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Abstract

Despite the growing importance of longitudinal data in neuroimaging, the standard
analysis methods make restrictive or unrealistic assumptions. For example, the widely
used SPM software package assumes spatially homogeneous longitudinal correlations
while the FSL software package assumes Compound Symmetry, the state of all equal
variances and equal correlations. While some new methods have been recently pro-
posed to more accurately account for such data, these methods can be difficult to
specify and are based on iterative algorithms that are generally slow and failure-
prone. In this thesis, we propose and investigate the use of the Sandwich Estimator
method which first estimates the parameters of interest with a (non-iterative) Ordinary
Least Square model and, second, estimates variances/covariances with the “so-called”
Sandwich Estimator (SwE) which accounts for the within-subject covariance structure
existing in longitudinal data. We introduce the SwE method in its classic form, and
review existing and propose new adjustments to improve its behaviour, specifically in
small samples. We compare the SwE method to other popular methods, isolating the
combination of SwE adjustments that provides valid and powerful inferences. While
this result provides p-values at each voxel, it does not provide spatial inferences, e.g.
voxel- or cluster-wise family-wise error-corrected p-values. For this, we investigate the
use of the non-parametric inference approach called Wild Bootstrap. We again iden-
tify the set of procedures and adjustments that provide valid inferences. Finally, in
the third and fourth projects, we investigate two ideas to improve the statistical power
of the SwE method, by using a shrinkage estimator or a covariance spatial smoothing,
respectively. For all the projects, in order to assess the methods, we use intensive
Monte Carlo simulations in settings important for longitudinal neuroimaging studies
and, for the first two projects, we also illustrate the methods by analysing a highly
unbalanced longitudinal dataset obtained from the Alzheimer’s Disease Neuroimaging
Initiative.





Propositions
In complement of the dissertation

Accurate Non-Iterative Modelling and Inference of Longitudinal
Neuroimaging Data

by
Bryan Guillaume

1. Analysis of longitudinal data must account for multiple sources of variation, in-
cluding subject-specific temporal evolution and group- and subject-specific noise
magnitude. Analysis of neuroimaging longitudinal data must further account for
spatial variation in each of these aspects.

2. Many popular longitudinal neuroimaging analysis methods use restrictive as-
sumptions (e.g., the assumption of Compound Symmetry—the state of all equal
variances and all equal covariances—or the assumption of a common covariance
structure for the whole brain) and may yield invalid inferences when these as-
sumptions do not hold.

3. The Sandwich Estimator method is a very promising approach to analyse longi-
tudinal neuroimaging data due, mainly, to its robustness against the misspecifi-
cation of the working covariance matrix and to the fact that it is free of iterative
algorithms (thus, fast and without convergence issues).

4. The specification of the design matrix of a regression model is generally much
more complicated with longitudinal data than with cross-sectional data. For
example, a time-varying covariate should, in general, be split into a pure cross-
sectional covariate and a pure longitudinal covariate.

5. The best remedy against small sample issues is to increase the sample size.

6. There is a lack of diagnostic tools (e.g., for checking model assumptions or de-
tecting influential data) in neuroimaging.

7. There is a crisis of reproducibility in neuroimaging, a crisis that can be addressed
by freely distributing the data and code used to draw scientific conclusions.

8. The number of people living with dementia and the cost associated to it are
currently estimated worldwide at 44 million and at US $604 billion a year, re-
spectively (Prince et al., 2014a), explaining the growing number of initiatives
put in place to collect longitudinal neuroimaging data about it.
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Chapter 1

Introduction

Longitudinal data analysis is of increasing importance in neuroimaging, particularly
in structural and functional MRI studies. This trend can be observed in Figure 1.1,
where the yearly number of publications mentioning “longitudinal MRI” exhibits rapid
growth, not only in volume, but also in percentage of the yearly number of “MRI”
publications. Unfortunately, while the current versions of the two most widely used
neuroimaging software packages (i.e. SPM and FSL) are computationally efficient, they
make quite restrictive assumptions when the longitudinal data consists of anything
other than two time points per subject. In particular, SPM12 unrealistically assumes a
common longitudinal covariance structure for the whole brain while FSL v5.0 assumes
Compound Symmetry (CS), a simple covariance structure where the variances and
correlations of the repeated measures are constant over time. This motivates recent
publications proposing methods to better model neuroimaging longitudinal data (Skup
et al., 2012; Bernal-Rusiel et al., 2013a,b; Chen et al., 2013; Li et al., 2013). However,
all of these methods entail iterative optimisation at each voxel and are not necessarily
easy to specify in practice.

In neuroimaging, two of the most widely longitudinal approaches currently used
are the Naïve Ordinary Least Squares (N-OLS) modelling and the Summary Statistics
Ordinary Least Squares (SS-OLS) modelling. The N-OLS method tries to account for
the within-subject correlations by including subject-specific indicator variables (i.e.
an intercept per subject) in an OLS model. This approach is fast, but does not
allow one to make valid inferences on pure between covariates (e.g., group intercept or
gender) and is valid only under CS. The SS-OLS method proceeds by first extracting
a summary statistic of interest for each subject (e.g., slope with time) and then uses a
group OLS model to infer on the summary measures. This method is also fast and has
the advantage of reducing the analysis of correlated data to an analysis of independent
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Fig. 1.1 Number of publications mentioning “longitudinal AND MRI” in all fields on
a Pubmed search (left) and percentage of publications mentioning “longitudinal AND
MRI” in all fields versus just “MRI” on Pubmed searches (right).

data, but this summary data may be highly variable as it is based on single-subject
fits. In the context of one-sample t-tests, Mumford and Nichols (2009) showed that
this approach is robust under heterogeneity, but warned that it is probably not the
case for more general regression models.

In biostatistics, the analysis of longitudinal data is a long-standing problem and is
generally done by using either Linear Mixed Effects (LME) models or marginal mod-
els. The LME models include random effects which account for the within-subject
correlations existing in the data. Nevertheless, they require iterative algorithms which
are generally slow and may fail to converge to the optimal solution. Another issue
with LME models is the complexity of specifying and fitting the models. For example,
the random effects and the covariance structure of the error terms need to be specified
(e.g., only random intercepts? Also random slopes?) and, unfortunately, a misspeci-
fication of those may lead to invalid results. These are particularly serious problems
in neuroimaging as model assessment is difficult and a single model must be used for
the whole brain. As a consequence, the use of LME models in neuroimaging may be
prohibitively slow, and may lead to statistical images with missing or invalid results
for some voxels in the brain. To limit the convergence issues, one may be tempted
to use a LME model with only a random intercept per subject. Unfortunately, like
the N-OLS model, this model assumes CS which is probably not realistic, especially
for long studies carried out over years and with many visits. In contrast, marginal
models implicitly account for random effects, treat the intra-visit correlations as a
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nuisance and focus the modelling only on population averages. They have appealing
asymptotic properties, are robust against model misspecifications and, as there are
no explicit random effects, are easier to specify than LME models. However, they
only focus on population-averaged inferences or predictions, typically require iterative
algorithms and assume large samples.

Recently, Bernal-Rusiel et al. (2013a) proposed the use of LME models to analyse
longitudinal neuroimaging data, but only on a small number of regions of interest or
biomarkers, thus, making the slow LME models practical. However, in the case where
all voxels are analysed, overcoming all the LME model drawbacks seems daunting.
Nevertheless, Chen et al. (2013) and Bernal-Rusiel et al. (2013b) extended the use
of the LME models to mass-univariate settings. In particular, Bernal-Rusiel et al.
(2013b) proposed the use of a spatiotemporal LME method, that first parcels the
brain into homogeneous areas for which they separately model the full spatiotemporal
covariance structure by notably assuming, for each area, a common temporal covari-
ance structure across all the points and a simple covariance structure to model the
spatial dependencies. Skup et al. (2012) and Li et al. (2013) proposed to use marginal
models to analyse neuroimaging longitudinal data. Specifically, Skup et al. (2012)
proposed a Multiscale Adaptive Generalised Method of Moments (MA-GMM) ap-
proach which combines a spatial regularisation method with a marginal model called
Generalised Methods of Moments (GMM; Hansen, 1982; Lai and Small, 2007) and
Li et al. (2013) proposed a Multiscale Adaptive Generalised Estimating Equations
(MA-GEE) approach which also combines a spatial regularisation method, but with
a marginal model called Generalised Estimating Equations (GEE; Liang and Zeger,
1986). Thanks to their appealing theoretical asymptotic properties, the two latter
methods seem very promising for analysing longitudinal neuroimaging data. Never-
theless, like the LME models, they require iterative algorithms, which make them
slow, and - due to the fact that they rely on asymptotic theoretical results - their use
may be problematic in small samples.

In this thesis, we propose an alternative marginal approach. We use a simple OLS
model for the marginal model (i.e. no subject indicator variables) to create estimates
of the parameters of interest. For standard errors of these estimates, we use the so-
called Sandwich Estimator (SwE; Eicker, 1963) to account for the repeated measures
correlation. The main property of the SwE is that, under weak conditions, it is
asymptotically robust against misspecification of the covariance model. In particular,
this robustness allows us to combine the SwE with a simple OLS model which has
no covariance model. Thus, this method is quite easy to specify and, with no need
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for iterative computations, it is fast and has no convergence issues. Moreover, the
proposed method can deal with unbalanced designs and heterogeneous variances across
time and groups (or even subjects). In addition, the SwE method can also be used
for cross-sectional designs where repeated measures exist, such as fMRI studies where
multiple contrasts of interests are jointly modelled, or even for family designs where
subjects from the same family cannot be assumed independent. Nevertheless, like the
MA-GMM and MA-GEE methods, the SwE method typically relies on asymptotical
theoretical results, guaranteeing accurate inferences only in large samples. Therefore,
in this thesis, we also review and propose small sample adjustments that improve its
behaviour in small samples.

The remainder of this thesis is organised as follows.
In Chapter 2, we give some background information about longitudinal neuroimag-

ing data analysis, starting from the way this type of data can be acquired to the way
statistical inferences can be made on them. In particular, we describe some longi-
tudinal models which have been widely used or recently proposed in neuroimaging.
We also introduce a real longitudinal neuroimaging dataset acquired as part of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI; Mueller et al., 2005).

In Chapter 3, we introduce the SwE method for the analysis of longitudinal data
in its most standard form. Then, we review and propose many adjustments with the
aim to improve its behaviour, mainly in small samples. In particular, we propose three
novel statistical parametric tests that account for the potential small sample nature of
the data. Using intensive Monte Carlo evaluations, we also assess the SwE method and
all the adjustments presented, isolate the best combination of adjustments to be used
in practice and compare the SwE method to popular alternative methods. Finally, we
illustrate the SwE method on the real ADNI dataset introduced in Chapter 2.

In Chapter 4, we introduce the Wild Bootstrap, a method that can be used to make
non-parametric inferences with the SwE method. We describe several versions of it
and assess them using intensive Monte Carlo simulations. Finally, we apply the Wild
Bootstrap to perform a non-parametric inference on the real ADNI dataset already
analysed parametrically in Chapter 3.

In Chapter 5, we propose two new types of SwE, both based on the Ledoit-Wolf
shrinkage estimator of covariance matrices (Ledoit and Wolf, 2003) with the goal of
decreasing the estimation error of the SwE. We also assess these two new SwE versions
using Monte Carlo simulations.

In Chapter 6, we investigate the possibility to enhance the power of detection of the
SwE method by spatially smoothing the data covariance matrices. In particular, we
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consider the use of several smoothing metrics and propose three smoothing procedures
based on some forms of homogenisation of the data covariance matrices. Then, we use
Monte Carlo simulations to study the proposed forms of smoothing.

In Chapter 7, we conclude by summarising and discussing the main findings of the
thesis. We also discuss potential future work.





Chapter 2

Background

In this chapter, we first give a general overview of a typical neuroimaging longitudinal
data analysis pipeline, starting from the acquisition of longitudinal brain images to
their preprocessing, statistical modelling and inference. In particular, we describe sev-
eral longitudinal models often used or recently proposed in neuroimaging. Finally, we
introduce a real longitudinal dataset acquired as part of the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI; Mueller et al., 2005) that will be used later to illustrate
the methods developed in this thesis.

2.1 Neuroimaging modalities
Presently, there are many techniques that allow the acquisition of brain images in a
non-invasive way. For example, Computed Tomography (CT), Positron Emission To-
mography (PET), Electroencephalography (EEG), Magnetoencephalography (MEG),
Magnetic Resonance Imaging (MRI) and Near-Infrared Spectroscopy (NIRS) are of-
ten used to achieve this goal and can potentially be used to produce longitudinal
neuroimaging data. In this section, we briefly describe each of these modalities and,
for the interested readers, provide further references.

Computed Tomography

Computed Tomography (CT) uses X-rays to construct 3D images of the brain (Hsieh,
2009). More precisely, this technique measures the X-ray attenuation which varies in
accordance with the density of different tissues; the different density, mainly between
bone, water and brain tissue, provides the contrast to visualise the brain in 3D. Al-
though this modality is non-invasive, its main disadvantage is the subject’s exposure



8 Background

to ionising radiation which may pose some health hazards. Also, there is very poor
contrast between the gray and white matter of the brain. Nevertheless, some longitu-
dinal neuroimaging studies using CT have been carried out (e.g., Illowsky et al., 1988;
Woods et al., 1990; Jaskiw et al., 1994; Davis et al., 1998).

Positron Emission Tomography

Positron Emission Tomography (PET) produces 3D images of the brain by detecting
gamma rays emitted by a radioactive tracer injected into the subject. The tracer is
part of a simple substance (oxygen or water) or biologically active molecules. In ei-
ther case, the tracer makes its way to the brain and maps the function of the entire
brain or the presence of pathological deposits such as amyloid plaques (see, e.g., Os-
senkoppele et al., 2012) or tau-containing neurofibrillary tangles (see, e.g., Villemagne
et al., 2014). The term function is used to refer to characterisation of physiology that
changes on a short time scale (e.g., up to hours/days). It is in distinction to structural

imaging, which reveals the anatomical detail of the brain. Note that, for the detec-
tion of pathological deposits, the time scale of change is longer (e.g., months/years).
This modality is often combined with CT or MRI to produce a structural image of
the brain allowing the anatomical localisation of the metabolic activities or pathologic
deposits detected by the PET scan. Like CT, PET has the disadvantage of exposing
the subjects to ionising radiation. While the latter may be a limitation for longitudi-
nal studies, longitudinal PET studies have been conducted (e.g., Sturm et al., 2004;
De Boissezon et al., 2005; Mueller et al., 2005; Ossenkoppele et al., 2012). For further
information about this modality, a good technical review of it can be found in Holmes
(1994, Chapter 1) and a recent overview of its practical applications in neuroimaging
can be found in Nasrallah and Dubroff (2013).

Electroencephalography

Electroencephalography (EEG) measures the current on the scalp induced by elec-
trical activity in the brain. This modality provides functional information with very
good temporal resolution, but has relatively poor spatial resolution. Also, it has the
advantages, compared to PET, that it does not use any ionising radiation. Some lon-
gitudinal studies using this modality can be found in the literature (e.g., Bangert and
Altenmüller, 2003; Saggar et al., 2012; Seppänen et al., 2012). Further information
about this modality can be found in Niedermeyer and Da Silva (2005).
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Magnetoencephalography

Magnetoencephalography (MEG) measures the magnetic fields produced by the elec-
trical activity of the brain. Like EEG, it is a functional modality that has very good
temporal resolution, but relatively poor spatial resolution and does not use any ion-
ising radiation. Longitudinal studies using MEG can also be found in the literature
(e.g., Dubbelink et al., 2013, 2014; Van Dellen et al., 2014; Yoshimura et al., 2014).
Further information about this modality can be found in Hansen et al. (2010).

Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a technique which uses the magnetic properties
of atomic nuclei, generally those of hydrogen, to image the brain. An MRI scanner
consists of an extremely strong static magnetic field to place the hydrogen atoms into
an equilibrium state. Then, using a sequence of electromagnetic pulses, the scanner
excites the hydrogen atoms and measures the signals they emit during their relaxation
times. Spatial gradients applied to the magnetic field allow images to be formed, and
careful manipulation of the timing of the electromagnetic pulse “sequences” creates
images with different types of tissue contrast. Different kinds of sequences lead to
different type of MRI sub-modalities such as, for example, structural MRI (sMRI)
or functional MRI (fMRI). In particular, fMRI is based on how changes in the con-
centrations of oxygenated haemoglobin and deoxygenated haemoglobin tends to vary
locally upon brain activity. Since oxygenated haemoglobin and the deoxygenated
haemoglobin have different magnetic properties, the variation of their concentrations
can be detected by the MRI scanner under the form of a signal, generally referred to
as Blood-Oxygen-Level Dependent (BOLD) signal, reflecting the brain activity and
allowing the acquisition of functional images (Ogawa et al., 1990).

Compared to EEG, MEG and NIRS (see below), fMRI has the advantage to have
a better spatial resolution and a better ability to localise the signal source, but has a
poorer temporal resolution. Compared to PET and CT, MRI has the advantage of not
using any ionising radiation. Probably due to those advantages, MRI is the dominant
modality which currently produces the largest quantity of longitudinal neuroimaging
data (e.g., Draganski et al., 2004; Mueller et al., 2005; Meltzer et al., 2009; Kim et al.,
2010; Andrews et al., 2013).
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Near Infrared Spectroscopy

Near Infrared Spectroscopy (NIRS) uses light in the near infrared range to detect
changes in the concentration of oxygenated haemoglobin and deoxygenated haemoglobin.
As these changes are closely related to the brain activity, NIRS can be used to con-
struct functional images of the brain. While NIRS has notably the advantage to have
a better temporal resolution than fMRI, it has a poorer spatial resolution and, like
EEG and MEG, the localisation of the signal sources is unfortunately not as straight-
forward as in fMRI. Some longitudinal studies using this technique can be found in
the literature (e.g., Kono et al., 2007; Tsujii et al., 2009; Moriguchi and Hiraki, 2011).
Additional information about NIRS can be found, for example, in Huppert et al.
(2009).

2.2 Preprocessing
In general, the images obtained from any of the modalities mentioned in Section 2.1
cannot be immediately used for a statistical analysis and a series of preprocessing steps
must be applied to the data. The main purpose of these preprocessing steps is to trans-
form the data to a format suitable for a mass-univariate analysis. A mass-univariate
model is a model fit at each voxel1, independently of all other voxels. Crucially, a
mass-univariate analysis assumes that the data at each voxel corresponds to the same
region of the brain in every subject at each time point. Note that other types of
models can be considered, e.g., multivariate models where multiple locations in space
are jointly modelled. However, due to the large amount of data as well as the high
spatial and temporal complexity of the data, these multivariate models are generally
very challenging to specify and fit. Therefore, a mass-univariate approach is generally
preferred in practice.

In the remainder of this section, we succinctly describe several important prepro-
cessing steps used for the two modalities most widely used in longitudinal studies,
fMRI and sMRI.

2.2.1 fMRI preprocessing

In fMRI, the data acquired consists, for each subject and session, of a time series of 3D
images. To make them suitable for a mass-univariate modelling, several preprocessing

1A voxel is short for volume element. It is the 3D generalisation of a pixel, and is the smallest
element of a 3D image
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steps like slice timing, spatial realignment, spatial registration, spatial smoothing and
intra-subject modelling are generally used. Here below, we briefly describe each of
these steps.

Slice timing

In fMRI, a 3D image is not an instantaneous snapshot of the brain activity. Rather, the
fMRI images are acquired slice by slice and, as it can take 2 seconds to acquire all the
slices in the brain, significant differences between the acquisition times over slices exist.
In practice, there are mainly three ways to correct for this: (i) an additional covariate
able to account for the time differences is included in the General Linear Model (GLM)
used to extract summary statistics from the fMRI time series (see below), (ii) a slice
timing correction is applied, consisting of interpolating each slice in time to a common
time point or (iii) slice-specific models with slice-specific time-shifted covariates are
used (Henson et al., 1999).

Spatial realignment

The acquisition of an fMRI scan can last for several minutes. Even if some devices are
usually used to maintain the subject’s head still in the scanner, it is difficult to avoid
subject’s head motion. Due to this, the fMRI scans at different time points can be
misaligned. To correct this misalignment, a rigid body realignment is typically used
for each fMRI scan (Ashburner and Friston, 2007b). Note that more sophisticated
approaches exist, such as the method proposed in Roche (2011) which simultaneously
corrects for motion and slice timing.

Spatial coregistration

It is often desirable to map the functional information of the fMRI images onto the
anatomical space of the subject. This can be helpful to localise where the brain activity
occurs and can also ease the spatial normalisation step described next. To achieve this,
an sMRI of the subject’s head is acquired and registered with the fMRI images. This
coregistration is generally performed by minimising a cross-modality loss function like
the mutual information (Ashburner and Friston, 2007b).

