                     
56 47 NA NA NA NA NA NA 105 -9 no abnormalities                                                                                     
57 47 NA NA NA NA NA NA 147 13 no abnormalities                                                                                     
58 46 NA NA NA NA NA NA 110 -13 no abnormalities                                                                                     
59 54 NA NA NA NA NA NA 91 -11 no abnormalities                                                                                     
60 18 NA NA NA NA NA NA 117 4 no abnormalities                                                                                     
61 21 NA NA NA NA NA NA 112 0 no abnormalities                                                                                     
62 51 NA NA NA NA NA NA 105 -12 no abnormalities                                                                                     
63 58 NA NA NA NA NA NA 91 -6 no abnormalities                                                                                     
64 18 NA NA NA NA NA NA 105 -6 no abnormalities                                                                                     
Abbreviations: y = years; SGS = total number of secondarily generalized seizures; PS = total number of 
partial seizures; FSIQ = full-scale IQ; IQΔ = IQ discrepancy score (IQactual - IQpremorbid estimate); L = left; R = right; T 
= temporal; F = frontal; FT = frontotemporal; B = bilateral; NA = not applicable; MTS = mesiotemporal 
sclerosis; HC = hippocampus. AED = antiepileptic drugs; CBZ = carbamazepine; CLB = clobazam; CZP = 
clonazepam; PB = fenobarbital; GBP = gabapentin; LEV = levetiracetam; LTG = lamotrigine; OCBZ = 
oxcarbazepine; PHT = phenytoin; VPA = valproic acid. Drug load was calculated by the ratio of prescribed 
daily dose to defined daily dose (Lammers et al., 1995). 
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ABSTRACT 

Patients with chronic epilepsy frequently display cognitive comorbidity and might 
have widespread network abnormalities outside the epileptic zone, which might affect 
a variety of cognitive functions and global intelligence. We aimed to study the role of 
white matter connectivity in cognitive comorbidity. Thirty-nine patients with 
nonsymptomatic localization-related epilepsy and varying degrees of cognitive 
impairment and 23 age-matched healthy controls were included. Whole brain white 
matter networks were constructed from fiber tractography. Weighted graph 
theoretical analysis was performed to study white matter network abnormalities 
associated with epilepsy and cognition. Patients with severe cognitive impairment 
showed lower clustering (a measure of brain network segregation) and higher path 
length (a measure of brain network integration) compared with the healthy controls 
and patients with little or no cognitive impairment, whereas whole brain white matter 
volume did not differ. Correlation analyses revealed that IQ and cognitive impairment 
were strongly associated with clustering and path lengths. This study revealed 
impaired white matter connectivity, associated with cognitive comorbidity in patients 
with chronic epilepsy. As whole brain white matter volumes were preserved in the 
patient group, our results suggest an important role for the network topology rather 
than volumetric changes, in epilepsy with cognitive decline. 
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INTRODUCTION 

Patients with chronic epilepsy frequently display co-morbid cognitive problems, 
ranging from memory deficits, mental slowing (Elger et al., 2004) and language 
problems (Vlooswijk et al., 2010), to global cognitive deterioration (Oyegbile et al., 
2004). Patients with epilepsy often have lower intelligence levels than expected 
compared to healthy controls (Helmstaedter and Kockelmann, 2006; Bonelli et al., 
2010) even in studies that exclude symptomatic epilepsy (Hermann et al., 1995). 
There is recent consensus that many cognitive functions result from the concerted 
interaction between brain areas in large-scale networks (Bressler and Menon, 2010; 
Deary et al., 2010). The functioning of these networks is constrained by the 
organization of the associated axonal bundles of the white matter (WM). Magnetic 
resonance imaging (MRI) studies on WM and functional networks (Li et al., 2009; van 
den Heuvel et al., 2009) furthermore show that network efficiency plays an important 
role in intelligence. Therefore any abnormality in the axonal network organization, 
associated with epilepsy, may explain cognitive decline in a much more sensitive way 
than changes in specific brain structures, as the location of the affected structures 
may vary from patient to patient. 
The extent to which brain abnormalities manifest beyond the epileptic zone is 
currently a matter of debate (Meador and Hermann, 2010). For instance, there is 
growing evidence from Diffusion Tensor Imaging (DTI) that micro-structural WM 
abnormalities are present outside the epileptic focus in temporal lobe epilepsy (TLE) 
(Focke et al., 2008b; Meng et al., 2010; Riley et al., 2010), and that distant fiber 
bundles are affected (Powell et al., 2007; Yogarajah et al., 2008) and associated with 
cognitive co-morbidity (Diehl et al., 2008; McDonald et al., 2008; Yogarajah et al., 
2008; Riley et al., 2010). 
For cryptogenic epilepsy, the imaging of WM abnormalities focused on predefined 
brain regions or connections gives rise to interpretational ambiguities because the 
precise anatomical location of the epileptic zone often remains uncertain and may 
vary between patients. A method that adequately deals with these problems is graph 
theoretical analysis (Stam and Reijneveld, 2007; Bullmore and Sporns, 2009). Graph 
theoretical analysis typically captures topological properties of the brain network in a 
few summary measures, which provide information on the amount of segregation and 
integration among brain regions. With graph theoretical analysis it is possible to 
investigate the whole brain network, dividing it into a large number of regions (nodes) 
with an even larger number of possible connections (edges). It can then be calculated 
how the network is organized. One distinction that can be made is between a ‘small-
world’ and a random topology. A ‘small-world’ network is characterized by a high 
degree of local clustering and short path lengths that globally link all the regions of the 
network. On the contrary, in a random topology all links in the graph have an equal 
probability connecting any two nodes. This methodology has recently been shown to 
provide more sensitive measurements than conventional DTI indices in stroke (Crofts 



80Chapter 4 

et al., 2011) and in schizophrenia (van den Heuvel et al., 2010; Zalesky et al., 2010c). 
Graph theoretical analysis of WM networks has not been performed in epilepsy and 
might provide valuable insights into the extent and nature of WM network 
abnormalities and their potential relation with decline in cognitive performance 
(cognitive co-morbidity).  
Our objective was to investigate the integrity of white matter network organization 
using graph theoretical network analysis in patients with cryptogenic, localization 
related, epilepsy with fronto-temporal focus in comparison to age matched healthy 
controls. We investigated to which extent patients with epilepsy show abnormal white 
matter network properties and whether these relate to cognitive impairment. 

MATERIALS AND METHODS 

Study population 
All patients were included from the tertiary referral epilepsy center Kempenhaeghe 
(Heeze, the Netherlands) and the outpatient clinic neurology of Maastricht University 
Medical Centre (Maastricht, the Netherlands). Inclusion criteria for the patients were: 
cryptogenic (i.e. non-symptomatic) localization-related epilepsy with a temporal 
and/or frontal epileptic focus, no history of status epilepticus and no other underlying 
disease that could possibly cause cognitive decline. Healthy controls were family 
members and acquaintances of the patients without a history of brain injury or 
cognitive problems. Thirty-nine patients (19 males, age 40±12y) and 23 age-matched 
healthy controls (9 males, age 40±13y) were included. Post-hoc analysis confirmed 
that the patient and healthy control group did not differ in age (t-test, p=0.65) or 
group composition of gender (Chi-square, p=0.48). All subjects underwent a full 
intelligence (FS-IQ) assessment with the Wechsler Adult Intelligence Scale (WAIS-III) 
(Wechsler, 1997). Patients were considered to be either cognitively impaired or 
unimpaired based on an estimation of their pre-morbid IQ (Schoenberg et al., 2002).  
An estimate of pre-morbid intelligence levels was made according to the formula 
proposed by Schoenberg et al. (Schoenberg et al., 2002), which is based on the 
observation that the subtests Vocabulary, Information, Matrix Reasoning, and Picture 
Completion are relatively resistant to neurological insult (Wechsler, 1997). Intelligence 
discrepancy scores were calculated by subtracting pre-morbid and full-scale IQ (FSIQ) 
scores. Patients with a difference between FS-IQ and pre-morbid IQ lower than any 
differences recorded in the healthy control group were categorized as cognitively 
impaired. This resulted in a subgroup of n=7 (4 males) cognitively impaired patients. 
This subgroup had comparable age (41±10y) to the healthy control and non-impaired 
groups. Patient and epilepsy characteristics, including drug load, seizure frequency 
and age at onset were collected as described in (Vlooswijk et al., 2010). An overview 
of the study population is given in Table 4.1. 



 White matter network abnormalities are associated with cognitive decline in chronic epilepsy81 

Table 4.1  Demographics and epilepsy parameters. Notation : mean (standard deviation). 
 

  
Controls  

(n=23) 
Non-impaired patients 

(n=32) 
Impaired patients 

(n=7) 

Gender (M/F) 9/14 15/17 4/3 

Age (yr) 40.4 (13.5) 40.8 (13.1) 41.8 (9.8) 

FS-IQ 113.2 (15.0) 97.6 (15.5) 85.2 (5.9) 

IQ discrepancy -3.6 (8.8) -6.5 (5.3) -17.8 (2.8) 

Age at onset (yr) n/a 23.1 (14.1) 23.8 (14.2) 

Duration of epilepsy (yr) n/a 17.6 (11.5) 18.0 (10.7) 

Drug load n/a 1.64 (1.07) 1.98 (0.70) 
FS-IQ = Full-Scale Intelligence Quotient. n/a = not applicable 

Image analysis 
Diffusion Tensor Imaging (DTI) measurements were performed in all subjects on a 3 
Tesla MRI system (Philips Medical Systems, Achieva). Acquisition parameters for DTI 
were: 52 contiguous 2-mm thick slices, matrix size 96 x 96, pixel size 2 x 2 mm, TE 62 
ms and TR 6600 ms. Images were obtained along 15 non-collinear diffusion directions 
with a b-value of 800 s/mm2; one b=0 s/mm2 image was acquired. Anatomic reference 
images were acquired by a T1 weighted 3D-fast gradient echo sequence (Jeukens et 
al., 2009). 
Each data set was spatially co-registered to the b=0 image with an affine 
transformation to correct for head motion and eddy-current distortions utilizing 
CATNAP (Co-registration, Adjustment, and Tensor-solving, a Nicely Automated 
Program, version 1.3) software (Farrell et al., 2007). The set of gradient vectors was 
adjusted according to the rotation of the individual images. 

Whole brain white matter volume 
As our network parameters are based on fiber tract volume, we also investigated 
group differences in white matter volume and the relation between white matter 
volume relative to total intracranial volume and FS-IQ. White matter volumes were 
obtained from a probabilistic tissue segmentation on the subjects’ T1-weighted 
images (Zhang et al., 2001). 

Region definition 
The Automatic Anatomical Labeling (AAL) atlas was used to define N=90 cortical and 
sub-cortical regions (Tzourio-Mazoyer et al., 2002). The AAL volumes of interest (VOI) 
were then transformed to DTI space of every individual, by first applying a nonlinear 
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transformation between standard space and T1 space followed by an affine 
transformation from T1 space to DTI space (Ashburner and Friston, 1999).  

Tractography 

Probabilistic tractography was performed in original DTI space according to previously 
described methods (Parker et al., 2003) using the CAMINO toolbox (Cook et al., 2006). 
The Probabilistic Index of Connectivity (PICo) algorithm was used to apply the fiber 
tracking from the defined VOIs in the original space. This method models uncertainty, 
due to noise or crossing of fibers, in fiber orientation with probability density 
functions (PDFs). This method is based on streamline tractography, but incorporates 
Monte Carlo sampling methods to generate maps of connection probabilities from 
selected seed regions. Tracts were terminated when a curvature threshold of 60◦ over 
one voxel was encountered (Toosy et al., 2004). Tractography was performed in 
original DTI space. 
For all subjects, an individual cerebrum mask was created by applying the Brain 
Extraction Tool (Smith, 2002) on the b=0 diffusion image. This mask was used to limit 
the tractography to within the cerebrum. Only voxels on the boundary of the grey-
white matter interface were used for initiating tractography. Using the T1 tissue 
segmentation, the grey-white matter boundary was defined by selecting voxels where 
the joint tissue probability (T) for grey and white matter was above a certain threshold 
(T>0.2) (Vaessen et al., 2010). The results were transformed from the subjects’ T1-
weighted image space to diffusion image space, using a rigid body transformation 
(Smith et al., 2004). One thousand tracts were initiated from each voxel, leading to an 
average of 23 million tracts per brain. Subsequently, for each pair of regions, the 
subset of tracts connecting these two regions were identified from the set of tracts of 
the whole brain tractography. As an additional noise filter, voxels that were traversed 
by fewer than 50 tracts were eliminated from the analysis. Exploratory analysis 
revealed that voxels with <50 tracts (i.e. <5% of the number of streamlines generated 
per seed voxel) were widespread throughout the brain and often did not seem to 
represent plausible anatomical connectivity and were therefore considered noise. 

Network construction 
Structural connection strengths between two regions i and j were obtained by 
calculating the total volume of the voxels within the fiber tracts connecting those 
regions and scaling these by the total intracranial volume. This scaling is necessary 
because total brain volume is a confounder for measures based upon tract volume. 
Another plausible option would be to correct for the total volume traversed by the 
generated fiber tracts. However, an additional analysis revealed that these two 
measures are strongly correlated (Peason’s r=0.99), yielding nearly equal corrections. 
The connection matrix A was formed by calculating the structural connection strength 
between all pairs of brain regions. The matrix A is a numerical representation of a 
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graph (G), which is an abstract data structure, consisting of nodes connected by 
edges. In the graph, a node is related to a brain region and represents a row or 
column in the connection matrix. An edge in the graph is a connection between brain 
areas i and j (Ai,j).  
The total number of edges (K), regardless of weight, found in each individual subject 
was investigated for group differences and associations with FS-IQ. We also 
investigated all connections of the connectivity matrices for group differences in edge-
weights (tract volume) and for associations with FS-IQ. 

Graph theoretical analysis  

Graph theoretical network analysis was used to investigate whether the brain 
structural network parameters differed between epilepsy patients and the healthy 
control group and for possible correlations with cognition and epilepsy parameters.  
Critically, as the number of edges in a network is a strong confounder for subsequent 
network parameters, it is best to compare networks where the number of edges is 
kept constant over subjects (van Wijk et al., 2010). Moreover, with tractography the 
presence or absence of a fiber tract might be hard to interpret, especially when the 
presence varies from subject to subject. Therefore we chose the following approach: 
only fiber tracts that were found in every subject were allowed as edges in the final 
connectivity matrices. As a result all individuals had exactly the same set of edges in 
their networks. The use of a fixed set of edges implies that any differences in network 
parameters between subjects are solely due to differences in edge weights as 
opposed to differences in binary connectivity patterns per se. 
The graph theoretical parameters weighted characteristic path length (L) and 
weighted cluster coefficient (C) were calculated to perform analysis on the 
constructed volume weighted brain graphs. The weighted characteristic path length 
(Rubinov and Sporns, 2010) is defined as the average of the shortest paths connecting 
any two nodes in the graph: 

𝐿 =  1
𝑁(𝑁−1)

∑ 𝑤𝑖 ,𝑗𝑖 ,𝑗∈𝐺,𝑖≠𝑗 ,   (1) 

where 𝑤𝑖,𝑗  is the sum of weights (i.e. tract volume) of the shortest weighted path 
between nodes i and j. The characteristic path length is a measure of how well 
connected a network is. In an un-weighted graph, a small characteristic path length 
indicates that, on average, any two nodes are connected through only a few edges. In 
the case of a volume weighted network a larger tract volume will decrease the 
distance (i.e. the connection strength) between two nodes, and thus a short path 
length indicates that, on average, any two nodes are connected by one or several 
large fibers bundles. The weighted cluster coefficient (Onnela et al., 2005) is defined 
as: 

𝐶 = 1
𝑁

 ∑
∑ �𝐴𝑖,𝑗𝐴𝑗,𝑚𝐴𝑚,𝑖�

1/3
𝑗,𝑚

𝑘𝑖(𝑘1−1)𝑖 .  (2) 
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The (un-weighted) cluster coefficient of a network is a measure of cliqueness, i.e. sets 
of nodes that are highly interconnected. For a volume weighted graph, the cluster 
coefficient is high when the direct neighbors of a node are also interconnected and 
have relatively large tract volumes.  
Network parameters were calculated with routines from the brain connectivity 
toolbox (Rubinov and Sporns, 2009). The entire processing pipeline is visualized in 
Figure 4.1. 
The weighted graph metrics are in part dependent on the average weight of the 
connectivity matrix. Therefore, the mean matrix weight was tested for group 
differences and associations with FS-IQ and the graph metrics were tested with and 
without adjustment for average matrix weight. 

Statistics 

Group differences in parameters were tested using a Student’s t-test, associations 
between network parameters, connections and other subject related variables were 
tested with Pearson’s correlation coefficient and partial correlation coefficients. 

RESULTS 

Whole brain white matter volume  
The FS-IQ of the impaired patient group (mean±SD, 85.2±6.0) was significantly lower 
compared to the healthy control group (113.2±15.0, p<0.001) and the non-impaired 
patient group (97.6±15.6, p<0.05). The non-impaired patient group had significantly 
lower FS-IQ compared to the control group (p<0.001), see Table 4.1. 
White matter volumes (as a fraction of total intracranial volume) did not differ 
significantly between the impaired patient group (0.47l±0.05), the healthy control 
(0.48l±0.06, p=0.73) and the non-impaired patient group (0.46l±0.10, p=0.78). White 
matter volume was significantly correlated with C (r=-0.39, p<0.02) and L (r=0.46, 
p<0.005). No association was found between whole brain white matter volume and 
FS-IQ (p=0.85) in the entire patient group (the non-impaired plus the impaired patient 
group). 
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Number of connections and fiber bundle volume 

We found a lower number of reconstructed fiber tracts for the impaired patient group 
compared to the healthy control group (p<0.01) and the non-impaired patient group 
(p<0.04), see Figure 4.2A. The number of edges (K) was found to be positively 
correlated with FS-IQ in the patient group (r=0.41, p<0.009). 
Edges showing differences in volume between the different patient groups (at p<0.05, 
uncorrected) were widespread throughout the brain as shown in Figure 4.3. Almost all 
tracts volumes were smaller for the patient groups. Critically, none of these 
differences remained significant after FDR (q=0.05) correction for multiple 
comparisons (Benjamini and Hochberg, 1995).  
The correlation analysis of each fiber tract with FS-IQ in the entire patient group 
revealed a number of significant correlations (p<0.001, uncorrected) of edges mainly 
in the left hemisphere, as shown in Figure 3D. These correlations were no longer 
significant after FDR (q=0.05) correction for multiple comparisons. 
The mean matrix weight was slightly lower in the non impaired patient group 
(305±53) relative to the healthy control group (322±39, n.s.), and even further 
decreased for the impaired patient group (269±42, p=0.01). Mean matrix weight was 
positively correlated with FS-IQ in the entire patient group (r=0.39, p<0.02). 

