The adolescent brain: neurocognitive development and subject-related factors

Citation for published version (APA):

Document status and date:
Published: 01/01/2010

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher’s website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 25 Apr. 2020
Adolescence has been described as a period of profound developmental changes in behavior, neurocognitive functions and brain structure. However, the age-related changes in functional brain activation underlying neurocognitive improvement are still unknown. Moreover, previous developmental results might be contaminated with uncontrolled subject characteristics as well as methodological confounders, such as head motion and stress reactivity during scanning. The first aim of this thesis was to study neurocognitive development in the age window of adolescence, and to examine age-related changes in brain activation underlying this development. Two large-scale cross-sectional studies were conducted to achieve this aim. Various age groups within adolescence were compared on both behavioral performance and functional activation patterns during neurocognitive tasks. The second aim of this thesis was to investigate the effect of subject-related and methodological factors on these developmental trajectories. Differences between male and female adolescents were investigated as the major subject-related factor, and stress-reactivity to fMRI scanning was the major methodological factor investigated. Furthermore, we controlled for the typical confounding variables within developmental fMRI studies. In chapter 1, a general introduction to this thesis was given.

In chapter 2, we examined developmental trajectories of emotional versus cognitive functions in a sample of adolescents aged 13-19. Both mentalizing speed regarding emotions, and mentalizing speed regarding actions as well as the planning time on the Tower task improved linearly with age into late adolescence. No differential trajectories were found for emotional versus cognitive development. In addition, two subject-related factors, i.e. sex and pubertal phase, proved to influence mentalizing speed. Girls outperformed boys on both mentalizing versions, and a later pubertal phase measured in boys was associated with increased mentalizing speed.

Developmental fMRI results have suggested a progression in focalization, characterized by an age-related decrease in activation extent as well as an increased signal strength in task-related areas. We evaluated this hypothesis in chapter 3, while controlling for several confounders that might bias towards focalization. Male adolescents, selected within small age ranges, of respectively 13, 17 and 21 years old performed a challenging gambling task. We incorporated head motion corrections and identified regions of interest for each participant separately to rule out the influence of age-related anatomical variability. Although different adolescent age groups engaged similar brain areas during
SUMMARY

decision making, the response magnitude in these areas was modulated by age. The BOLD amplitude in task positive areas increased with age, complemented by an increased deactivation of default mode areas, both more pronounced during difficult gambling conditions. The age-related increased BOLD response was, however, neither accompanied by an age-related decrease in activation extent, nor by any qualitative shift in activated areas as hypothesized. So, while controlling for confounding factors we only found evidence for the focalization of activation into task-specific brain areas with increasing BOLD response between ages 13 and 21.

In chapter 4, we examined whether age-related changes in brain activation were widespread throughout the brain, and whether this pattern was specific to a particular cognitive function or not. This view on functional maturation is based on widespread maturational changes in anatomy and functional connectivity, and contrasts with previous developmental fMRI studies that focussed on functional changes associated with particular changes in behavior. Next to the traditional, univariate voxel-wise analysis, we applied multivariate pattern classification analysis to study developmental changes in brain activation during a simple go/no-go task. The multivariate approach was highly accurate in discriminating between 13 year-olds and respectively 17 and 21 year-olds. This suggests that developmental changes are spatially distributed throughout the brain, affecting the responsiveness of a wide range of task positive and default mode regions. Moreover, we showed that this developmental pattern is independent of the specific cognitive function performed, since it can be accurately generalized across different go/no-go conditions and even to a totally different gambling task performed by the same participants. In contrast to the multivariate results, univariate voxel-wise analysis revealed few age-related clusters that only differed between 13 and 21 year-olds. This suggests that a multivariate approach might be more suited for studying subtle and widespread developmental changes in brain activation than an univariate approach.

Because psychological stress associated with fMRI scanning might confound neuroimaging findings, we examined in chapter 5 whether cortisol reactivity differed between young and old adolescents. Cortisol levels were elevated pre relative to post imaging in all participants, suggesting anticipatory stress. In addition, a subgroup of adolescents, irrespective of age, was characterized by an enhanced cortisol output during scanning. Compared with non-responders, these stress responders showed decreased activation in the inferior parietal cortex, which is related to attentional processes. Furthermore, associations between cortisol and the BOLD response during a gambling task were observed only in young as opposed to old adolescents, suggesting an age-dependent effect of cortisol on brain activation.