Spatial normalisation

Inter-subject registration, or spatial normalisation, is required for a mass-univariate
analysis, as the size and shape of each subject’s brain is different. Spatial normalisation
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consists of registering the images of each subject onto a common brain template.
Several algorithms are available and generally use the information contained in the
structural images to warp each subject’s brain images onto a common brain template
(Ashburner and Friston, 2007a).

Spatial smoothing

Even after spatial normalisation, it is expected that small misregistrations across sub-
jects exist. In practice, this can be partially corrected by spatially smoothing the data
using a Gaussian kernel. While this spatial smoothing decreases the spatial resolution
of the images and may remove some high spatial frequency information, it has three
other advantages that are important for the analysis of neuroimaging data. First, the
spatial smoothing can also increase the signal-to-noise ratio, in particular for spatially
extended signals. Second, by the central limit theorem, the spatial smoothing tends
to make the data more Gaussian, allowing a better compatibility with the usual model
assumptions. Third, the smoothing makes the data more compliant with the assump-
tions behind the Random Field Theory, a set of statistical inference procedures used
to solve the issue of multiple comparisons (Nichols and Hayasaka, 2003).

Intra-subject Modelling

While ideally a model for fMRI would simultaneously consider all time series data
from all subjects and all visits, the extreme size of the data makes this impracticable.
Instead,“first level” intra-subject models are fit for each individual, and possibly for
each visit separately. A General Linear Model (Kiebel and Holmes, 2007) is typically
used to fit the time course data and produce a summary measure of interest. For
example, while a verbal working memory task might have 0-, 1- and 2-word conditions,
only the 1- vs 2-word comparison may be of interest. When a single visit/session is
modelled, this “contrast” is the estimate that is submitted to the group “second level”
longitudinal analysis. Alternatively, if all visits for a subject are modelled together,
a single summary measure is generated for a so-called "summary statistic" analysis
(described in detail in Section 2.3.3).

2.2.2 sMRI preprocessing

Longitudinal sMRI images are rarely used directly for a statistical analysis. Instead,
some meaningful structural information is generally extracted from them and used as
measure of interest. In this section, we describe two of such approaches referred to
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as Tensor-Based Morphometry (TBM; Ashburner and Friston 2003) and Voxel-Based
Morphometry (VBM; Ashburner and Friston 2007d).

Tensor-Based Morphometry

TBM generally consists of extracting, from each structural image, the Jacobian de-
terminant image of the deformation field that is used to normalise each image onto
a common template structural image. The Jacobian determinant values represents
the relative volume expansion (value > 1) or contraction (value < 1) of the source
image voxels compared to the template image voxels, allowing to study how the dif-
ferent brain areas tend to change across time and subjects. As the resulting Jacobian
determinant images are already in the space of the template image, no additional
normalisation is needed and they may be used without further preprocessing for a
statistical modelling. Note that alternative approaches which separately perform a
within-subject registration and a between-subject normalisation allow for a more pre-
cise estimation of the within-subject volume changes, but are subject to the difficulty
of deciding how to spatially normalise the within-subject information (Ridgway, 2009;
Ridgway et al., 2015).

Voxel-Based Morphometry

VBM generally consists of first extracting a segmentation image of grey matter from
each structural image (Ashburner and Friston, 2007c). Then, before using them as
data for a statistical analysis, each grey matter image is warped onto a common tem-
plate image using a non-linear registration method (Ashburner and Friston, 2007a).
As this normalisation step changes the volumes of brain regions, the actual amount
of grey matter is unfortunately modified by the normalisation. To adjust for this, the
normalised images are generally multiplied by the Jacobian determinant images, as
they correspond to the relative volumes of each voxel before and after the normalisa-
tion. Next, these “modulated” images are smoothed for the same reasons mentioned
previously for the preprocessing of fMRI data (see Section 2.2.1), and can then be
used for a statistical modelling.

2.3 Models for longitudinal data
In this section, we first define what is the difference between cross-sectional and lon-
gitudinal data. Then, we review some methods currently used or recently proposed to
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analyse longitudinal neuroimaging data.

2.3.1 Cross-sectional versus longitudinal data

Cross-sectional data is a type of data collected from several subjects at a single time
point and is useful to test how the population of subjects may differ, but only at
the time the data is acquired. We typically say that we are testing for cross-sectional
effects in the population, which can be, for example, age, gender, IQ, etc. The data can
generally be assumed to be independent across subjects, allowing the use of relatively
simple models.

In contrast, longitudinal data is a type of data collected from several subjects
repeatedly at several time points and is useful to test how the population of subjects
may differ at a single time point (cross-sectional effects), but also how the population
may change over time (longitudinal effects). While the assumption of independence
across subjects is usually valid, the data from the same subject cannot generally be
assumed independent. Therefore, the models used for cross-sectional data are, in most
cases, not valid and more complicated models able to account for the within-subject
dependence have to be used instead.

2.3.2 The Naïve-Ordinary Least Square method

A popular model used currently to fit repeated measures or longitudinal neuroimaging
data is the Naïve-Ordinary Least Square model (N-OLS). The N-OLS model tries
to account for the within-subject correlations by including subject indicator dummy
variables (i.e. an intercept per subject) in an OLS model. This approach is fast, but
does not allow one to make valid inferences on pure between-subject covariates (e.g.,
group intercept or gender) and is valid only under Compound Symmetry (CS), the
state of all equal variances and all equal covariances. The latter is quite restrictive as
we may expect the variance to increase over time and/or the correlation to decrease
over time.

2.3.3 The Summary Statistics Ordinary Least Square model

The Summary Statistics Ordinary Least Square (SS-OLS) method is also very popular
in neuroimaging and proceeds by first extracting a summary statistic of interest for
each subject (e.g., slope with time) and then uses a group OLS model to infer on
the summary measures. This method is fast and has the advantage of reducing the
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analysis of correlated data to an analysis of independent data. In the context of one-
sample t-tests, Mumford and Nichols (2009) showed that this approach is robust under
heterogeneity, but warned that it is probably not the case for more general regression
models. In particular, when there is imbalance in the number of visits per subject, the
SS-OLS may yield inaccurate inferences (evaluated in depth in this work; see Section
3.3.2). That is, even if we assume that all the data point have the same variance, the
variance of the summary measures will be different between subjects having a different
number of data points. For example, the summary measure obtained from a subject
with only two data points will clearly be more variable than the one obtained from
a subject with six data points. Therefore, in the condition of an unbalanced design,
heterogeneity is likely to exist between the subject summary measures, challenging
the homogeneity assumption of the the group OLS model.

2.3.4 The SPM procedure

Another popular neuroimaging procedure currently used in SPM, probably the most
widely used neuroimaging software package, relies on the estimation of a global covari-
ance structure for the whole brain, using the most “promising” voxels in the brain as
determined by an omnibus F -test from a preliminary OLS model fit. This estimated
covariance structure is then assumed to be the true covariance structure for the whole
brain and is used to “whiten” the data at every voxel, before using an OLS model on
the “whitened” data. This method is fast and quite powerful for detecting effects, as
the effective number of degrees of freedom of the global covariance structure is infinity
(no uncertainty). Nevertheless, as it is unlikely that every voxel in the brain has the
same covariance structure, this method can be perilous to use in practice without an
additional procedure ensuring that the global covariance structure is valid everywhere
in the brain or, at least, at the voxels showing effects. Indeed, for voxels with a true co-
variance structure different from the one assumed by the SPM procedure, the method
will actually “colour” the data by altering the covariance structure to something other
than the desired i.i.d. assumption, thus challenging the assumption made by the OLS
model.

2.3.5 The Linear Mixed Effects model

In the biostatistics literature, the most popular model to analyse longitudinal data
is likely the Linear Mixed Effects (LME) model and has been proposed recently to
analyse longitudinal neuroimaging data (Bernal-Rusiel et al., 2013a,b; Chen et al.,
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2013). Using the formulation of Laird and Ware (1982), the LME model for individual
i is

yi = Xi� + Zibi + �i (2.1)

where yi is a vector of ni observations for individual i = 1; 2; : : : ;m, � is a vector of
p fixed effects which is linked to yi by the ni � p design matrix Xi, bi is a vector of
r individual random effects linked to yi by the ni � r design matrix Zi, and �i is a
vector of ni individual error terms assumed to be normally distributed with mean 0
and covariance �i. The individual random effects bi are also assumed to be normally
distributed, independently of �i, with mean 0 and covariance D. Typically, the p
fixed effects might include an intercept per group, a linear effect of time per group,
a quadratic effect of time per-group or per-visit measures effects like, in the case
of Alzheimer’s Disease, the MMSE (Mini-Mental State Examination) score. The r
random effects usually include a “random intercept” for each subject (modelled by a
constant in Zi) and may also include a “random slope” for each subject.

In LME models, the randomness of the data is modelled by both the random effects
bi and the error terms �i. This makes LME models quite flexible in practice as we can
use both the random effects bi and the error terms �i to model the covariance structure
existing in the data. Nevertheless, as pointed out in Hamer and Simpson (1999), this
flexibility comes also with the risk of confusion and errors. Indeed, specifying an LME
model comes with many questions such as “What random effects should I include in the
model?”, “Only a random intercept?”, “Should I also add a random slope per subject?”
or “Should I assume that the error terms are i.i.d. or should I assume a particular
structure for �i?”. These questions are not easy to answer and, unfortunately, a
misspecification of the model can easily lead to inaccurate inferences. In particular,
the random effects bi have an important impact on the covariance structure modelling
and have to be chosen carefully. For example, an LME model with only a random-
intercept per subject and i.i.d. error terms assumes by construction that the within-
subject covariance structure is CS, just like the N-OLS model. This makes the LME
models quite difficult to specify in practice, particularly in the context of neuroimaging
where we need to fit thousands of models simultaneously. Indeed, as the covariance
structure is likely to vary across the brain, a well specified model for some voxels may
be invalid for other voxels in the brain. Nevertheless, an advantage of the LME models
compared to other models is their ability to make inferences on random effects or to
predict subject-specific profiles. In the context of neuroimaging, inferences on random
effects have been studied in Lindquist et al. (2012).
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For LME models, the estimate of the fixed effect parameters � and the estimate
of the covariance matrix Cov[�̂] are given by

�̂ =
 mX

i=1
X>i V̂iXi

!�1 mX

i=1
X>i V̂iyi; (2.2)

S =
 mX

i=1
X>i V̂iXi

!�1

; (2.3)

respectively, where V̂i is an estimate of Vi = �i+ZiDZ>i . In practice, the elements of Vi

are generally defined as functions of a set of covariance parameters �, Vi = Vi(�). These
covariance parameters � are then estimated by either Maximum Likelihood (ML) or
Restricted Maximum Likelihood (ReML) and are used to construct an estimate of Vi

(Harville, 1977), which can then be used to get an estimate of � and Cov[�̂].

2.3.6 The marginal model

Instead of posing a model that consists of subject-specific random components like
in LME models, we can fit a model with only fixed components and let the random
components induce structure on the random error terms. This is the so-called marginal
model, that has, for subject i, the form

yi = Xi� + ��i (2.4)

where the individual marginal error terms ��i have mean 0 and covariance Vi. Typically,
the covariance is taken to be unstructured, but if data arise as per the LME model
specified above, then we have Vi = �i + ZiDZ>i .

In contrast to the LME models, in the marginal models, all the randomness is
treated as a nuisance and is modelled by the marginal error terms ��i . Therefore, the
marginal models do not require the specification of random effects, making them eas-
ier to specify than LME models. Moreover, the marginal models are somehow less
restrictive because only Vi is required to be positive semi-definite. In contrast, in the
case of LME models, both �i and D have to be positive semi-definite which is more
restrictive (West et al., 2006; Verbeke and Molenberghs, 2009; Molenberghs and Ver-
beke, 2011). However, the marginal models are only focused on population-averaged
inferences and predictions, and do not offer the possibility to make inferences on ran-
dom effects or to predict subject-specific profiles like LME models can. Nevertheless,
subject-specific inferences or predictions are not generally of interest in longitudinal
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neuroimaging studies and, therefore, a marginal approach will be of great utility.
For marginal models, the estimate of the fixed effect parameters � and the estimate

of the covariance matrix Cov[�̂] are given by

�̂ =
 mX

i=1
X>i WiXi

!�1 mX

i=1
X>i Wiyi (2.5)
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| {z }
Bread

; (2.6)

where Wi is the so-called working covariance matrix of individual i and V̂i is an esti-
mate of the subject covariance matrix Vi (Liang and Zeger, 1986; Diggle et al., 1994).
The central part of the covariance estimate S can be conceptualised as a piece of meat
between two slices of bread, giving rise to the name of Sandwich Estimator (SwE). If
m�1Pm

i=1X>i WiV̂iWiXi consistently2 estimates m�1Pm
i=1X>i WiViWiXi, the SwE con-

verges asymptotically to the true covariance matrix Cov[�̂], even if Wi is misspecified
(Eicker, 1963, 1967; Huber, 1967; White, 1980; Diggle et al., 1994).

If Wi = I, the identity matrix, then the estimate of � becomes equivalent to the
OLS estimate �̂OLS, that assumes i.i.d. error terms, and we obtain the simplest form
of SwE which was firstly introduced by Eicker (1963, 1967):

S =
 mX
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X>i Xi
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: (2.7)

Note that this is different from the OLS estimate of variance, �̂2
�Pm

i=1X>i Xi

��1
,

where �̂2 is the OLS estimate of the assumed common variance of the error terms.
Note also that, in practice, other choices for Wi are possible, by assuming a non-
identity structure for Wi and parametrising it with a vector of parameters, which then
has to be estimated (Liang and Zeger, 1986; Diggle et al., 1994). Such alternative
choices are motivated by the fact that, even if the use of Wi = I yields consistent
estimates and has been shown to be almost as efficient as the Generalised Least Squares
estimator in some settings (Liang and Zeger, 1986; McDonald, 1993), it may lead to
a non-negligible loss of efficiency3 in some other settings and more complicated forms
of Wi can be used to improve efficiency (Zhao et al., 1992; Fitzmaurice, 1995). In

2An estimator of a parameter is said to be consistent if it converges in probability to the true
value of the parameter. Here, this is the case if plimm !1 m� 1Pm

i =1 X >
i Wi (V̂i � Vi )Wi X i = 0 .

3The efficiency of a scalar estimator is the inverse of estimator variance.
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particular, Fitzmaurice (1995) shows that, in the context of clustered binary data, an
important loss of efficiency may arise for within-cluster covariates when the within-
cluster correlation is high. Nevertheless, Pepe and Anderson (1994) showed that using
a non-diagonal working covariance matrix may lead to inaccurate estimates of � and,
further, using a non-identity covariance matrix generally requires the use of iterative
algorithms to estimate � and Cov[�̂]. Finally, as shown in Section 2.4, the loss of
efficiency can be limited by an appropriate construction of the design matrix. For
all these reasons, in this thesis, we only focus on the use of the identity for Wi and
will refer to the use of the corresponding marginal model as the SwE method. See,
however, Li et al. (2013) for the use of non-diagonal working covariance matrix within
the framework of neuroimaging data, and Pepe and Anderson (1994) in order to check
the validity of using such working covariance matrices.

2.4 Construction of the design matrix
In longitudinal data, the covariates have generally a between-subject component and a
within-subject component. For example, in the ADNI study described later in Section
2.6, the Age covariate has a between-subject component which can be summarised by
the subject mean Agei and a within-subject component which can be summarised by
the difference with the subject mean Age � Agei. Including only the Age covariate in
the design matrix means that we implicitly assume that the effects on the response is
the same for both components. Actually, the effects of each component can be very
different and, as shown by Neuhaus and Kalbfleisch (1998), the assessment of the effect
of such between/within-subject covariates on the response can be very misleading.
Therefore, it seems essential to follow the recommendation of Neuhaus and Kalbfleisch
(1998) and systematically split this kind of covariates into between- and within-subject
components and include them both in the design matrix. Moreover, as shown in Table
2.1, this also helps to improve the efficiency of the SwE method when assuming an
identity working covariance matrix. This result shows that splitting the Age covariate
makes the SwE nearly as efficient as the Generalised Least Squares (GLS) estimator. It
also demonstrates the (well-known) importance of centring covariates when inference
is made on the intercepts, as this can be of interest in longitudinal neuroimaging
studies. As the only reason to use a nontrivial working covariance matrix is to improve
efficiency, we found that these covariate-splitting results were a compelling reason to
only focus on the use of an identity working covariance matrix in this thesis.



20 Background

Relative efficiency
Model Covariate � = 0 � = 0:5 � = 0:95

1 Intercept 1 0.88 0.40
Age 1 0.88 0.40

2 Intercept 1 0.94 0.89
Age � Age 1 0.88 0.40

3 Intercept 1 0.92 0.87
Agei 1 0.92 0.87

Age � Agei 1 1 1
4 Intercept 1 0.94 0.89

Agei � Age 1 0.92 0.87
Age � Agei 1 1 1

Table 2.1 Impact of splitting covariates into separate within- and between-subject
covariates. The ages of all 817 subjects of the ADNI dataset (see Section 2.6) were
used to construct 4 models: (1) Intercept and Age, (2) Intercept and centred Age, (3)
Intercept, mean age per subject Agei, and intra-subject-centred age Age � Agei, and
(4) Intercept, centred mean age per subject Agei�Age, and intra-subject-centred age
Age � Agei. The relative efficiency is shown for each model for 3 possible values of
�, the common intra-visit correlation. Here, we define relative efficiency as the ratio
between the variance of the GLS estimate and the variance of the SwE estimate.

2.5 Inference
In this section, we first describe how inferences can be performed using one of the
models described in Section 2.3 . Then, we discuss how inferences are generally carried
out in neuroimaging using a voxel-wise inference approach corrected for the multiple
testing issue.

2.5.1 Statistical tests for a longitudinal model

To perform inference on a combination of the parameters, H0 : C� = b0, a Wald
statistic (Wald, 1943) is generally used:

T = (C�̂ � b0)>(CSC>)�1(C�̂ � b0)=q; (2.8)

where �̂ and S are the estimates of � and Cov[�̂] obtained using one of the methods
described in Section 2.3, C is a matrix (or a vector) defining the combination of the
parameters (contrast) tested and q is the rank of C.
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To make the inference, this Wald statistic is compared to the distribution that
it would follow under the null hypothesis. Unfortunately, this null distribution is
generally unknown and needs to be estimated. To achieve this, the first possibility
is to assume a parametric null distribution which complies with the assumptions of
the model used. For example, in the cases of the N-OLS and the SS-OLS methods,
this would be an F -distribution with q and n � p degrees of freedom, where n is the
total number of data points and p is the total number of parameters used in their
respective OLS models. For the LME models, this would be an F -distribution with q
and � degrees of freedom, where � is generally estimated using the formula proposed in
Pinheiro and Bates (2000) or the Kenward-Roger effective degrees of freedom formula
proposed in Kenward and Roger (1997). For the marginal models, a �2-distribution is
often assumed, but an F -distribution with q and � degrees of freedom is also sometimes
considered with � usually estimated using a simple arbitrary quantity without strong
justifications (Hardin, 2001). Note that, for the SwE method with identity working
covariance matrix, a more advanced parametric test proposed in Pan and Wall (2002)
is reviewed in Section 3.2.4 and, still in Section 3.2.4, three novel alternative parametric
tests are proposed with the goal to improve the accuracy of the inferences, particularly
in small samples.

A second possibility to estimate the null distribution of the Wald statistic is to use
a non-parametric resampling approach. In Neuroimaging, this is typically done using
a permutation test which is is based on a resampling scheme without replacement
(Nichols and Holmes, 2002; Winkler et al., 2014). Unfortunately, permutation tests
rely on the assumption that the data is exchangeable under the null hypothesis. While
this assumption of exchangeability is valid in some cases, it is harder to validate in the
context of longitudinal data where the data is correlated and where different sources of
heterogeneity may exist. Nevertheless, some alternative resampling approaches based
on resampling schemes with replacement, that are generally referred to as bootstrap
methods, can also be considered instead. In Chapter 4, we investigate such a type of
resampling method, called Wild Bootstrap, to make non-parametric inferences in the
context of the SwE method.

2.5.2 Multiple testing corrections

For a test of a single voxel, the False Positive Rate (FPR) is well-defined, as the
probability of rejecting the null hypothesis when it is true. In neuroimaging, however,
we typically want to make inference on the whole image by performing a test at
every in-mask voxel in the image. This means that thousands of tests are carried out
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simultaneously and controlling for the usual FPR would be inappropriate. Indeed,
if there were 200,000 in-mask voxels and we control the FPR at 5% at every voxel,
then, we would expect on average 0.05 � 200,000 = 10,000 false positive voxels in the
image. This inflation of false positives is referred to as the multiple testing problem,
and a correction is generally used to overcome this issue. Typically, this is done by
controlling either the Family-Wise Error Rate (FWER), the probability of having at
least one false positive in the image, or the False Discovery Rate (FDR), the expected
proportion of false positives among the rejected null hypotheses.