Network analysis 
The final networks consisted of 90 cortical and sub-cortical regions with 1224 edges 
per subject. The weighted cluster coefficient was significantly lower for the impaired 
patient group (0.0153±0.0023) compared to the healthy control group 
(0.0182±0.0032, p<0.04) and the non-impaired group (0.0180±0.0029, p<0.02), see 
Figure 4.2B. For the path length, the impaired patient group (69.7±10.1) had 
significantly higher values compared to the healthy control group (60.9±10.0, p<0.05) 
and the non-impaired group (63.3±9.6, p<0.04), see Figure 4.2C. 
Correlation analyses between C, L, IQ, pre-morbid IQ and IQ discrepancy were 
performed in the entire patient group, with and without correction for age and 
gender. Figure 4.4 shows an overview of the tested variables. Age was found to be 
predictive for both C and L. An increase in age was associated with a decrease in C (r=-
0.40, p<0.01) and an increase in L (r=0.33, p<0.04). 
Weighted cluster coefficient C was positively associated with FS-IQ when corrected for 
age and gender (r=0.58, p<0.001), this was also significant without corrections (r=0.39, 
p<0.016). Path length was significantly and negatively associated with FS-IQ when 
corrected for age and gender (r=-0.57, p<0.001), and was also significant without 
corrections (r=-0.40, p<0.011). When also correcting for mean matrix weight in 
addition to age and gender, C was still correlated with FS-IQ (r=0.40, p=0.01) as was L 
(r=-0.41, p=0.01). 
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Figure 4.2  Between group comparison of network parameters. (A) Number of edges of the un-

thresholded networks, (B) weighted cluster coefficient and (C) weighted path length of the 
thresholded networks in epilepsy patients with and without cognitive impairment and healthy 
controls. Error bars indicate the standard error of the mean. Asterisk denote a significant 
difference (p<0.05). 
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Figure 4.3  Analysis of individual tract volumes. (A) Group differences in tract volume between the 

healthy control group and the impaired patient group, (B) the non-impaired patient group and 
the impaired patient group and (C)  the healthy control and non-impaired group. Blue-colored 
lines relate to population average volume weighted structural network. Edge thickness relates 
to volume of the tract (thick line represents larger tract volume). Red and green edges 
indicate group differences as indicated in the sub panels. Dots denote the center locations of 
brain regions. (D) Correlation of FSIQ with tract volume.  Edge thickness relates to volume of 
the tract (thick line represents larger tract volume of connection strength). Thick green-
colored edges are significantly correlated with FSIQ in the entire patient group (p<0.01, 
uncorrected). 
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Figure 4.4  Correlation diagrams. (A) Schematic diagram showing the investigated correlations without 

correction for age and gender in the entire patient group. (B) Partial correlations between 
variables of interest in the entire patient group with correction  for age and gender. 

 
The IQ discrepancy score, was also found to be positively associated with C (r=0.37, 
p<0.03) and a trend for negative association with L (r=-0.31, p<0.07) was found, while 
correcting for age and gender. A positive IQ discrepancy (no intellectual decline) was 
associated with a higher C. 
In the healthy control group, neither FS-IQ nor IQ discrepancy was significantly 
correlated with C and L. 
Drug load was negatively associated with C (r=-0.34, p<0.04) and trend for a positive 
association with L (r=0.30, p=0.08) was found. We also tested for an association 
between C and L and total number of partial seizures, total number of secondarily 
generalized seizures and duration of epilepsy, although none of these associations 
were significant when controlling for age and gender. Table 4.2 and Figure 4.5 display 
the correlation results. 
 
Table 4.2  Partial correlation table with corrections for age and gender. 
 

Network parameter K C L 

Correlation coefficient (r)     

FS-IQ 0.51** 0.58*** -0.57*** 

IQ discrepancy 0.35** 0.37** -0.31* 

Drug load -0.32* -0.34** 0.30* 

SGS count -0.01 -0.01 -0.01 

PS count -0.06 -0.24 0.18 

Duration of epilepsy -0.32* -0.20 0.12 
*** p<0.001, ** p<0.05, * p<0.1  
K = number of edges, C = weighted cluster coefficient, L = weighted path length, SGS = Secondarily 
Generalized Seizures, PS = Partial seizures. 
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Figure 4.5  Correlation plots. (A) Plot showing correlation between full  IQ (FS-IQ) and weighted clustering 

coefficient (C), for the patient group (black dots, solid regression line) and healthy controls 
(open dots, dashed regression line). (B) C versus IQ discrepancy. (C) Path length (L) versus FS-
IQ. (D) L versus IQ discrepancy. 

DISCUSSION 

Main findings 
This study was performed to find abnormalities in white matter network organization 
in patients with cryptogenic localization related epilepsy that may explain the 
associated cognitive decline in comparison to healthy controls. A number of novel 
observations were obtained regarding the axonal organization of white matter in 
relation to cognitive impairment in chronic epilepsy. First, epilepsy patients with 
cognitive impairment displayed less efficient white matter network properties in the 
form of a lower weighted clustering and a higher weighted mean path length 
compared to epilepsy patients without cognitive impairment and healthy controls. No 
differences in whole brain white matter volumes were noticed. Second, in the entire 
patient group, a decreased weighted cluster coefficient and increased weighted path 
length were strongly correlated with lower FS-IQ and stronger IQ discrepancy. 
Controlling for age and gender did not affect this observation. Third, whole brain 
white matter in itself was not correlated with FS-IQ or IQ discrepancy, although 
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significant correlations between total white matter volume and network parameters 
were found. 

White matter correlates of cognitive impairment 

The weighted clustering coefficient and weighted path length were significantly 
different in the cognitively impaired patient group compared to both the unimpaired 
patient and healthy control group. A lower weighted clustering indicates that local 
brain regions are mutually weaker interconnected and a higher weighted path length 
refers to a less globally connected brain in the sense that more distal brain regions are 
less efficiently connected. As the clustering was lower and the path length was higher 
for cognitively impaired patients the networks can be interpreted as less efficiently 
organized. The observation that the white matter organization rather than the white 
matter volume appears to be disrupted is a novel finding in epilepsy. The origin of this 
finding remains unknown, although different mechanisms could lead to less efficient 
networks, for instance subtle alterations in tract volumes due to atrophy and 
transneuronal degeneration (Kodama et al., 2003; Beirowski et al., 2005) or 
compensatory mechanisms (Schlaug et al., 2009). Additionally, patients with 
cryptogenic localization-related epilepsies might have a diffuse underlying pathology 
such as cortical dysplasia type I or microdysgenesis (Sisodiya, 2004). Although 
undetected at 3T, these are real anatomical disorders, and could also explain the poor 
connectivity and intellectual impairment as much as the epilepsy itself. 
Previously, macro-structural abnormalities in grey and white matter volumes were 
reported in epilepsy (Seidenberg et al., 2005). For instance, Hermann et al (Hermann 
et al., 2010) reports abnormal white matter development in children with new onset 
epilepsy and Focke et al. (Focke et al., 2008a) showed that grey matter volume was 
associated with cognitive scores in TLE patients with hippocampal sclerosis, although 
these changes did not reside in narrowly circumscribed brain regions. Local macro-
structural WM lesions have been shown not to be associated with cognitive 
impairment in chronic epilepsy (Jansen et al., 2008). Micro-structural white matter 
abnormalities have also been found (Focke et al., 2008b; Meng et al., 2010). 
Additionally, diffusion indices were found to be correlated with various cognitive 
scores (Riley et al., 2010). The above mentioned studies were focused on finding 
regions in which indices of local white matter fiber integrity were abnormal. However, 
they have not investigated axonal connectivity per se. In Powel et al. (Powell et al., 
2007) and Yogarajah et al. (Yogarajah et al., 2008) tractography was used to study 
axonal connectivity more directly. Tract volume and tract FA were used to study 
specific temporal and frontal lobe white matter tracts. Their results showed reduced 
volume and FA in the ipsilateral hemisphere (mainly in the left TLE compared with the 
control group), while an increase was seen in the contralateral hemisphere. In 
addition, Yogarajah et al. (Yogarajah et al., 2008) found an association between these 
white matter alterations and decreased memory scores. Both studies provide 
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evidence for reorganization of white matter connections in TLE, and support our 
findings that white matter connectivity alterations might underlie cognitive 
impairments in patients with cryptogenic localization related epilepsy. However, our 
study provides a more complete picture of white matter disruption, as altered whole 
brain network properties were observed as opposed to disruptions in a predefined set 
of connections. 
Cerebral network properties have previously been studied in healthy subjects with 
fiber tractography (Hagmann et al., 2008; Gong et al., 2009) of which the properties 
have been linked to gender and brain size (Yan et al., 2010), age and development 
(Hagmann et al., 2010) and intelligence (Li et al., 2009). Our finding that age, gender, 
and brain size are related to structural network properties is in agreement with these 
studies. Furthermore, our results concur with those of Li et al. (Li et al., 2009), who 
also found a negative correlation between FS-IQ and path length. Li et al. (Li et al., 
2009) also found a positive correlation between C and FS-IQ, although this was not 
significant. These results support the notion that network efficiency and cognitive 
performance are related (Bosma et al., 2009; Li et al., 2009; van den Heuvel et al., 
2009), and could imply that in vivo measurements of brain network efficiency provide 
a more sensitive marker for cognitive decline at an early stage. 

Clinical perspective 
For future cognitive prognosis of patients with epilepsy it would be clinically relevant 
to know whether patients are prone to developing cognitive impairment. The 
presented method of DTI combined with graph theoretical network analysis has the 
potential to discern patients with increased vulnerability for cognitive impairment on 
the basis of inefficient network parameters (i.e. low clustering and/or high path 
length). The high reproducibility (Vaessen et al., 2010; Bassett et al., 2011) of the 
imaging technique in combination with the calculated network parameters could 
make this imaging method a promising adjunctive tool in the clinical diagnosis of 
cognitive co-morbidity in epilepsy and may influence clinical therapeutic decision 
making. DTI does not require any cognitive task performance during scanning and is 
therefore more applicable in patients with severe cognitive problems. 

Methodological considerations 
We used a DTI acquisition with 15 gradient directions at b=800 s/mm2. An important 
question is whether a different acquisition scheme with higher angular resolution and 
different b-values (Hagmann et al., 2010) will influence the results. Recent studies on 
the effects of different acquisition schemes on graph metrics (Vaessen et al., 2010; 
Zalesky et al., 2010b) revealed that the effect of angular resolution and b-value was 
small, in healthy volunteers. We expect therefore no strong effects in our study 
population without macroscopic lesions, but future studies might address the issue of 
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how various DWI acquisition schemes influence group differences and effects in a 
clinical population.  
The main emphasis of this study was on connectivity of the cerebral cortex through 
the white matter. This requires the tracking algorithm to reach parts of the brain close 
to the grey matter. Therefore, we used probabilistic fiber tracking in combination with 
a liberal curvature threshold of 60 degrees (calculated over the length of a voxel). 
The AAL template defines regions with a variety of different sizes, which may bias 
certain nodal measurements such as node degree. An additional analysis was 
performed to check whether correcting connection weights for region size would alter 
the results. As expected, correction for region size did not have a large effect (see 
Supplementary data). 
An overall lower number of fiber tracts was found in the impaired patient group 
compared to the healthy control and unimpaired patient group. These results cannot 
be interpreted unambiguously as the current state of technology does not allow to 
infer whether a missing fiber tract is actually anatomically non-existing or could not be 
reconstructed as a result of algorithm or data features. Furthermore, the number of 
edges in a network is a strong confounder for subsequent network parameters (van 
Wijk et al., 2010). Therefore, a network was constructed with edges that could be 
reliably found within every subject. It is likely that relevant pathological information 
exist in the edges removed from the final network analysis, since the number of edges 
was lower in the cognitively impaired patient group compared to the unimpaired and 
healthy control group and this number was associated with FS-IQ in the whole patient 
group. That, even after such stringent data filtering, we can still observe strong and 
significant differences in network parameters, shows the robustness of the current 
approach. 
Tract volume was used to weight the edges in the calculation of the connection matrix 
and consequently the network measures C and L. Other indices of tract integrity, such 
as fractional anisotropy, mean diffusivity, level of myelination and the number of 
reconstructed fibers have previously been applied (Gong et al., 2009; Li et al., 2009; 
Hagmann et al., 2010; van den Heuvel et al., 2010). Currently, no consensus prevails 
which weighting method describes best the fiber tract integrity or is most sensitive to 
pathological effects. To test the robustness of our results, we also constructed 
network weighted by fractional anisotropy (FA) and mean diffusivity (MD) values. The 
results of those networks were comparable with those of the presented volume 
networks (see Supplementary data). 
The statistical tests with graph metrics were not corrected for multiple comparisons, 
as our two main study objectives were to investigate whether graph metrics would 
differ between the studied groups and would show a correlation with cognitive 
scores. Other analyses (such as a relation between graph metrics and epilepsy related 
variables) were of a more explanatory nature. Future studies with a larger number of 
subjects and more specific hypothesis might benefit from a proper multiple 
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comparisons correction that needs to be tailored specifically to network data (Zalesky 
et al., 2010a). 

CONCLUSIONS 

The application of graph theoretical analysis on whole brain diffusion tensor imaging 
data enabled the detection of loss of axonal network organization in the white matter 
in cognitively impaired patients with cryptogenic localization related epilepsy. Here, 
deviations in network organization appear to be sensitive to cognitive decline even in 
patients without MRI-visible lesions. More specifically, it is not the total volume of the 
white matter that has changed, but the network organization of the white matter, in 
terms of relative volume contributions of multiple white matter fiber bundles, that is 
affected in cognitively impaired patients with epilepsy. 
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SUPPLEMENTARY DATA 

FA, MD and stream count weighted networks 
Tract volume was used to weight the edges in the calculation of the connection matrix 
and consequently the network measures C and L. White matter fiber tract volumes 
derived from tractography have previously been used in several contexts. In (Powell et 
al., 2007) and (Yogarajah et al., 2008) tract volume and tract FA are used to study 
specific temporal and frontal lobe white matter tracts. Their results show reduced 
volume and FA in the ipsi-lateral hemisphere (mainly in the left TLE compared with 
the control group), while the opposite was seen in the contra-lateral hemisphere. In 
other domains than epilepsy, tract volume has also been used to study white matter 
properties. In (Glasser and Rilling, 2008), tract volume was used to study asymmetry 
of language pathways. In (Thomas et al., 2008), tract volume was used to study the 
relationship between age and a decline in face perception. Together, these studies 
indicate that tract volume indeed is a sensitive measure to study variations in white 
matter connectivity for a broad range of topics. 
Other indices of tract integrity, such as fractional anisotropy, mean diffusivity, level of 
myelination and the number of reconstructed fibers have previously been applied 
(Gong et al., 2009; Li et al., 2009; Hagmann et al., 2010; van den Heuvel et al., 2010). 
Currently no consensus prevails which weighting method describes best the fiber tract 
integrity or is most sensitive to pathological effects. 
To test the robustness of our results, we also constructed network weighted by 
fractional anisotropy (FA), mean diffusivity (MD) values and number of reconstructed 
fibers. The mean of the FA or 1/MD voxel values of a tract were used as weight. For 
the number of reconstructed fibers weighting, the number of streamlines connection 
two regions was counted (streamline count, SC). Connectivity matrices were divided 
by the mean weight of all connections prior to network parameters calculation. 
Results of correlation and partial correlation with FSIQ, etc are shown in Table S.4.1. 
 
Figure S.4.1 Results of the different weighting schemes. 
 

  LFA CFA LMD CMD LSC CSC 

Partial correlation 
correcting for age & 
gender 

FS-IQ -0.25 0.35** -0.25 0.31* -0.06 0.39** 

Pearson's correlation FS-IQ -0.27* 0.36** -0.27* 0.35** 0.25 0.07 

**p<0.05, *p<=0.1 
      LFA = weighted path length for the FA weighted network, CFA = weighted cluster coefficient for the FA 

weighted network. The same convention holds for LMD, CMD, LSC, CSC. SC = streamline count. 
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As can be seen from Table S.4.1, the results of the FA, MD and SC weighted networks 
were comparable with those of the presented volume networks. Lower FA values and 
lower 1/MD values are normally associated with impaired white matter integrity. For 
tract volume, one can hypothesize that a reduced tract volume is related to some sort 
of WM damage. It is important to note that FA or MD values are not necessarily 
correlated with tract volume. A large tract might traverse an area within the deep 
with matter (with relatively high FA). Similarly, a small tract might traverse closer to 
the GM (usually with lower FA values, for instance u-shaped fibers), but just as well 
traverse the deep white matter (relatively high FA, for instance the optic radiation). 
Still, changes between subjects should have the same direction (e.g. lower FA, lower # 
of fibers and lower volume in a damaged tract). Therefore, we would expect network 
changes to also show the same effect between the different weighting schemes, 
which is precisely what we observed. 

Correction for VOI size 
The AAL template defines regions with very different sizes, which may bias certain 
nodal measurements such as node degree. An additional analysis was performed to 
check whether correcting connection weights for region size would alter the results.  
Table S.4.2 displays the differences in partial correlation with FSIQ for the connectivity 
matrices with and without correction for VOI size (the volume of each tract was 
divided by ICV and by the mean volume of the VOI’s connected by the tract). As 
expected, correction for region size did not have a large effect. 
 
Figure S.4.2 Results of the different weighting schemes. correlation of C and L with FS-IQ of the volume 

weighted networks, with and without correction for region size. 
 

 C volume weighted 

network 

L volume weighted 

network 

C volume weighted 

network, corrected for 

region size 

L volume weighted 

network, corrected 

for region size 

FS-IQ r=0.58, p<0.001 r=-0.57, p<0.001 r=0.44, p<0.007 r=-0.44, p<0.007 
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ABSTRACT 

Many children with frontal lobe epilepsy (FLE) have significant cognitive co-morbidity, 
for which the underlying mechanism has not yet been unravelled, but is likely related 
to disturbed cerebral network integrity. Using resting-state fMRI we investigated 
whether cerebral network characteristics are associated with epilepsy and cognitive 
co-morbidity. 
We included 37 children with FLE and 41 healthy age-matched controls. Cognitive 
performance was determined by means of a computerized visual searching task 
(CVST). A connectivity matrix for 82 cortical and subcortical brain regions was 
generated for each subject by calculating the inter-regional correlation of the fMRI 
time-signals. From the connectivity matrix graph metrics were calculated and the 
anatomical configuration of aberrant connections and modular organisation was 
investigated. 
Both patients and controls displayed efficiently organized networks. However, FLE 
patients displayed a higher modularity, implying that sub-networks are less inter-
connected. Impaired cognition was associated with higher modularity scores and 
abnormal modular organization of the brain, which was mainly expressed as a 
decrease of long-range and an increase of inter-hemispheric connectivity in 
patients.We show that network modularity analysis provides a sensitive marker for 
cognitive impairment in FLE and suggest that abnormally interconnected functional 
sub-networks of the brain might underlie the cognitive problems in children with FLE. 
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INTRODUCTION 

Frontal lobe epilepsy (FLE) is considered the second most common type of the 
localization-related (partial) epilepsies of childhood, after temporal lobe epilepsy, and 
accounts for 20–30% of partial epilepsies (Manford et al., 1992). Pediatric FLE is 
frequently complicated by cognitive impairment and behavioral disturbances. FLE 
impacts a broad scale of cognitive domains, broader than the typical frontal functions 
(Centeno et al., 2010; Braakman et al., 2011). In children with FLE, the learning 
difficulties may even precede seizure onset, suggesting a nontrivial relation between 
seizures and cognitive problems, which has not been unraveled thus far (Prevost et 
al., 2006; Patrikelis et al., 2009). 
The broad scale of affected cognitive domains hints at a network disturbance, rather 
than disturbance of localized processes. In line with this suggestion, conventional 
structural MRI studies have not shown an anatomical substrate for the neuronal 
mechanisms leading to cognitive impairment in FLE (Harvey et al., 1993; Laskowitz et 
al., 1995; Lorenzo et al., 1995; Provini et al., 1999; Lawson et al., 2002). To resolve 
this, functional MRI techniques may prove novel and valuable insights. Resting-state 
fMRI (RS-fMRI) is a functional imaging technique that may be useful in understanding 
the neuronal mechanisms behind cognitive co-morbidity in neurological disorders (Fox 
and Raichle, 2007). RS-fMRI enables the investigation of the intrinsic functional 
organization of the brain, in contrast to the cerebral effect of tasks executed by 
subjects. This intrinsic functional organization is called “functional connectivity”, 
which is defined by the temporal correlation of neuronal activity-induced patterns of 
anatomically different brain regions (Friston, 1994; Van den Heuvel and Hulshoff Pol, 
2010). Previous studies have demonstrated disturbances in functional connectivity 
networks in the brains of adult epilepsy patients (Waites et al., 2006; Bettus et al., 
2009; Liao et al., 2010; Pereira et al., 2010; Vlooswijk et al., 2010; Pravata et al., 2011; 
Vlooswijk et al., 2011). These studies focused on local connectivity abnormalities, i.e. 
only a few regions of the brain were analysed or considered as a reference. Given the 
heterogeneous expression of cognitive deficits in FLE (Braakman et al., 2011), it is 
advantageous to investigate the whole brain network. In mathematical terms, the 
brain can be modeled as a system consisting of nodes (brain regions) and edges 
(connections) between them. The strength of a connection is then quantified by the 
degree of correlation of the dynamic fluctuations between a pair of nodes, i.e. brain 
regions. An elegant way to understand and quantify the organization of this system of 
nodes and edges is to calculate graph theoretical metrics of the whole brain network 
(Rubinov and Sporns, 2010). Metrics that provide information on the amount of 
integration and segregation over the entire brain are path length and clustering. In 
addition to whole brain network organization,  graph theoretical metrics can also 
describe the interconnection of sub-networks in the whole brain network by 
modularity analysis (Newman, 2006), see Table 5.1 for a detailed description. The 
modular structure of the brain network is thought to be important for cognitive 
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abilities as increases in coherent activity between functional systems might facilitate 
information integration (van den Heuvel et al., 2009) and adaptive behavior (Power et 
al., 2010).  
Based on the hypotheses that children with FLE have an abnormal brain organization 
caused by interference of epilepsy with normal development and that this 
organization may affect cognitive function, we have analyzed cerebral functional 
connectivity of children with FLE in correlation to their cognitive performance using 
graph theoretical network parameters. 
 