In chapter 6, we examined sex-related differences in brain activation during decision making in young adults aged 20-21. As previous results might be
clouded by the use of different task paradigms, we used two decision making tasks that differed along two dimensions: motivational context, and the nature of decision making. Sex effects in brain activation were revealed during both exogenous and endogenous controlled trials of a gambling task, which had a high motivational context. There were no sex effects during the exogenous controlled go/No-go task, which had a low motivational context. In two task-related areas, anterior cingulate cortex and lingual gyrus, men showed a higher BOLD response than women. In addition, task-induced deactivations seemed to be modulated by sex. These results suggest that sex differences in brain activation during decision making were related to the motivational context, rather than to the nature of decision making.

Finally, in chapter 7 we discussed the results of the empirical chapters in the context of the thesis aims. The methodological approach in this thesis of studying and controlling subject-related and methodological confounders provided new insight into the relevance of these factors for developmental fMRI results that were ignored or uncontrolled in previous studies. Based on the findings described in this thesis, functional brain maturation can be conceptualized as subtle but widespread changes in functional responsiveness of task-related voxels. Moreover, this age-distinctive pattern of brain activation seems to be independent of the specific neurocognitive processes executed, indicating a general developmental pattern. In addition, this thesis provided evidence for the importance of the factors male/female sex as well as stress reactivity to scanning on this neurocognitive development.
Samenvatting

In de adolescentie vinden grote veranderingen plaats in gedrag, neurocognitieve functies en hersenstructuur. Het is echter nog onbekend welke leeftijdsgerelateerde veranderingen in het functioneren van de hersenen ten grondslag liggen aan deze ontwikkelingen. Bovendien zijn eerdere onderzoeksresultaten naar neurocognitieve ontwikkeling mogelijk vertekend, doordat ze geen rekening houden met enerzijds proefpersoongebonden factoren, zoals geslacht, en anderzijds methodologische factoren, zoals hoofdbewegingen en de ervaren stress tijdens het hersenscan onderzoek. Het eerste doel van dit proefschrift was het onderzoeken van neurocognitieve ontwikkeling in de adolescentie en de leeftijdsgerelateerde veranderingen in hersenactiviteit die hieraan ten grondslag liggen. Om dit doel te bereiken werden twee grootschalige cross-sectionele studies uitgevoerd. We maakten hierbij onder andere gebruik van een Magnetic Resonance Imaging (MRI) scanner, waar door middel van een sterk magnetisch veld de werking van de hersenen in beeld gebracht kan worden. Verschillende leeftijdsgroepen binnen de adolescentie werden vergeleken op zowel prestaties als patronen van hersenactiviteit tijdens het uitvoeren van verschillende cognitieve taken. Het tweede doel van dit proefschrift was het bestuderen van de invloed van proefpersoongebonden en methodologische factoren op deze ontwikkelingstrajecten. Verschillen tussen mannelijke en vrouwelijke adolescenten werden onderzocht als voornaamste proefpersoongebonden factor, en stress gevoeligheid tijdens het MRI onderzoek als belangrijkste methodologische factor. In hoofdstuk 1 staat een algemene introductie beschreven van dit proefschrift.

In hoofdstuk 2 onderzochten we het ontwikkelingspatroon van emotionele versus cognitieve functies in een groep adolescenten tussen 13 en 19 jaar. We gebruikten een mentalisatie taak, waarin proefpersonen zich bepaalde situaties moesten voorstellen en vervolgens een vraag moesten beantwoorden over emoties dan wel gedrag in deze situatie. Daarnaast gebruikten we de cognitieve Tower taak, waarin we keken naar de plan vaardigheden van proefpersonen terwijl ze ingewikkelde puzzels oplosten. De snelheid van werken op al deze drie taken verbeterde volgens een lineair verband tot in de late adolescentie. Er werden geen differentiële ontwikkelingspatronen gevonden voor emotionele versus cognitieve functies. Bovendien bleken twee proefpersoongebonden factoren van invloed op de mentalisatie snelheid, namelijk geslacht en puberteitsfase. Meisjes waren sneller dan jongens op beide mentalisatie taken. Daarnaast bleken jongens
SAMENVATTING

die verder in de puberteit waren sneller in mentalisatie dan jongens minder ver in de puberteit.