Several strategies can be used to control the FWER. The simplest is the Bonferroni
correction which consists of dividing the significance level used for a FPR control by
the number of tests. For our example with an FPR significance level of 5% and 200,000
in-mask voxels, the Bonferroni-corrected significance level would be 2:5� 10�7. While
the Bonferroni correction is always valid, it becomes conservative when data are highly
dependent. As image data exhibits strong spatial correlation, the Bonferroni correction
does not perform well and is generally not used. Another strategy to control the FWER
attempts to account for the spatial dependence using Random Field Theory (RFT; see,
e.g., Worsley et al., 1996). Nevertheless, RFT relies on several assumptions (see, e.g.,
Petersson et al., 1999) that, to our knowledge, have not been validated in the context of
longitudinal models. A third strategy is based on how the FWER actually corresponds
to the probability that the maximum statistic in the image is detected as a false positive
when the null hypothesis is true. Therefore, the control of the FWER can be achieved
by comparing the statistics in the image to the maximum statistic null distribution of
the image. While the latter can be difficult to estimate with a parametric approach, it
can be relatively easily estimated using a non-parametric approach provided that its
assumptions are justified. In neuroimaging, this is generally done using permutation.
Nevertheless, as explained above in Section 2.5.1, in the context of longitudinal data,
permutation is generally not feasible and hence we consider a bootstrap resampling
method instead (see Chapter 4).

Instead of controlling for the FWER, another type of correction introduced to
neuroimaging by Genovese et al. (2002) and generally less conservative, is based on the
False Discovery Rate (FDR) control. In practice, the Benjamini-Hochberg procedure
(Benjamini and Hochberg, 1995) is generally used to control FDR, and has been used
widely in neuroimaging. This is due to in part how the Benjamini-Hochberg method is
valid under positive dependence (Benjamini and Yekutieli, 2001), and doesn’t show the
same sort of ultra-conservativeness as the Bonferrroni correction with smooth image
data.
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2.6 The ADNI dataset
In this thesis, in order to demonstrate the proposed methods on a real longitudinal
neuroimaging dataset, we use a dataset obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in
2003 by the National Institute on Ageing (NIA), the National Institute of Biomedical
Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), pri-
vate pharmaceutical companies and non-profit organisations, as a $60 million, 5-year
public-private partnership. The primary goal of ADNI has been to test whether se-
rial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined
to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). Determination of sensitive and specific markers of very early AD pro-
gression is intended to aid researchers and clinicians to develop new treatments and
monitor their effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California - San Francisco. ADNI is the result of efforts
of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the U.S. and
Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI has been
followed by ADNI-GO and ADNI-2. To date these three protocols have recruited over
1500 adults, ages 55 to 90, to participate in the research, consisting of cognitively
normal older individuals, people with early or late MCI, and people with early AD.
The follow up duration of each group is specified in the protocols for ADNI-1, ADNI-
2 and ADNI-GO. Subjects originally recruited for ADNI-1 and ADNI-GO had the
option to be followed in ADNI-2. For up-to-date information, see www.adni-info.org.

Scanning time N MCI AD Total
0 month 229 400 188 817
6 months 208 346 159 713
12 months 196 326 138 660
18 months n/a 286 n/a 286
24 months 172 244 105 521
36 months 147 170 n/a 317

Table 2.2 Numbers of subjects scanned at baseline (0 month) and follow-up (6, 12, 18,
24 and 36 months) for the Normal controls (N), Mild Cognitive Impairment (MCI)
and Alzheimer’s Disease (AD) subjects in the ADNI dataset.

http://adni.loni.usc.edu
http://www.adni-info.org
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The dataset considered in this thesis is a modified version of the dataset produced
and detailed by Hua et al. (2013). In brief, the dataset in Hua et al. (2013) consisted
on 3314 images obtained after applying Tensor Based Morphometry (TBM) on 3314
brain MRI scans from 229 healthy elderly Normal controls (age: 76:0 � 5:0 years,
119 Male (M)/110 Female (F)), 400 individuals with amnestic MCI (age: 74:8 � 7:4
years, 257 M/143 F), and 188 probable AD patients (age at screening: 75:4 � 7:5
years, 99 M/89 F). As shown in Table 2.2, the subjects were scanned at screening
and followed up at 6, 12, 18 (MCI only), 24, and 36 months (Normal and MCI only)
with visit counts of 4:16� 1:21, 4:43� 1:61 and 3:14� 1:07 for the Normal, MCI and
AD subjects, respectively. More precisely, 817 screening TBM images were produced
by considering the 817 screening scans and a Minimal Deformation Target (MDT)
image, obtained from the scans of 40 randomly selected Normal subjects, as baseline;
2497 longitudinal TBM images were produced by considering, for each subject, the
follow-up scans and the corresponding screening scan as baseline. More details about
this dataset can be found in Hua et al. (2013). The 2497 longitudinal TBM images
corresponds to longitudinal changes and not absolute measurements. Therefore, we
multiplied them with their corresponding TBM screening image in order to produce
2497 TBM images reflecting the brain volumes changes compared to a unique baseline,
the MDT image. We considered these modified 2497 TBM images with the original
817 screening TBM images as the dataset to be analysed.



Chapter 3

The Sandwich Estimator method

3.1 Introduction
As mentioned in Section 2.3.6, the Sandwich Estimator (SwE) method, which uses the
marginal model with the identity matrix as working covariance matrix, seems to be
a very attractive tool to analyse longitudinal neuroimaging data. First, it is simpler
to specify than alternative methods like Linear Mixed Effects (LME) models as there
is no need to specify random effects or to make assumptions about the intra-visit co-
variance structure of the error terms. Second, it is free of any iterative algorithms,
allowing the method to be fast and without the risk of convergence issues. Third, it is
robust, at least asymptotically, against the misspecification of the working covariance
matrix. Nevertheless, the main issue is that many longitudinal neuroimaging stud-
ies have a small number of subjects, breaking down the assumption of large samples,
and, unfortunately, several studies have shown that the behaviour of the SwE method
without any small sample considerations may lead to inaccurate results (MacKinnon
and White, 1985; Chesher and Jewitt, 1987; Long and Ervin, 2000). That is why sev-
eral authors proposed to use different adjustments to improve its behaviour, mainly
in the case of small samples. However, there does not seem to exist a clear consensus
about which of these adjustments should be used in practice. Moreover, the majority
of the literature has been focused on cross-sectional data, meaning that the related
conclusions may differ in the context of longitudinal data. For all these reasons, in this
chapter, we review, extend and propose different adjustments aiming to improve the
small sample behaviour of the SwE method. In order to isolate the best combinations
of these adjustments, we evaluate them using intensive Monte Carlo simulations in set-
tings important for longitudinal neuroimaging data analysis. Also, using Monte Carlo
simulations, we compare the SwE method to popular alternative approaches. Finally,
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we illustrate the SwE method by applying it to the real ADNI dataset introduced in
Section 2.6. Note that a part of the content of this chapter has been published in
Guillaume et al. (2014).

3.2 Methods
In this section, we first detail the SwE method in its most general form. Then, we
review and propose several adjustments which can be used to improve its behaviour,
particularly in small samples. We also detail how the SwE method was evaluated.

3.2.1 The classic SwE method

The SwE method considers the marginal linear regression model introduced in Section
2.3.6, such that, for each subject i, we have

yi = Xi� + ��i (2.4 revisited)

where yi is a vector of ni observations for individual i = 1; 2; : : : ;m, � is a vector of
p fixed effects which is linked to yi by the ni � p design matrix Xi and the individual
marginal error terms ��i have mean 0 and covariance Vi.

To estimate the parameters �, the SwE method assumes that the error terms are
independent and identically distributed (i.i.d.) and simply uses the OLS estimator
such that

�̂ =
 mX

i=1
X>i Xi

!�1 mX

i=1
X>i yi: (3.1)

This may seem wrong to assume i.i.d. error terms in the estimation of �, but it was
shown that �̂OLS is a consistent estimator of �, even if the data is correlated (Liang
and Zeger, 1986). The main issue of using OLS regressions in clustered data actually
arises with the OLS estimator of the covariance matrix of the parameter Cov(�̂) which
is not consistent (Kauermann and Carroll, 2001). That is why, in the SwE method, we
use instead the so-called SwE with the identity matrix as working covariance matrix
(see Section 2.3.6) which was firstly introduced by Eicker (1963, 1967):
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As mentioned in Section 2.3.6, its property is that it consistently estimates the
true covariance matrix of the parameters Cov(�̂) if m�1Pm

i=1X>i V̂iXi consistently
estimates m�1Pm

i=1X>i ViXi. From this property, we learn that, in order to get an
accurate estimate of Cov(�̂), we need a large sample and a consistent estimate of
m�1Pm

i=1X>i ViXi. In practice, obtaining a consistent estimate can be achieved by
estimating the subject covariance matrices from the subject residuals ei = yi�Xi�̂ by

V̂i = eie>i (3.2)

(Diggle et al., 1994). Using Equation (3.2) in Equation (2.7), we then obtain the most
simple SwE version. In the literature, this SwE version is often referred to as HC0 (see,
e.g., Long and Ervin, 2000) where “HC” stands for “Heteroscedasticity Consistent”
and “0” stands for the fact that no small sample bias adjustment is used (see Section
3.2.2). In this thesis, however, we will refer to this SwE version as SHet

0 where the
subscript “0” indicates that there is no bias adjustment, and the superscript “Het”
stands for “Heterogeneous” subject covariance matrices and is used to contrast with
another type of SwE introduced in Section 3.2.3.

To perform inference on a combination of the parameters, H0 : C� = b0, a Wald
statistic is generally used:

T = (C�̂ � b0)>(CSC>)�1(C�̂ � b0)=q (2.8 revisited)

where C is a matrix (or a vector) defining the combination of the parameters (contrast)
tested and q is the rank of C. At large samples, this Wald statistic follows a �2

q

distribution under the null hypothesis. In small samples, while the obvious choice
would be an F -distribution with q and n � p degrees of freedom, we show in Section
3.2.4 that this is not a good approximation of the true null distribution of T when the
SwE method is used.

3.2.2 Small sample bias adjustments

In small samples, it is well known that the use of the standard SwE SHet
0 may lead

to incorrect inferences (MacKinnon and White, 1985; Chesher and Jewitt, 1987; Long
and Ervin, 2000). One of the explanation for this effect is that, since SHet

0 uses the
Maximum Likelihood Estimate for each Vi, it is generally biased downward and tends
to make liberal inferences (i.e. inflated False Positive Rates). This has pushed several
authors to propose different small sample bias adjustments to improve the behaviour
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of the SwE in small samples. Nevertheless, before presenting these adjustments, it
seems important to show how a bias appears in small samples. To do that, let us first
write the relationship between the residuals of all the observations e and the data of
all the observations y:

e = (I �H)y; (3.3)

where H = X(X>X)�1X> is the so-called Hat matrix with X being the grand design
matrix (i.e. the n � p stacked matrix of the m Xi’s, where n = P

i ni is the total
number of observations). Taking the covariance of both sides of Equation (3.3) and
noting that H is symmetric, we get

Cov[e] = (I �H)Cov[y](I �H): (3.4)

From Equation (3.4), we see that the covariance matrix of the residuals is not equal
to the covariance matrix of the data. In particular, the expectation of the estimator
V̂i = eie>i used in SHet

0 is given by

E[eie>i ] =Cov[ei]

=
mX

j=1
(I �H)ijVj(I �H)ji; (3.5)

where (I � H)ij is the block matrix in (I � H) whose rows correspond to subject i
and columns to subject j. We can see that the expectation of V̂i = eie>i is typically
not equal to Vi, indicating that it is a biased estimator of Vi. Nevertheless, noting
that, in many practical situations, (I � H) tends to become closer and closer of the
identity matrix when the number of data points increases faster than the rank of X,
the bias is generally expected to decrease when the number of data points increases,
explaining why, in the literature, SHet

0 has been found accurate in large samples, but
not in small samples. It seems therefore preferable to use an alternative estimator
of Vi which accounts for the small sample bias. Below, we describe seven of these
alternative estimators, leading to seven alternative SwE.

SHet
1

SHet
1 (or HC1) was first proposed by Hinkley (1977) and consists of using the raw

residuals ei multiplied by
q
n=(n� p) instead of the raw residuals ei in the estimation

of each Vi. This correction can be justified by first (wrongly) assuming that the error
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terms are i.i.d. with variance �2. In this case, a good estimator for �2 would simply
be the unbiased OLS estimator given by

�̂2 = e>e
n� p

(3.6)

which is equivalent to use the raw residuals ei multiplied by
q
n=(n� p) instead of the

raw residuals in the OLS Maximum Likelihood Estimator of variance. By analogy, we
can expect each Vi to be estimated with less bias, making, in turn, SHet

1 less biased
than SHet

0 . Note that, instead of adjusting the residuals, SHet
1 can simply be obtained

by multiplying SHet
0 by n=(n� p).

SHet
2

SHet
2 (or HC2) was first proposed by Horn et al. (1975) and consists of using the

adjusted residuals eik=(1 � hik)1=2(where eik and hik are the raw residual and the
diagonal element of H corresponding to the observation of subject i at visit k) instead
of the raw residuals eik. To justify this correction, like with SHet

1 , it suffices to assume
(wrongly) that the error terms are i.i.d. with variance �2. In this case, noting that the
Hat matrix H is idempotent, Equation (3.4) becomes

Cov[e] = (I �H)�2 (3.7)

and, from this, we get, for the residual of subject i at visit k,

var
"

eik

(1� hik)1=2

#

= �2: (3.8)

This suggests that using the adjusted residual eik=(1 � hik)1=2 instead of the raw
residuals should yield less biased estimates of the within-subject covariance matrices
and, consequently, should reduce the bias existing in SHet

0 .

SHet
3

SHet
3 (or HC3) consists of using eik=(1 � hik) instead of the raw residuals eik. It is

actually a simplification of the jackknife estimator of Cov[�̂] proposed by MacKinnon
and White (1985) in the context of independent data:

n� 1
n

(X>X)�1
�
X>
X � 1

n
(X>uu>X)

�
(X>X)�1 (3.9)
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where u is a vector of adjusted residuals with elements eik=(1�hik) and 
 is a diagonal
matrix with diagonal elements e2

ik=(1 � hik)2. In practice, this jackknife estimator
is generally simplified by dropping the multiplicative term (n � 1)=n and the term
1=n(X>uu>X), leading to a SwE version SHet

3 which uses eik=(1� hik) instead of the
raw residuals. Note that, to our knowledge, the literature (see, e.g., Long and Ervin,
2000) does not give a clear justification about this simplification while the values of
the two omitted terms could be influential in very small samples. However, we can
observe that the first term is always inferior to one while the diagonal elements of the
second term are always positive. Neglecting the fact that the off-diagonal elements
of the second term may be negative, it seems clear that their omissions will have
the tendency to inflate the estimate of Cov[�̂], which can be considered acceptable in
practice to get valid, but not necessary optimal, inferences. Note also that, like SHet

1

and SHet
2 , SHet

3 is based on the assumption that the error terms are i.i.d. (Efron, 1982).

SHet
C2 and SHet

C3

All three SwE versions SHet
1 , SHet

2 and SHet
3 assume i.i.d. error terms and do not consider

the clustered nature which may exist in the data. That is why, in the context of
clustered data, some authors prefer to adjust the residuals by multiplying each subject
residual ei with (I�H)�1=2

ii (Kauermann and Carroll, 2001; Bell and McCaffrey, 2002)
or (I � H)�1

ii (Mancl and DeRouen, 2001), leading to two alternative SwE versions
which can be seen as clustered versions of SHet

2 and SHet
3 , respectively. Due to the

latter, in this thesis, they are referred to as SHet
C2 and SHet

C3 , respectively. Note that,
considering the bias adjustment used in SHet

C3 and using Equation (3.5), we get

E[(I �H)�1
ii eie>i (I �H)�1

ii )] =Vi + (I �H)�1
ii

0

@
mX

j 6=i
(I �H)ijVj(I �H)ji

1

A (I �H)�1
ii ;

(3.10)

indicating that SHet
C3 is likely to be biased.

SHet
U1 and SHet

U2

All the bias adjustments reviewed previously are based on some assumptions (e.g.,
i.i.d. error terms) which may not be valid in practice. As a consequence, while they
are expected to reduce the bias existing in the SwE, they may fail to remove it entirely.
However, finding an unbiased estimator for each Vi and consequently for Cov[�̂] is not,
in theory, impossible. Indeed, vectorising Equation (3.4) with the half-vectorisation
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operator vech1, using its relationship with the vectorisation operator vec2 (Abadir and
Magnus, 2005, Exercice 11.27) and using the relationship between the vec operator
and the Kronecker product (Abadir and Magnus, 2005, Exercice 10.18), we get

vech[Cov[e]] =vech[(I �H)Cov[y](I �H)]
=D+

n vec[(I �H)Cov[y](I �H)]
=D+

n ((I �H)
 (I �H))vec[Cov[y]]
=D+

n ((I �H)
 (I �H))Dnvech[Cov[y]]; (3.11)

where Dn is the so-called duplication matrix (Abadir and Magnus, 2005, Chapter
11) and D+

n = (D>nDn)�1D>n . Note that vech[Cov[y]] contains a lot of zeros since
cov[yik; yjk0] = 0 for all i 6= j. Therefore, we can define the column vector vecu[Cov[y]]
as the vector obtained by removing all the elements of vech[Cov[y]] corresponding to
the covariances involving two different subjects, and Du as the matrix obtained by
removing in Dn the columns corresponding to the elements removed in vech[Cov[y]]
to obtain vecu[Cov[y]]. Then, Equation (3.11) becomes

vech[Cov[e]] =D+
n ((I �H)
 (I �H))Duvecu[Cov[y]]: (3.12)

From this equation, denoting the matrix P = D+
n ((I�H)
(I�H))Du and multiplying

both sides by (P>P )�1P>, we get

(P>P )�1P>vech[Cov[e]] = vecu[Cov[y]]: (3.13)

We can then define an estimator for vecu[Cov[y]] as

(P>P )�1P>vech[ee>]: (3.14)

Taking its expectation, we directly see that it is unbiased. Therefore, if we use it to
estimate each Vi in the SwE, it should produce an unbiased SwE that we will refer to
as SHet

U1 in this thesis.
As an alternative to SHet

U1 , we could only consider the within-subject covariance ma-
trices Cov[ei]’s and forget about the between-subject covariances. In this case, defining
vecu[ee>] as the vector obtained by removing all the between-subject covariances in

1The vech operator is the operator which transforms a symmetric matrix A into a column vector
by stacking all the columns of the lower triangular part of A on top of one another.

2The vec operator is the operator which transforms a matrix A into a column vector by stacking
all the columns of A on top of one another.
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vech[ee>], and Pu as the matrix obtained by removing from P the rows corresponding
to the between-subject covariances, we can define another estimator for vecu[Cov[y]]
as

(P>u Pu)�1P>u vecu[ee>]; (3.15)

which is also unbiased. In this thesis, we will refer to the resulting SwE as SHet
U2 .

Note that, while the estimators of vecu[Cov[y]] used in SHet
U1 and SHet

U2 are unbiased,
they can yield very bad estimates for some Vi’s. For example, there is no restriction
imposing that the variances should be positive or that the correlations should be
inferior or equal to 1. Therefore, in practice, we propose to systematically make a
spectral decomposition of each V̂i and, if at least one of the eigenvalue is negative, to
replace it by a more stable estimate like, for example, the one used in SHet

3 or, in the
case of very small negative eigenvalues, to set them to zero, before reconstructing the
spectral decomposition. Finally, note that, to the best of our knowledge, we are the
first to propose these two novel SwE versions.