Table 5.1  Partial correlation table with corrections for age and gender. 

 
Measure Interpretation 
Binary characteristic path length 
 

𝐿𝑏 =
1
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Characteristic path length is defined as the average 
geodesic distance, in number of edges, connecting any two 
nodes in the graph, where di,j is the length of the shortest 
path between nodes i and j. The characteristic path length 
is a measure of how well connected a network is. Small 
characteristic path length indicates an average short 
distance between any two nodes, i .e. they can be reached 
through a small number of steps. 
 

Weighted characteristic path length 
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The weighted characteristic path length is defined as the 
average of the shortest paths connecting any two nodes in 
the graph, where wi,j  is the sum of weights of the shortest 
weighted path between nodes i and j. The characteristic 
path length is a measure of how well connected a network 
is. In the case of a weighted network higher connectivity 
strength will  decrease the distance between two nodes, 
and thus a short path length indicates that, on average, 
any two nodes are connected by one or several strong 
connections. 
 

Binary clustering coefficient 
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The cluster coefficient is defined as the number of edges 
connecting the neighbours of a node divided by the 
maximum number of edges possible between 
neighbouring nodes. The cluster coefficient of a network is 
a measure of how many local clusters exist in the network. 
A high cluster coefficient indicates that the neighbours of a 
node are often also directly connected to each other, i .e. 
they for m a cluster. 
 

Weighted clustering coefficient 
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For a weighted graph, the cluster coefficient is high when 
the direct neighbors of a node are also interconnected and 
have relatively high connectivity strengths. 

Modularity 
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The modularity score Q quantifies the degree to which a 
network can be divided in non-overlapping groups. The 
membership of node i with a module is mi. Hence, 
δ(mi,mj)=1 when two nodes i and j  are in the same module 
and 0 otherwise. 
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METHODS 

Participants 
Patients with FLE were selected from our reference clinic database and were actively 
contacted. Inclusion criteria for the patients were: a confirmed cryptogenic (i.e., 
presumed to be symptomatic, but with unknown aetiology) localization-related 
epilepsy with an epileptic focus in the frontal lobe, aged between 8 and 13 years, no 
other disease that could cause cognitive impairment, and no history of brain injury. 
Healthy age-matched controls were recruited by advertisements in local newspapers. 
Inclusion criteria were no history of brain injury or cognitive problems and visiting 
regular education. All subjects and parents gave written informed consent and 
approval for the study by the local Medical Ethical Committee was obtained. 

Neuropsychological assessment 
Cognitive performance was measured using a computerized visual searching task 
(CVST) (Aldenkamp et al., 2004). This task consists of finding a grid pattern out of 24 
patterns which matches the one in the centre of the screen. Grid patterns are 
displayed in a checkerboard fashion and are numbered from 1 to 24. The target 
pattern is marked by an arrow on the right side and is selected by typing the correct 
number on the keyboard. Twenty different target patterns are presented. After 12 
presentations the surrounding grids change. The testee is asked to respond as fast as 
possible. Results show accuracy and speed of responses and are evaluated within the 
context of visual (complex) information processing and perceptual mental strategies. 
The most important variable indicating efficient information processing is the average 
reaction time. 
By determining the average reaction time and the errors being made during the task, 
an age-corrected cognitive performance score was generated (decile score). After 
grouping these scores into numbers from 1 (worst score) to 10 (best score), the 3 
worst performance scores (1, 2 and 3) were considered a manifestation of impaired 
cognitive performance, while other scores were considered normal or good. 

Image acquisition 
MRI was performed on a 3.0-Tesla unit equipped with an 8-channel head coil (Philips 
Achieva, Philips Medical Systems, Best, The Netherlands). Functional MRI data were 
acquired using a whole-brain single-shot multi-slice echo-planar imaging (EPI) 
sequence sensitive to the blood oxygen level-dependent (BOLD) effect, with TR 2 s, TE 
35 ms, flip angle 90°, pixel size 2x2 mm2, 32 contiguous 4-mm thick slices per volume, 
195 volumes per acquisition, and an acceleration factor (SENSE) of 1.5. For anatomic 
reference, a T1-weigthed 3D fast field echo was acquired with the following 
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parameters: repetition time (TR) 8.1 ms, echo time (TE) 3.7 ms, flip angle 8°, field of 
view (FOV) 256x256x180 mm3 and voxel size 1x1x1 mm3. 

Network construction 

As displayed in Figure 5.1, data analysis sequentially consisted of the following 
procedures: 
(i) preprocessing of the measured fMRI time series; (ii) anatomical parcellation and 
connectivity matrix; (iii) network analysis; and (iv) statistical analysis. 

Preprocessing of time-series data 

The BOLD images were corrected for motion artifacts using SPM5 (Wellcome Trust 
Centre for Neuroimaging, UCL, London, UK) software. The images were then high-pass 
filtered with a σ of 25 scans (50 seconds) and spatially smoothed (σ = 1.7 mm) using 
FSL 4.1.7 (Oxford University, Oxford, UK) software. Subsequently, the CSF and whole 
brain signal time course were removed from the images using standard linear 
regression. The resulting residual time-series of the cerebrum were used for further 
analysis. Lastly, the images were low-pass filtered (σ = 2 s, i.e. 1 dynamic scan interval) 
to remove high-frequency noise components. To assess possible confounding of 
motion parameters, these were compared between the groups. 

Anatomical parcellation and connectivity matrix 

Freesurfer (Martinos Center of Biomedical Imaging, Boston, US) software was used to 
segment the T1 images of each subject into 82 cortical and subcortical regions. 
Freesurfer uses a surface based alignment procedure, which might be more accurate 
than a volume based alignment of a cortical atlas (Ghosh et al., 2010). 
Using Matlab 7.6.0 (The MathWorks Inc., Natick, US), Pearson's linear correlation 
coefficients between the region-averaged time-series of all pairs of Freesurfer regions 
were computed. In this way, for each subject an 82 x 82 connectivity matrix was 
determined. This connectivity matrix included both negative and positive correlation 
values. The removal of the whole brain average time-series signal tends to shift the 
correlation distribution to a mean value that is closer to zero, thereby creating 
negative correlations even if no such correlations are initially present in the data (Van 
Dijk et al., 2010). Only positive correlations were used for further analysis. 
Additionally, low (absolute) correlation coefficients could adversely affect the results 
as they may either represent physiologically relevant signal fluctuations or just noise. 
To overcome this issue, only a pre-specified number of connections with highest 
correlation coefficients were selected and all other connections were set to zero 
(Vaessen et al., 2010). Conceptually, this thresholding procedure can be expressed as 
a sparsity value relating the connections maintained in the network to the total 
number of connections possible (Achard and Bullmore, 2007; Vlooswijk et al., 2011). 
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In the remainder of this article, results will either be presented for a particular sparsity 
value or as a function of sparsity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1  (A) T1-image based subject specific parcellation of the cortex and subcortical structures. (B) 

Mean time signals of the 82 parcellated regions are extracted from the regional signal 
fluctuations of RS-fMRI. (C) Correlation analysis is performed on each pair of time signals to 
construct a connectivity matrix for each subject. The colored squares indicate in which 
module the regions (nodes) and connections reside. (D) Modular organization of the resting 
state network in the control group. In this figure, the anatomical locations of the regions are 
indicated as black dots. The surrounding colored circles indicate in which lobe these regions 
reside. The color of the lines between regions display to what modules the connections 
belong. It is evident that some modules occupy several lobes, while other are mainly present 
within one lobe (the yellow occipital module for instance). 
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Network analysis 

Network characteristics 

For each subject, values of network metrics were calculated from the individual 
connectivity matrix. We included 3 widely-used network metrics: characteristic path 
length, clustering coefficient and modularity,  using algorithms implemented in the 
Brain Connectivity Toolbox (Rubinov and Sporns, 2010). A description of these 
parameters can be found in Table 5.1 and in Rubinov et al. (Rubinov and Sporns, 
2010). For these metrics both the binary and weighted variants were calculated. For 
the binary metrics the sparsity thresholded connectivity matrix was binarized by 
setting all edges with a correlation coefficient > 0 to the value of 1. For the weighted 
networks, the connection matrices were divided by the mean connection weight 
(mean correlation coefficient over all connections), which was also evaluated 
separately, as this can potentially influence weighted network metrics (Ginestet et al., 
2011). For the binary networks equivalent random networks were generated (Maslov 
and Sneppen, 2002; Vaessen et al., 2010). Clustering and path length from the random 
networks were compared to the measured networks to assess small-worldness (Watts 
and Strogatz, 1998). 
We compared the entire patient group with controls, the cognitively impaired 
patients with controls and the cognitively normal patients with the impaired patients. 
Between-group effects in network parameters were assessed by a two-sample (two-
tailed) t-test. 

Correlation between network metrics and cognitive performance 

Pearson's (linear) correlation coefficients were calculated between cognitive 
performance (CVST reaction time, age and decile scores) and network parameters. We 
performed this analysis for the entire subject population, as well as for the patient 
and control groups separately. 

Group modularity 

Modularity quantifies the degree to which a brain network is organized in isolated 
sub-networks. The more isolated the sub-networks are, the higher the modularity. We 
used an algorithm developed by Newman et al. (Newman, 2006) to visualize the 
modular structure of the brain. With this algorithm the brain was automatically 
subdivided into a number of modules (i.e. groups of nodes) with maximal correlation 
within and minimal correlation between the modules, creating a so-called “optimal 
community structure” (OCS) of the cerebrum. It is difficult to assess OCS at the group 
level, because the resulting number and spatial locations of the modules varies 
between subjects. For group level analysis, a group connectivity matrix was obtained 
by averaging all individual correlation matrices from a subgroup of subjects (Fair et al., 
2009). Another option is to concatenate the time series from all subjects, as is often 
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done in fMRI studies using group ICA (Filippini et al., 2009), and to subsequently 
calculate group connectivity matrices and modularity. Both options were performed, 
however interpretations of the results were similar. Therefore, only the results from 
the averaged connectivity matrices are reported here. The OCS for the group matrix 
was calculated and visualized for (i) the control group, (ii) the entire patient group and 
(iii) the group of cognitively impaired patients. 

Analysis of individual connections 
The individual elements of the connectivity matrices were tested for group 
differences. Differences between the entire patient group and the control group as 
well as differences between the cognitively impaired patient group and the control 
group were assessed by mass uni-variate (2-sided) t-tests. Due to the exploratory 
nature of this analysis, no stringent multiple comparisons methods were applied. 
Instead, a liberal significance threshold of p<0.05 was used to assess possible group 
differences. 
Furthermore, we investigated whether any aberrant connections would show a 
particular relation with the modularity analysis or would reveal an effect with 
connection length. The relation with modularity was investigated by analyzing 
whether differences would manifest as inter- or intra-modular connections. A possible 
difference in anatomical orientation was investigated by measuring the angle relative 
to a strict left-right orientation of connections. Hence, we quantified whether 
aberrant edges would be oriented in an anterior-posterior of left-right orientation, 
disregarding their inferior-superior orientation. A possible effect of connection length 
was assessed by the differences in Euclidian distance between connections that 
showed either an increase or decrease of connection strength in the entire patient 
group. 

RESULTS 

Preprocessing results 
The motion correction procedure was able to adequately correct for movement in the 
majority of the cases. The control and patient group did not differ in the amount of 
head movement; no significant differences were found in the mean, standard 
deviation and maximum of the movement parameters. Subjects were excluded when 
head movements exceeded 1.5 mm/s or 1.5 degrees/s in at least one direction. Data 
of nine patients were excluded from further analysis because of movement related 
artifacts (n=6; 2 controls, 4 patients) or EPI artifacts (n=3; 2 controls, 1 patient).  The 
final study population for analysis included 30 patients and 37 healthy controls. 
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Cognition 

Six patients did not complete the neuropsychological assessment and had no CVST 
scores. These patients are included in the group analysis, but not in the correlation 
analysis. In total, 11 FLE patients had a decile score below 4 and were considered 
cognitively impaired. Mean CVST reaction time was significantly higher in the patient 
group (N=37) (controls: 17.3 ± 6.4 s, patients: 23.8 ± 9.5 s, p<0.002).  

Between-group analysis of network parameters  
The mean matrix weight of the weighted connection matrices did not differ 
significantly between the control and patient group, nor between the control and 
impaired patient group. Network parameters were assessed over a range of sparsity 
values (0.35 to 0.75). Both patient and control networks showed small-world 
properties indicated by a high clustering compared to equivalent random networks 
(mean C = 1.82, range 1.19-4.65) and a path length comparable to equivalent random 
networks (mean L = 1.02, range 1.00-1.09) (Watts and Strogatz, 1998). The binary 
cluster coefficient displayed significantly higher values in the cognitively impaired 
patient group compared to the control group for the relatively small sparsity range 
0.67-0.74. The binary path length was significantly higher in the impaired patient 
group compared to the control group for the narrow sparsity range 0.41-0.47. The 
weighted cluster coefficient was significantly higher for the impaired patient group 
compared to the healthy control group over the sparsity range 0.37-0.46 and 0.65-
0.85. The weighted path length was significantly higher for the impaired patient group 
compared to the healthy control group over the sparsity range 0.64-0.74. 
In contrast to L and C, we found that modularity showed significant group differences 
over a much wider range of sparsity values. The modularity calculated from the binary 
networks was higher in the entire patient group compared to the control group for 
the sparsity range 0.58-0.73. The impaired patient group displayed significantly higher 
modularity compared to the control group for the entire sparsity range. The impaired 
patient group also showed higher modularity scores compared to the non-impaired 
patient group over the sparsity range 0.37-0.70. The weighted modularity scores were 
higher for both the entire patient group and the impaired patient group compared to 
the control group over the entire sparsity range. These results are visualized in Figure 
5.2. 

Network metrics, age and cognitive performance 
Within the patient group, we found that binary modularity scores significantly 
increased with decreased cognitive performance (i.e. increased CVST reaction time) 
for all sparsity values (mean r=0.48; range: 0.44 - 0.55; all p-values < 0.03). See Figure 
5.3 for a plot of the correlation between CVST reaction times and modularity scores at 
sparsity = 0.48. The same effect was found with the CVST decile scores, which is a 
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normalized age and gender corrected score (mean r=-0.55; range: -0.63 - -0.47; all p-
values < 0.02). Higher modularity scores were associated with longer reaction times 
and lower decile scores (i.e. poor performance). CVST reaction times positively 
correlated with the weighted modularity scores over the entire sparsity range (mean 
r=0.47; min-max: 0.43 – 0.54; all p-values < 0.05). CVST decile scores were negatively 
correlated with the weighted modularity scores over the entire sparsity range (mean 
r=-0.45; range -0.55 - -0.40; all p-values < 0.05). No significant correlations were found 
in the control group. No significant correlations were found between age (range 8-12 
y) and any of the network parameters. CVST reaction times and decile scores were not 
significantly correlated with the binary or weighted cluster coefficient or path length 
in the patient or control groups.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2  The mean ± standard error (error bars) of the tested network parameters for the control 

group (green), the full  patient group (blue) and the cognitively impaired patient group (red) as 
function of sparsity. An asterisk (*) indicates that the full  patient group was significantly 
different from the control group. A hat (^) indicates that the impaired patient group was 
significantly different from the control group. As the sparsity increases, the number of edges 
in the network decreases, which causes a decrease in the binary cluster coefficient (A) and an 
increase in the binary path length (B) and binary and weighted modularity scores (C and F). 
The weighted cluster coefficient increases (D) and the weighted path length increases (E) 
because the remaining edges have high connection strengths and are strongly clustered (D). 
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Figure 5.3  Scatter plot of the modularity scores against CVST scores for the control, entire patient and 

impaired patient group. The regression line (black) of the correlation between modularity and 
CVST for the (entire) patient group is displayed. 

Visualization of cerebral modularity 

The OCS was calculated for networks thresholded at sparsity = 0.48. About half of the 
possible number of edges (3500 out of 6724) in the full matrix is included at this 
sparsity value, which reflects a good balance between the presence of noisy edges 
and an overly sparse matrix.  
Four modules were found in all groups at this sparsity threshold. All modules were 
organized in a bilateral fashion. Figure 5.4 visualizes the organization of the OCS in the 
cerebrum, such that group differences in modules can be observed. Considering the 
control group, module 1 was located mainly in the frontal and parietal lobe (blue in 
Figure 5.4), module 2 was mainly located in the frontal lobe (red in Figure 5.4), 
module 3 was mainly located in the occipital lobe (yellow in Figure 5.4), while module 
4 was mainly located in the frontal and temporal lobes (green in Figure 5.4). Both the 
patient group as a whole and the cognitively impaired patients displayed several 
differences in modular structure in both hemispheres in comparison to the control 
group. Module 4 (the green module), occupies occipital, parietal, temporal and 
prefrontal regions in the control group, whereas this module curtails only to temporal 
regions in the impaired patient group. As a consequence module 1 (blue) occupies 
most of the prefrontal regions and therefore the diversity of the modular composition 
in the frontal lobe decreases in the entire patient group, and even further decreases 
in the cognitively impaired patient group relative to the control group (see 
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Supplementary data). Although the vast majority of modular differences were located 
in frontal regions (n=21), as could be expected considering the frontal seizure focus in 
FLE, parietal (n=8), temporal (n=2) and occipital (n=2) regions are also involved. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.4  In the Optimal Community Structure (OCS) four distinct modules of the cerebrum are 

visualized by different colors (as in Figure 5.1) for the healthy controls (A), the full  patient 
group (B), and the cognitively impaired patient subgroup. Module 1 (blue) extends from 
fronto-parietal regions in controls to more prefrontal and latero-frontal regions in patients, 
particularly for the cognitively impaired patients. Module 2 (red) reveals no apparent 
differences between patients and controls. Module 3 (yellow) extends from mere posterior 
occipital regions in controls to parietal and more latero-occipetal regions in patients. Module 
4 (green) curtails from occipital, parietal, temporal and frontal regions to temporal and frontal 
regions. 