Resultaten van functionele MRI studies naar ontwikkeling suggereren dat hersenactiviteit steeds specifieker wordt en zich toespitst in focale clusters. Deze focalisatie hypothese wordt gekenmerkt door enerzijds een leeftijdsgeregelateerde afname in de omvang van hersenactivaties en anderzijds een toename in signaalsterkte in taakgerelateerde gebieden. Wij onderzochten deze hypothese in hoofdstuk 3, terwijl we controleerden voor verschillende vertroebelende factoren die mogelijk de resultaten beïnvloedden richting focalisatie. Mannelijke adolescenten van respectievelijk 13, 17 en 21 jaar voerden een uitdagende goktaak uit in de scanner. Correcties voor hoofdbewegingen werden in de analyses verwerkt. Daarnaast stelden we voor elke proefpersoon afzonderlijk bepaalde clusters van activiteit vast, om zo te controleren voor de invloed van leeftijdsgeregelateerde variabiliteit in hersenstructuur. Alhoewel verschillende leeftijdsgroepen binnen de adolescentie dezelfde hersengebieden activeerden tijdens het nemen van een beslissing, werd de signaalsterkte in deze gebieden beïnvloed door leeftijd. De signaalsterkte in taakgerelateerde gebieden nam toe met de leeftijd en parallel hieraan nam de deactivatie van zogenaamde standaard (‘default mode’) gebieden eveneens toe. Beide effecten waren sterker tijdens de moeilijke gokcondities. Deze leeftijdsgeregelateerde toename in signaalsterkte ging echter nog samen met een afname in de omvang van hersenactiviteit, noch met een kwalitatieve verandering in geactiveerde gebieden. Samenvattend: we vonden enkel gedeeltelijk bewijs voor de focalisatie hypothese wanneer we corrigeerden voor vertroebelende factoren, namelijk dat de signaalsterkte toenam tussen 13 en 21 jaar in hersengebieden betrokken bij het uitvoeren van de goktaak.

In hoofdstuk 4 onderzochten we of leeftijdsgeregelateerde veranderingen in hersenactiviteit verspreid door het brein plaatsvonden en tevens of dit patroon specifiek was voor een bepaalde cognitieve functie of niet. Deze kijk op functionele hersenrijping is gebaseerd op verspreide ontwikkelingseffecten die gevonden zijn in de structuur en functionele verbindingen in het brein. Genoemde aanpak contrasteert met eerdere neuroimaging studies naar ontwikkeling, waarin de nadruk lag op functionele veranderingen geassocieerd met specifieke gedragsveranderingen. De leeftijdsgeregelateerde veranderingen in hersenactiviteit worden traditioneel onderzocht met een univariate analyse, waarin er per voxel (volume eenheid van de hersenen) getoetst wordt of de activiteit verschilt tussen leeftijdsgroepen. Naast deze methode gebruikten we in dit hoofdstuk ook een multivariate patroonanalyse om ontwikkeling in hersenactiviteit tijdens een simpele inhibitie taak te onderzoeken. De multivariate patroonanalyse neemt de informatie van alle voxels tegelijkertijd mee en zoekt naar een patroon van voxels die verschillen in hersenactiviteit tussen twee leeftijdsgroepen. Deze multivariate aanpak bleek zeer accuraat in het discrimineren tussen 13-jarige en respectievelijk 17- en 21-jarige proefpersonen. Dit suggereert dat functionele
ontwikkeling verspreid door het brein plaatsvindt en dat de signaalsterkte van zowel taakspecifieke als standaard (‘default mode’) gebieden door leeftijd beïnvloed wordt. Bovendien toonden we aan dat dit ontwikkelingspatroon onafhankelijk is van de cognitieve functie die uitgevoerd wordt, omdat dit patroon gegeeneraliseerd kan worden naar de verschillende condities binnen de gonogo taak en zelfs naar een totaal andere goktaak die dezelfde proefpersonen gedaan hadden. In tegenstelling tot de multivariate resultaten toonde de univariate analyse slechts enkele clusters aan die verschillen tussen 13- en 21-jarigen. De bevindingen van dit hoofdstuk suggereren dat een multivariate aanpak beter geschikt is voor het bestuderen van subtiele en verspreide leeftijdsgeregelateerde veranderingen in hersenactiviteit dan een univariate aanpak.