3.2.3 The homogeneous SwE

The standard SwE versions SHet estimates a separate Vi for each subject. In partic-
ular, the versions SHet

0 , SHet
1 , SHet

2 , SHet
3 , SHet

C2 and SHet
C3 estimate each Vi based only

on the residuals of the ith subject (see, for example, Equation 3.2). Nevertheless, as
suggested in Pan (2001), if the studied population can be subdivided into nG groups
within which the subjects are sharing similar properties, we may assume that the
variances and covariances over subjects within each group are actually homogeneous.
For instance, in the ADNI study (see Section 2.6), the whole population can be di-
vided into three groups: the Normal control (N), Mild Cognitive Impairment (MCI)
and Alzheimer’s Disease (AD) groups in which the subjects can be assumed to share
the same variances and covariances. We argue that this is a reasonable assumption
as virtually the standard longitudinal neuroimaging analysis assumes homogeneous
variance over all subjects. Therefore, we can define an alternative version of the SwE
SHom

0 which relies on the assumption of a common covariance matrix V0g for all the in-
dividuals belonging to group g = 1; : : : ; nG. To estimate V0g, the observations have to
be firstly classified into kg visit categories (homogeneous groups) consistently defined
between subjects in group g. For example, in the ADNI study, the MCI subjects were
scanned at 0, 6, 12, 18, 24 and 36 months allowing us to divide the observations into
kMCI = 6 visit categories. Then, defining mgkk0 as the number of subjects in group g



3.2 Methods 33

who have data at both visit k and k0, eik as the residual of subject i at visit k and
I(g; k; k0) as the subset of subjects in group g who have data at both visit k and k0,
the kthdiagonal element of V0g can then be estimated by

(V̂0g)kk = 1
mgkk

X

i2I(g;k;k)
e2

ik: (3.16)

The off-diagonal element of V0g corresponding to the visits k and k0 can be estimated
by

(V̂0g)kk0 = �̂0gkk0

q
(V̂0g)kk(V̂0g)k0k0 (3.17)

where �̂0gkk0 is an estimate of the correlation at visits k and k0 in the group g and
which can be computed by

�̂0gkk0 =

X

i2I(g;k;k0)
eikeik0

vuuut

0

@
X

i2I(g;k;k0)
e2

ik

1

A

0

@
X

i2I(g;k;k0)
e2

ik0

1

A

: (3.18)

Note that we could estimate the off-diagonal elements of V0g directly by

(V̂0g)kk0 = 1
mgkk0

X

i2I(g;k;k0)
eikeik0: (3.19)

Unfortunately, if there is missing data, as the subset of subjects could differ from
the one used in the estimation of the variances (V0g)kk and (V0g)k0k0, there will be
no guarantee that the corresponding correlation estimates would be inferior or equal
to 1. Using Equations (3.17) and (3.18), the correlations are ensured to be always
inferior or equal to 1 and, therefore, we recommend their uses instead of Equation
(3.19). Note also that, due to the possible presence of missing data, V̂0g may not be
positive semi-definite and, as a consequence, may lead to inaccurate results. Therefore,
in presence of missing data, we can make a spectral decomposition of V̂0g and check
whether all the eigenvalues of V̂0g are positive. If this is not the case, we set all the
negative eigenvalues to zero and reconstruct V̂0g with the new eigenvalues, ensuring
that V̂0g is positive semi-definite. Thus, in this SwE version that will be referred to as
SHom

0 , each V̂i corresponds to a subset of the corresponding common covariance matrix
V̂0g depending on the visits measured for subject i. If the assumption of a common
covariance matrix over subjects in a same group is valid, then each Vi should be more
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efficiently estimated in comparison to the standard approach. Finally, note that this
new SwE version depends on the way the population is subdivided and has two extreme
cases, one assuming a single group and the other considering m homogeneous groups,
equivalent to the standard SwE SHet

0 .

Small sample bias correction considerations

In Equations (3.16) and (3.18), we do not use any bias corrections as discussed in
Subsection 3.2.2. That is for this reason that the resulting SwE version is referred
to as SHom

0 . However, like for the standard SHet versions, we can apply similar bias
corrections, leading to the bias corrected homogeneous SwE versions SHom

1 , SHom
2 ,

SHom
3 , SHom

C2 and SHom
C3 , SHom

U2 and SHom
U2 . For the SwE versions SHom

1 , SHom
2 , SHom

3 ,
SHom

C2 and SHom
C3 , the corrections are the same as their corresponding heterogeneous

versions and simply consist of replacing the raw residuals in Equations (3.16) and
(3.18) by the adjusted residuals as described in Section 3.2.2. For the SHom

U1 and SHom
U2

versions, this is a little bit more complicated. For them, Equations (3.16) and (3.18)
cannot be used anymore. Instead, we can modify Equation (3.12) as follows:

vech[Cov[e]] =Pvecu[Cov[y]]
=PHomvecu[V0]; (3.20)

where vecu[V0] is a vector obtained by stacking together all the unique elements of
each V0g and PHom is a matrix obtained in such a way that the column corresponding
to the element (V0g)kk0 is the sum of all columns in P corresponding to the element
(V0g)kk0. We can then define the SwE version SHom

U1 for which the elements of vecu[V0]
are estimated by

(PHom>PHom)�1PHom>vech[ee>]: (3.21)

Similarly, we can define the SwE version SHom
U2 for which the elements of vecu[V0]

are estimated by

(PHom
u

>PHom
u )�1PHom

u
>vecu[ee>]: (3.22)

where the matrix PHom
u is obtained by removing from PHom the rows corresponding

to the between-subject covariances in vech[ee>]. Like it is the case with their het-
erogeneous versions, there is no guarantee that each V̂0g used in SHom

U1 and SHom
U2 will

be positive semi-definite. Therefore, we propose to make a spectral decomposition of
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them to check if all the eigenvalues are positive. If it is not the case and if the neg-
ative eigenvalue are small, then, we set them to 0 before reconstructing the spectral
decomposition. If the negative eigenvalues are not negligible, we propose instead to
replace each problematic V̂0g by another bias corrected estimate of it like, for example,
the one used in SHom

3 .

3.2.4 Inferences in small samples

As mentioned at the end of Section 3.2.1, with the SwE method, inference on a com-
bination of the parameters, H0 : C� = b0, can be done using a Wald test:

T = (C�̂ � b0)>(CSC>)�1(C�̂ � b0)=q; (2.8 revisited)

where C is a matrix (or a vector) defining the combination of the parameters (contrast)
tested and q is the rank of C. As mentioned also in Section 3.2.1, under the null
hypothesis and at large samples, this Wald test follows a �2

q distribution. While this
null distribution is often considered in practice, it does not account for the variability of
the SwE which can be non-negligible in small samples. That is the reason why some
authors proposed to alter the null distribution of this Wald statistic by accounting
for the small sample nature of the data (Lipsitz et al., 1999; Fay and Graubard,
2001; Hardin, 2001; Kauermann and Carroll, 2001; Mancl and DeRouen, 2001; Bell
and McCaffrey, 2002; Pan and Wall, 2002; Waldorp, 2009). Most of the proposed
adjustments consist of using an F -distribution with q and � degrees of freedom instead
of a �2

q distribution. The challenge is then to determine an appropriate value for �.
In this thesis, we focus our attention on the approximate F -test proposed in Pan and
Wall (2002) (referred to as Pan test in this thesis) and develop three alternative F -
tests (referred to, in this thesis, as Test I, Test II and Test III) which can be used with
the SwE method.

The Pan statistical test

In the context of Generalised Estimating Equations, to account for the variability
of the SwE in the Wald test, Pan and Wall (2002) proposed to assume that the
contrasted SwE CSC> follows a Wishart distribution Wq[�; CCov[�̂]C>=�]. Noting
that, under H0, (C�̂ � b0)=

p
� � N [0; CCov[�̂]C>=�] and assuming that C�̂ and
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CSC> are independent, we get (Härdle and Simar, 2012, Theorems 5.8 & 5.9)

�

0

@C�̂ � b0p
�

1

A
>

(CSC>)�1

0

@C�̂ � b0p
�

1

A �
�q

� � q + 1F [q; � � q + 1]; (3.23)

which finally leads to the test statistic

� � q + 1
�q

(C�̂ � b0)>(CSC>)�1(C�̂ � b0) � F [q; � � q + 1]: (3.24)

The issue is then to use an appropriate value for the degrees of freedom �. Pan and
Wall (2002) proposed to choose � such that an empirical estimate of the covariance
matrix of CSC> is close to the one predicted by the theory of Wishart distributions
(Abadir and Magnus, 2005, Exercice 11.23), i.e.

Cov[vec[CSC>]] = 2
�
Nq

�
(CCov[�̂]C>)
 (CCov[�̂]C>)

�
; (3.25)

where Nq is the so-called symmetrizer matrix (Abadir and Magnus, 2005, Chapter 11).
Pan and Wall (2002) proposed to empirically estimate Cov[vec[CSC>]] by

dCovPan[vec[CSC>]] = m
m� 1

mX

i=1
(vec[Qi]�

1
m

vec[CSC>])(vec[Qi]�
1
m

vec[CSC>])>

(3.26)

where

Qi = C

0

@
mX

j=1
X>j Xj

1

A
�1

X>i V̂iXi

0

@
mX

j=1
X>j Xj

1

A
�1

C> (3.27)

is the contribution of subject i to the contrasted SwE CSC>. Finally, Pan and Wall
(2002) suggested to estimate the degrees of freedom � by minimising the sum of squared
errors between � vec[ dCovPan[vec[CSC>]]] and � vec[Cov[vec[CSC>]]].

Note that the empirical estimator of Cov[vec[CSC>]] given in Equation (3.26) was
given in Pan and Wall (2002) without mentioning the conditions under which it is valid.
Therefore, it is rather difficult for us to state with certainty the exact assumptions
needed for its validity. Nevertheless, as a first guess, it seems that, in order to be valid,
Equation (3.26) relies on the assumptions that the Qi’s are independent, have the same
expectation and have the same covariance matrix. Unfortunately, as the residuals are
typically correlated, the Qi’s will not be exactly independent, particularly in small
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samples. Furthermore, for a general design, as the within-subject covariance matrices
Vi’s or the subject design matrices Xi’s may differ across subject, it is also unlikely that
the Qi’s will have the same expectation or the same covariance matrix. This indicates
that the Pan test might be inaccurate in some designs. Also, Equation (3.26) will
definitively not be valid if we are using a homogeneous version of the SwE. Indeed,
in this case, the Qi’s related to the group g will be drawn from the same common
covariance matrix estimate V̂0g and will therefore be highly correlated, breaking down
the assumption of independence. This means that the Pan test cannot be considered
when a homogeneous version of the SwE is used.

Test I

Independently of Pan and Wall (2002), we have actually developed an alternative test
which is partly similar to the Pan test and was published in Guillaume et al. (2014). It
follows the same idea of assuming a Wishart distribution for the contrasted SwE CSC>

which then leads to the same test statistic as given in Equation (3.24). The difference
with Pan and Wall (2002) is that we used a different strategy to estimate the degrees
of freedom � by first using an alternative empirical estimator for Cov[vec[CSC>]] and,
second, by equating the trace of it with the theoretical expression for Cov[vec[CSC>]]
given in Equation (3.25).

For this test, one of our goals was usability for both the heterogeneous and ho-
mogeneous versions of the SwE. Therefore, as the heterogeneous SwE can be seen as
a particular case of the homogeneous version which would consider m homogeneous
groups of one subject, we give only details for the homogeneous version.

To derive another estimator for Cov[vec[CSC>]], let us first assume that there is
no missing data. In such a case, assuming the use of a homogeneous version of the
SwE with nG groups, V0g would be estimated by

V̂0g = 1
mg

X

i2I(g)
e�i e
�>
i (3.28)

where I(g) is the subset of subjects belonging to group g and e�i is an adjusted version
of the residuals of subject i. If each e�i is correctly adjusted in such a way that each
covariance matrix Cov[e�i ] is equal to the covariance matrix of its corresponding true
error term Cov[��i ], then they can be assumed to follow a Normal distribution with
mean 0 and covariance matrix V0g for all i 2 I(g). Then, for all i 2 I(g), we would
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have

Bi = 1
mg

e�i e
�>
i � Wkg [1; V0g=mg] (3.29)

by the definition of a Wishart distribution (Härdle and Simar, 2012, Section 5.2),
where kg is the size of e�i . If the subject residuals e�i were independent, we would have

V̂0g =
X

i2I(g)
Bi � Wkg [mg; V0g=mg]; (3.30)

by the additive property of Wishart distributions. However, this is not the case due
to covariates shared between subjects. To account for this dependence, let us first
consider a n � p design matrix X that is separable into nX sub-design matrices Xu

of size nu � p such that, defining Au as the set of non-zero columns in Xu, the col-
lection of sets fAu : u = 1; : : : ; nXg is pairwise disjoint. Further, let X be composed
of pB pure between-subject covariates (e.g., group intercept, cross-sectional effect of
age) and pW pure within-subject (e.g., longitudinal effect of visit) as recommended in
Section 2.4. In such a situation, the residuals e�i can be considered to be in a space
of dimension mi � pBi where mi is the number of subjects included in the sub-design
matrix containing subject i and pBi is the number of pure between-subject covariates
in this sub-design matrix that are not all-zero. Now, we treat the Bi’s as independent
random variables following a Wishart distribution Wkg [�i; V0g=(mg�i)] with an effec-
tive number of degrees of freedom �i that is estimated by 1 � pBi=mi. This allows
us to consider V̂0g as a sum of independent Wishart distributions. From that, we
approximate this sum of independent Wishart distributions by a Wishart distribution
Wkg [�g; V0g=�g]. Taking the expectations of this Wishart distribution and of the sum
of independent Wishart distributions, we can easily verify that they are both equal
(i.e. V0g). Now, to get an estimate of �g, we equate the covariance matrices of the
vectorised representation of the approximate Wishart distribution with the one of the
sum of Wishart distributions and we get

2
�g
Nkg (V0g 
 V0g) =

X

i2I(g)

2
�im2

g
Nkg (V0g 
 V0g) ; (3.31)

where we used, in both sides, the formula for the covariances of the vectorised repre-
sentation of Wishart distribution (Abadir and Magnus, 2005, Exercice 11.23). From
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Equation (3.31), we see that the degrees of freedom can therefore be estimated by

�g =
m2

g
X

i2I(g)

1
�i

: (3.32)

Now, contrasting the SwE S with C, we have

CSC> = C
 mX

i=1
X>i Xi

!�1
0

@
nGX

g=1

X

i2I(g)
X>i V̂0gXi

1

A
 mX

i=1
X>i Xi

!�1

C>

=
nGX

g=1

0

@C
 mX

i=1
X>i Xi

!�1
0

@
X

i2I(g)
X>i V̂0gXi

1

A
 mX

i=1
X>i Xi

!�1

C>
1

A

=
nGX

g=1
(CSC>)g (3.33)

where (CSC>)g is the contribution of group g to the contrasted SwE CSC> and which
can be rewritten as

(CSC>)g =
X

i2I(g)
LiV̂0gL>i (3.34)

where

Li = C

0

@
mX

j=1
X>j Xj

1

A
�1

X>i : (3.35)

Then, for all i 2 I(g), we get

LiV̂0gL>i � Wq[�g; LiV0gL>i =�g]; (3.36)

where q is the rank of C (Härdle and Simar, 2012, Theorem 5.5). As each component
LiV̂0gL>i is obtained with the same estimate V̂0g, there is no contribution of additional
degrees of freedom and, thus, we assume that

(CSC>)g � Wq[�g;
X

i2I(g)
LiV0gL>i =�g]: (3.37)

Assuming that the contributions (CSC>)g are independent and assuming that CSC>

follows a Wishart distribution Wq[�; CCov[�̂]C>=�], we use an approximation origi-
nally proposed in Nel and Van der Merwe (1986) which consists of approximating a
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sum of independent Wishart distribution by a Wishart distribution. This approxima-
tion consists of equating the trace of the expectation and the covariance matrix of
the vectorised representation of the sum of Wishart distributions with those of the
approximate Wishart distribution. In our case, noting that PnG

g=1
P

i2I(g) LiV0gL>i =
CCov[�̂]C>, we directly see that the expectations are equal. Now, equating the trace
of the covariance matrices, we get

2
�

tr
h
Nq(CCov[�̂]C>)
 (CCov[�̂]C>)

i
=

nGX

g=1

2
�g

tr
h
Nq(CCov[�̂]C>)g 
 (CCov[�̂]C>)g

i

(3.38)
where (CCov[�̂]C>)g = P

i2I(g) LiV0gL>i .
Noting that, for any q � q matrix A, we have, using the relationship existing

between the symmetrizer matrix Nq, the duplication matrix Dn and its pseudo inverse
D+

n (Abadir and Magnus, 2005, Exercice 11.28), the cyclical property of the trace
operator (Abadir and Magnus, 2005, Exercice 2.26) and the property of the matrix
D+

n (A
 A)Dn (Abadir and Magnus, 2005, Exercice 11.33),

tr[Nq(A
 A)] =tr[DnD+
n (A
 A)]

=tr[D+
n (A
 A)Dn]

=1
2tr[A2] + 1

2(tr[A])2; (3.39)

we can simplify and rearrange Equation (3.38) to get

� = tr[(CCov[�̂]C>)2] + (tr[CCov[�̂]C>])2

nGX

g=1

tr[(CCov[�̂]C>)2
g] + (tr[(CCov[�̂]C>)g])2

�g

: (3.40)

In practice, Cov(�̂) and V0g’s are unknown, thus, their estimates S and V̂0g’s are
used instead in (3.40) and we get

� = tr[(CSC>)2] + (tr[CSC>])2

nGX

g=1

tr[(CSC>)2
g] + (tr[(CSC>)g])2

�g

: (3.41)

This number of degrees of freedom can then be used in Equation (3.24) to make
inferences. While the test developed here, that we will refer to as Test I, is very
similar to the Pan test (as they both used Equation (3.24)), the number of degrees
of freedom � obtained can be quite different and it relies on different assumptions,
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making difficult a direct theoretical comparison between the two tests. However, some
interesting remarks can be made. First, a relatively strong assumption of Test I is
that it assumes no missing data. While this is not directly the case for the Pan
test, the presence of missing data is likely to affect the mean and covariances of the
Qi’s (see Equation (3.27)) and may break the (unstated) assumptions behind the Pan
test. Therefore, the presence of missing data could be an issue for both tests. A
second important remark is that, in Test I, the Qi’s are allowed to have different
means and covariances, indicating that it could be more robust than the Pan test, at
least in some designs. Third, while the Pan test does not account for the dependence
existing between the residuals, in our test, this dependence has been partially taken
into account by using an effective number of degrees of freedom (i.e. 1 � pBi=mi) for
each Bi. Finally, while this type of practice seems to be common in the literature, as
we will show it later (see Equation (3.48)), replacing the unknown Cov[�̂] and V0g’s by
their estimates in Equation (3.40) can be problematic as this typically leads to biased
estimates of Cov[vec[CSC>]]. The latter issue and the fact that Test I assumes no
missing data have led us to propose two alternative tests described next.

Test II

As mentioned above, Test I assumes no missing data and does not account for the
potential bias introduced by replacing the unknown Cov[�̂] and each V0g by their
estimates. In this second test, we attempt to solve these two issues by defining an em-
pirical estimator of Cov[vec[CSC>]] which accounts for missing data and is unbiased.
First, let us decompose Cov[vec[CSC>]] in terms of each Cov[vec[V̂0g]]. Using the
linearity property of the vec operator (Abadir and Magnus, 2005, Exercice 10.16) and
the relationship existing between the vec operator and the Kronecker product (Abadir
and Magnus, 2005, Exercice 10.18), we have

Cov[vec[CSC>]] =Cov
2

4
nGX

g=1

X

i2I(g)
vec[LiV̂iL>i ]

3

5

=Cov
2

4
nGX

g=1

X

i2I(g)
(Li 
 Li)vec[V̂i]

3

5 ; (3.42)

where Li is given by Equation (3.35). As each V̂i in group g is a sub-matrix of V̂0g, we
can express the internal summation in Equation (3.42) as a function of vec[V̂0g] such
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that

Cov[vec[CSC>]] = Cov
2

4
nGX

g=1
Ggvec[V̂0g]

3

5 ; (3.43)

where Gg is a matrix easily constructed from the matrices (Li 
 Li) related to the
subjects in group g. Now, assuming that V̂01; V̂02; : : : ; V̂0nG are mutually independent,
we have

Cov[vec[CSC>]] =
nGX

g=1
GgCov[vec[V̂0g]]G>g : (3.44)

Note that the assumption of independence is slightly violated due to the covariates
shared between subjects. Nevertheless, we will take this into account later by making
an effective degrees of freedom correction.