Modular and distance based characteristics of aberrant connections 
As shown in Figure 5.5A, a number of connections were found to be altered in the 
patient group, and a larger number of aberrant connections was found in the 
impaired patient group. These results were obtained at the same sparsity threshold as 
the one used for visualization of the modules (sparsity=0.48). Of the connections 
significantly different at the p<0.05 level, 52 (41%) were intra-modular connections 
while 151 (59%) were inter-modular connections. Moreover, Figure 5.5B indicates 
that most connections weaker in patients (p<0.05) are oriented anterior-posteriorly, 
while the connections stronger in the patients are mainly oriented left-right and inter-
hemispheric. This discrepancy in orientation was quantified by measuring the angle of 
the connections with respect to left-right axis (a 90 degree angle would indicate a 
pure anterior-posterior orientation of an edge). This revealed that the connections 
weaker in patients had a significantly higher angle (hence were oriented more 
anterior-posteriorly) than the connections stronger in patients (65.3 ± 22.2 degrees vs. 
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38.8 ± 27.5 degrees, p<0.001). We tested whether the anatomical distance between 
the connections that were either stronger or weaker would differ. We found that the 
connections that were weaker in the patient group were on average longer (76.8 ± 
26.9 mm) than those that were stronger in the patient group (65.7 ± 26.0 mm, 
p<0.003), see Figure 5.5C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5   (A) Top row: connectivity matrices for all  three groups; controls (middle), patients (left) and 

impaired patients (right). Colors of matrix elements indicate Fisher z-transformed correlation 
coefficients (truncated between 0.2 and 1). The rows and columns of the matrices are sorted 
by the modules found in the control group as indicated by the colored squares. Bottom row 
shows the connections that differed at the p<0.01 significance level (uncorrected) between 
the control and patient (left) and impaired patients (right). Note that most aberrant 
connections are inter-modular. (B) Location of abnormal connections at the p<0.05 level. Red 
and green l ines indicate connections weaker and stronger, respectively, in patients. Red 
(weaker) connections are oriented in an anterior-posterior fashion, while green (stronger) 
connections have a left-right orientation (C). Same set of connections as in (B) versus 
anatomical distance. On average, the connections weaker in patients (red dots) are longer 
than the connections stronger in patients (green dots). Red and green diamonds and lines 
indicate the average (distance and difference) of the two classes of connections. 
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DISCUSSION 

Here, we have shown for the first time that a neuronal correlate for cognitive 
impairment exists in children with FLE. Our results suggest that functional networks in 
FLE are configured to have reduced connectivity between functional modules with a 
decline in long-range connectivity and an increase in inter-hemispheric connectivity. 
This was expressed by an increased modularity score in paediatric patients with 
epilepsy that was correlated with the cognitive impairment. Notably, in the cognitively 
impaired patients, the frontal lobe missed the characteristic module that functionally 
interacted with the temporal, parietal and occipital regions as seen in the healthy 
controls. 
Interestingly, the discrepancy in network organization found between the children 
with FLE (with cognitive impairments) and normal controls has previously been 
reported in healthy development, where a decrease in modularity and an increase in 
long-range connectivity was associated with normal brain maturation (Fair et al., 
2009; Hagmann et al., 2010). 
Our results relate to a larger body of literature on the relation between cognitive 
performance and large-scale connectivity, where it is suggested that higher cognitive 
functions are the result of interactions between systems involving numerous brain 
regions, instead of a direct relation between cognitive functioning and single brain 
regions (Bressler and Menon, 2010; Menon, 2011). This paradigm can also be 
extended to differences between healthy subjects and FLE patients. The brain and 
especially the frontal lobe is a highly connected structure and thus regional 
abnormalities might extend beyond the seizure focus and affect distant regions and 
connectivity to such regions. Functional MRI measurements are ultimately dependent 
on the synaptic and axonal configuration of the underlying neuronal ensembles. 
However, it is thought that, by approximately 9 month of age, axonal connectivity is 
near complete (Conel, 1947) but other mechanisms such as synaptic pruning 
(Huttenlocher, 1979) and axonal myelination (Fields, 2005) continue through young 
adulthood. How then do epileptic seizures (Dodrill, 2002) and daily AED use 
(Vermeulen and Aldenkamp, 1995; Kuhnert et al., 2010) interact with the mechanisms 
of normal development and how do they eventually affect development of large-scale 
brain connectivity as measured with fMRI? It is likely that disturbances early in life in 
any of these mechanisms may have profound influences on large parts of the brain, as 
indicated by the whole brain network results presented here. 

Previous findings 
Several studies found functional connectivity abnormalities in epilepsy by means of 
calculating correlation coefficients between pairs of brain regions (Waites et al., 2006; 
Bettus et al., 2009; Zhang et al., 2009a; Zhang et al., 2009b; Pereira et al., 2010; Wang 
et al., 2011), but in only one study an analysis of these correlations was performed in 
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terms of network parameters (Liao et al., 2010). Moreover, most of these studies 
focused on local connectivity abnormalities (only a few regions of the brain were 
analysed or considered as a reference), while here, we primarily analysed global brain 
connectivity. Cognitive functioning depends on several cerebral networks instead of 
isolated brain regions. It is reasonable to assume that in patients with epilepsy a 
disruption of whole brain networks is involved in the development of cognitive 
deficits, instead of a localized disruption at the site of seizure focus only (Vlooswijk et 
al., 2011). 

Increased modularity but preserved small-worldness in FLE 

The means of both variants of the cluster coefficient were higher in the patients and 
further increased in the impaired patient group. For both variants of the path length, 
the same effect could be observed. Networks with high path length and high 
clustering are also known as regular networks (Sanz-Arigita et al., 2010): these are 
networks with high local clustering but few connections linking distant nodes. These 
findings are in line with the modularity analysis: high path length and high clustering 
are signs that the patient networks are organized in tightly clustered modules with 
only limited inter-modular connectivity. However, the high clustering and comparable 
low path length, compared to equivalent random networks, indicate that the resting 
state functional networks of both groups are still organized as an efficient small world 
network (Stam et al., 2007). Previous studies have found altered small world networks 
in epilepsy patients (Liao et al., 2010; Vlooswijk et al., 2011). It remains to be 
elucidated why these parameters only showed limited effects in this study. 
The network parameter modularity did show ample significant group differences. 
Patients, especially the cognitively impaired patients, showed higher modularity 
scores than controls, suggesting the presence of more functionally isolated brain 
modules. In line with these findings, longer reaction times (greater cognitive 
impairment) correlated with higher modularity scores within the patient group. It is 
possible that increases in coherent activity between functional systems (integration) 
might facilitate particular cognitive abilities. Therefore, a reduced amount of 
integration could lead to an impairment of cognitive functions. 
When we visualized the modular structures of different subject groups (Figure 5.4) we 
observed a rearrangement of modular structures between controls and patients, 
which was more pronounced in the cognitively impaired subgroup. These findings 
suggest that disruptions of functional brain network modularity in children with 
cryptogenic FLE are related to their cognitive impairment. Furthermore, the vast 
majority of modular differences were located in frontal lobe, as could be expected 
considering the frontal seizure focus in FLE. Importantly, module 4 (green) comprised 
prefrontal, temporal, parietal and occipital regions and might thus facilitate 
information integration over spatially distributed regions of the brain. Especially this 
module curtailed to mere temporal regions in the impaired patient group. The 
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functional significance of this module remains to be elucidated, but the corresponding 
connections to the frontal lobe might be an interesting target for future studies. The 
finding that modular abnormalities did not seem to be restricted exclusively to the 
frontal lobe might imply that regions of other parts of the brain are also involved in 
the process that hinder some individuals with FLE to successfully perform complex 
cognitive tasks like the CVST. This could also be an explanation for the broad variety of 
cognitive impairment seen in children with FLE. 

Aberrant connections and anatomical distance 
We found both decreases and increases in connection strengths in the patient group 
(figure 5.5B), although given the large number of connections tested, these findings 
should be interpreted with care. A further analysis on the anatomical length and 
orientation of these connections did reveal an interesting effect. Connections with 
decreased strength in the patients were on average longer than the connections that 
were increased in the patients, compared to the healthy controls. Furthermore, a 
predominantly anterior-posterior orientation of the connections with decreased 
strength and a left-right (and thus inter-hemispheric) orientation of connections with 
increased strength in the patients was found. This is in agreement with prior studies 
that showed that in early (normal) development mainly the long range connections 
increase in strength, while the strength of the short range connections decreased (Fair 
et al., 2009; Supekar et al., 2009; Hagmann et al., 2010). This raises the question of 
whether FLE interferes with normal development of functional brain networks (Power 
et al., 2010; Uddin et al., 2010). However, due to the narrow age range of our study 
population, network metrics could not be related to age. Future studies should 
include FLE patients and controls with a wider age range to investigate whether 
cognitive impairment in FLE can be modeled as a developmental delay (Church et al., 
2009). Most connections that showed significant differences between the healthy 
control and patients were inter-modular connections. These are connections that 
contribute to the overall integration of functional systems in the brain. These findings 
indicate that the higher modularity scores found in the patient and impaired patient 
group can be mainly attributed to connectional differences in those regions that 
connect different modules. 

Clinical significance and future research 

Follow-up research is needed to investigate the relationship between cognition and 
measures of network topology, particularly for determining the prognostic value of 
these measures that predict cognitive progress or delay in time. Currently, no clinical 
tools are available that can reliably predict the long-term cognitive outcome and drug 
response in children with FLE. Individual connectivity maps and network analysis 
might eventually serve as an additional tool for the neurologist to tailor the 
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therapeutic decision-making to the network characteristics of the impaired brain, and 
to balance this to seizure treatment. 

Methodological considerations 

Several considerations in the choice of methodology for the current study should be 
discussed. First, the use of resting state fMRI has advantages over task fMRI because 
the experiment is not dependent on subject compliance and ability to perform a task. 
This can especially be relevant in paediatric studies, where differences in 
developmental status and task performance are present. Here, all included subjects 
were video monitored during scanning and were able to lie still with their eyes closed.  
Second, there are many algorithms designed to calculate the OSC (Meunier et al., 
2010). Although we applied a widely-used algorithm (Newman, 2006), novel 
approaches for comparing the OCS between several different individual networks 
(Meunier et al., 2009), or groups of networks (Alexander-Bloch et al., 2010), have also 
been proposed. Other authors have suggested that future algorithms might include 
the concept of persistence of information flowing within modules over time (Delvenne 
et al., 2010), or use the concept of hierarchy, subdividing the modules into smaller 
modules, which can be further subdivided into smaller modules, and so on (Meunier 
et al., 2010). In the latter method, large modules have been described to represent 
consciously demanding tasks (i.e., working memory or the cognitive task from the 
current study), because they demand access to a more globally integrated processing 
system (Zeki and Bartels, 1998). Smaller modules are supposed to represent 
automated, anatomically localized tasks (i.e., color vision or visual motion detection). 
Because consciously demanding tasks usually include a combination of automated 
tasks, algorithms that determine the modular structure on different levels might be 
useful in future research relating cerebral connectivity data to cognition. 

Conclusion 

In conclusion, our results show that network modularity analysis of whole brain 
resting state fMRI connectivity provides a sensitive marker for cognitive impairment in 
FLE. We found that the more cognitively impaired the FLE-patient is, the more isolated 
brain sub-networks appeared to function. Cognitively impaired patients seem to have 
a less efficient inter-regional transfer of information between functional networks. 
We suggest that abnormally interconnected functional sub-networks of the brain 
might underlie the cognitive problems in children with FLE. 
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 SUPPLEMENTARY DATA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S.5.1 (A) The lobar composition of each module is depicted as a pie chart showing the relative 

number of regions (nodes) of each lobe to a module. For instance, module 3 is composed of 
only temporal and occipital regions in the control group, while parietal and frontal regions are 
also present in the patient groups. (B) The modular composition of each lobe is depicted here 
in the same fashion as in (A). The frontal lobe is occupied by regions from modules 1, 2 and 4  
in the control group, while in the impaired patient group, modules 1,2 and 3 are found in the 
frontal lobe. The same color schemes as in Figure 5.1 are used. 
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ABSTRACT 

In childhood frontal lobe epilepsy (FLE) cognitive impairment and educational 
underachievement are serious well-known co-morbid disorders. The broad scale of 
affected cognitive domains suggests a global network disturbance, rather than 
perturbations of localized individual processes. In this study we have investigated 
whole brain connectional properties of children with FLE in relation to their cognitive 
impairment and compared them with healthy controls. Functional connectivity (FC) of 
the networks was derived from dynamic fluctuations of resting state fMRI and 
structural connectivity (SC) was obtained from fiber tractography. Graph theoretical 
analysis was used to characterize the whole brain network in terms of path length, 
clustering and the degree to which the network can be separated into modules. 
Subsequently, the connectivity within and between modules was related to cognitive 
performance. Functional network disturbances in FLE comprised increased clustering, 
increased path length, and stronger modularity compared to healthy controls, which 
was accompanied by stronger within and weaker between-module functional 
connectivity. Although structural path length and clustering appeared normal in 
children with FLE, structural modularity increased with stronger cognitive impairment. 
It is concluded that decreased coupling between large-scale functional network 
modules is a hallmark for impaired cognition in childhood FLE. 
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INTRODUCTION 

Frontal lobe epilepsy (FLE) is considered to be, after temporal lobe epilepsy,  the 
second most common type of the localization-related (partial) epilepsies of childhood 
and accounts for 20–30% of partial epilepsies (Manford et al., 1992). Pediatric FLE, 
even when cryptogenic in nature, is frequently complicated by the impairment of a 
broad range of cognitive problems, behavioral disturbances, and therapy resistance 
(Berg, 2011). The fact that all these complications occur at a young age is 
troublesome. In childhood the brain is at its most vulnerable state and neurologic 
disturbances such as FLE can have an impact on brain maturation and the 
development of cognitive skills, with potentially severe consequences for school 
performance (Braakman et al., 2011). 
The broad range of affected cognitive domains suggests a global network disturbance, 
rather than perturbations of localized individual processes. Disturbances in network 
organization can be assessed by connectome analysis, which comprises the mapping 
of the nodes and connections of the human cerebral network (Sporns, 2011). Cerebral 
connectivity may either be of functional or structural nature. Functional connectivity 
(FC) can be measured by correlating blood-oxygen-dependent oxygenation (BOLD) 
related dynamic fluctuations of gray matter activity between different brain regions 
(Fox and Raichle, 2007) and structural connectivity (SC) can be obtained by tracing 
axonal bundles through the white matter with fiber tractography (Tournier et al., 
2011). 
Resting state functional MRI (RS-fMRI) enables the investigation of the intrinsic 
functional organization of the brain and is typically measured by the temporal 
correlation of neuronal activity-induced signal variations of anatomically different 
brain regions (Friston, 1994; Van den Heuvel and Hulshoff Pol, 2010). Previous studies 
have demonstrated disruptions in functional networks of adult epilepsy patients 
(Waites et al., 2006; Liao et al., 2010; Pereira et al., 2010), which have also been 
related to cognitive and epilepsy variables (Bettus et al., 2009; Vlooswijk et al., 2010; 
Pravata et al., 2011; Vlooswijk et al., 2011). 
Modeling the brain as one system of nodes (brain regions) and edges (connections) 
allows a direct comparison of SC and FC, because the organization of nodes and edges 
can be derived from both functional and structural imaging data. Apart from 
correlating the functional and structural connection strengths of individual edges, one 
can also explore and relate the topology of SC and FC networks in terms of graph 
theoretical measures. Graph theoretical analysis has the advantage that topological 
properties of the whole brain network can be captured in a few summary measures 
that describe the amount of segregation and integration among brain regions (Stam 
and Reijneveld, 2007; Bullmore and Sporns, 2009). 
Changes in either FC or SC are interdependent (Johansen-Berg, 2011). However, the 
relation between FC and SC is likely to be complex (Honey et al., 2010). The white 
matter connectivity provides a physical substrate that possibly constraints the 
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functional connectivity between different brain regions (Honey et al., 2009; Hagmann 
et al., 2010; Ethofer et al., 2011). Several studies have indicated that SC is predictive 
for FC, while FC is not predictive for SC, across healthy human brain networks 
(Greicius et al., 2009; Honey et al., 2009). The SC-FC relation increases in strength 
during normal development (Hagmann et al., 2010) and might be disrupted in the 
diseased brain (Skudlarski et al., 2010; Zhang et al., 2011). However, it is unclear to 
what extend abnormalities in the dependency between FC and SC explains cognitive 
impairment. 
Previously, it was observed that the neuronal basis for cognitive deficits in FLE reside 
in the interaction between large-scale functional brain sub networks, the so-called 
modules (Vaessen, 2011). The whole brain network can be divided into sub networks 
by modular decomposition (i.e. community structure) methods (Newman, 2006), and 
therefore, this method provides the opportunity to investigate the connectional 
properties of the different large-scale sub networks. The modular structure of the 
brain network is thought to be important for cognitive abilities, as increases in 
coherent activity between functional systems might facilitate adaptive behavior and 
the integration of information integration (van den Heuvel et al., 2009; Power et al., 
2010). In FLE, the cognitive pathology might be reflected through reductions in 
coupling between sub networks, which can either be of functional or structural origin 
or both. 
In this study we investigate functional as well as structural whole brain networks in 
children with FLE. We explore whether abnormalities in graph theoretical measures 
are present for both the functional and structural networks and correlate these to the 
cognitive impairment. We hypothesize that differences in whole brain graph 
theoretical measures can be explained by changes in connectivity between and within 
large-scale modules. Moreover, the coupling between SC and FC connectivity was 
compared between children with FLE and healthy controls and correlated with the 
cognitive impairment. 

METHODS 

Participants 
Children with FLE were selected from our reference clinical database and were 
actively contacted. Inclusion criteria were: a clinically confirmed cryptogenic (i.e., 
based on EEG and MRI findings, presumed to be symptomatic, but with unknown 
etiology) localization-related epilepsy with an epileptic focus in the frontal lobe, aged 
between 8 and 13 years, no other disease that could cause cognitive impairment, and 
no history of brain injury. Healthy age-matched controls were recruited by 
advertisements in local newspapers. Inclusion criteria were no history of brain injury 
or cognitive problems and visiting regular education. All subjects and parents gave 
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written informed consent. Approval for the study by the local Medical Ethical 
Committee was obtained. 

Neuropsychological assessment 

Cognitive performance was measured using a computerized visual searching task 
(CVST) (Aldenkamp et al., 2004). This task consists of finding the right grid pattern that 
matches the one in the centre of a screen surrounded by 24 other grid patterns. The 
task is used to assess central information processing speed and perceptual strategies 
and is considered to be an assessment of frontal lobe function. A detailed description 
of this task can be found in (Aldenkamp et al., 2004; Vaessen, 2011). By determining 
the average CVST searching time (reaction time) and the number of correct and 
incorrect responses during the task, an age-corrected cognitive performance score 
was generated (i.e. the decile score). After grouping these scores into numbers from 1 
(worst score) to 10 (best score), the 3 worst performance scores (1, 2 or 3) were 
considered a manifestation of impaired cognitive performance, while higher scores (≥ 
4) were considered normal. 