Het ondergaan van een MRI scan kan stress veroorzaken, die vervolgens de functionele MRI resultaten mogelijk vertekent. In hoofdstuk 5 onderzochten we daarom of stress gevoeligheid verschilde tussen jonge en oudere adolescenten door het meten van het stresshormoon cortisol. Vóór de hersenscan waren de cortisol niveaus hoger dan erna, hetgeen kan duiden op anticiperende stress. Tevens was er een subgroep van adolescenten onafhankelijk van leeftijd, die gekenmerkt werd door een hogere cortisol output tijdens het MRI onderzoek. vergeleken met de overige proefpersonen bleek deze stress gevoelige groep een lagere activiteit te hebben in de inferieure parietaal cortex, die betrokken is bij aandachtsprocessen. Bovendien werden associaties aangetoond tussen cortisol en hersenactiviteit tijdens een goktaak in jonge, maar niet in oudere adolescenten. Dit zou kunnen betekenen dat er een leeftijdsafhankelijk effect is van cortisol op hersenactiviteit.

In hoofdstuk 6 onderzochten we geslachtsverschillen in hersenactiviteit tijdens het nemen van beslissingen in een groep jongvolwassenen van 20-21 jaar. Omdat eerdere onderzoeksresultaten mogelijk vertroebeld zijn door het gebruik van verschillende taakparadigma’s, gebruikten wij twee beslissingstaken die verschillen in motivationele context en het soort beslissing dat genomen moest worden. We gebruikten enerzijds een goktaak met een hoge motivationele context aangezien proefpersonen punten konden verdienen en geregeld feedback kregen over hun prestaties, en anderzijds een relatief simpele en saaie inhibitietaak die daardoor een lage motivationele context heeft. Daarnaast konden we binnen de goktaak onderscheid maken tussen exogene trials, waarin de juiste beslissing bepaald werd door taakfactoren, en endogene trials, waarin de juiste beslissing door de proefpersoon zelf bepaald moest worden. We vonden geslachtsgebonden verschillen in hersenactiviteit tijdens zowel exogene als endogene trials van de goktaak, terwijl we geen geslachtsverschillen vonden tijdens de inhibitietaak. Mannen activeerden twee taakgerelateerde gebieden, namelijk de anterieure cingulate cortex en gyrus linguaris, meer dan vrouwen. Daarnaast bleek de deactivatie van een aantal hersengebieden tijdens het uitvoeren van de goktaak te verschillen tussen mannelijke en vrouwelijke proefpersonen. De re-
Samenvatting

Resultaten van dit hoofdstuk doen vermoeden dat geslachtsgebonden verschillen in hersenactiviteit tijdens het nemen van een beslissing gerelateerd zijn aan de motivationele context en niet aan het soort beslissing dat genomen moet worden.

Tenslotte, in hoofdstuk 7, bespreken we de resultaten van de onderzoeks-hoofdstukken in het licht van de doelen van dit proefschrift. De methodologische aanpak waarin we proefpersoongebonden en methodologische factoren controleren, heeft nieuwe inzichten verschaf over het belang van deze factoren in functioneel MRI onderzoek naar ontwikkeling. In voorgaand onderzoek werden deze vertroebelende factoren niet gecontroleerd of zelfs genegeerd. Gebaseerd op de bevindingen in dit proefschrift kunnen we functionele hersenrijping omschrijven als subtiele veranderingen in de signaalsterkte van taakrelevante hersengebieden, verspreid door het hele brein. Het is mogelijk om op basis van de patronen van hersenactiviteit tijdens neurocognitieve taken verschillende leeftijdsgroepen binnen de adolescentie accuraat van elkaar te onderscheiden. Bovendien blijkt dit onderscheidend patroon van hersenactiviteit onafhankelijk te zijn van de cognitieve functie die uitgevoerd wordt, hetgeen wijst op een algemeen ontwikkelingsprincipe. Tot slot heeft dit onderzoek aangetoond dat de factoren ‘geslacht’ en ‘stressgevoeligheid tijdens een MRI scan’ van invloed kunnen zijn op deze neurocognitieve ontwikkeling.