From Equation (3.44), we see that, in order to estimate the covariance matrix of
vec[CSC>], we simply need to estimate the covariance matrix of each V̂0g. Unfortu-
nately, getting an estimate of each Cov[vec[V̂0g]] can be difficult under missing data
and when the estimation of the off-diagonal elements of each V0g is based on Equa-
tions (3.17) and (3.18), which are highly non-linear. Nevertheless, for the purpose of
getting an estimate of Cov[vec[V̂0g]], it seems reasonable to, for now, assume that the
estimation of the off-diagonal elements of V0g is based instead on Equation (3.19) in
which we use adjusted residuals such that

(V̂0g)kk0 = 1
mgkk0

X

i2I(g;k;k0)
e�ike

�
ik0: (3.45)

We now account for the dependence existing between the product e�ike�ik0 in the
same way as in Test I, that is, we treat the m outer products e�i e�>i as independent
random variables, each following a Wishart distributionWni [�i; Vi=�i] with an effective
number of degrees of freedom �i that is estimated by 1�pBi=mi. Using Equation (3.45)
and using the property of Wishart distributions, the elements of Cov[vec[V̂0g]] are then
given by

cov[(V̂0g)kk0; (V̂0g)ll0] = 1
mgkk0mgll0

X

i2I(g;k;k0)

X

j2I(g;l;l0)
cov[e�ike�ik0; e�jle

�
jl0]

= 1
mgkk0mgll0

X

i2I(g;k;k0)\I(g;l;l0)
cov[e�ike�ik0; e�ile

�
il0]
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=(V0g)kl(V0g)k0l0 + (V0g)kl0(V0g)k0l

mgkk0mgll0

X

i2I(g;k;k0)\I(g;l;l0)

1
�i
: (3.46)

Note that, if there is no missing data, we would simply get

Cov[vec[V̂0g]] =2Ng(V0g 
 V0g)
m2

g

X

i2I(g)

1
�i
: (3.47)

Again, as, in Equation (3.46), each V0g is unknown, we could replace them by each
of their estimators V̂0g. Unfortunately, the resulting estimator dcov[(V̂0g)kk0; (V̂0g)ll0]
would be biased. Indeed, taking the expectation of the resulting estimator and using
the fact that E[XY ] = cov[X; Y ] + E[X]E[Y ], we get

E[dcov[(V̂0g)kk0; (V̂0g)ll0]] =agkk0ll0
�
E[(V̂0g)kl(V̂0g)k0l0] + E[(V̂0g)kl0(V̂0g)k0l]

�

=agkk0ll0
�
cov[(V̂0g)kl; (V̂0g)k0l0] + (V0g)kl(V0g)k0l0

+ cov[(V̂0g)kl0; (V̂0g)k0l] + (V0g)kl0(V0g)k0l

�

=cov[(V̂0g)kk0; (V̂0g)ll0] + agkk0ll0
�
cov[(V̂0g)kl; (V̂0g)k0l0]

+ cov[(V̂0g)kl0; (V̂0g)k0l]
�
; (3.48)

where

agkk0ll0 =

X

i2I(g;k;k0)\I(g;l;l0)

1
�i

mgkk0mgll0
: (3.49)

We can easily see that the bias is agkk0ll0(cov[(V̂0g)kl; (V̂0g)k0l0] + cov[(V̂0g)kl0; (V̂0g)k0l]).
Assuming a design without missing data, each covariances and the term agkk0ll0 should
be of the order m�1

0g . As a consequence, the bias will tend to become more and more
negligible when the number of subjects in each group g increases. From that, we can
predict that the bias will be higher in the case of the heterogeneous SwE versions
which have groups of one subject compared to the homogeneous SwE versions which
typically have more than one subject per group. This indicates that Test I, which does
not unfortunately account for the bias, should perform better for the homogeneous
SwE than for the heterogeneous SwE.

Hopefully, it seems possible to correct for this bias. Indeed, let us consider the
expectation of dcov[(V̂0g)kl; (V̂0g)k0l0)] and dcov[(V̂0g)kl0; (V̂0g)k0l)]. They actually depend
on the same three covariances as dcov[(V̂0g)kk0; (V̂0g)ll0)]. Therefore, we can express the
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expectation of the three biased estimators as

0

BB@

E[dcov[(V̂0g)kk0; (V̂0g)ll0]]
E[dcov[(V̂0g)kl; (V̂0g)k0l0]]
E[dcov[(V̂0g)kl0; (V̂0g)k0l]]

1

CCA =

0

BB@

1 agkk0ll0 agkk0ll0

agklk0l0 1 agklk0l0

agkl0k0l agkl0k0l 1

1

CCA

0

BB@

cov[(V̂0g)kk0; (V̂0g)ll0)]
cov[(V̂0g)kl; (V̂0g)k0l0)]
cov[(V̂0g)kl0; (V̂0g)k0l)]

1

CCA :

(3.50)

Solving the system of equations, we obtain that

cov[(V̂0g)kk0; (V̂0g)ll0)] = 1
bgkk0ll0

�
(1� agklk0l0agkl0k0l)E[dcov[(V̂0g)kk0; (V̂0g)ll0]]

+(agkl0k0l � 1)agkk0ll0E[dcov[(V̂0g)kl; (V̂0g)k0l0]]
+(agklk0l0� 1)agkk0ll0E[dcov[(V̂0g)kl0; (V̂0g)k0l]]

�
; (3.51)

where

bgkk0ll = 1 + 2agkk0ll0agklk0l0agkl0k0l � agkk0ll0agklk0l0� agkk0ll0agkl0k0l � agklk0l0agkl0k0l: (3.52)

This means that an unbiased estimator of cov[(V̂0g)kk0; (V̂0g)ll0] can be obtained by

dcovII[(V̂0g)kk0; (V̂0g)ll0] = 1
bgkk0ll0

�
(1� agklk0l0agkl0k0l)dcov[(V̂0g)kk0; (V̂0g)ll0]

+(agkl0k0l � 1)agkk0ll0dcov[(V̂0g)kl; (V̂0g)k0l0]
+(agklk0l0� 1)agkk0ll0dcov[(V̂0g)kl0; (V̂0g)k0l]

�
(3.53)

or, replacing the biased estimators using Equation (3.46),

dcovII[(V̂0g)kk0; (V̂0g)ll0)) =agkk0ll0

bgkk0ll0

�
(2agklk0l0agkl0k0l � agklk0l0� agkl0k0l)(V̂0g)kk0(V̂0g)ll0

+(1� agkl0k0l)(V̂0g)kl; (V̂0g)k0l0

+(1� agklk0l0)(V̂0g)kl0(V̂0g)k0l

�
: (3.54)

Equation (3.54) can then be used to construct an unbiased estimator dCovII[vec[V̂0g]]
which can, in turn, be used to estimate Cov[vec[V̂0g]] in Equation (3.44) and leads to
an unbiased empirical estimator for Cov[vec[CSC>]] given by

dCovII[vec[CSC>]] =
nGX

g=1
Gg

dCovII[vec[V̂0g]]G0g: (3.55)
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Now, like the Pan test and Test I, we assume that CSC> follows a Wishart distri-
bution Wq[�; (CCov[�̂]C>)=�] which then leads to the same test statistic as given by
Equation (3.24). We could therefore use Equation (3.25) for the theoretical expression
of Cov[vec[CSC>]] and, like the two other tests, replace CCov[�̂]C> by its estimator
CSC>. However, as for the empirical estimator, we would get a biased theoretical
estimator. Therefore, instead, using similar considerations than the ones employed for
dCovII[vec[V̂0g]], we can derive an unbiased theoretical estimator given by

dCovII[(CSC>)kk0; (CSC>)ll0)] = �
(1� �)(2 + �)

�2
�

(CSC>)kk0(CSC>)ll0

�(CSC>)kl(CSC>)k0l0

�(CSC>)kl0(CSC>)k0l

�
: (3.56)

Now, to get an estimate of �, we could equate the trace of both the theoretical and
the empirical estimators like for Test I and solve the system of equations. However,
if we equate instead the sum of the elements of both estimators, we actually get a
simpler formula. Indeed, in this case, we get, for the theoretical estimator,

qX

k=1

qX

k0=1

qX

l=1

qX

l0=1

dCovII[(CSC>)kk0; (CSC>)ll0] = 2
(2 + �)

 qX

k=1

qX

k0=1
(CSC>)kk0

!2

; (3.57)

and, after equating the sum of the elements of both estimators,

� =
2
 qX

k=1

qX

k0=1
(CSC>)kk0

!2

q2
X

i=1

q2
X

j=1

0

@
nGX

g=1
Gg

dCovII[vec[V̂0g]]G0g

1

A

ij

� 2: (3.58)

This new estimator for the degrees of freedom should be more accurate than the
one proposed in Test I as it accounts for missing data and corrects for small sample
biases. However, in this test, to simplify an already complicated problem, we have
made use of Equation (3.45) instead of Equations (3.17) and (3.18) in which we would
have used adjusted residuals such that

(V̂0g)kk0 =(V̂0gkk0)kk0

vuut (V̂0)kk(V̂0)k0k0

(V̂0gkk0)kk(V̂0gkk0)k0k0

; (3.59)

where , (V̂0g)kk = P
i2I(g;k;k) e�2ik , (V̂0g)k0k0 = P

i2I(g;k0;k0) e�2ik0, (V̂0gkk0)kk = P
i2I(g;k;k0) e�2ik ,
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(V̂0gkk0)k0k0 = P
i2I(g;k;k0) e�2ik0 and (V̂0gkk0)kk0 = P

i2I(g;k;k0) e�ike�ik0. Unfortunately, as we
will see next, if Equation (3.59) is used, another type of bias may arise and compromise
the accuracy of the test.

Test III

As said previously, in practice, we recommend the use of Equation (3.59) instead
of Equation (3.45). Thus, it seems important to attempt to develop another test
assuming that Equation (3.59) was indeed used.

As Equation (3.59) is non-linear, it is difficult to derive the covariances involving
(V̂0g)kk0. Therefore, we linearise it using a first order Taylor series around the true
covariance matrix V0 and get

(V̂0g)kk0 � (V̂0gkk0)kk0 + (V0g)kk0

2(V0g)kk
((V̂0g)kk � (V̂0gkk0)kk) + (V0g)kk0

2(V0g)k0k0
((V̂0g)k0k0� (V̂0gkk0)kk):

(3.60)
Using Equation (3.60), we can therefore get an approximative expression for the co-
variances given by

cov[(V̂0g)kk0; (V̂0g)ll0] � cov[(V̂0gkk0)kk0; (V̂0gll0)ll0]

+ (V0g)kk0

2
X

i2(k;k0)

1
(V0g)ii

�
cov[(V̂0g)ii; (V̂0gll0)ll0]

� cov[(V̂0gkk0)ii; (V̂0gll0)ll0)]
�

+ (V0g)ll0

2
X

i2(l;l0)

1
(V0g)ii

�
cov[(V̂0gkk0)kk0; (V̂0g)ii]

� cov[(V̂0gkk0)kk0; (V̂0gll0)ii]
�

+ (V0g)ll0(V0g)kk0

4
X

i2(k;k0)

X

j2(l;l0)

1
(V0g)ii(V0g)jj

�
cov[(V̂0g)ii; (V̂0g)jj] + cov[(V̂0gkk0)ii; (V̂0gll0)jj]

� cov[(V̂0g)ii; (V̂0gll0)jj]� cov[(V̂0gkk0)ii; (V̂0g)jj]
�
: (3.61)

Similarly to Equation (3.46), we get that

cov[(V̂0gkk0)kk0; (V̂0gll0)ll0] =agkk0ll0
�
(V0g)kl(V0g)k0l0 + (V0g)kl0(V0g)k0l

�
; (3.62)

cov[(V̂0gkk0)kk0; (V̂0gll0)ll] =2agkk0ll0(V0g)kl(V0g)k0l; (3.63)
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cov[(V̂0gkk0)kk0; (V̂0g)ll] =2agkk0ll(V0g)kl(V0g)k0l; (3.64)
cov[(V̂0g)kk; (V̂0g)ll] =2agkkll(V0g)2

kl; (3.65)
cov[(V̂0gkk0)kk; (V̂0gll0)ll] =2agkk0ll0(V0g)2

kl; (3.66)
cov[(V̂0g)kk; (V̂0gll0)ll] =2agkkll0(V0g)2

kl: (3.67)

Using these six equations in Equation (3.61), we get

cov[(V̂0g)kk0; (V̂0g)ll0] � agkk0ll0
�
(V0g)kl(V0g)k0l0 + (V0g)kl0(V0g)k0l

�

+ (V0g)kk0

X

i2(k;k0)

(V0g)il(V0g)il0

(V0g)ii

�
agiill0� agkk0ll0

�

+ (V0g)ll0
X

i2(l;l0)

(V0g)ki(V0g)k0i

(V0g)ii

�
agkk0ii � agkk0ll0

�

+ (V0g)ll0(V0g)kk0

2
X

i2(k;k0)

X

j2(l;l0)

(V0g)2
ij

(V0g)ii(V0g)jj

�

agiijj + agkk0ll0� agiill0� agkk0jj

�
: (3.68)

Comparing Equation (3.68) with Equation (3.46), we see that three additional
terms appear. If there is no missing data, these three terms will vanish. Unfortunately,
if it is not the case, they can be rather significant, particularly when the covariances
are close to the variances and when the amount of missing data is appreciable. In
particular, noting that agkk0ll0 is likely to be greater or equal to agkkll0 or agkk0ll (due
to a possible smaller number of subjects involved), the two first additional terms are
likely to be negative (or equal to 0 if no missing data). For the third additional term, it
is however more difficult to predict if it will be positive or negative, but it will vanish if
there is no missing data. Finally, it seems important to note that they will not become
negligible when the number of subjects increases, unless the degree of missing data is
decreased. Therefore, these bias terms do not represent a small sample bias, but a
missing data bias that seems important to account for when the amount of missing
data is significant. We can therefore consider these three additional terms and replace
the true covariances/variances by their estimators in Equation (3.68) and get a new
estimator for cov[(V̂0g)kk0; (V̂0g)ll0] given by

dcovIII[(V̂0g)kk0; (V̂0g)ll0] = agkk0ll0
�
(V̂0g)kl(V̂0g)k0l0 + (V̂0g)kl0(V̂0g)k0l

�

+ (V̂0g)kk0

X

i2(k;k0)

(V̂0g)il(V̂0g)il0

(V̂0g)ii

�
agiill0� agkk0ll0

�
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+ (V̂0g)ll0
X

i2(l;l0)

(V̂0g)ki(V̂0g)k0i

(V̂0g)ii

�
agkk0ii � agkk0ll0

�

+ (V̂0g)ll0(V̂0g)kk0

2
X

i2(k;k0)

X

j2(l;l0)

(V̂0g)2
ij

(V̂0g)ii(V̂0g)jj

�

agiijj + agkk0ll0� agiill0� agkk0jj

�
: (3.69)

Note that, as mentioned for Test II, the estimator given in Equation (3.69) will be
biased in small samples due to the variability of V̂0g. We could attempt to correct for
it, but, due to the non-linearity of the three additional terms, it seems very challenging
to do so and, therefore, here, we do not consider this kind of correction.

The new estimator given in Equation (3.69) can then be used to get an alternative
empirical estimate of cov[vec[CSC>]] which can, in turn, be used to estimate the
number of degrees of freedom �. As no small sample bias correction is considered for
the empirical estimator, we propose to use the same procedure as in Test I, i.e. we
equate the trace of the empirical estimator with the one of the theoretical estimator
(obtained without small sample bias correction) to finally get

� = tr[(CSC>)2] + (tr[CSC>])2

tr
2

4
nGX

g=1
Gg

dCovIII[vec[V̂0g]]G0g

3

5

: (3.70)

3.2.5 Monte Carlo evaluations

As discussed previously in this chapter, many versions of the SwE method can be used
in practice, notably depending on the choices between:

1. the heterogeneous and the homogeneous SwE (SHet or SHom),

2. the small sample bias adjustments (S0, S1, S2, S3, SC2, SC3, SU1 or SU2),

3. the statistical test (asymptotic �2-test, Pan test, Test I, Test II or Test III).

Note that we could have added the possibility of using another type of SwE where
the null hypothesis model is considered explicitly (referred to as Restricted SwE in this
thesis) or non-parametric statistical tests, but this is separately covered in Chapter 4.

While several authors have evaluated some of these versions of the SwE, they have
only focused their attention on a subset of them and in settings which cannot be
considered as representative of neuroimaging longitudinal data. For instance, many
evaluations were made only on cross-sectional data (MacKinnon and White, 1985;
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Chesher and Jewitt, 1987; Lipsitz et al., 1999; Long and Ervin, 2000), some only
considered the asymptotic �2-test (Pan, 2001), or some, while considering clustered
data, have not considered the possibility of missing data and have used within-cluster
covariance structures which are not necessary representative of neuroimaging longi-
tudinal studies (Kauermann and Carroll, 2001; Fay and Graubard, 2001; Mancl and
DeRouen, 2001; Pan and Wall, 2002; Bell and McCaffrey, 2002). Moreover, some small
sample bias adjustments (SU1 and SU2) and statistical tests (Test I, Test II and Test
III) seem, at our knowledge, to have been introduced for the first time in this thesis.
Therefore, from the literature, while we can already conclude that some SwE method
versions do not work well (e.g., SHet

0 with a �2-test), it is harder to draw conclusions
about some other versions which use combinations of adjustments which have not been
investigated before (e.g., SHom

3 with Test II).
For this thesis, we carried out two large sets of Monte Carlo simulations. The first

set focused on the comparison between the different SwE versions presented in this
chapter while the second set compared the best SwE method versions versus popular
alternative methods used in neuroimaging (i.e. the N-OLS, SS-OLS and LME models).
These two sets of simulations are described with more details below.

Simulations I

As a first set of simulations, we considered a selection of balanced and unbalanced
designs. We used balanced designs consisting of longitudinal data generated for sam-
ple sizes of m = 12; 25; 50; 100 or 200 subjects with 3; 5 or 8 visits for each subject (a
total of 5� 3 = 15 distinct sample sizes). The subjects were divided into two groups
A and B of equal sizes (except for m = 25 where the group A and B had 13 and
12 subjects, respectively) and we considered models consisting of, for each group, an
intercept, a linear effect of visit and a quadratic effect of visit using orthogonal poly-
nomials. In addition to these 15 balanced designs, we also considered the unbalanced
design corresponding to the real ADNI dataset described in Section 2.6. In order to
also assess the methods in an unbalanced design but with a smaller number of sub-
jects, we also considered five subsets of the full ADNI dataset obtained by iteratively
removing half of the subjects at random in each group, leading to smaller and smaller
sample sizes (mN = 229; 114; 57; 29; 14 and 7; mMCI = 400; 200; 100; 50; 25 and 12;
mAD = 188; 94; 47; 24; 12 and 6). For these real unbalanced data designs, we consid-
ered models consisting of, for each group, an intercept, the centred mean age per
subject Agei � Age (referred to as cross-sectional “age” effect), the intra-subject cen-
tred age Age � Agei (referred to as longitudinal “visit” effect) and their interaction
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(referred to as “acceleration”).
For each realised dataset, each observation was first generated independently from

a standard Normal distribution N [0; 1]. Then, the data for each subject yi = (yi1; : : : ;
yik; : : : ; yini )> was correlated according to one of six different types of within-subject
covariance structure by premultiplying yi by a square-root factor of the desired co-
variance matrix. The six covariance structures were generated according to the two
following equations:

var(yik) = �g(1 + tk); (3.71)
corr(yik; yik0) = �(1�  jtk � tk0j); (3.72)

where �g allowed for different variances in each group,  allowed the variance to vary
with visit, tk (tk0, respectively) was the time of measurement at visit k (visit k0), �
controlled the constant correlation over time and  > 0 allowed for a linear decrease of
the correlation over time. Table 3.1 summarises the parameter values used for the six
covariance structures in the simulations for both the balanced and unbalanced ADNI
designs.

Covariance parameters
Design Covariance structure �A �B �N �MCI �AD  �  

Balanced CS 1 1 - - - 0 0.95 0
Toeplitz 1 1 - - - 0 1 0.1

Group heterogeneity 1 2 - - - 0 0 0
Visit heterogeneity 1 1 - - - 1 0 0

CS corr. & vis. var. het. 1 1 - - - 1 0.95 0
Toepl. corr. & vis. var. het. 1 1 - - - 1 1 0.1

ADNI CS - - 1 1 1 0 0.95 0
Toeplitz - - 1 1 1 0 1 0.2

Group heterogeneity - - 1 2 3 0 0 0
Visit heterogeneity - - 1 1 1 2 0 0

CS corr. & vis. var. het. - - 1 1 1 2 0.95 0
Toepl. corr. & vis. var. het. - - 1 1 1 2 1 0.2

Table 3.1 Covariance parameter values used in Simulations I and II of Chapter 3; 
and  are expressed as “per visit” for the balanced designs and “per year” for the
ADNI designs.

For null simulations, the data was used immediately after being correlated. For
non-null simulations, a signal was added according to the (per-subject centred) effect
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of visit. For each scenario, we used 10,000 realisations.
We used custom R functions to analyse each realised dataset with the SwE method.

In total, 16 versions of the SwE were used: SHet
0 , SHet

1 , SHet
2 , SHet

3 , SHet
C2 , SHet

C3 , two
versions of SHet

U2 , SHom
0 , SHom

1 , SHom
2 and SHom

3 , SHom
C2 , SHom

C3 and two versions of SHom
U2 ,

where the homogeneous groups were defined as groups A and B for the balanced designs
and Normal, MCI and AD groups for the unbalanced ADNI designs (see Sections 3.2.2
and 3.2.3 for descriptions about these SwE versions). The first versions of SHet

U2 and
SHom

U2 , that we will refer to as SHet
U2-0 and SHom

U2-0 , corresponded to versions where we
replaced the sample covariance matrices which were not positive semi-definite by those
obtained by zeroing the negative eigenvalues; the second versions of SHet

U2 and SHom
U2 ,

that we will refer to as SHet
U2-S3 and SHom

U2-S3, corresponded to versions where we replaced
the sample covariance matrices which were not positive semi-definite by those obtained
in SHom

3 (see Section 3.2.2 for more details on this). Note that the SU1 versions were
not investigated due to the sizes of the matrices P and PHom which can be quite
large in the scenarios with large samples (e.g., for the full ADNI dataset, the size of
P is 5,492,955 � 9,279). The design matrices included all the effects described at
the beginning of this section. For inference in the balanced designs, we considered 9
contrasts consisting of testing the 6 parameters alone (e.g., linear effect of visits in
Group A) and the three differences between groups (e.g., difference of the linear effect
of visits in Group B vs. Group A). For inference in the ADNI designs, we considered 24
contrasts consisting of testing the 12 parameters alone and the 12 differences between
pair of groups. For each realisation and contrast, we used the asymptotic �2-test, the
Pan test, Test I, Test II and Test III introduced in Section 3.2.4 considering a 5% level
of significance.