MRI acquisition 
MRI was performed on a 3.0-Tesla unit equipped with an 8-channel head coil (Philips 
Achieva, Philips Medical Systems, Best, The Netherlands). Functional MRI data were 
acquired using a whole-brain single-shot multi-slice echo-planar imaging (EPI) 
sequence sensitive to the blood-oxygen-level-dependent (BOLD) effect, with TR 2 s, TE 
35 ms, flip angle 90°, pixel size 2 x 2 mm2, 32 contiguous 4-mm thick slices per volume, 
195 volumes per acquisition, and an parallel imaging acceleration factor of 1.5 
(Sensitivity Encoding).  
Diffusion weighted MRI (DWI) was acquired at a pixel size of 2 x 2 mm2, slice thickness 
2 mm, and a b-value of 1200 s/mm2. An echo planar imaging sequence was used with 
TE 72 ms, TR 6584 ms, and parallel imaging acceleration factor of  2. A set of 61 
gradient directions was used, optimized via electrostatic repulsion to ensure 
homogenous distribution over the sphere (Jones, Horsfield et al. 1999). In addition, a 
single non-diffusion weighted scan (b0-scan) was obtained. The DWI acquisition time 
was 8 minutes. 
For anatomic reference, a T1-weigthed 3D spoiled fast gradient echo pulse sequence 
was acquired with the following parameters: TR 8.1 ms, TE 3.7 ms, flip angle 8°, field 
of view (FOV) 256 x 256 x 180 mm3, and voxel size 1 x 1 x 1 mm3. 

Inclusion 

Subjects were excluded when head movements exceeded 1.5 mm/s or 1.5 degrees/s 
in at least one direction. Data of nine patients were excluded from further analysis 
because of movement related artifacts (n=6; 2 controls, 4 patients), EPI artifacts (n=3; 
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2 controls, 1 patient). From the DWI data, five subjects were excluded from further 
analysis due to EPI artifacts (n=1 controls, n=4 patients). For analysis the final study 
population consisted of 26 patients and 36 healthy controls.  
Six patients did not complete the neuropsychological assessment and thus had no 
CVST scores. These patients are included in the group analysis, but not in the 
correlation analysis. In total, 9 FLE patients had a decile score below 4 and were 
considered cognitively impaired. Mean CVST reaction time was significantly higher in 
the patient group compared to the healthy control group (controls: 7.5 ± 6.4 s (mean 
±SD), patients: 23.6 ± 9.9 s, p<0.006). 

Network construction 

Anatomical parcellation  

Freesurfer (Martinos Center of Biomedical Imaging, Boston, US) software was used to 
segment the T1 images of each subject into cortical and subcortical regions. 
Freesurfer uses a surface based alignment procedure, which might be more accurate 
than a volume based alignment of a cortical atlas (Ghosh et al., 2010). 
The Freesurfer cortical regions were further refined into a larger number of smaller 
regions. We started by dividing each region from the standard Freesurfer template 
into two more or less equally sized regions by principal component analysis. This 
segmentation was performed in the spherical surface coordinates. The cortical surface 
of each hemisphere can be modeled as the surface of a sphere; each point on the 
cortical surface can be related to a point on the sphere which is defined by its 
longitude and latitude. The first principal component (a 2D vector), together with the 
center of gravity of the cortex point within the region (a 2D point), defines a line in 2D 
space which divides the region into two sub regions according to the maximum spatial 
variance of the region (e.g. a “stretched” region will be divided along its main 
longitudinal axis). Regions were subsequently subdivided with the criterion that a 
division must not yield a sub region with a size smaller than 1200 cortical points. The 
final result was a parcellation of 95 regions with comparable sizes (of at least 1200 
cortex points) per hemisphere. The regions were converted from the spherical format 
to the cortex of each individual by standard Freesurfer routines. The subcortical 
regions were used in their original Freesurfer format. 
The cortical and subcortical parcellation of each individual in native T1 space was 
transformed to the native DWI or fMRI space by applying a rigid body transformation. 
The transformations from Freesurfer standard space to T1 space and from T1 space to 
DWI or fMRI space can result in the loss of several regions by partial volume effects. 
Therefore, only regions that were present in all the parcellations in DWI and fMRI 
space were used. This resulted in a parcellation with 205 bi-lateral regions for all 
subjects (2 x 95 cortical regions and 15 subcortical regions). 
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Functional network construction 

The BOLD images were corrected for motion artifacts using SPM5 (Wellcome Trust 
Centre for Neuroimaging, UCL, London, UK) software. The images were then high-pass 
filtered with a σ of 25 scans (50 seconds) and spatially smoothed (σ = 1.7 mm) using 
FSL 4.1.7 (Oxford University, Oxford, UK) software. Subsequently, the CSF and whole 
brain signal time course were removed from the images using standard linear 
regression. The resulting residual time series were used for further analysis. Lastly, the 
images were low-pass filtered (σ = 2 s, i.e. 1 dynamic scan interval) to remove the 
detrimental effects of high-frequency noise components. Using Matlab (The 
MathWorks Inc., Natick, US; version 7.6.0), the Pearson's linear correlation coefficient 
was calculated between the region-averaged time-series of all pairs of Freesurfer 
regions. In this way, a 205 x 205 connectivity matrix was calculated for each subject. 

Structural network construction 

Each data set was spatially co-registered to the b=0 image with an affine 
transformation to correct for head motion and eddy-current distortions utilizing 
CATNAP (Co-registration, Adjustment, and Tensor-solving, a Nicely Automated 
Program, version 1.3) software (Farrell et al., 2007). The set of gradient vectors was 
adjusted according to the rotation of the individual images. 
All DWI analyses, the tractography and tract segmentations were performed using the 
MRtrix software package (Tournier et al., 2007). Diffusion tensor (DT) fits were 
performed to calculate FA and ADC maps. In addition, fiber orientation distributions 
(FODs), representing local fiber orientation, were estimated using constrained 
spherical deconvolution (CSD). In CSD, the diffusion profile is converted to the 
underlying fiber orientations by a constrained deconvolution method (Tournier et al., 
2007). The CSD response function was estimated from data with high FA voxels values 
(FA>0.7). Slice drop-outs are a common phenomenon in DW-EPI, especially in the 
presence of motion (Rohde et al., 2004). To reduce the effects of corrupted slices on 
FOD estimation, a method was developed in which corrupted slices were 
automatically detected and removed from the data. Subsequently, FOD’s were 
estimated per slice with a slice-specific gradient set (i.e. without the directions 
corresponding to the removed slices). On average 46 (out of 3660. i.e. approx. 1%) 
slices were corrupted per subject. The number of corrupted slices did not differ 
between the groups. 
Within the white matter, five million evenly distributed seeds were placed and a 
streamline was started from each seed. Subsequently, for each pair of regions from 
the anatomical atlas, the subset of tracts connecting these two regions were 
identified from the set of tracts of the whole brain tractogram. Connection weights 
were determined by calculating the tract volume of the voxels traversed by the 
streamlines of the connection, divided by the total intracranial volume (Vaessen et al., 
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2011). As an additional noise filter, voxels that were traversed by fewer than 2 tracts 
were eliminated from the analysis. 

Network characteristics 

For each subject, values of network measures were calculated from the individual SC 
or FC matrices. We included 3 network measures: characteristic path length (L), 
clustering coefficient (C), and modularity, using algorithms implemented in the Brain 
Connectivity Toolbox (Rubinov and Sporns, 2010). A detailed description of path 
length and clustering can be found elsewhere (Rubinov and Sporns, 2010). Network 
measures were assessed over a range of sparsity values (Vlooswijk et al., 2011). 
Modularity quantifies the degree to which a brain network is organized in isolated sub 
networks (i.e. the modules). The more isolated the sub networks are, the higher the 
modularity. We used algorithm developed by Newman et al. (Newman, 2006) to 
quantify the modularity of the brain. With this algorithm the brain was automatically 
subdivided into a number of modules (i.e. groups of connected nodes) with maximal 
connection strength within and minimal connection strength between the modules, 
creating a so-called “optimal community structure” (OCS) of the brain. To avoid 
effects of differently organized modules in patients and controls, the within- and 
between-module connectivity was determined from the connectivity matrix that 
comprised the mean of entire study population, thus the combination of patients and 
controls. 

Analysis of within- and between-module connectivity 

To assess the potential differences in within- and between-module connectivity, the 
modular organization of the FC was calculated, by applying the modularity algorithm 
to the FC matrix averaged over all subjects. Next, each edge was classified as either 
between-module (the edge connects nodes of two different modules) or within-
module (the edge connects nodes of the same module). Connection strengths of the 
within- and between-module edges from the FC and SC modules were averaged. The 
within-module connections were assessed both as the aggregate over all modules and 
for each module separately. The weak and negative edges of the FC matrices might 
contain relevant information on between-module connectivity, therefore the 
unthresholded FC and SC matrices were used. 

Statistical analysis  
Between-group effects in network measures and connection strengths were assessed 
by two-sample Student’s t-tests. We compared the entire patient group (EP) and the 
cognitively impaired patient group (IP) with the healthy control group. Pearson's 
(linear) correlation coefficients (r) were calculated between cognitive performance 
(CVST reaction time), age, connection strengths and network measures. This analysis 
was performed for the EP group and control group, separately. After the coupling 
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between the FC and SC edge strengths was calculated by a correlation analysis for 
each subject, the individual FC-SC coupling values were associated with CVST scores 
and age.  

RESULTS 

Network connectivity  

Functional connectivity 

The mean functional connectivity value (i.e. Fisher-z transformed time series 
correlations) over all connections did not significantly differ between the EP, IP and 
healthy control groups. Mean FC was not significantly correlated with age or with 
CVST scores. 

Structural connectivity 

For the structural connectivity (i.e. relative tract volume over all connections) the IP 
group (9.5·10-4±0.5·10-4, p<0.07), but not the EP group (8.9·10-4±0.4·10-4, n.s.), showed 
a trend of higher mean connectivity values than the control group (8.5·10-4±0.1·10-4). 
Mean structural connectivity was not correlated with CVST score or age. Mean FA was 
not different between the groups, but increased with age in both the control (r=0.32, 
p<0.05) and EP group (r=0.44, p<0.02). Mean ADC was also not different between the 
groups and did not significantly correlate with age in the control group, while a 
negative correlation was found in the EP group (r=-0.47, p<0.01). 

Network topology 

Functional connectivity 

The cluster coefficient was significantly higher for both the EP and IP groups 
compared to the healthy control group over the entire sparsity range (0.55-0.90). The 
path length was significantly higher for the EP and IP groups compared to the control 
group over the sparsity range 0.55-0.80. The modularity was significantly higher for 
the IP group compared to the control group over the entire sparsity range, while the 
EP group had a significantly higher modularity over the sparsity range 0.55-0.80 
(Figure. 6.1A).  
The cluster coefficient, path length, nor modularity of the functional networks was 
significantly correlated with CVST score or age for the control or EP group. 
 



132Chapter 6 

Structural connectivity 

Although the means of the cluster coefficient, path length, and modularity showed 
slightly higher values for the IP group compared to the control and EP groups, none of 
these differences were significant. The EP group also did not display significant 
differences compared to the control group (Figure 6.1B).  
In the EP group there was a negative correlation trend between C and age (mean r 
over entire sparsity range r=-0.37, mean p=0.06) and negative correlation between 
modularity and age (mean r over entire sparsity range r=-0.40, mean p=0.04). In the 
control group, path length showed a trend for positive correlation with CVST scores 
(mean r over entire sparsity range=0.29, mean p=0.09). Modularity scores increased 
with CVST scores in the EP group (mean r over entire sparsity range r=0.51, mean 
p=0.02).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1  Network metrics for functional (A) and structural (B) connectivity as a function of sparsity. The 

networks measures for the control group (green), the entire patient group (EP, blue) and the 
impaired patient group (IP, red) as a function of sparsity. Symbols for statistical comparison: 
*: p<0.05 for EP versus control group, ^: p<0.05 for IP versus control group. 
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Modular organization 

The modularity algorithm determined four modules from the averaged FC matrix over 
all subjects (Figure 6.2A). The spatial organization of module 1 (blue) highly resembled 
to the default mode network (DMN) (Greicius et al., 2003), with regions in the frontal, 
temporal and parietal lobes. The second module (red) consisted of frontal and 
subcortical regions. The relatively small third module (yellow) was centered in the 
occipital lobe. Module 4 (green) was distributed over frontal, temporal and occipital 
regions. All modules were highly symmetric with respect to the interhemispheric 
fissure. After structural connections were ordered similar to the organization of the FC 
modularity matrix, the structural organization of the modules revealed more or less 
bilateral structural sub networks (Figure 6.2A and 6.2B). 
For the SC matrix the modularity algorithm determined only two modules, which were 
separated between the two hemispheres. After functional connections were ordered 
according to these SC modules, no further sub organization became evident (Figure 
6.2C and 6.2D). 

Modular connectivity 

FC (Fisher-z transformed correlation values) and SC (relative tract volumes) values 
were classified as between-module, within-module averaged over all modules (i.e. 
aggregated within-module) and individual within-module connections. These 
connection values are listed per group in Table 6.1. 

Between-module connectivity 

The between-module FC was lower in the IP group (p<0.017) and the EP group 
(p<0.06) compared to the control group. A trend for higher between-module SC was 
found in the IP group compared to the healthy control group (p=0.07), while no 
differences were found between the EP and control group (Figure 6.3C). No significant 
correlations were found between CVST score or age and FC or SC between-module 
connectivity.  

Aggregated within-module connectivity 

A trend for higher within-module FC values was observed for the IP group (p=0.095) 
and the EP group (p=0.08) compared to the control group. The SC within-module 
connection strengths displayed a trend for higher values in the IP group (p=0.08) 
compared to the control group, but not for the EP group (Figure 6.3D). No significant 
correlations were found between CVST score or age and within-module FC or SC 
connectivity. 
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Figure 6.2  Group average connection matrices sorted by module. (A) Functional connectivity. Colored 

rectangles indicate the modules. High within-module connectivity is clearly visible by the 
higher values (more hot colors), while between-module connectivity is more sparse (more 
cold colors). (B) Structural connectivity sorted by functional modules. The functional modules 
are organized bi-laterally, while the SC has strong inter-hemispheric connectivity and low 
intra-hemispheric connectivity clearly visible in the block patterns. (C) The FC matrix sorted by 
the modular organization derived from the SC. The two found SC modules are basically the 
left and right hemisphere. From the FC it is visible that strong inter-hemispheric connections 
are present within the two modules. (D)  The SC sorted by SC modularity. Strong intra-
hemispheric connections are visible, while inter-hemispheric connections (and thus between-
module connections) are weaker.  

Separate within-module connectivity 

For FC, the strongest differences in within-modularity between patients and controls 
were found for module 4. Module 4 showed higher within module FC for the EP group 
(p=0.012), while a trend was observed for the IP group (p=0.071), compared to the 
control group (Figure 6.3E). A positive association between CVST score (higher scores 
indicate reduced cognitive performance) and within module FC was found for module 
4 in the control group (r=0.36, p<0.04). The other modules did not reveal associations 
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between CVST score and FC in neither the control group nor the EP group. Age was 
not significantly correlated with any of the within module FC values. 
The within-module SC of module 4 was also significantly higher for the IP group 
(p=0.013) compared to the control group. The other three modules did not show 
significant group differences in SC (Figure 6.3F). For module 4 the within-module SC 
increased with higher CVST score (worse cognitive performance) in the EP group 
(r=0.55, p<0.01). No association between SC and CVST score was found in any of the 
other modules. Age was not significantly correlated with any of the within-module SC 
values. 
 

  Controls 

(mean±SEM)  

  EP 

(mean±SEM) 

p-value 

(C-EP) 

  IP 

(mean±SEM) 

p-value 

(C-IP) 

FC        

  BT -0.026±0.003  -0.033±0.004 0.06  -0.041±0.005 0.02 

  WI 0.245±0.005  0.260±0.008 0.08  0.265±0.011 0.10 

  WI1 0.284±0.021  0.299±0.010 n.s.  0.313±0.024 n.s. 

  WI2 0.244±0.005  0.255±0.014 n.s.  0.258±0.013 n.s. 

  WI3 0.606±0.007  0.643±0.029 n.s.  0.700±0.057 0.07 

  WI4 0.176±0.005  0.197±0.009 0.01  0.196±0.009 0.07 

SC (*10-4)         

  BT 7.8±0.1  7.9±0.1 n.s.  8.3±0.1 0.07 

  WI 9.9±0.2  10.2±0.2 n.s.  11.0±0.4 0.08 

  WI1 9.70±0.2  10.0±0.3 n.s.  11.0±0.6 n.s. 

  WI2 8.0±0.2  8.2±0.2 n.s.  7.9±0.3 n.s. 

  WI3 15.0±0.4  14.7±0.4 n.s.  16.0±0.8 n.s. 

  WI4 13.0±0.3  14.0±0.5 n.s.  15.0±0.1 0.01 

 
Table 6.1  The modularity measures derived from the functional connectivity (FC) and structural 

connectivity (SC) matrices of the entire patient (EP) group, the cognitively impaired patient 
(IP) group, and the healthy controls. The modularity measures comprise the between-module 
(BT) and within module connectivity values; the latter averaged over all  four functional 
modules (WI) and per functional module (WI1...4). 

Structure-function correlation  

The EP and IP groups did not differ significantly from the control group in SC-FC 
coupling. CVST score was not significantly associated with FC-SC coupling. A trend for 
a negative association was found in the EP group between FC-SC coupling and age (r=-
0.38, p=0.06), while for the control group a significant positive association (r=0.40, 
p<0.01) was found (Figure 6.4).  
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Figure 6.3  Within- and between-module connectivity for FC and SC. (A) Modular organization of FC. 

Within-module connections are colored as in Figure 6.2A. (B)  An alternative presentation of 
the modular organization. The nodes of each separate module are depicted spatially 
segregated. The gray l ines indicate the between-module connections. (C) All  between-module 
connection strengths (gray lines in B) for FC and SC were averaged and compared between 
the different groups. (D) The within-module connections over all four modules were also 
averaged for the different groups and compared. (E) FC mean within-module connection 
strengths are compared between the groups for the four different modules. (F) Within-
module SC. Bars display the mean + SEM. 

 
 



 Connectional abnormalities of functional and structural networks in childhood FLE137 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.4  Function structure correlation with age. Coupling of SC and FC versus age of the control group 

(open circles) and unimpaired patient group (grey circles) and impaired patients (black 
squares). Each dot represents the correlation of all  non-zero edge strengths of the FC and SC 
for that person. Regression lines for the control group (dashed) and entire patient group 
(solid) are shown. Note the increasing FC-SC correlation with age for the healthy controls, 
which was reversed for the patients with FLE. 

DISCUSSION 

In this study we compared the FC and SC of cerebral networks in children with FLE to 
healthy controls and investigated whether the associated cognitive impairment in FLE 
is reflected by an aberrant functional or structural modular organization. For the 
whole brain network the functional network clustering, path length and modularity 
appeared more sensitive than structural network measures to discern children with 
FLE, and particularly those with cognitive impairment from healthy controls. To focus 
on the organization of sub networks, modularity analysis resulted in a division of the 
whole brain network into four large-scale functional modules with relatively strong 
within-module and relatively weak between-module connections. The functional 
modular organization in childhood FLE appeared to be aberrant in the sense that 
between-module connectivity was weakest in the children with FLE who had cognitive 
impairments. In more detail it was found that module 4, which comprised large parts 
of the frontal and temporal lobe, exhibited both increased functional and structural 
within-module connectivity relative to controls. For this particular module 4 the 
normal negative correlation between within-module FC and cognitive performance, as 
observed in healthy controls, was lost in the FLE patients. Although, in this module, an 
increase in SC with decreased cognitive performance was observed for the FLE 
patients, but not for the controls. 