To assess the different SwE approaches, we first used, for each contrast, the relative
Bias defined as

rel. Bias = E[CSC>]
var(C�̂)

� 1; (3.73)

where E[CSC>] was estimated by the Monte Carlo mean of CSC> and var(C�̂) by
the Monte Carlo variance of C�̂. Then, for null data, each significant realisation was
counted as a False Positive detection and was used to compute the observed False
Positive Rates (FPRs). The FPR of a valid test does not exceed the nominal level,
while an invalid or liberal test has an FPR in excess of the nominal level. Using a
Normal approximation to binomial counts over 10,000 realisations, an exact test (FPR
= 5%) should have a FPR between (4:57%, 5:43%) with 95% probability. Finally, non-
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null simulations allowed us to estimate power with the True Positive Rates (TPRs).

Simulations II

As a second set of simulations, we compared the best versions of the SwE method
isolated from Simulations I to the N-OLS (see Section 2.3.2), SS-OLS (see Section
2.3.3) and LME (see Section 2.3.5) methods. The scenarios considered were the same
as the ones used in Simulations I.

The N-OLS model included per-subject dummy variables, and thus precluded the
use of the group intercepts and the age effect (as they are a linear combination of
the dummy variables). Nevertheless, the N-OLS design matrices included all the
visit effects like in the SwE design matrices. The SS-OLS approach used per-subject
models, with a design matrix extracted from the appropriate rows and columns of
the SwE design matrices, and contrasts that extracted quantities equivalent to the
contrasts of interest used with the other models; the final model used with the SS-
OLS approach was always a one-measure-per-subject OLS model allowing to test group
effects equivalent to the one tested with the other methods. For both the N-OLS and
SS-OLS methods, the function lm of the stats R package was used to estimate the
model parameters, their variances/covariances and the degrees of freedom used in the
Wald tests (i.e. the number of observations minus the number of parameters present
in the considered model).

For the LME method, we considered three different models that we will refer to
as LME I, LME II and LME III in this thesis. All three models used the SwE design
matrices for the fixed effects, but differed in terms of the random effects. LME I used
only a random intercept, LME II used a random intercept and a random linear effect
of time, and LME III used a random intercept, a random linear effect of time and
a random quadratic effect of time. For LME II and LME III, non-null covariances
between random effects were allowed. The functions lme from the R package nlme
(Pinheiro et al., 2013) and lmer from the R package lme4 (Bates et al., 2012) were
used to estimate the LME model parameters, their variances/covariances and the
number of degrees of freedom used in the Wald tests. Note that, as the lme4 package
did not propose any estimation for the degrees of freedom, we used the ones estimated
by the nlme package (Pinheiro and Bates, 2000) for all the nlme and lme4 Wald tests.
In addition, for all the LME models fitted with the function lmer, we used the vcovAdj
and get_ddf_Lb functions of the pbkrtest R package (Halekoh and Højsgaard, 2013)
to compute the Kenward-Roger-adjusted covariance matrices and the Kenward-Roger
effective degrees of freedom, which were used to conduct Kenward-Roger-adjusted
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F -tests (Kenward and Roger, 1997). The results obtained using these two Kenward-
Roger adjustments will be referred to as LME-KR I, LME-KR II and LME-KR III to
contrast them with those obtained without adjustments that will simply be referred
to as LME I, LME II and LME III.

To assess and compare the methods, we used the same metrics of assessment as in
Simulations I, i.e. the rel. Bias, the FPR and the TPR (or power).

3.2.6 Real data analysis

The real ADNI dataset described in Section 2.6 was analysed by using the N-OLS,
SS-OLS and SwE methods with the same design matrices as used in the simulations
(see Section 3.2.5). SPM8 was used for the N-OLS and SS-OLS methods and a home-
made SPM8 plug-in, which has been made freely available at http://warwick.ac.uk/
tenichols/SwE, was used for the SwE method.

In addition, in order to check the validity of the N-OLS approach, we conducted a
Box’ s test of Compound Symmetry (Box, 1950) with a reduced dataset of 483 subjects
who were all scanned at screening and followed up at 6, 12 and 24 months (i.e. no
missing data).

3.3 Results
In this section, we summarise the results obtained from the Monte Carlo simulations
described in Section 3.2.5 and from the real data analysis described in Section 3.2.6.

3.3.1 Comparison between the SwE versions

Here, we summarise the results of Simulations I, first in terms of relative bias, then in
terms of FPR control.

Relative bias

Figure 3.1 shows several boxplots of the relative bias of the 16 SwE versions assessed in
Simulations I over several scenarios in the balanced designs. From this figure, we can
see that, in the balanced designs, the best SwE versions were SHom

C2 , SHet
C2 , SHom

U2-0 and
SHom

U2-S3. They seemed unbiased, even in the challenging settings with only 12 subjects.
Regarding the other versions, while they appeared unbiased in large samples, they
tended to be more and more biased when the sample size decreased. In particular, the

http://warwick.ac.uk/tenichols/SwE
http://warwick.ac.uk/tenichols/SwE
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versions S0 tended to underestimate the true Cov[�̂]. The S1 and S2 versions were less
biased than S0, but still tended to underestimate Cov[�̂]. In contrast, the S3, SC3, SHet

U2-0

and SHet
U2-S3 versions tended to overestimate Cov[�̂]. The reason why SHet

U2-0 and SHet
U2-S3

behaved like this in the simulations is due to the fact that they very often yielded
covariance matrices which were not positive semi-definite, leading to a replacement
of them by those obtained by zeroing the negative eigenvalues or by those obtained
in SHet

3 , respectively. Those replacements clearly induced the bias observed. On this
remark, we see that, it would have been better to substitute the misbehaved covariance
matrix estimates by those obtained in SHet

C2 as they seemed unbiased. Finally, note
that, in the balanced designs, the heterogeneous and homogeneous SwE versions were
equivalent for S0, S1, S2, S3, SC2 and SC3, but not for SU2.

Regarding the much more challenging ADNI designs, as shown in Figure 3.2, while
the results seems less accurate than for the balanced designs, the same global trends
were observed with the SC2 versions performing best and all the versions improving
when the sample size increases. Typically, the S0, S1 and S2 versions tended to
underestimate the true variances with the S1 versions performing better than the S0

versions, but worse than the S2 versions. The S3 versions were generally performing
better than those three versions, but not as well as the SC2 versions which seemed
unbiased in almost all the scenarios. The SC3 and SHet

U2-0 versions tended to overestimate
quite strongly the true variances. The SHom

U2 seemed to be accurate in some scenarios,
but unstable in others. Note that, particularly in small samples, all the homogeneous
versions seemed to struggle in the scenarios under CS and when a within-subject effect
was tested (see outliers with a positive bias in Figure 3.2). This effect can be observed
with more details for SHom

C2 in Figure 3.3. We clearly see that SHom
C2 performed quite

well in all scenarios, except when a within-subject effect was tested under CS, in which
case, SHom

C2 overestimated the true variances. Note also that this effect tended to vanish
when the sample size increased. A possible cause for this misbehaviour resides in the
fact that the true covariance matrices V0g’s used in the CS scenarios were close to the
boundary of the positive definite-matrix space. Indeed, in this case, it is not surprising
that the sample estimates V̂0g’s used in the SHom versions had the tendency to be non-
positive semi-definite, particularly in small samples. As, in such cases, we replaced
the negative eigenvalues by zero, we probably introduced the bias which is observed
in the results. An interesting remark is that we do not observe this for the case with
CS correlations and heterogeneous visit variances. This may surprise as the degree of
correlation was the same as in the CS case with homogeneous variances (i.e. � = 0:95).
Finally, we can also observe in Figure 3.3 that, in some scenarios with 25 subjects, the
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Fig. 3.1 Boxplots showing the Monte Carlo relative bias of 16 SwE versions as a
function of the total number of subjects in the balanced designs over 162 scenarios
(consisting of the 9 contrasts tested, the 6 within-subject covariance structures and
the 3 numbers of visits per subject considered in Simulation I).

SC2 versions, particularly SHet
C2 , tended to slightly underestimate the true variances.

Nevertheless, it is worth pointing out that these designs were rather challenging due
to the presence of missing data and due to the effective number of subjects involved
in each covariance matrix estimation (mN = 7, mMCI = 12 and mAD = 6).
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Fig. 3.2 Boxplots showing the Monte Carlo relative bias of 16 SwE versions as a
function of the total number of subjects in the unbalanced ADNI designs over 144
scenarios (consisting of the 24 contrasts tested and the 6 within-subject covariance
structures considered in Simulations I). For clarity, only the points in the interval
[�90%; 100%] are shown. This affects only the S3, SC3, SHet

U2-0 & SU2-S3 versions in the
designs with a total of 25 subjects and SHom

U2-0 in the designs with a total of 25, 51 & 103
subjects, for which some relative bias were superior to 100%. More detailed results
about the SC2 versions are given in Figures 3.3.

FPR control

Figures 3.4 shows the results obtained for the five statistical tests when the SC2 versions
were used in the balanced designs. It appears clearly that the �2-test was the worst
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Fig. 3.3 Boxplots showing the Monte Carlo relative bias of the SC2 versions as a func-
tion of the total number of subjects in the unbalanced ADNI designs over 144 scenarios
(consisting of the 24 contrasts and the 6 within-subject covariance structures consid-
ered in Simulations I). The results are split in terms of the within-subject covariance
structures in the rows, and in terms of the two SC2 versions and the type of effects
(between-subject or within-subject effects) in the columns. The between-subject ef-
fects corresponded to the 12 contrasts involving the intercepts or the cross-sectional
effects of age while the within-subject effects corresponded to the 12 contrasts involving
the longitudinal effects of age or the acceleration effects.

test, yielding systematically liberal inferences in small samples, but improving when
the sample size increased. The best results were obtained for SHom

C2 with Test II,
for which the inferences were always accurate, even in the designs with a total of
12 subjects. The second best results were obtained for SHom

C2 with Test I or Test III
(which were equivalent in the balanced designs), for which the inferences were almost
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as good as with Test II, but slightly conservative in the designs with 12 subjects.
This effect can be explained by the fact that those two tests do not correct for the
small sample bias appearing in Equation (3.48) while Test II does. The inferences
obtained with SHet

C2 were systematically less good than those obtained with SHom
C2 .

In particular, with SHet
C2 , the Pan test and Test II appeared slightly liberal in small

samples, but seemed to improve quickly when the number of subjects were increased.
Comparing these two tests, Test II seemed slightly more accurate than the Pan test,
particularly in the designs with 12 subjects. Finally, with SHet

C2 , Test I and Test III
(which are always equivalent for a heterogeneous SwE version) yielded conservative
inferences. Also, while the inferences were improving when the number of subjects
were increasing, the improvement seemed slower than the one observed for Test II
or the Pan test. This conservativeness can be explained by the small sample bias
observed in Equation (3.48). Indeed, as the term agkk0ll0 appearing in the bias is
approximatively inversely proportional to the number of subjects per homogeneous
group, it will always be significant when a heterogeneous SwE is used as there is only
one subject per group, even when the sample size increases. In contrast, it will be
smaller when a homogeneous SwE is used as there are more subjects per group and
will typically decrease when the number of subjects per group increases, explaining
the strong differences observed between the results for SHet

C2 and SHom
C2 with Test I and

Test III.
Figure 3.5 shows the results in the unbalanced ADNI designs. Like in the balanced

designs, the worst test was clearly the �2-test which tended to be liberal, particularly
in small samples. The results related to SHet

C2 were similar to those obtained in the
balanced designs, i.e. Test I and Test III were conservative while the Pan test and
Test II were liberal in small samples. In particular, the Pan test and Test II yielded
similar results. Nevertheless, while the differences between these two tests did not seem
significant, it is worth noting that, in our simulations, the results obtained with the Pan
test were “helped” by the fact that the designs had several groups. Indeed, taking the
example in which the contrast tested only involved the MCI subjects, approximatively
50% of the subject contributions to the SwE were zero. This typically tended to inflate
the empirical estimates of Cov[vec[CSC>]] (see Equation (3.26)) proposed in Pan and
Wall (2002), making the Pan test typically less liberal than if we had a design with
only the MCI subjects included. This kind of artefact were not present in Test II which
would give the same results in both cases. This seems to indicate that the difference
between the Pan test and Test II may be larger (in favour of Test II) in other designs
than those investigated in this thesis. Under the use of SHom

C2 , Test I, Test II and Test
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Fig. 3.4 Boxplots showing the Monte Carlo FPR of the two SC2 SwE versions as a
function of the total number of subjects in the balanced designs over 162 scenarios
(consisting of the 9 contrasts tested, the 6 within-subject covariance structures and
the 3 numbers of visits per subject considered in Simulation I). The results are split
in terms of the statistical tests in the rows, and in terms of the two SC2 versions in
the columns. Note that Test I and Test III are identical in the balanced designs and
the Pan test is invalid with SHom

C2 .

III appeared accurate in many scenarios, but struggled in some others. This can be
observed in more details in Figure 3.3. All three tests seemed to be relatively accurate
when a between-subject effect was tested, struggling slightly in the design with a total
of 25 subjects. For the within-subject effects, we see that Test I tended to be liberal,
except in the CS designs where it tended to be conservative. The liberality of Test I
can simply be explained by the fact that it does not account at all for the presence
of missing data. Except in the CS designs, Test II typically performed better than
Test I and had the tendency to be conservative in some scenarios. Except in the CS
designs, Test III was outperforming the two other tests, being almost accurate in all
the scenarios. The only scenarios where it was struggling was in the CS designs, for
which it was highly conservative in small samples, but not as much as Test II which
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yielded a FPR of 0% in almost all the scenarios, even in large samples. Note that the
conservativeness observed for Test III under CS is not necessarily inherent to the test
itself, but rather to the bias observed in the SwE SHom

C2 .

Fig. 3.5 Boxplot showing the Monte Carlo FPR of the SC2 SwE versions as a function
of the total number of subjects in the unbalanced ADNI designs over 144 scenarios
(consisting of the 24 contrasts tested and the 6 within-subject covariance structures
considered in Simulations I). The results are split in terms of the statistical tests in
the rows, and in terms of the two SC2 versions in the columns. Note that Test I and
Test III are identical for SHet

C2 and the Pan test is invalid with SHom
C2 .

To summarise the results obtained from Simulations I, it seems that the best SwE
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Fig. 3.6 Boxplot showing the Monte Carlo FPR of SHom
C2 as a function of the total

number of subjects in the unbalanced ADNI designs over 144 scenarios (consisting
of the 24 contrasts tested and the 6 within-subject covariance structures considered
in Simulations I). The results are split in terms of the covariance structures in the
rows, and in terms of the statistical tests (Test I, II or III) and the type of effects
(between-subject or within-subject effects) in the columns.
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versions were SHet
C2 and SHom

C2 . Regarding the statistical tests, Test III seemed overall
the best when SHom

C2 was used, but not necessary when SHet
C2 was used as it seemed

quite conservative in small samples. The best alternative when SHet
C2 was used seemed

to be Test II, which unfortunately appeared liberal in small samples, but was yielding
more quickly accurate inferences than Test III when the sample size increased.

3.3.2 Comparison with alternative methods

In this section, we summarise the results obtained from Simulations II, first in terms
of relative bias, then in terms of FPR control and finally in terms of power.

Before presenting the results, it seems important to note that, when we used the
function lme of the R package nlme to fit the LME models, convergence failures oc-
curred frequently. In such cases, the function simply returned an error message with-
out any solutions. Therefore, we abandoned the use of the function lme and used
the function lmer of the R package lme4 for all the LME models. In our simulations,
this function always returned a solution without error or warning messages. Never-
theless, at the time of our simulations, we used the function lmer of the R package
lme4 in version 1.0.5 (released on 24/10/2013) which appeared to lack some features
to check if the solutions converge. During the writing of this thesis, we have however
noticed that more recent versions of the R package lme4 (e.g., version 1.1.7 released
on 19/07/2014) have such features. Using the function lmer of the R package lme4
in version 1.1.7 in the same settings as in Simulations II, we have found that some
solutions did not converge. This seems to indicate that some convergence issues may
have occurred when we fitted the LME models during Simulations II. However, as, at
that time, we did not have the means to check for this, we are not able here to give
any information about this.

Note also that the model LME III could not be fitted in the balanced designs with
three visits as there were not enough data per subject to fit a model with three random
effects.

Finally, as the function get_ddf_Lb which was used to compute the Kenward-
Roger degrees of freedom appeared prohibitively slow, particularly in the designs with
a large sample size, we only computed the Kenward-Roger degrees of freedom for the
balanced designs with 12, 25 and 50 subjects and for the unbalanced ADNI designs
with 25, 51 and 103 subjects.
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Relative bias

Figures 3.7 shows the relative biases obtained in Simulations II for the balanced de-
signs. The N-OLS method was only accurate under CS or under visit heterogeneity.
In the other scenarios, it was either underestimating or overestimating the true vari-
ances. The SS-OLS method worked well, except under group variance heterogeneity,
where it was either underestimating or overestimating the true variances. Regarding
the LME models, LME I seemed accurate only under CS or under visit heterogeneity
when the sample size was not too small. LME II seemed to struggle in all designs,
even if it seemed to perform better than LME I under some covariance structures. In
particular, under the two designs with a Toeplitz correlation structure, it underesti-
mated quite strongly the variances related to the quadratic effect of visits (see outliers
in row 4, columns 2 and 6 of Figure 3.7). Under those two scenarios, only LME III
seemed actually able to yield accurate estimates of variances. Nevertheless, LME III
still failed strongly under group variance heterogeneity and seemed to struggle in all
the other scenarios, generally overestimating the true variances. Still regarding the
LME models, it seemed that the covariance matrices were unchanged after using the
Kenward-Roger covariance correction in the balanced designs, meaning that the re-
sults of LME-KR I, II and III were identical to those of LME I, II and III, respectively.
Finally, we see that the only method yielding accurate estimates in all the scenarios
was the SwE method using either SHom

C2 or SHet
C2 .

Figure 3.8 shows the relative biases obtained in Simulations II for the unbalanced
ADNI designs. The N-OLS method was only accurate under CS. In the other sce-
narios, except under group variance heterogeneity, it seemed to always underestimate
the true variances. The SS-OLS method, which worked relatively well in the balanced
designs, failed to be accurate under all the covariance structures investigated, either
underestimating or overestimating the true variances. Like the N-OLS method, LME
I was accurate only under CS. LME II and LME III were clearly better than LME
I, except under CS, where they seemed to struggle in small samples. Also, LME II
appeared slightly better than LME III which seemed to struggle more in small sam-
ples. The Kenward-Roger covariance matrix correction seemed to affect LME II and
LME III, particularly in small samples. While the correction did not seem to change
significantly the results for LME II, it seemed to affect significantly those of LME III
in small samples. The observed changes appeared to inflate the estimates of variances,
either making them more accurate (e.g., under Toeplitz covariance structure) or in-
creasing the overestimation (e.g., under CS covariance structure). Finally, the SwE
method seemed overall the best method, yielding identical results to those observed in
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Simulations I, where SHom
C2 or SHet

C2 were almost always accurate, except in the designs
with a total of 25 subjects where they seemed to slightly underestimate the true vari-
ances and, under CS, where SHom

C2 had the tendency to overestimate the true variances
in small samples.

FPR control

Figure 3.9, 3.10, 3.11 and 3.12 summarise the results obtained in Simulations II in
terms of FPR. Broadly speaking, the results are consistent with the results obtained
in terms of relative bias. Typically, in a scenario where a method underestimated
the true variance, the inference tended to be liberal. Conversely, when there were
an overestimation, the inference tended to be conservative. The N-OLS, LME I and
LME-KR I (which seemed identical to LME I) methods were typically accurate only
under CS. The SS-OLS method seemed to be valid only under a balanced design
without group variance heterogeneity. In the other scenarios, it seemed to yield either
conservative or liberal inferences. LME II and LME III gave relatively poor inferences
in all the scenarios. Nevertheless, when the Kenward-Roger corrections were used (see
LME-KR II and LM-KR III in the figures), the inferences improved in some scenarios.
For example, in the designs with Toeplitz correlations (see columns 2 and 6 in the
figures), LME-KR II and LM-KR III seemed more accurate than LME II or LME III.
Nevertheless, in other scenarios like those under CS or visit variance heterogeneity, the
inferences seemed better without the Kenward-Roger corrections. Finally, the SwE
SHom

C2 combined with Test III seemed overall the most accurate method, struggling
almost only in the unbalanced designs under CS.

Power

An analysis of power is only valid for methods which are able to validly control the
FPR, i.e. only when the control is accurate or conservative (FPR � 5%). Unfortu-
nately, as shown previously (see Figures 3.9, 3.10, 3.11 and 3.12), in our simulations,
this happened only in a few scenarios which were generally different across methods,
making very difficult a fair comparison between methods. As it seemed that the sce-
narios under CS were the ones where the largest number of methods were valid, we
decided to make the power comparison only under this covariance structure. Never-
theless, it is important to note that this choice is quite unfair for some of the methods
which were more conservative than the other methods in these scenarios, but more
accurate in some others. In particular, it was almost the only scenarios where the
SwE method with SHom

C2 under Test III was not accurate, but conservative.
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Fig. 3.7 Boxplots showing the Monte Carlo relative bias of several methods as a func-
tion of the total number of subjects in the balanced designs over 162 scenarios (con-
sisting of the 9 contrasts tested, the 6 within-subject covariance structures and the 3
numbers of visits per subject considered in Simulation II). Note that no results were
obtained for LME III and LME-KR III with the designs consisting of 3 visits per
subject as models with 3 random effects cannot be fitted.
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Fig. 3.8 Boxplots showing the Monte Carlo relative bias of several methods as a func-
tion of the total number of subjects in the unbalanced ADNI designs over 144 scenarios
(consisting of the 24 contrasts tested and the 6 within-subject covariance structures
considered in Simulations I).
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Fig. 3.9 Boxplots showing the Monte Carlo FPR of several methods as a function of
the total number of subjects in the balanced designs over 162 scenarios (consisting of
the 9 contrasts tested, the 6 within-subject covariance structures and the 3 numbers
of visits per subject considered in Simulation II). Results for the LME-KR models
in the designs with 100 or 200 subjects were not computed due to the prohibitive
computation time of the function get_ddf_Lb used to compute the Kenward-Roger
degrees of freedom.
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Fig. 3.10 Zoomed version of Figure 3.9 where only the FPRs between 1% and 9% are
shown.
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Fig. 3.11 Boxplots showing the Monte Carlo FPR of several methods as a function
of the total number of subjects in the unbalanced ADNI designs over 144 scenarios
(consisting of the 24 contrasts tested and the 6 within-subject covariance structures
considered in Simulations II). Results for the LME-KR models in the designs with
204, 408 or 817 subjects were not computed due to the prohibitive computation time
of the function get_ddf_Lb used to compute the Kenward-Roger degrees of freedom.
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Fig. 3.12 Zoomed version of Figure 3.11 where only the FPRs between 1% and 9% are
shown.
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Figure 3.13 shows the FPR (first column in the figure) and the power obtained
for two effect sizes (second and third columns in the figure) of the difference between
Group B and Group A in terms of the linear effect of visits in the balanced designs
with 5 visits and under CS. First, in these scenarios, we see that all the methods were
valid, but LME II, LME III, LME-KR II, LME-KR III and the SwE versions under
Test III tended to be conservative, particularly in small samples. We observe that
the most powerful methods were the N-OLS, LME I and LME-KR I methods. The
SS-OLS method, SHom

C2 with Test II, SHom
C2 with Test III and SHet

C2 with Test II were
less powerful but not by much. Finally, mainly due to their strong conservativeness
in the control of the FPR, all the other methods seemed the least powerful methods.
In particular, we observed that, in these scenarios, the use of the Kenward-Roger
corrections tended to make the LME methods more conservative and consequently
less powerful. Nevertheless, it is worth pointing out that, in other scenarios, these
corrections were really useful to improve the uncorrected LME methods which were
liberal and therefore invalid (e.g., under Toeplitz for LME II and III; see Figure 3.10).
Finally, from these results, we also observe that the differences of power between the
methods decreased quickly when the sample size increased and did not seem significant
in the largest samples.

Figure 3.14 shows the FPR (first column in the figure) and the power obtained
for two effect sizes (second and third columns in the figure) of the difference between
AD and MCI in terms of the longitudinal effect of age in the ADNI designs under CS.
First, in these scenarios, we observe that the SS-OLS method was liberal for almost
all the sample sizes, the SwE method with SHet

C2 and Test II was liberal in the design
with 25 subjects and the three other SwE procedure were relatively conservative,
mainly in small samples. We observe, like in the balanced designs, that the N-OLS,
LME I and LME-KR I methods were the most powerful methods. The use of more
complicated LME models, particularly those using the Kenward-Roger corrections
were less powerful. The SwE method using SHet

C2 and Test II, except for the case with
25 subjects where it was not valid, seemed to have a power in the range of the more
complicated LME approaches. When the sample size was not too large, it seemed
even more powerful than LME-KR II and LME-KR III which appeared to be slightly
conservative in small samples. Nevertheless, in some other designs, the SwE method
appeared slightly less powerful than all the LME approaches. This can be explained
by two facts. First, all the LME models imposed by construction a structure to the
within-subject covariance matrices while the SwE method does not. This implies that
the variability of the estimates of the within-subject covariance matrices in the LME
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Fig. 3.13 Barplots showing the Monte Carlo FPR and Power of several methods for
the balanced designs with 5 visits and under CS obtained from Simulation II. For
computational reasons, the results for LME-KR I, II and III in the designs with 100 or
200 subjects were not computed and therefore are not shown. Note that, for clarity,
the scales for the FPR and power are different over sample sizes.

models is expected to be lower than in the SwE method, allowing more powerful
inferences. Second, in the SwE method, as we do not assume the same covariance
structure across subjects or groups of subjects, when we used a test involving only a
subset of the subjects like, for example, the AD and MCI subjects, we do not use any
information from the other subjects (in the example, the Normal subjects), decreasing
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the effective sample size. This is not the case for all the other methods which assumes
a common within-subject covariance matrices for all the subjects and, therefore, would
also use the information from the Normal subjects in a test involving only the AD and
MCI subjects. Note that the latter can be dangerous, as if there is heterogeneity across
groups of subjects, the inference can be inaccurate as it was observed for the control
of the FPR under group heterogeneity in Figures 3.9, 3.10, 3.11 and 3.12. Regarding
the use of SHom

C2 in the particular scenario of Figure 3.14 , we see that, it suffered from
conservativeness, penalising it in terms of power. Nonetheless, we see that, under Test
III and with enough subjects, its conservative nature tended to disappear allowing it
to be almost as powerful as the LME methods in large samples. It would be however
unfair to state that the SwE method using SHom

C2 under Test III is strongly less powerful
than the other methods in small samples as these scenarios with CS were almost the
only ones where it was conservative. Indeed, in the other scenarios, it seemed almost
always accurate while all the other methods were frequently struggling to control the
FPR (see, for example, Figure 3.12). Finally, while the SS-OLS method was generally
liberal, it clearly tended to be less powerful than the other approaches. This effect can
be explained by the fact that the true variance of the parameters were larger for the
SS-OLS method than for the other methods, making the SS-OLS method less efficient
to detect effects.

3.3.3 Real data analysis

Figure 3.15 shows the Box’s test F -score image (centred at the anterior commissure)
thresholded after controlling for a False Discovery Rate (FDR) of 5% (on the left) and
after using a Bonferroni correction at 5% level of significance (on the right). 97% of
the in-mask voxels survived the FDR thresholding while 56% of them survived the
Bonferroni thresholding, indicating a strong evidence of non-Compound Symmetry in
the brain and challenging the validity of the N-OLS method.

Figure 3.16 compares the t-score images obtained by the N-OLS, SwE (SHom
C2 ,

Test III) and SS-OLS methods with the real images for contrasts on the difference
between groups in terms of visit effect on the brain atrophy. For comparison, we used
a threshold of 5 for positive effects (i.e. greater atrophy rate) and -5 for negative effects
(i.e. greater expansion rate). The N-OLS method had larger t-values and more supra-
threshold voxels than the SwE method. While this could be attributed to power
differences, with 817 subjects, we expect negligible differences in power. Hence a
more likely explanation is the presence of a complex (non-CS) longitudinal covariance
structure that results in inflated significance (see Figures 3.11 and 3.12, first row). The
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Fig. 3.14 Barplots showing the Monte Carlo FPR and Power of several methods for the
unbalanced ADNI designs under CS obtained from Simulation II. For computational
reasons, the results for LME-KR I, II and III in the designs with 204, 408 or 817
subjects were not computed and therefore are not shown. Note that, for clarity, the
scales for the FPR and power are different over sample sizes.

SS-OLS had smaller t-values and fewer supra-threshold voxels than the SwE method,
likely attributable to conservativeness (see Figure 3.12, second row) and/or reduced
power (Figure 3.14, sixth row).

Figures 3.17 , 3.18 and 3.19 shows the regression fits for three particular voxels
situated in different areas of the brain. Note that these voxels were not selected based
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Fig. 3.15 Box’s test of Compound Symmetry F -score image on the ADNI dataset
thresholded at 5% after using an FDR correction (left) and a Bonferroni correction
(right). 97% of the in-mask voxels survived the FDR thresholding while 56% of the
in-mask voxels survived the Bonferroni thresholding, indicating extensive regions in-
compatible with the CS assumption.

on maximal difference between the SwE and N-OLS (or SS-OLS) methods, but rather
based on relatively high significance in term of age, visit or acceleration effects in all
of the methods (qualitatively, the statistic maps for the three methods are similar).
As a reminder from Section 2.6, all the scans represent the relative difference in brain
volume from the MDT reference image, as such, a value of 10% in the plots indicates
that the brain volume is 10% bigger than in the MDT image. Figure 3.17 shows
results for a voxel in the right anterior cingulate where there is strong evidence of
brain atrophy with age and also with the visit effect. The rate of brain atrophy seems
similar for each group and is similar for both the age and the visit effect, indicating
consistent cross-sectional and longitudinal volume changes. Figure 3.18 shows a voxel
in the right ventricle where there is strong evidence of an expansion in volume. As
expected, this is greater in AD subjects than in MCI or Normal subjects. Figure 3.19
shows a voxel in the right posterior cingulate where we observe strong brain atrophy
for the AD subjects compared to the Normal subjects. In Figures 3.17, 3.18 and
3.19, the Normal subjects have similar intra- and inter-subject effects of time (visit
and age effects, respectively), and we generally observe this throughout the brain. In
contrast, in the AD and MCI groups, there are inconsistent longitudinal and cross-
sectional effects of time. Specifically, there is evidence of a “deceleration”, where the
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Fig. 3.16 Thresholded t-score images (axial section at z = 14 mm superior of the
anterior commissure) for the differential visit effect, greater decline in volume in AD
relative to N, MCI relative to N and AD relative to MCI, for the N-OLS, SwE (SHom

C2 ,
Test III) and SS-OLS methods. For all the methods, a threshold of 5 for the positive
effects (i.e. greater atrophy rate) and a thereshold of -5 for the negative effects (i.e.
greater expansion rate) was used. Apparent superior sensitivity of the N-OLS method
(left) is likely due to inflated significance and poor FPR control; see text and Figures
3.11 and 3.12.

oldest patients exhibit reduced rates of expansion (or contraction) relative to younger
patients. One interpretation is a “saturation” effect, where, with advancing disease
progress, there is less gray matter left to atrophy and less space in the cranial vault
for the ventricles to expand. However, as the ADNI only follows subjects for at most
three years, an alternative interpretation must be considered. Specifically, instead
of this deceleration reflecting an aspect of the disease process, it rather reflects age-
dependent heterogeneity in the ADNI cohort. For example, MCI subjects in their 80’s
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are likely to have systematic differences from the MCI subjects in their 60’s, as the
former group have survived to their 8th decade free of severe dementia, while some of
the latter group will convert to AD in the next 20 years. This kind of explanation has
already been reported in Thompson et al. (2011).

Fig. 3.17 Model fit in the right anterior cingulate cortex. Top plot: linear regression fit
obtained with the SwE method (SHom

C2 ) at voxel (x; y; z) = (16; 45; 14) mm; the vertical
line at 76:2 years marks the average age of the study participants; the thickness of
the lines reflects the strength of the t-scores obtained for the age effect (the three
main lines), the visit effect (the three secondary lines centred at 76:2 years) and the
acceleration effect (the secondary lines centred at 66:2, 71:2, 81:2 and 86:2 years).
Bottom plots: 95% confidence intervals for all the parameters of the linear regression.
Right image: location of the selected voxel. The confidence intervals suggest that the
rate of brain atrophy is similar for each group and for both the age and the visit effect,
indicating consistent cross-sectional and longitudinal volume changes.
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Fig. 3.18 Model fit in the right ventricle. Top plot: linear regression fit obtained with
the SwE method (SHom

C2 ) for voxel (x; y; z) = (8; -35; 24) mm. (See Figure 3.17 caption
for a description of the different figure components). In the AD and MCI groups a
mismatch is observed between cross-sectional and longitudinal effects of time, with a
reduced rate of change with increasing age; see body text for more discussion.

3.4 Conclusions
In this chapter, we have reviewed several versions of the SwE and, using intensive
Monte Carlo simulations in a range of settings important for longitudinal neuroimag-
ing data, we have isolated the best two versions as SHet

C2 and SHom
C2 . They were almost

always unbiased in our simulations (see Figures 3.1, 3.2 and 3.3), except in the unbal-
anced ADNI designs under CS for which SHom

C2 had the tendency to overestimate the
true variances, particularly in small samples (see Figure 3.3). A possible explanation
for this misbehaviour is that, in these scenarios with missing data and true covariance
matrices close to the boundary of the set of positive semi-definite matrices, the esti-
mator we used to estimate the common within-subject covariance matrices might have
yielded non positive semi-definite matrices for some realisations. As, in such cases,
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Fig. 3.19 Model fit in the right posterior cingulate. Top plot: linear regression fit
obtained with the SwE method (SHom

C2 ) for voxel (x; y; z) = (4; -39; 38) mm. (See
Figure 3.17 caption for a description of the different figure components). In the AD
and MCI groups, there is a mismatch between cross-sectional and longitudinal effects
of time, with a reduced rate of change with increasing age; see body text for more
discussion.

the problematic estimates were adjusted by zeroing their negative eigenvalues, it is
likely that the latter procedure induced a positive bias in the estimation, explaining
the results observed. Also, the bias reduction observed when the number of subjects
increased may simply be attributed to the reduction of variability of the estimator.
Indeed, with a reduced variability, the estimator probably yielded estimates closer to
the true covariances, reducing the frequency of having an estimate outside the bound-
ary, but also reducing the average distance of the non positive semi-definite estimates
from the boundary, explaining the bias reduction. However, further research is needed
to confirm this explanation and also to find a way to adjust for this misbehaviour.

We have proposed three new statistical parametric tests (Test I, Test II and Test
III) to make inference with the SwE and compared them to the widely used �2-test
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and the Pan test (Pan and Wall, 2002). When SHom
C2 was used, Test III, which accounts

for the presence of missing data, seemed to be the best test, only struggling under CS
in the unbalanced ADNI designs where it tended to be conservative, particularly in
small samples. Nevertheless, this misbehaviour is likely due to the bias observed in
the SwE in these scenarios and not specifically to Test III itself, indicating a very
good behaviour of the test. Also, while Test II, which accounts only partially for the
presence of missing data, did not perform so well in the unbalanced ADNI designs,
it worked extremely well in the balanced designs and seemed even to work slightly
better than Test III in the scenarios with only 12 subjects for which Test III was
slightly conservative. The likely explanation for the latter resides in the fact that Test
II accounts for the presence of a small sample bias while Test III does not. When SHet

C2

was used, no statistical test was accurate in the smallest samples. Test I and Test
III, which were identical with SHet, were conservative, while the Pan test and Test
II were liberal. The conservativeness of Test I (or Test III) can simply be explained
by the fact they do not account for the small sample bias. The liberality of the Pan
test is difficult to explain as it is unclear what all the assumptions are behind the
test. A possible explanation for the liberality of Test II, which accounts for the small
sample bias, is that it makes the assumption that the dependence between the subject
residuals is only due to the presence of the pure between-subject covariates and not the
presence of the within-subject covariates as well. While this seems to be a reasonable
assumption as we can expect that the influence of the within-subject covariates would
be in general negligible, this may not be the case in very small samples, explaining that
the degree of dependence is higher than assumed. Further research on this is needed
to confirm this explanation and to eventually find a way to account for the influence
of the within-subject covariates. Nevertheless, test II seemed to become relatively
quickly accurate when the sample size increased. Therefore, in small samples and if it
is possible to classify the observations into consistently defined visit categories, it seems
that SHom

C2 should be preferred to SHet
C2 as it yields more accurate inferences. However,

when the sample size is large enough, SHet
C2 may be considered as well, and has the

advantages of being free from the need to classify the observations into visit categories
and allowing for heterogeneity across all subjects while SHom

C2 allows this only across
groups of subjects. Here, it is worth also mentioning that, for the development of Test
II and Test III, we have proposed two estimators for Cov[vec[V̂0g]], both accounting,
at least partially, for the presence of missing data. In addition, the one developed for
Test II accounts for a small sample bias while the one developed for Test III accounts
for a missing data bias. To the best of our knowledge, we are the first to propose
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such kind of estimators. They might be useful in other applications than the SwE
method where an estimate of the covariance matrix of the elements of a covariance
matrix estimator would be needed. In particular, any application using an estimator
following a Wishart distribution might use the estimator developed for Test II as it
should be unbiased in such cases.

We have shown that the SwE method is a flexible computationally efficient (no
iterative algorithms) alternative to the N-OLS, SS-OLS and LME methods. When
the simplest covariance structure, CS, cannot be assumed, the SwE (SHom

C2 ) method
was the only method that consistently controlled the FPR. In particular, the SS-
OLS method was not able to control the FPR in the ADNI designs. This effect can
be explained by the fact that an inhomogeneity in the distribution of the summary
statistics is likely to occur when the subjects do not have the same number of obser-
vations, leading to a lack of control of the FPR as observed in our simulations. We
have also shown that the N-OLS, SS-OLS and LME methods may be inaccurate when
there exists heterogeneity in group variance. Nevertheless, it is worth noting that all of
these methods can be adapted to accommodate such a heterogeneity by, for example,
specifying different variances for each group in their model. In the SwE method, the
use of a marginal model simplifies the specification of the predictors and the interpre-
tation of parameters. In particular, both within- and between-subject covariates can
be used (that is not possible with the N-OLS method), and we have illustrated the
ease with which cross-sectional and longitudinal time effects can be used. In partic-
ular, testing the interaction of these two time effects revealed a “deceleration” effect
in the MCI and AD patient groups that was missing from the healthy controls. We
have noted, however, the importance of replacing an arbitrary covariate with two, one
purely within-subject and one purely between-subject.

The principal limitation of the SwE method regards power. It is generally less
powerful than other methods like the random-intercept LME and N-OLS methods.
However, the difference observed in our simulations was generally small and when
CS did not hold or when there was variance heterogeneity, the N-OLS, SS-OLS and
random-intercept LME generally failed to control the FPR and were unusable. In our
simulations, more complicated LME models were more accurate than the random-
intercept LME model, but still seemed to struggle to give accurate inferences, being
either liberal, accurate or conservative. So, even if they have the potential to give
more powerful inferences than the SwE method, they can be invalid or penalised by
their conservative nature. Thus, the potential lack of power of the SwE method seems
like a reasonable price to pay for validity.
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If more power is needed, one can use some form of spatial regularisation or more
complicated models like in Skup et al. (2012), Bernal-Rusiel et al. (2013b) or Li et al.
(2013). Nevertheless, while those methods are expected to be more powerful, they
require iterative algorithms, which makes them slower than the SwE method. More-
over, there is no evidence that, at least in some settings, they will do this with a good
control of the FPR. Notably, Zhang (2008) showed that using a spatial regularisation
will tend to decrease the variance of the estimates (which will tend to increase the
power), but also increase their bias (which will tend to alter the accuracy). On this,
a spatial regularisation of the data covariance matrix estimates used in the SwE is
investigated in Chapter 6, but have not shown promising results so far.

Note that we have not investigated one-sample t-tests on subject summary statis-
tics. While one-sample t-tests have been shown to be robust under heterogeneity
(Mumford and Nichols, 2009), these methods are however less flexible than other re-
gression methods which allow for the inclusion of covariates. Another approach not
investigated in this chapter is the SPM procedure introduced in Section 2.3.4. The
main reason for this is that this method is difficult to assess in simulations or in a
real data analysis. In particular, it seems important to check for the validity of the
assumption of a common covariance structure across the brain made by the SPM
procedure and a formal statistical test for this would then be needed.