138Chapter 6 

Global functional and structural network abnormalities 

Whole brain functional network organization appeared to be disturbed in children 
with FLE, while the global structural network organization did not show such salient 
effects. Although structural network organization was not different in FLE patients 
compared to controls, stronger structural modularity was associated with worse 
cognitive scores in the patients. The deviant whole brain functional network measures 
were most salient in the cognitively impaired patients, and suggest that the functional 
network organization is linked to the cognitive pathology. Furthermore, the functional 
but not the structural abnormalities in network organization could imply that 
functional disturbances precede structural abnormalities in childhood FLE. Conversely, 
differences in sensitivity of the different imaging modalities in detecting abnormalities 
could also underlie these results. 

Aberrant functional and structural modules 
The stronger modular organization in children FLE with cognitive impairment supports 
the hypothesis that whole brain connectional abnormalities can be traced back to 
differences in connectivity between and within more or less isolated functional 
modules. This is in agreement with a recent study where a loss of communication 
between functional modules was observed in Alzheimer Disease patients (de Haan et 
al., 2011). Between-module functional connectivity was decreased in the impaired 
children, while at the same time an increase in structural connectivity was observed. 
For both the functional and structural networks, an increase in within-module 
connectivity was found. Hence, children with FLE and cognitive impairments had an 
overall increase in structural connectivity, while the differences in functional 
connectivity were characterized by decreased between- and increased within-module 
connectivity. 
Most striking for the relation between cognitive impairment and modular organization 
was the aberrant connectivity of module 4, which covers large parts of the frontal, 
temporal lobe. For this module, both the functional and structural within-module 
connectivity was increased, specifically for the cognitively impaired children, relative 
to the healthy controls. Considering the decline in higher cognitive functions for 
children with FLE, this observation seems to hint in more detail at the 
neuropathological substrate of cognitive impairment in childhood FLE. 

Developmental effect on connectivity 
We found that the coupling between FC and SC increased with age in the healthy 
controls, which is in agreement with (Hagmann et al., 2010). However, the increase 
was not found for the children with FLE. This could indicate that the normal 
development in SC-FC relation is disturbed in childhood FLE. It is currently unclear to 
what extend FC and SC modularity differ and how this relation depends on age. 
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Some developmental processes such as an increase in white matter integrity or 
functional correlation with age might manifest in a distributed whole brain wide 
manner and thus influence the mean SC or FC. Since the connectivity matrices were 
corrected for mean connectivity values, such effect might not be evident in the 
topological measures (L and C). Therefore, we also investigated the underlying data 
for the mean connectivity values.  For the mean SC, an increase in FA and a decrease 
in ADC were observed with increasing age in the entire patient group, while FC was 
not correlated with age. Changes in FA and ADC with age have extensively been 
reported in literature (Stadlbauer et al., 2008; Hagmann et al., 2010; Westlye et al., 
2010) and are a sign of normal development. We could not detect significant group 
differences in mean FA or mean ADC, but a trend for larger relative tract volumes 
(thus SC values) in the impaired patient group was found. Given the narrow age range 
(8 – 13 year) of the subjects in this study for which correlations with age were found, 
studies with larger age ranges or preferably longitudinal studies are needed to infer 
on the expected abnormal developmental trajectories in childhood FLE. 

Conclusion 
In children with FLE it was shown that the more isolated functional brain sub networks 
appear to function the more cognitively impaired these children are. This observation 
can be interpreted in a way that cognitively impaired patients have a less efficient 
interregional transfer of information between functional sub networks. As this effect 
was not directly evident from structural connectivity measures, this raises the 
question whether functional changes precede structural changes. Future studies with 
patients in a broader age range might clarify the relation between structural and 
functional abnormalities in relation to cognitive developmental abnormalities in more 
detail. 
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The general aim of the research described in this thesis was to develop and explore 
the use of graph analysis methods to find the neuronal correlate of cognitive 
impairment in epilepsy. This was pursued by deriving graph theoretical parameters 
from whole brain networks constructed from functional and diffusion weighted MRI 
data. Research to date has mainly focused on the “focal” approach: relating cognitive 
parameters to localized functional and macro- and micro-structural tissue 
abnormalities (Berl et al., 2005; Cheung et al., 2006; Weber et al., 2006; Powell et al., 
2007; Focke et al., 2008; Yogarajah et al., 2008; Bonelli et al., 2010; Meng et al., 2010; 
Riley et al., 2010). Although this approach is viable, in this thesis we advocated for a 
different paradigm where the brain is viewed as a highly interconnected system and 
analysis methods should be tailored towards relating cognitive deficits to 
characteristics of large-scale networks.  In the following paragraphs our findings and 
interpretations using this approach will be discussed in a broader perspective. In 
addition, the scientific and clinical implications of our main findings will be addressed, 
some methodological issues will be considered, and recommendations for future 
research will be given. 

Summary of findings 
Abnormalities in large scale organization of brain networks appear to underlie 
cognitive problems in patients with chronic epilepsy. In chapter 3 it was shown that 
reduced efficiency of cerebral functional networks was evident in adult patients with 
chronic cryptogenic epilepsy and that the cerebral efficiency was related to measures 
of global cognitive performance. Chapter 4 concerns the same study population, but 
here white matter networks were investigated with fiber tractography. Differences in 
graph metrics between patients with cognitive impairment and healthy controls were 
identified, as well as a strong relation between cognitive scores and graph metrics. A 
cohort of children with frontal lobe epilepsy was investigated in chapter 5. Functional 
brain networks showed connectional abnormalities that were mainly expressed as a 
reduction in functional coupling between sub-networks (modules) which was 
correlated with reduced cognitive scores. In chapter 6 it was studied whether the 
functional abnormalities observed in children with FLE could also be related to white 
matter networks. A reduction in functional coupling between networks was identified 
in the patient group in addition to increased modularity, clustering and path length. 
However, an overall increase in white matter (structural) connectivity was observed, 
although whole brain white matter graph metrics did not show any differences. None 
of these studies revealed a salient relation between clinical factors and cognitive 
performance. Therefore, the added value of imaging was evident in chapter 3, where 
a statistical relation was found between drug load and intelligence when imaging 
parameters of network efficiency were introduced as a mediating variable. 
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Brain networks and cognition in adults and children with epilepsy 

Abnormalities in brain network organization were found in both adults and children 
with cryptogenic epilepsy. What are the similarities and differences observed, and 
how can we interpret the direction of change in network parameters? Adult patients, 
especially those with cognitive impairment, had higher path lengths and lower 
clustering of both functional and structural networks. While in children, higher path 
lengths and higher clustering were found. What network models can explain these 
effects? To date several network models have been proposed that can be related to 
our findings, among those are the small-world model of Watts and Strogatz (Watts 
and Strogatz, 1998) and the hierarchical modular model (Kaiser et al., 2007). 
The Watts and Strogatz model is characterized by one parameter, the randomness, 
that increases as the network model goes from a regular (or lattice) form to a 
completely random form. It was shown that path length and cluster coefficient change 
differentially with the randomness parameter (Watts and Strogatz, 1998). Path length 
drops exponentially as some edges are rewired randomly in the lattice form, while 
clustering remains relatively high until the network form is almost completely random 
(see also Figure 1.6). Therefore, this model is able to differentiate between lattice and 
random topologies. Where, starting from a small-world model, a lattice form is 
characterized by higher path length and higher clustering, a more random form is 
characterized by a decrease in path length and a decrease in clustering. From this 
point of view, the changes observed in the children with epilepsy can be explained by 
a shift from a healthy small-world in the control group to a more lattice like form in 
the patient group. However, it is not straightforward to relate the findings from the 
adult study to the Watts and Strogatz model. While, an increased path length in the 
patient group indicated a more lattice like network, a decrease in clustering is 
characteristic for a more random network topology. It thus seems that this model is 
not sufficient to explain our findings. This comes as no surprise. It is unlikely that an 
enormously complex biological system as the human brain is subject to such a simple, 
one parameter, model. This however does not compromise the usefulness of simple 
network parameters such as path length and clustering. Rather, a more complex 
model is needed to explain the observed changes in these parameters. 
Network modularity is a topological concept that might be better capable of 
elucidating some of the observed changes in brain network topology. As shown in 
Figure 1.6, modularity quantifies the degree to which a network can be divided in 
groups of nodes that are strongly intra-connected but weakly inter-connected 
(Newman and Leicht, 2007). A small-world organization is associated with a high 
modularity: the tightly clustered nodes of the modules give rise to a high cluster 
coefficient and the between module edges, although sparse, facilitate a low overall 
path length. However, the degree of clustering and the path length of the within 
module nodes may vary which would influence the overall values for L and C. 
Furthermore, the between module edges might have an exceptionally large 
contribution to path length. The deletion (or impairment) of only a few between 
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module edges can disconnect two modules which would lead to a large increase in 
overall path length. 
It is from this point of view that we now try to provide a conceptual model for the 
changes in network parameters found in both groups of epilepsy patients. An 
explanation for the higher path length and lower cluster coefficient in the adult 
epilepsy patients could be as follows. The healthy adult brain consists of several 
modules, where each module is in itself organized as a small-world network. If we 
now only decrease the amount (or strength) of the between module connections, an 
increase in path length would result while clustering would be preserved. If now, the 
within module topology would shift towards a random network, a decrease in 
clustering would be observed. Here, within module path length would also decrease, 
but this would be nullified by the loss of between module connectivity, which has a 
larger impact on the overall path length, see Figure 7.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.1  Hypothetical model of network changes in adult cryptogenic epilepsy patients. The healthy 

adult brain (top) is modeled as a small-world modular network. The alteration in the adult 
patients can be viewed as a randomization of within module connectivity and a reduction in 
between module connectivity. 

 
 
In the child group, modularity was directly quantified and was shown to be increased 
in the patient group. Higher modularity results from a decrease in between module 
connectivity. This is in line with the increase in path length seen in the patients. As the 
overall level of connectivity was comparable between the controls and patients, a 
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decrease in between module connectivity implies an increase of within module 
connectivity, which was evident in the increase in clustering, see Figure 7.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2  Brain networks of children with epilepsy can be thought of as more regular within module 

networks with reduced between module connectivity. 

 
Thus, two differential effects in terms of small-worldness and modularity can be 
thought of that might explain the alterations in network parameters found in the 
adult and child groups. Brain networks of adults with chronic epilepsy suffer from 
increased modularity and a randomization of within module connectivity. Children 
with epilepsy have brain networks with a decrease in modularity but a more lattice 
like within module connectivity (Figure 7.2). Whether brain changes in children should 
be viewed as developmental or as deterioration is an interesting, yet, unresolved 
question (Fair et al., 2010; Tosun et al., 2011). However, because of the cross sectional 
design of our studies, we are currently unable to discriminate between those 
scenarios. Naturally, the above mentioned theories should not be viewed as definite 
but rather as a hypothesis that can be tested in detail in future (longitudinal) studies. 

The relation between gray and white matter networks in epilepsy 
In the adult patients we found similar network changes for the gray (functional 
connectivity) and white matter networks (structural connectivity): increased path 
length and decreased clustering. Changes in both grey and white matter properties 
have been observed previously in epilepsy (Powell et al., 2007). However, the 
differences in node definition used in chapters 3 and 4 preclude the direct comparison 
of network metrics. The gray matter networks were derived from a silent word 
generation fMRI task and a high resolution network (~900 nodes), while the white 
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matter networks resulted from DWI fiber tractography and a low resolution network 
(~90 nodes). 
To enable direct comparison of FC (functional connectivity) and SC (structural 
connectivity) we applied the exact same brain parcellation in the pediatric patient 
study. Here a high resolution network of ~200 nodes was used based on a 
segmentation of the grey matter and subcortical structures. Network topology of FC 
was markedly different in the patients, especially the modularity. The SC did not 
reveal altered topological measures. However, a moderate brain wide increase in 
white matter connectivity was observed, while the FC revealed an increase in within 
module connectivity and a decrease in between module connectivity in the patients. 
One of the advantages of graph analysis is that connection matrices derived from 
different modalities can be compared directly, as both are modeled by abstract 
graphs. However, research in this area has only very recently commenced (Hagmann 
et al., 2010; Honey et al., 2010; Skudlarski et al., 2010; Johansen-Berg, 2011; Zhang et 
al., 2011b). It has been shown recently that SC is predictive for FC, but that FC in not 
very predictive for SC (Honey et al., 2010). Thus, there is a prominent role of white 
matter connectivity for the dynamic correlations across the brain, but the pattern of 
functional correlations can extend beyond the direct axonal connections (indirect 
connections). An interesting question is whether changes in SC precede FC changes or 
vice versa, as this would have implications for the stage of disease at which one of the 
imaging modalities (probing FC or SC) could detect abnormalities. It is likely that 
changes in SC would induce changes in FC, as SC is predictive for FC. However, 
whether changes in FC also (always) result in altered SC is unknown. 
Currently, there is a lack of biophysical models that describe the relation between FC 
and SC correlation and pathologically induces alterations (Johansen-Berg, 2011). 
Therefore, it is difficult to interpret the findings in this thesis from a neurobiological 
point of view. Future studies applying longitudinal measurements of the FC-SC 
relation in subjects as well as advances in the understanding of the relation between 
MR measurements and neurobiology are needed. 

The role of graph analysis in neurological and psychiatric disorders 

In this thesis we have proposed that cognitive dysfunction is related to network 
abnormalities in patients with epilepsy. From a network point of view, higher 
cognitive functions arise from the orchestrated activity of a large ensemble of cortical 
regions. Therefore, any abnormalities in either a network node (a cortical region or 
sub-cortical nuclei) or edge (axonal connections in the white matter) may lead to a 
dysfunctional network and consequently to cognitive impairment. In what follows, we 
explore the notion that the relation between network dysfunction and cognitive 
impairment is also applicable to other neurological and psychiatric disorders and 
advocate the relevance of several properties of graph analysis. 



150Chapter 7 

Many psychiatric and neurological disorders including epilepsy are characterized by a 
heterogeneous expression of cognitive problems (Berg, 2011; Naatanen et al., 2011). 
If network abnormalities are at the basis of these cognitive problems, these should be 
detectable by imaging methods probing network integrity and be related to cognitive 
and clinical variables of interest. A number of recent studies have applied graph 
theoretical analysis of brain networks in several neurological and psychiatric 
disorders. Increased path length has been associated with a decrease in cognitive 
performance in AD (Stam et al., 2007). A longer duration of illness was associated with 
increased L and decreased C in schizophrenia (Liu et al., 2008). Also in schizophrenia, 
IQ scores were related to an increase in L and decrease in C (Zalesky et al., 2011). In 
major depression a relation between regional network characteristics and duration of 
illness and cognitive scores was shown (Zhang et al., 2011a). In idiopathic generalized 
epilepsy, an association between duration of epilepsy and regional network 
characteristics was also identified (Zhang et al., 2011b). Although differences in 
pathology, imaging modality and analysis methods hinder the direct comparison of 
these results, there indeed appears to be a relation between network organization 
and cognitive and clinical variables in a variety of neurological and psychiatric 
disorders that can be detected by graph analysis. But what does graph analysis have 
to offer over more conventional image analysis methods? 
Many imaging studies to date have focused on finding the location of tissue 
abnormalities in clinical populations. Due to the high variability of brain morphology 
across individuals and the limited signal to noise ratio of the imaging methods (e.g. 
scans used in fMRI en DWI) group comparisons are made to obtain sufficient 
statistical power to detect abnormalities. Implicit to this approach is the assumption 
that the tissue abnormalities are indeed located at more or less the same anatomical 
location across individuals (i.e. overlap). Furthermore, it has to be assumed that all 
individuals in the patient group have to display a similar effect of tissue parameters 
values (e.g. activation levels or FA values): the mean of the parameter values has to be 
either sufficiently increased or decreased over the entire patient group to detect 
significant differences. 
First, in the case of patients with cryptogenic localization related epilepsy several 
arguments can be thought of that disagree with these assumptions. As the label 
‘cryptogenic’ indicates, it is uncertain what the nature of the lesion is, where it is 
located precisely and whether tissue abnormalities extend beyond the seizure focus. 
This violates the first assumption: it is not clear why tissue abnormalities should be 
anatomically co-located at the group level. Indeed, results from the populations 
studied in this thesis reveal that conventional voxel based comparisons did not reveal 
significant group differences in functional activation values in adult (Vlooswijk et al., 
2010b) and pediatric (Braakman et al., 2011) patients compared to healthy controls. 
The same was observed for voxelwise comparisons of FA values in pediatric epilepsy 
patients (unpublished results) where no group differences could be found. From this 
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we can carefully conclude that co-localized tissue abnormalities at the group level are 
not very salient in these patient populations. 
Second, cognitive dysfunction in epilepsy has been associated with a change in 
functional activation patterns (Vlooswijk et al., 2010a), where activation is shifted 
inter- or intra-hemispherically from the normally activated regions to other cerebral 
regions. This implies that some functional connections will show a decrease in 
strength (those engaged with the pathological regions), while others will be increased 
in strength (those engaged with the atypically activated regions). A similar effect may 
be seen for measures of microstructure, such as FA or ADC values. This is in line with 
chapters 5 and 6, where indeed both increases and decreases in connectivity were 
found, and several publications in other fields were both increases and decreases of 
tissue parameters have been observed (Powell et al., 2007; Fair et al., 2010; Meng et 
al., 2010; Zhang et al., 2011a). One could hypothesize that the pattern or 
reorganization is highly individual and that it is a-priori unknown whether certain 
tissue parameters will shown an increase or decrease in the individual patient. 
Therefore, simple statistics that test for differences in mean value of localized 
abnormalities at the group level might have limited statistical power in neurological 
disorders with heterogeneous expression of cognitive co-morbidity as observed in 
epilepsy. 
From these points of view, graph theoretical analysis of brain networks might have 
some conceptual advantages over conventional methods. Whole brain graph 
measures are derived from an individual brain. Therefore, there is no need to 
compare voxel-wise parameters at the group level. Different subjects can have very 
dissimilar brain abnormalities in terms of location and quantitative parameters (higher 
or lower), which would normally remain undetected by conventional analysis 
methods. However, these dissimilar abnormalities might display similar graph metrics. 
As shown in Figure 7.3, two hypothetical subjects with non-overlapping abnormalities 
can have a similar alteration of graph metrics compared to a normal subject. 
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Figure 7.3  This figure displays three hypothetical brain networks. The one in the middle (A) is assumed 

to be healthy, while the networks to the left (B)  and right (C) are supposed to be pathological 
networks. In the left network, a rewiring has occurred (red edges) resulting in a decrease of 
clustering, but similar L, compared to the normal network. The network on the right also has a 
rewiring (blue edges), although a different parts of the network are implicated. Sti ll , a similar 
reduction in clustering results in (C) as in (B). 

Methodological and technical considerations 

Node definition of the brain network  

Modeling the brain as a graph entails the definition of nodes and edges. However, 
defining nodes is not straightforward. Ideally, these nodes should represent real items 
of the system. At the macroscopic scale, nodes should correspond to functional 
cortical areas and sub-cortical nuclei, but the number and exact location of these 
entities in humans is largely unknown. To date, several approaches of node definitions 
have been reported (Wang et al., 2010), ranging in size and number from single voxels 
(van den Heuvel et al., 2008), to small cortical patches (Hagmann et al., 2008; Meunier 
et al., 2009) or macro-scaled regions from an anatomical atlas (Salvador et al., 2005; 
Zhang et al., 2011b). Several studies have investigated the effect of different node 
definitions in detail (Wang et al., 2009; Zalesky et al., 2010; Bassett et al., 2011; Power 
et al., 2011). In this thesis, we have used several node definitions. In chapter 4, the 
Automated Anatomical Labeling (AAL) atlas was used with 90 regions. In chapter 3, a 
refinement of the AAL atlas into ~900 regions was applied. In chapter 5 the cortical 
and subcortical atlas from the Freesurfer routines was utilized, containing 82 regions. 
In chapter 6, this Freesurfer atlas was refined into ~200 regions. See Figure 7.4 for an 
overview of the atlases. 
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Figure 7.4  Overview of the different anatomical atlases applied. (A) The AAL atlas with 90 regions. (B)  

The AAL atlas refined to 898 regions. (C) The default Freesurfer atlas with 82 regions. (D) The 
refined Freesurfer atlas with 205 regions. 

 
In Zalesky et al. (Wang et al., 2009; Zalesky et al., 2010) it was shown that the number 
of nodes in the network has an effect on network metrics, but in all cases the 
measured networks displayed robust small-world characteristics. In (Zhang et al., 
2011b) two different network parcellations were applied in a clinical population of 
epilepsy patients. Results indicated that although exact values of network metrics 
were different between the two parcellations, the qualitative group differences 
between the patients and controls were highly similar. The networks metrics from 
chapter 5 and chapter 6 are also directly comparable as they are derived from the 
same dataset. Functional network metrics from the Freesurfer atlas and a refined 
version thereof displayed very similar effects when comparing the different subject 
groups. From these results we can conclude that although the precise definition of 
nodes is an important factor that affects the values of network metrics, the 
interpretation of between group effects appear to be robust to different node 
definitions. 

Binary, weighted, undirected or directed networks  

The edges of a graph can be binary, weighted, undirected or directed. In this thesis 
the brain has been modeled as an undirected binary or weighted graph. In a binary 
graph, an edge is either present or not and no further information is stored. In a 
weighted graph a value is assigned to each edge that represents its connection 
strength. In chapters 2 and 5 binary graphs were used, whereas in chapters 3, 4, 5 and 
6 the weighted variant was applied. Although there are several conceptual differences 
between binary and weighted graphs, such as the amount of information that is 
retained in the graph, it is unclear which of the two methods is most sensitive as a 
biomarker. In chapter 5, the two were directly compared and although some minor 
differences were visible, the overall interpretation of the results was similar. This 
would indicate that both methods also have similar sensitivity, although further 
research is needed to be able to extend this finding to other pathologies. 
A related issue is the choice of edge weight in FC and SC. In SC this choice is less 
straightforward than in FC, where the correlation value is most often used. Other 
measures of functional coupling, such as partial correlation values (correlation where 
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the influence of several other variables are filtered out, e.g. the indirect correlation of 
two regions that are caused by a third region) or more advanced methods may also be 
used (Smith et al., 2011), although these remain largely unexplored in the framework 
of graph analysis. Furthermore, some concerns about the sensitivity and specificity of 
several methods have been raised recently (Smith et al., 2011). For SC, the choice of 
weighting is not straightforward. Several options can be explored, such as the number 
of streamlines, the (relative) volume of the tract or the mean FA or ADC value of the 
voxel within the tract. Some authors have even opted to combine several of these 
measures and also to include edge length in the weighting scheme (Hagmann et al., 
2008; Zhang et al., 2011b). Currently, there is no consensus on which weighting 
scheme best captures the efficacy of a white matter tract. This issue will likely remain 
unresolved, as no ‘gold standard’ for fiber tractography is available for the human 
brain. Studies combining chemical tracers and electro-stimulation or optogenetic 
methods (Deisseroth, 2011) in animals could potentially shed light on this issue. 
Directed networks are also of high interest in neuroscience. Ideally, the direction of a 
cortico-cortical or cortico-subcortical connection would provide information on the 
flow of information between neurons. Currently, deriving directed networks from DWI 
data is not possible. Fiber tractography is unable to differentiate either afferent or 
efferent structural connections. Several methods to obtain the directionality of a 
connection from functional MRI data exist and are still being developed. Such 
methods include Structural Equation Modeling (SEM) (Bullmore et al., 2000), Granger 
Causality Mapping (GCM)  (Roebroeck et al., 2005) and Dynamic Causal Modeling 
(DCM) (Friston et al., 2003). In their current form SEM and DCM are not applicable to 
large networks, as methodological and computational limitations hinder the inference 
of model parameters for a large number of regions. However, it would be interesting 
to investigate the added value of whole brain GCM analysis with graph theoretical 
parameters for directed networks (Liao et al., 2011) (e.g. the causal relationships 
between sub networks could be characterized). 

Functional connectivity: Resting state versus task fMRI 

In this thesis, the most straightforward implementation of functional connectivity was 
used: the linear correlation between the BOLD signal time series of two regions. In 
chapter 3, the BOLD signal time series were extracted from an fMRI experiment in 
which subjects performed a word generation task in the scanner. In chapters 5 and 6, 
a resting state fMRI experiment was used. In both cases the concept of functional 
connectivity is the same, what regions in the brain co-activate? However, it is not 
clear what the correspondence between the architecture of functional networks 
during rest or task is and how task performance influences group differences in 
network metrics. Several recent studies have investigated this in more detail using 
Independent Component Analysis (ICA) (Calhoun et al., 2008; Smith et al., 2009). In 
both studies it was shown that the networks identified with ICA were present in both 
task and rest data. This indicates that the brain is composed of several sub networks 
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that are functionally linked and, over the course of several minutes, synchronize their 
activity whether the owner of the brain is performing a task or not. For instance, in 
(Calhoun et al., 2008), components representing the motor and visual systems could 
be successfully identified both during an auditory oddball task and resting state. An 
ICA analysis of our data showed similar results, the task network of the word 
generation was also evident in the resting state data, as shown in Figure 7.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.5  Functional networks from resting state and task data. The top panel shows a resting state 

network involving left lateralized frontal and parietal regions. The bottom panel displays a 
task network found to be activated by the word generation task. Note the striking similarity 
between the two networks. 

 
To date, no studies have directly compared functional graph metrics between task and 
resting state. However, the above mentioned studies and the results from chapter 3 
(task) and chapter 5 (resting state) indicate that, on a whole brain scale, highly similar 
results should be expected. Although the results from chapters 3 and 5 cannot be 
directly compared due to differences in study population and node definition, it is 
apparent that functional whole brain networks during task or rest display efficient 
small world properties. It is likely that the performance of a task amplifies the 
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correlation values of the regions involved in the task. However, this apparently does 
not mean that dynamic fluctuations in other brain regions are attenuated such that no 
functional connectivity can be detected. Therefore, a relevant question is whether 
task fMRI is needed at all when investigating functional networks in neurological 
disorders. As shown above, many of the networks determined with task fMRI are also 
present in resting state fMRI. However, an interesting hypothesis is that some disease 
related effects only become visible during cognitive effort (Meda et al., 2009). 
Therefore, it would be appealing to investigate functional connectivity at different 
cognitive efforts. Also, it would be of interest to investigate whether individual 
differences in network topology during rest and task would be characteristic for 
neurological disorders. A recently proposed theory (Menon, 2011) suggests that 
abnormalities in the interplay between several core functional networks (default 
mode network, central executive network and the saliency network) form the basis 
for cognitive dysfunction in a large variety of neurological and psychiatric disorders. 
Such abnormalities might be detected by comparing metrics of functional network 
organization during rest and task. Furthermore, resting state fMRI is also applicable in 
clinical populations where task compliance is a problem (e.g. very young patients). On 
the other hand, task fMRI might be better capable of localizing specific areas at the 
individual level. These could then be used as seed ROIs for connectivity analyses. 

DWI and crossing fibers 

Fiber tractography enables the delineation of the white matter into large fiber 
bundles. Over the past decade a large number of methods have been developed to 
characterize the orientation of fibers from DWI data. In this thesis, two different types 
of fiber models have been used: the diffusion tensor model and the spherical 
deconvolution model. In diffusion tensor tractography, the principal diffusion 
direction of the tensor is used as fiber direction. Thus, only one fiber direction can be 
modeled per voxel, even though crossing fibers are prevalent in the human brain.  In 
chapters 2 and 4, a probabilistic extension of this model was used to perform fiber 
tractography (Parker et al., 2003). For this the amount of anisotropy in the tensor was 
used to infer a probability function for the principal diffusion direction. In some cases 
this can reduce the shortcomings of the single tensor model in crossing fibers, e.g. in a 
voxel with two crossing fiber bundles the probabilistic model of the principal diffusion 
direction will allow a tract to navigate through this voxel. However, an explicit model 
of multiple fiber direction is more appropriate. Therefore, in chapter 6, the 
constrained spherical deconvolution model was used (Tournier et al., 2007). This 
model allows the estimation of the fiber orientation distribution at high angular 
resolution and is capable of tracking through white matter regions with crossing 
fibers. 
DWI tractography is still a very active research field and many innovations are still 
being made, not only for fiber models but also at the level of image acquisition and 
post-processing (Jones, 2010). Until a golden standard for human white matter neuro-
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anatomy is provided, it will remain difficult to precisely evaluate the pros and cons of 
the different fiber models and tractography algorithms. However, a more relevant 
question here is whether the choice for a certain method could introduce a bias when 
investigating different clinical populations. No reports on this subject have been 
published and it is unlikely that group differences will depend on the choice of 
method. Therefore, even though the different fiber models have several conceptual 
advantages and disadvantages, all can be used in clinical studies. The sensitivity of 
different methods in different neurological disorders is as of yet largely unknown, but 
would be of importance for future study designs. 

Clinical implications and future perspectives 
Based on MR network imaging, one would like to provide a prognosis based on the 
neurological substrate to determine the individual patient’s vulnerability for cognitive 
decline. This would entail interpretation of the individual patient’s MR data. Currently, 
the available MR connectivity measurements do not seem ready for this and the 
cognitive consequences of epilepsy can only be detected with neuropsychological 
assessment in patients who already experience problems in daily life.  However, 
clinicians are unable to predict which patient will be at risk to develop cognitive 
problems based only on clinical variables. Therefore, research aimed at finding early 
MR biomarkers for development of cognitive problems should continue. 
The results presented in this thesis demonstrate that a mechanism underlying or at 
least associated with cognitive dysfunction in cryptogenic localization-related epilepsy 
appears to be a disruption of large-scale brain networks. When changes in MR 
network parameters would precede changes in neuropsychological parameters, this 
would potentially open a window towards early detection of neuronal changes that 
increase the risk for the development of cognitive impairment. The early detection of 
patients at risk may be valuable, especially in chronic epilepsy, as earlier therapeutic 
interventions hopefully lead to a better neurocognitive outcome at long term. 
However, several advances are needed before such scenarios might become reality. 
MRI protocols need to be optimized and preferably standardized, such that results 
from different study and research centers can be compared and aggregated. This 
would also require a level of standardization of post-processing protocols. In 
functional mapping, standardized tools are already available (e.g. SPM and FSL), 
although no such tools are currently available for resting state fMRI connectivity or 
DWI tractography, but will likely become available in the near future. 
Although a comparison between epilepsy patients with epilepsy from different age 
categories was made in this discussion, ideally longitudinal studies should be 
performed to monitor the relation between neuronal organization, cognitive 
dysfunction and clinical factors. Theoretically, patients should be followed even 
before the onset of epilepsy, although this is obviously practically infeasible. 
Therefore, a realistic option would be to follow patients from the onset of epilepsy 
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over large time periods. Such studies might be able to provide unique insight on the 
causal relations between seizures, brain abnormalities and cognitive deficits. Also, as 
the influence of clinical factors on brain organization and cognition is likely to be 
multi-factorial, large cohorts are needed to have sufficient statistical power to 
disentangle this interaction. 
  



 General discussion159 

REFERENCES 

Bassett DS, Brown JA, Deshpande V, Carlson JM, Grafton ST (2011) Conserved and variable architecture of 
human white matter connectivity. Neuroimage 54:1262-1279. 

Berg AT (2011) Epilepsy, cognition, and behavior: The clinical picture. Epilepsia 52 Suppl 1:7-12. 
Berl MM, Balsamo LM, Xu B, Moore EN, Weinstein SL, Conry JA, Pearl PL, Sachs BC, Grandin CB, Frattali  C, 

Ritter FJ, Sato S, Theodore WH, Gaillard WD (2005) Seizure focus affects regional language 
networks assessed by fMRI. Neurology 65:1604-1611. 

Bonelli  SB, Powell RH, Yogarajah M, Samson RS, Symms MR, Thompson PJ, Koepp MJ, Duncan JS (2010) 
Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. 
Brain 133:1186-1199. 

Braakman H, Vaessen M, Jansen J, Hofman P, Aldenkamp A, Backes W (2011) Functional connectivity of the 
language network in children with Frontal Lobe Epilepsy. in preparation. 

Bullmore E, Horwitz B, Honey G, Brammer M, Williams S, Sharma T (2000) How good is good enough in path 
analysis of fMRI data? Neuroimage 11:289-301. 

Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated 
using ICA at rest and during cognitive tasks. Hum Brain Mapp 29:828-838. 

Cheung MC, Chan AS, Chan YL, Lam JM, Lam W (2006) Effects of illness duration on memory processing of 
patients with temporal lobe epilepsy. Epilepsia 47:1320-1328. 

Deisseroth K (2011) Optogenetics. Nat Methods 8:26-29. 
Fair DA, Posner J, Nagel BJ, Bathula D, Dias TG, Mills KL, Blythe MS, Giwa A, Schmitt CF, Nigg JT (2010) 

Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. 
Biological psychiatry 68:1084-1091. 

Focke NK, Yogarajah M, Bonelli  SB, Bartlett PA, Symms MR, Duncan JS (2008) Voxel-based diffusion tensor 
imaging in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Neuroimage 
40:728-737. 

Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19:1273-1302. 
Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the 

structural core of human cerebral cortex. PLoS Biol 6:e159. 
Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R, Wedeen VJ, Meuli R, Thiran JP, Grant PE (2010) 

White matter maturation reshapes structural connectivity in the late developing human brain. 
Proc Natl Acad Sci U S A 107:19067-19072. 

Honey CJ, Thivierge JP, Sporns O (2010) Can structure predict function in the human brain? NeuroImage 
52:766-776. 

Johansen-Berg H (2011) The future of functionally-related structural change assessment. NeuroImage. 
Jones DK (2010) Diffusion MRI: Theory, Methods, and Applications: Oxford University Press. 
Kaiser M, Goerner M, Hilgetag CC (2007) Criticality of spreading dynamics in hierarchical cluster networks 

without inhibition. New Journal of Physics 9:110. 
Liao W, Ding J, Marinazzo D, Xu Q, Wang Z, Yuan C, Zhang Z, Lu G, Chen H (2011) Small-world directed 

networks in the human brain: multivariate Granger causality analysis of resting-state fMRI. 
Neuroimage 54:2683-2694. 

Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z, Jiang T (2008) Disrupted small-world networks 
in schizophrenia. Brain 131:945-961. 



160Chapter 7 

Meda SA, Stevens MC, Folley BS, Calhoun VD, Pearlson GD (2009) Evidence for anomalous network 
connectivity during working memory encoding in schizophrenia: an ICA based analysis. PLoS One 
4:e7911. 

Meng L, Xiang J, Kotecha R, Rose D, Zhao H, Zhao D, Yang J, Degrauw T (2010) White matter abnormalities in 
children and adolescents with temporal lobe epilepsy. Magnetic resonance imaging 28:1290-
1298. 

Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends  
in cognitive sciences 15:483-506. 

Meunier D, Lambiotte R, Fornito A, Ersche KD, Bullmore ET (2009) Hierarchical modularity in human brain 
functional networks. Front Neuroinform 3:37. 

Naatanen R, Kujala T, Kreegipuu K, Carlson S, Escera C, Baldeweg T, Ponton C (2011) The mismatch 
negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in 
ageing. Brain. 

Newman ME, Leicht EA (2007) Mixture models and exploratory analysis in networks. Proc Natl Acad Sci U S 
A 104:9564-9569. 

Parker GJ, Haroon HA, Wheeler-Kingshott CA (2003) A framework for a streamline-based probabilistic index 
of connectivity (PICo) using a structural interpretation of MRI diffusion measurements. Journal of 
magnetic resonance imaging : JMRI 18:242-254. 

Powell HW, Parker GJ, Alexander DC, Symms MR, Boulby PA, Wheeler-Kingshott CA, Barker GJ, Koepp MJ, 
Duncan JS (2007) Abnormalities of language networks in temporal lobe epilepsy. Neuroimage 
36:209-221. 

Power Jonathan D, Cohen Alexander L, Nelson Steven M, Wig Gagan S, Barnes Kelly A, Church Jessica A, 
Vogel Alecia C, Laumann Timothy O, Miezin Fran M, Schlaggar Bradley L, Petersen Steven E 
(2011) Functional Network Organization of the Human Brain. Neuron 72:665-678. 

Riley JD, Franklin DL, Choi V, Kim RC, Binder DK, Cramer SC, Lin JJ (2010) Altered white matter integrity in 
temporal lobe epilepsy: association with cognitive and clinical profiles. Epilepsia 51:536-545. 

Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger 
causality and fMRI. Neuroimage 25:230-242. 

Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, Bullmore E (2005) Neurophysiological 
architecture of functional magnetic resonance images of human brain. Cereb Cortex 15:1332-
1342. 

Skudlarski P, Jagannathan K, Anderson K, Stevens MC, Calhoun VD, Skudlarska BA, Pearlson G (2010) Brain 
connectivity is not only lower but different in schizophrenia: a combined anatomical and 
functional approach. Biological psychiatry 68:61-69. 

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW 
(2011) Network modelling methods for FMRI. Neuroimage 54:875-891. 

Smith SM, Fox  PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Fil ippini N, Watkins KE, Toro R, Laird AR, 
Beckmann CF (2009) Correspondence of the brain's functional architecture during activation and 
rest. Proc Natl Acad Sci U S A 106:13040-13045. 

Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens P (2007) Small-world networks and functional 
connectivity in Alzheimer's disease. Cereb Cortex 17:92-99. 

Tosun D, Dabbs K, Caplan R, Siddarth P, Toga A, Seidenberg M, Hermann B (2011) Deformation-based 
morphometry of prospective neurodevelopmental changes in new onset paediatric epilepsy. 
Brain 134:1003-1014. 



 General discussion161 

Tournier JD, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in 
diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 
35:1459-1472. 

van den Heuvel MP, Stam CJ, Boersma M, Hulshoff Pol HE (2008) Small-world and scale-free organization of 
voxel-based resting-state functional connectivity in the human brain. Neuroimage 43:528-539. 

Vlooswijk MC, Jansen JF, de Krom MC, Majoie HM, Hofman PA, Backes WH, Aldenkamp AP (2010a) 
Functional MRI in chronic epilepsy: associations with cognitive impairment. Lancet neurology 
9:1018-1027. 

Vlooswijk MC, Jansen JF, Majoie HJ, Hofman PA, de Krom MC, Aldenkamp AP, Backes WH (2010b) 
Functional connectivity and language impairment in cryptogenic localization-related epilepsy. 
Neurology 75:395-402. 

Wang J, Zuo X, He Y (2010) Graph-based network analysis of resting-state functional MRI. Front Syst 
Neurosci 4:16. 

Wang J, Wang L, Zang Y, Yang H, Tang H, Gong Q, Chen Z, Zhu C, He Y (2009) Parcellation-dependent small-
world brain functional networks: a resting-state fMRI study. Hum Brain Mapp 30:1511-1523. 

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’networks. Nature 393:440-442. 
Weber B, Wellmer J, Schur S, Dinkelacker V, Ruhlmann J, Mormann F, Axmacher N, Elger CE, Fernandez G 

(2006) Presurgical language fMRI in patients with drug-resistant epilepsy: effects of task 
performance. Epilepsia 47:880-886. 

Yogarajah M, Powell HW, Parker GJ, Alexander DC, Thompson PJ, Symms MR, Boulby P, Wheeler-Kingshott 
CA, Barker GJ, Koepp MJ, Duncan JS (2008) Tractography of the parahippocampal gyrus and 
material specific memory impairment in unilateral temporal lobe epilepsy. Neuroimage 40:1755-
1764. 

Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C, Bullmore ET (2010) Whole-brain anatomical 
networks: does the choice of nodes matter? Neuroimage 50:970-983. 

Zalesky A, Fornito A, Seal ML, Cocchi L, Westin CF, Bullmore ET, Egan GF, Pantelis C (2011) Disrupted axonal 
fiber connectivity in schizophrenia. Biol Psychiatry 69:80-89. 

Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011a) Disrupted brain connectivity networks in 
drug-naive, first-episode major depressive disorder. Biol Psychiatry 70:334-342. 

Zhang Z, Liao W, Chen H, Mantini D, Ding JR, Xu Q, Wang Z, Yuan C, Chen G, Jiao Q, Lu G (2011b) Altered 
functional-structural coupling of large-scale brain networks in idiopathic generalized epilepsy. 
Brain : a journal of neurology 134:2912-2928. 

 

 
  



162Chapter 7 

 



163 

 

 
 

 

 

  
Summary 

 
 
 
 
 
 
 

 
 
 
 

 
  



164 

 



 Summary165 

SUMMARY 

Many patients with epilepsy develop cognitive problems in the course of their disease, 
such as memory problems, slowness of thought or problems finding words. The 
etiology of these cognitive problems has not been resolved. It is thought that 
cognitive functioning is the result of interactions between brain areas in large scale 
networks. Therefore, it is interesting to investigate whether the cause of cognitive 
problems results from a disruption of brain networks. With the aid of relatively new 
MRI techniques, in particular functional Magnetic Resonance Imaging (fMRI) and 
diffusion weighted MRI (DWI), it is possible to measure abnormalities of brain 
networks which might be related to cognitive impairments. The research in this thesis 
has focused on detecting network abnormalities in patients with epilepsy compared 
to healthy controls. The results demonstrated that patients with epilepsy – especially 
those with cognitive problems – have a disrupted organization of functional and 
structural networks. These findings are an important step in understanding the 
neuronal correlate of cognitive deficits in neurological diseases such as epilepsy. 
 
Epilepsy is one of the most prevalent neurological disorders worldwide. It affects 1-2% 
percent of the population at some point in their lives. In the Netherlands alone, 
approximately 110,000 persons have some form of epilepsy at any given moment. The 
unpredictability and sudden occurrence of a seizure frequently creates a great social 
burden to the patient and those who surround him. Although the direct consequences 
of epileptic seizures are serious, many patients rank their cognitive impairments 
highest on their list of complaints. Much research has focused on clinical factors that 
might contribute to the development of cognitive impairments, for instance, the role 
of seizure frequency, age at onset of the seizures and anti-epileptic drug use. 
However, results have been mixed and thus far no conclusive relationship between 
cognitive problems and these clinical factors has been demonstrated. At present, it is 
difficult for the clinician to give a prognosis: patients and relatives cannot be informed 
about whether cognition will remain intact and whether a certain anti-epileptic drug 
(AED) will successfully control seizures. Therefore, diagnostic tools to identify patients 
at risk of cognitive impairment and treatment failure are needed. 
 
Owing to the recent progress made in MR imaging and particularly computational 
methods, it is now possible to measure how macroscopic brain regions functionally 
interact and how they are connected by white matter fiber bundles. Functional MRI 
allows indirect measurement of neuronal activity in the brain’s grey matter. 
Functional connectivity can then be derived by calculating the synchronicity between 
the activity of different brain areas. Diffusion weighted MRI is able to provide 
information on the micro structural organization of the white matter (the nerve 
fibers). By applying fiber tractography it is possible to reconstruct and visualize 
structural connections between brain areas. This opens up new opportunities for 
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researchers to investigate the properties of the human brain network, how they relate 
to cognitive functioning, and how connectivity is affected by cerebral diseases such as 
epilepsy. Intuitively, a network is a collection of entities that are somehow connected 
and thus the term network can be applied to a large number of systems like the brain, 
the internet, or groups of socially interacting humans. A more formal definition of a 
network exists from the field of applied mathematics: here a network is often called a 
graph which is composed of its individual elements, the nodes, and the link between 
nodes, the edges. At the macroscopic scale the nodes of the brain graph relate to 
brain regions and the edges represent the functional or structural connectivity 
between regions. With methods from graph theory, it is possible to derive simple 
characteristics of enormously complex networks that provide information on the 
topological properties of the network, thus facilitating research where measured 
networks need to be compared. A great variety of graph metrics exist. This thesis 
focuses on metrics that characterize integration and segregation between brain 
regions (path length and clustering respectively) and sub-networks formed by brain 
regions (modularity analysis). 
 
The aim of this thesis was to develop and explore the use of graph analysis methods in 
finding the neuronal correlate of cognitive impairment in epilepsy. Research to date 
has mainly focused on the relation between cognitive parameters and localized 
functional and structural tissue abnormalities. Although this approach is viable, in this 
thesis we advocate a different paradigm: the brain is to be viewed as a highly 
interconnected system and analysis methods should be tailored towards relating 
cognitive deficits to characteristics of large-scale networks.   
 
Not much was known about the peculiarities of deriving graph metrics from structural 
large-scale brain networks. Therefore, in chapter 2, the effect of several imaging 
parameters on the reproducibility of graph metrics was investigated. The results 
indicated that the graph metrics were well reproducible and thus might be used to 
detect abnormalities in brain networks. The reproducibility of graph metrics was 
better than that of traditional tract measures such as the number of tracts of a 
connection.  
In this thesis, two different groups of patients are investigated and compared to 
healthy controls. Chapter 3 and 4 are based on the population from the CODICE 
(COgnitive Deterioration In Cryptogenic Epilepsy) study. In this study adult patients 
with localization related but cryptogenic epilepsy (i.e. no visible lesions on structural 
MRI) are included. Although all patients have a seizure onset in the frontal or 
temporal lobe, their epilepsy is of unknown cause. Chapters 5 and 6 are based on 
another cohort: the IMAGINE (IMAGing IN Epilepsy) study. Here, children with 
localization related epilepsy, also without visible lesions on macrostructural MRI, are 
included. All patients have a seizure focus in the frontal lobe. Graph metrics derived 
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from both functional and structural brain networks were compared between patients 
and healthy controls and related to cognitive performance. 
 
In chapter 3 it was shown that reduced efficiency of cerebral functional networks was 
evident in adult patients with chronic cryptogenic epilepsy and that the cerebral 
efficiency was related to measures of global cognitive performance. Especially the 
patients with severe cognitive problems displayed a less efficient network (increased 
path length and reduced clustering). Chapter 4 dealt with the same study population, 
but here structural networks were investigated. Differences in graph metrics between 
patients with cognitive impairment and healthy controls were identified as well as a 
strong relation between cognitive scores and graph metrics. Again, the largest 
deviations in graph metrics were seen in the patients with the most severe cognitive 
problems. A cohort of children with frontal lobe epilepsy was investigated in chapter 
5. Functional brain networks showed connectional abnormalities that were mainly 
expressed as a reduction in coupling between functional sub-networks (modules) and 
this reduction was correlated with poorer cognitive function. The reduction in 
between-module connectivity was most evident in the most cognitively impaired 
patients. Moreover, the frontal lobe displayed a deviant modular organization in 
patients. A specific module was identified that occupied several brain lobes in healthy 
controls but was severely reduced in extent in patients, especially those with cognitive 
impairment. In chapter 6 we studied whether the functional abnormalities found in 
children with FLE could also be related to structural networks. A reduction in 
between-module connectivity with increased modularity, clustering and path length 
was observed in the patients. However, an overall increase in white matter 
connectivity was observed, although whole structural graph metrics did not show any 
differences.  
 
The results presented in this thesis demonstrate that disruption of large-scale brain 
networks is one of the mechanisms underlying, or at least associated with, cognitive 
dysfunction in cryptogenic localization-related epilepsy. When changes in MR network 
measures would precede changes in neuropsychological outcomes, this would 
potentially open a window towards early detection of neuronal changes that increase 
the risk for the development of cognitive impairment. The early detection of patients 
at risk may be valuable, especially in chronic epilepsy, as earlier therapeutic 
interventions hopefully lead to a better long term neurocognitive outcome. This is 
particularly important for children with epilepsy, as children and parents remain 
uncertain about treatment success and the maximum achievable educational level. 
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SAMENVATTING 

In het verloop van hun ziekte ontwikkelen patiënten met epilepsie vaak cognitieve 
stoornissen zoals geheugen problemen, traagheid van denken en problemen met het 
vinden van woorden. De oorzaak van deze cognitieve stoornissen is nog onbekend. Er 
wordt gedacht dat cognitieve functies het resultaat zijn van synchrone activiteit 
tussen gebieden in de hersenen die onderdeel zijn van netwerken. Het is daarom 
interessant om de oorzaak van cognitieve stoornissen te zoeken in de verstoring van 
hersennetwerken. Met behulp van relatief nieuwe Magnetic Resonance Imaging (MRI) 
technieken, in het bijzonder functionele MRI (fMRI) en diffusie gewogen MRI (DWI), is 
het mogelijk om eigenschappen van netwerken in de hersenen te meten en te 
onderzoeken of mogelijke afwijkingen in deze netwerkeigenschappen gerelateerd zijn 
aan de cognitieve stoornissen. Deze thesis richt zich op het detecteren van 
afwijkingen in hersennetwerken bij patiënten met epilepsie in vergelijking tot gezonde 
personen. De resultaten demonstreren dat patiënten met epilepsie – vooral diegenen 
met cognitieve stoornissen – een afwijkende functionele en structurele 
hersennetwerk organisatie hebben. Deze bevindingen geven inzicht in het neuronale 
correlaat van cognitieve stoornissen bij neurologische ziekten zoals epilepsie. 
 
Epilepsie is een van de meest voorkomende neurologische ziekten wereldwijd en 1 tot 
2% van de bevolking heeft er op een gegeven moment last van. In Nederland hebben 
ongeveer 110,000 mensen epilepsie. De onvoorspelbaarheid en plotselinge opkomst 
van een epileptische aanval zorgt ervoor dat patiënten en hun naasten het sociaal 
moeilijker hebben. De aanvallen zijn het meest bekende aspect van de ziekte, maar 
veel patiënten vinden hun cognitieve stoornissen het meest belastend. Er is al veel 
onderzoek gedaan naar de relatie tussen klinische factoren en het ontstaan van 
cognitieve stoornissen, bijvoorbeeld de aanvalsfrequentie, de leeftijd waarop de 
epilepsie begon en het gebruik van medicatie. Deze onderzoeken laten echter geen 
eenduidige resultaten zien. Mede hierdoor is het lastig voor de behandelaar om een 
duidelijke prognose te geven. Daarom is er een behoefte aan additionele 
diagnostische middelen om patiënten, die cognitieve achteruitgang zullen gaan 
vertonen, te kunnen identificeren.  
 
Dankzij recente ontwikkelingen in MRI en beeldanalyse methoden is het nu mogelijk 
om in kaart te brengen hoe het brein op een grove (macroscopische) schaal 
functioneel en structureel verbonden is. Met functionele MRI kan indirect de 
neuronale activiteit in de grijze stof worden gemeten. De functionele connectiviteit 
kan dan berekend worden aan de hand van de mate van synchronisatie tussen 
verschillende gebieden. Met diffusie-gewogen MRI kan de microstructurele oriëntatie 
van de witte stof (de zenuwbanen) bepaald worden, en door fiber tractography toe te 
passen kan worden berekend en gevisualiseerd hoe gebieden structureel verbonden 
zijn. Dit geeft onderzoekers nieuwe mogelijkheden om de eigenschappen van 
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hersennetwerken te meten, uit te zoeken hoe deze eigenschappen samenhangen met 
het cognitief functioneren en te bepalen of hersennetwerken aangedaan zijn in 
neurologische ziekten zoals epilepsie. Een netwerk is een begrip waarmee meestal 
een verzameling objecten (deelsystemen) wordt aangeduid die op een of andere 
manier verbonden zijn. De term netwerk slaat dus op een grote verzameling systemen 
zoals het brein, het internet of de sociale interactie tussen een groep mensen. Vanuit 
de toegepaste wiskunde bestaat er echter een meer formele definitie van een 
netwerk, deze wordt dan een graaf genoemd. Een graaf bestaat uit de elementen van 
het systeem (de nodes, knooppunten) en de verbindingen tussen de nodes (de edges). 
Macroscopisch kunnen we de nodes toekennen aan brein regio’s en de edges 
toekennen aan de functionele of structurele verbindingen tussen de verschillende 
regio’s in het brein. Met behulp van methodes uit de graaf theorie kunnen we een 
complex netwerk samenvatten in een klein aantal maten (graaf maten) die ons een 
beeld geven over de opbouw (topologie) van het netwerk. Op deze manier wordt het 
uitvoeren van wetenschappelijk onderzoek naar complexe netwerken gefaciliteerd. Er 
bestaan een groot aantal graaf theoretische maten. In deze thesis wordt vooral 
gebruik gemaakt van maten die informatie geven over de integratie en segregatie 
tussen brein regio’s (respectievelijk pad lengte en clustering) en over hoe het brein 
opgedeeld is in subnetwerken (modulariteit).  
 
Het primaire doel van het onderzoek in deze thesis was het ontwikkelen en toepassen 
van graaf theoretische analyse methodes om het neuronale correlaat van cognitieve 
stoornissen in epilepsie te vinden. Tot nu toe hebben veel studies zich gericht op het 
vinden van een specifieke locatie in het brein waar het weefsel aangedaan is. Dit is 
zeker een praktische aanpak, maar in deze thesis hebben we gepleit voor een ander 
paradigma waarbij het brein wordt gezien als een sterk verbonden systeem en 
geanalyseerd zou moeten worden met methodes die netwerk- en cognitieve 
eigenschappen direct kunnen relateren. 
 
Het onderzoek in deze thesis vergelijkt de resultaten tussen twee verschillende 
groepen: patiënten met epilepsie en gezonde personen. In de hoofdstukken 3 en 4 
worden mensen uit de CODICE (COgnitive Deterioration In Cryptogenic Epilepsy) 
studie onderzocht. Deze groep bestaat uit patiënten met cryptogene lokalisatie 
gebonden epilepsie (d.w.z. er zijn geen grote laesies te zien op standaard MRI) en een 
groep gezonde volwassenen van vergelijkbare leeftijd. De patiënten hebben een 
epileptisch focus in de frontaal kwab of temporaalkwab, maar de precieze oorzaak 
van de epilepsie is onbekend. De hoofdstukken 5 en 6 zijn gebaseerd op de IMAGINE 
(IMAGing IN Epilepsy) studie waarin jonge kinderen met lokalisatie gebonden 
epilepsie zijn onderzocht. Deze patiëntjes hebben geen zichtbare afwijkingen op 
structurele MRI en het epileptisch focus bevindt zich in de frontaal kwab. Bij deze 
groepen zijn graaf maten van de functionele en structurele hersennetwerken 
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berekend en vergeleken met de gezonde controles en gerelateerd aan cognitief 
presteren. 
 
Omdat er nog weinig bekend was over het berekenen van graaf maten van structurele 
netwerken, zijn het effect van MRI scan parameters op graaf maten en de 
reproduceerbaarheid van de graaf maten onderzocht in hoofdstuk 2. Hier bleek dat 
deze parameters inderdaad goed reproduceerbaar waren en dus mogelijk gebruikt 
konden worden om afwijkingen te detecteren, beter dan traditionele maten zoals het 
aantal tracts. De resultaten beschreven in hoofdstuk 3 lieten zien dat de functionele 
netwerken minder efficiënt waren opgebouwd bij de volwassen epilepsie patiënten 
en dat de graaf maten gecorreleerd waren aan cognitief functioneren. Vooral de 
patiënten met een meer uitgesproken intellectuele achteruitgang lieten een minder 
efficiënte opbouw van het netwerk zien (langere padlengte en verminderde 
clustering). In hoofdstuk 4 zijn dezelfde patiënten en controles onderzocht, maar hier 
zijn juist de eigenschappen van de structurele netwerken nader bekeken. Verschillen 
in graaf maten tussen gezonden en patiënten waren aanwezig en geassocieerd met 
cognitieve parameters. Wederom werden bij de patiënten die cognitief het meest 
aangedaan waren de voornaamste afwijkingen gevonden. De groep met jonge 
patiënten is onderzocht in hoofdstuk 5. De resultaten lieten zien dat de afwijkingen in 
de functionele netwerken van de patiënten vooral gekarakteriseerd werden door een 
vermindering in connectiviteit tussen subnetwerken (de modules). De verminderde 
tussen-module connectiviteit was het meest uitgesproken bij de patiënten met lage 
cognitieve scores. Bovendien liet vooral de frontaalkwab een andere modulaire 
organisatie zien bij de patiënten met frontaalkwab epilepsie. Ook viel er een module 
te identificeren die bij gezonde personen een grote uitgebreidheid had en vele 
kwabben bestreek, die echter in patiënten veel minder uitgebreid bleek, vooral in die 
patiënten die cognitief aangedaan waren. In hoofdstuk 6 is onderzocht of de 
functionele afwijkingen die bij de kinderen aanwezig waren ook te zien waren in de 
structurele netwerken. Er werd bij de patiënten een afname in tussen-module 
connectiviteit en een toename in modulariteit, pad lengte en clustering 
waargenomen. Opvallend was dat de opbouw van de structurele netwerken 
nauwelijks of geen verandering liet zien, maar dat er wel sprake was van een 
algemene verhoging van de structurele (witte stof) connectiviteit.  
 
De resultaten van het onderzoek gepresenteerd in deze thesis laten zien dat er een 
belangrijke associatie is tussen afwijkingen in macroscopische hersennetwerken en 
cognitieve stoornissen bij patienten met lokalisatie gebonden epilepsie. Wanneer de 
veranderingen in hersennetwerken, zoals gemeten met MRI en graaf maten, eerder 
zouden optreden dan veranderingen in neuropsychologische uitkomsten (die de 
cognitieve achteruitgang meten), zou vroege detectie van patienten die cognitieve 
stoornissen gaan krijgen mogelijk zijn. Een vroege detectie van een patient met een 
verhoogd risico op cognitieve stoornissen kan waardevol zijn in de behandeling van 
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epilepsie, omdat een vroege en adequate therapeutische interventie zou kunnen 
leiden tot een betere cognitieve uitkomst op de lange termijn. Dit is vooral belangrijk 
bij kinderen met epilepsie, aangezien de kinderen en ouders in het ongewisse 
verkeren of een behandeling zal aanslaan en wat het opleidingspotentieel zal worden. 
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