Regarding the real data analysis, we have found ample evidence, through the use
of the Box’s test of CS, that the ADNI data’s within-subject covariance matrices are
inconsistent with CS, challenging the validity of the N-OLS and the random-intercept
LME methods with this dataset. The N-OLS, SS-OLS and SwE methods showed
clearly different results with the SwE method finding fewer significant voxels than the
N-OLS method, but more than the SS-OLS method. This seems to be in accordance
with our non-CS simulations (see Section 3.2.5) in which the N-OLS method poorly
controls the FPR (and thus has inflated significance; see Figure 3.11) and the SS-
OLS method which is less powerful than the SwE method (see Figure 3.14). In the
simulations, except for the CS scenarios in small samples where it had the tendency
to be conservative in the unbalanced ADNI designs, the SwE was accurate for all the
different types of covariance structures tested and this seems to make the SwE one of
the most trustworthy methods for the analysis of the ADNI data.

It would be desirable to use permutation methods (see, e.g., Nichols and Holmes,
2002) in combination with the SwE to produce non-parametric inferences. However,
permutation tests assume that the scans are exchangeable under the null hypothesis,
incompatible with longitudinal or repeated measures data. Bootstrap methods (see,
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e.g., Efron and Tibshirani, 1994), in contrast, do not require the exchangeability as-
sumption and may be applicable. The use of a particular type of bootstrap method
to use with the SwE, called Wild Bootstrap, is investigated in Chapter 4.

As another future direction, we also intend to check the validity of the Random
Field Theory (see, e.g., Worsley et al., 1996) with the SwE method. It is indeed not
guaranteed that the assumptions required by the Random Field Theory hold when
the SwE method is used. As such, at present, we can only recommend the use of a
False Discovery Rate control in order to deal with the multiple comparison problem.

Finally, note that an SPM extension implementing some versions of the SwE method
presented in this chapter has been made freely available for use at http://warwick.ac.
uk/tenichols/SwE.

http://warwick.ac.uk/tenichols/SwE
http://warwick.ac.uk/tenichols/SwE




Chapter 4

Non-parametric inference with the
Sandwich Estimator

4.1 Introduction
In Chapter 3, we assumed that the test statistics (Wald scores) obtained with the
SwE method follow a parametric distribution under the null hypothesis, by notably
assuming Normal error terms and that the contrasted SwE CSC> follows a Wishart
distribution. In biostatistics, it is however often desirable to relax these type of as-
sumptions by using a resampling method instead to estimate the null distribution of
the test statistics and use this estimated distribution to make inferences. As men-
tioned in section 2.5.1, resampling methods can be divided into two main categories:
(a) resampling methods with replacement and (b) resampling methods without re-
placement. In neuroimaging, the most popular resampling method is the permutation
test (Nichols and Holmes, 2002; Winkler et al., 2014) which is based on resampling
schemes without replacement. While very useful in many cases, it relies on the assump-
tion that the data we want to permute is exchangeable under the null hypothesis. In
the case of longitudinal data, this assumption of exchangeability is in general not sup-
ported as the data is correlated and heterogeneous over subjects (e.g., variable number
of visits per subjects, or heterogeneous within-subject covariance matrices). There-
fore, the possibility of using permutation tests to analyse longitudinal neuroimaging
data is limited to particular cases. For that reason, it seems important to find another
resampling method which would be valid in a large range of cases.

As an alternative resampling method for non-parametric inference in longitudinal
neuroimaging studies, we consider a bootstrap method (see, e.g., Efron and Tibshirani,
1994). In the context of hypothesis testing, bootstrap methods attempt to approxi-
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mate the null distribution of the statistic of interest by randomly resampling the data
with replacement. However, in order to be accurate, the Data Generating Process
(DGP) used to resample the data should be as close as possible to the DGP which
would generate data observed under the null hypothesis. Unfortunately, in the context
of longitudinal data, the within-subject covariance matrices are generally unknown and
may vary across subjects or groups of subjects. Therefore, it seems difficult to imi-
tate directly the true DGP and the use of typical bootstrap procedures does not seem
appropriate in our context. Nevertheless, a particular type of bootstrapping called
the Wild Bootstrap (WB) addresses some of these issues. This bootstrap method
was initially proposed in the context of linear regression models with heteroskedastic
independent errors by Liu (1988), following the work made by Wu (1986) and its ex-
tension to the case of clustered data seems to first appear in the work of Brownstone
and Valletta (2001). In the literature, several versions of the WB can be found and
have mainly been studied in the case of cross-sectional data (Davidson and Flachaire,
2001; Flachaire, 2005; Davidson and Flachaire, 2008). While a few studies exist in the
case of clustered data (Cameron et al., 2008; Webb, 2013), to our knowledge, none
seems to be specifically related to longitudinal data.

In neuroimaging, the WB has mainly been used in the context of Diffusion Tensor
Imaging (DTI; see, e.g., Whitcher et al., 2005; Chung et al., 2006; Whitcher et al.,
2008; Zhu et al., 2008). However, with DTI, the model uses independent errors and has
the objective of estimating the sampling distribution of measures like the Fractional
Anisotropy (FA). The application is therefore relatively different from ours, where we
have correlated errors and where the objective is not the distribution of the model
parameters, but the null distribution of the test statistics related to the combination
of the parameters we want to test. Nevertheless, while still in the context of models
with independent errors, a more similar application to ours can be found in Zhu et al.
(2007) where the authors used the WB to make inference on associations which may
exist between some brain morphology measures and some covariates of interest.

In this chapter, we introduce the WB and describe several versions of it. Then,
we compare these different WB versions using intensive Monte Carlo simulations in
a large range of scenarios important for longitudinal neuroimaging data analysis and
isolate the best versions. Finally, we illustrate the WB by using it to analyse the real
ADNI dataset described in Section 2.6 and notably show that it can be used to control
the Family-Wise Error Rate (FWER).
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4.2 Methods

4.2.1 The Unrestricted Wild Bootstrap

Let us consider the marginal model defined in Section 2.3.6, where, for each subject i,
we have

yi = Xi� + ��i ; (2.4 revisited)

and that the SwE method is used to estimate � and the covariance matrix Cov[�̂] (see
Chapter 3). To make inference on a combination of the parameters H0 : C� = b0

where C is a matrix (or a vector) of rank q defining the combination of the param-
eters (contrast) tested, the Unrestricted WB (U-WB) considers, like in a standard
parametric test, the Wald statistic as defined in Section 2.5.1,

T = (C�̂ � b0)>(CSC>)�1(C�̂ � b0)=q; (2.8 revisited)

that we will refer to as T0 in this chapter. To estimate the null distribution of this
statistic, the U-WB first resamples the data, subject by subject, using the DGP defined
as

y�i = Xi�̂ + e�i fi; (4.1)

where each e�i is a vector of small sample bias adjusted subject residuals of subject i
and the fi’s are i.i.d. scalar random variables, independent of the original data and
respecting, at least, the two following conditions: E[fi] = 0 and E[f 2

i ] = 1. From
Equation (4.1), we see that the resampling scheme is relatively simple and consists of
resampling independently the adjusted residuals across subjects, but, in such a way
that the adjusted residuals of each subject are resampled using the same multiplicative
value. The latter is relatively convenient as it allows to preserve, for each resampling,
the within-subject covariance structure of each subject without making any assumption
on it.

Using Equation (4.1), nB bootstrap samples are generated. For each bootstrap
sample, the SwE method is used to fit the resampled data with the original model in
order to get the WB estimates C�̂b and CSbC>, which are then used to compute the
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U-WB Wald statistic

Tb = (C�̂b � C�̂)>(CSbC>)�1(C�̂b � C�̂)=q: (4.2)

Note that the U-WB Wald statistics are centred around the original fitted value C�̂
instead of b0 in Equation (4.2). This is justified by the fact that the U-WB DGP as
defined by Equation (4.1) resamples the data assuming that � = �̂ and, consequently,
the U-WB Wald statistics need to be centred around C�̂ and not b0.

The nB bootstraps and the original Wald statistics are then used to estimate the
null distribution of the original statistic T0, which can be used to make inference on it.
Specifically, we can compute the U-WB p-value as the proportion of bootstrap Wald
statistics (the original Wald statistic T0 included) which are superior or equal to the
original Wald statistic T0, i.e.

1
(nB + 1)

nBX

b=0
I[Tb � T0]; (4.3)

where I is the indicator function.

4.2.2 The Restricted Wild Bootstrap

As mentioned in Section 4.2.1, the U-WB DGP as defined in Equation (4.1) resamples
the data assuming that � = �̂ and, consequently, the resampled data cannot be
considered as representative of the null hypothesis. Therefore, instead of using the
U-WB DGP, we can use the following DGP which assumes that the null hypothesis is
true:

y�i = Xi ~� + ~e�i fi (4.4)

where ~� and the ~e�i ’s are the restricted OLS parameter estimates and some restricted
small sample adjusted residuals obtained after imposing the null hypothesis. As we
resample the data using a restricted model, we will refer this WB procedure as the
Restricted WB (R-WB) to contrast with the U-WB which uses an unrestricted model.
The restricted OLS parameter estimates ~� can be obtained by the formula given in
Zhu et al. (2007):

~� = �̂ � (X>X)�1C>(C(X>X)�1C>)�1(C�̂ � b0): (4.5)
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The restricted raw residuals are simply given by yi � Xi ~� and can be small sample
bias corrected as the unrestricted residuals, but by accounting also for the restriction
imposed to the model. Typically, the latter can be done by replacing the Hat matrix
H by the matrix H � X(X>X)�1C>(C(X>X)�1C>)�1C(X>X)�1X> in the small
sample bias adjustments defined in Section 3.2.2.

The R-WB procedure to estimate the null distribution of the original statistic and
to get a R-WB p-value is the same as the U-WB procedure except that the R-WB
Wald statistics are now centred around b0 and not C�̂ such that

Tb = (C�̂b � b0)>(CSbC>)�1(C�̂b � b0)=q: (4.6)

Note that, while it makes somehow more sense to use the R-WB instead of the
U-WB as the resampled data respects the null hypothesis and due to the fact that it
has been shown to perform better than the U-WB in some cross-sectional designs (see,
e.g., Davidson and Flachaire, 2008), the R-WB has the disadvantage to be contrast-
specific. The latter can be annoying in cases where many contrasts need to be tested
as the R-WB procedure would need to be repeated for each contrast. This, however,
would not be the case for the U-WB which can be used to test several contrasts with
the same set of resampled data.

4.2.3 The Restricted SwE vs. the Unrestricted SwE

In Chapter 3, we have always assumed that the SwE was computed using unrestricted
residuals. However, Davidson et al. (1985) proposed to use restricted residuals instead,
obtained by fitting a restricted OLS model which imposes the null hypothesis as it
is done in the R-WB procedure (see Section 4.2.2). This yields a new type of SwE
that we will refer to as the Restricted SwE (R-SwE) to contrast with the SwE which
uses unrestricted residuals that we will refer to as the Unrestricted SwE (U-SwE) in
this chapter. In the context of asymptotic parametric tests in cross-sectional designs,
Davidson et al. (1985) showed that the R-SwE was performing better than the U-
SwE. Nevertheless, it seems that no literature exists about the use of the R-SwE for
parametric inferences in longitudinal settings or when an F - or a t-distribution is used
instead of a �2- or a Normal distribution, respectively. This might explain why its use
does not seem popular with a parametric test. However, the R-SwE seems to be often
considered when a WB procedure is used. This can be explained by the fact that some
studies (Flachaire, 2005; Davidson and Flachaire, 2008) made in the context of cross-
sectional designs seemed to indicate that combining the R-SwE with the R-WB yields
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more accurate inferences than any of the three other possible combinations (U-WB &
U-SwE, U-WB & R-SwE and R-WB & U-SwE).

In the computation of the R-SwE, the restricted residuals can also be adjusted like
this can be done in the R-WB procedure (see Section 4.2.2). Moreover, while, in the
WB literature, the U-SwE and the R-SwE are always considered in their heterogeneous
form SHet, we can also consider them in one of their homogeneous form SHom (see
Section 3.2.3).

4.2.4 The WB resampling distribution

For both the U-WB and the R-WB, the resampling is done through the random
variables f1; f2; : : : ; fm which, at least, need to respect the two conditions: E[fi] = 0,
E[f 2

i ] = 1. Using formal Edgeworth expansions, Davidson and Flachaire (2001) gave
some indications that, in order to get accurate inferences in small samples, the ideal
resampling distribution of the fi’s should also respect the two additional conditions:
E[f 3

i ] = 1 and E[f 4
i ] = 1. Unfortunately, due to the inequality E[f 4

i ] � 1+(E[f 3
i ])2, no

distribution can fulfil these two additional conditions (Davidson et al., 2007; Webb,
2013). Nonetheless, several distributions have been proposed in the literature and
the two most popular distributions seems to be the Rademacher and the Mammen
distributions. The Rademacher distribution was first mentioned in Liu (1988) and is
defined as

FRademacher : fi =

8
><

>:

�1 with probability 1=2
1 with probability 1=2:

(4.7)

As shown in Table 4.1, this distribution respects the first, the second and the fourth
moments of the ideal distribution, but not the third moment. The Mammen distribu-
tion was suggested in Mammen (1993) and is defined as

FMammen : fi =

8
><

>:

(1 +
p

5)=2 with probability (
p

5� 1)=(2
p

5)
(1�

p
5)=2 with probability (

p
5 + 1)=(2

p
5):

(4.8)

As shown in Table 4.1, this distribution respects the first, the second and the third
moments of the ideal distribution, but not the fourth.

We see that both FRademacher and FMammen fail to respect the four first moments of
the ideal distribution, indicating that we can generally expect some inaccuracies for
both in the control of the FPR in small samples. However, the works of Davidson and
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Distribution E(fi) E(f 2
i ) E(f 3

i ) E(f 4
i )

FIdeal 0 1 1 1
FRademacher 0 1 0 1
FMammen 0 1 1 2
FWebb4 0 1 0 5/4
FWebb6 0 1 0 7/6
FNormal(0,1) 0 1 0 3

Table 4.1 The four first moments of the ideal and candidate resampling distributions.

Flachaire (2001), Flachaire (2005) and Davidson and Flachaire (2008) seem to indicate
that FRademacher generally yields more accurate results than FMammen and explains why
FRademacher seems to be the preferred choice in recent works (see, e.g., Zhu et al., 2007).

While popular, the use of FRademacher or FMammen can be problematic when the
number of subjects m is very small. Indeed, they are both two-point distributions,
meaning that, when m is small, the maximum number of unique bootstraps cannot
be superior to 2m, which could be rather small. For example, in the case of a group
with six subjects, only a maximum of 64 unique WB samples are possible. This is
definitively not enough to make accurate inferences. That is the reason why Webb
(2013) proposed two alternative resampling distributions with more points in their
respective distribution: a four-point and a six-point distributions. The four-point
distribution, that we will refer to as FWebb4 in this thesis, is

FWebb4 : fi =

8
>>>>>>>><

>>>>>>>>:

�
q

3=2 with probability 1=4
�
q

1=2 with probability 1=4
q

1=2 with probability 1=4
q

3=2 with probability 1=4:

(4.9)
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The six-point distribution, that we will refer to as FWebb6 in this thesis, is

FWebb6 : fi =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

�
q

3=2 with probability 1=6
�1 with probability 1=6
�
q

1=2 with probability 1=6
q

1=2 with probability 1=6
1 with probability 1=6
q

3=2 with probability 1=6:

(4.10)

We directly see that using one of these two distributions will yield a higher number of
unique bootstraps. For example, in the case of a group with six subjects, FWebb4 should
yield a maximum of 4,096 unique bootstraps while FWebb6 should yield a maximum of
46,656 unique bootstraps, allowing a less discrete estimation of the null distribution of
the original Wald statistic T0. This can be observed in Figure 4.1 where we considered
a balanced design with 2 groups (A and B) of 6 subjects having 5 visits each. We
simulated a dataset with a Toeplitz correlation structure with a correlation decrease
of 0.1 per visit and used the R-WB combined with the R-SwE SHom

C2 to test for a linear
effect of visits in Group A alone and for a different linear effect of visits in Group B
versus Group A. We can observe that, for the first contrast which involved only 6 sub-
jects (first row in Figure 4.1), the use of FRademacher yielded a rather discrete estimate
of the Wald statistic null distribution while this was not the case for FWebb4 or FWebb6,
indicating that one of the these two distributions should be preferred to FRademacher

in this case. However, for the second contrast which involved 12 subjects (second row
in Figure 4.1), the Wald statistic null distribution estimated under FRademacher was far
less discrete than with the first contrast and seemed relatively similar to the ones es-
timated under FWebb4 or FWebb6, indicating that the discretisation issue of FRademacher

appears only in very small samples. Note also that, as shown in Table 4.1, FWebb4 and
FWebb6 respect only the first and the second moments of the ideal distribution, but
try to mimic FRademacher by making the fourth moment close to one. This seems to
indicate that, if the sample size is large enough to avoid the issue of having a small
number of unique bootstraps, FRademacher might yield better results than FWebb4 or
FWebb6.

Finally, note that we could imagine to use other distributions in practice. For
example, we could consider the Normal distribution with mean 0 and variance 1,
FNormal(0,1), which satisfies the first and the second moments of the ideal distribution.
However, as shown in Table 4.1, its third and fourth moments are both quite different
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Fig. 4.1 Histograms of the WB Wald statistics obtained with a simulated dataset
having a Toeplitz within-subject correlation structure (with a correlation decrease of
0.1 per visit) in a balanced design with 2 groups (A and B) of 6 subjects having 5
visits each. In rows are two different contrasts, while in columns are three different
resampling distributions. In each case, the R-WB (nB = 999 bootstraps) combined
with the R-SwE SHom

C2 was used.

from the ones of the ideal distribution, indicating a probable poorer behaviour than
with the use of one of the four other distributions mentioned previously.

4.2.5 Multiple testing correction with the WB

To correct for the multiple testing issue mentionned in Section 2.5.2, we could com-
pute a WB p-value at each voxel using Equation (4.3) and, like it was recommended
for the parametric tests proposed in Chapter 3, use an FDR correction to make infer-
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ence on the p-value image. However, as is generally done with permutation tests in
neuroimaging, we can take advantage of the WB procedure to control for the FWER
instead of the FDR. To achieve that, it suffices to record, for each bootstrap b, the
maximum WB Wald statistic in the score image, Tmax

b , and use them to estimate the
WB maximum statistic null distribution of the score image. As the FWER corre-
sponds to the probability that the maximum statistic in the image is superior or equal
to a particular threshold value under the null hypothesis, we can estimate this FWER-
corrected threshold or compute the WB FWER-corrected p-values at each voxel using
the estimated WB maximum statistic null distribution such that, at each voxel v, we
have

1
(nB + 1)

nBX

b=0
I[Tmax

b � T0[v]]; (4.11)

where T0[v] is the original Wald statistic at voxel v.
Nevertheless, it is worth noting that, within the framework of the SwE, we typi-

cally expect that the variability of the Wald statistics under the null hypothesis may
vary across the brain. Also, for voxels where the null hypothesis is false, we also may
expect large values for the original and some bootstrap Wald statistics. Therefore,
the maximum statistic distribution is likely to be driven by such voxels (i.e. with high
variability or high departure from the null hypothesis). While this does not affect
the validity of the inference, this will typically penalise, in term of power, the other
voxels in the brain. This kind of issue has already been reported in the context of
permutation tests in Nichols and Holmes (2002). To overcome this issue, Nichols and
Holmes (2002) suggested the use of a multi-step approach where we iteratively identify
significant voxels, remove them for the next step and reanalyse the remaining voxels
through the procedure. This multi-step procedure can also be used in the context of
the WB, but, due to its iterative nature, it can be computationally heavy. A more
computationally efficient solution to overcome this issue was proposed, also in the
context of permutation tests, by Belmonte and Yurgelun-Todd (2001) and discussed
in Ridgway (2009). It consists of recording, for each sample, the scores and locations
of a small number of voxels with the highest scores. When a voxel is declared signifi-
cant, we can then replace, for each sample, its eventual contribution to the maximum
distribution by the next highest recorded value. A potential issue is that, for some
samples, all the recorded voxels could be declared significant, in which case we do not
have the next highest score recorded. In this case, an option, implemented in AFNI
by Belmonte and discussed in Ridgway (2009), consists of dropping these samples,
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assuming that the number of samples left is large enough (e.g., thousands). This
second alternative can be seen as an interesting trade-off between the single-step and
the multi-step approaches, potentially more powerful than the single-step approach
(but, not necessary as powerful as the multi-step approach) while being much more
computationally efficient than the multi-step approach.

Furthermore, instead of considering voxel-wise FWER inferences, the WB can also
be used, like permutation tests, to make cluster-wise FWER inferences. The procedure
is identical to the one used for permutation tests and consists of first thresholding the
original and all the bootstrap score images by a primary threshold and, for each
thresholded image, recording the size of the largest cluster surviving the thresholding.
These maximum cluster sizes can then be used to estimate the maximum cluster size
null distribution which can, in turn, be used to make a cluster-wise FWER inference on
the original score image. One of the downside of this method is that it is depending of
the primary threshold. Also, due to the nature of the SwE method, the Wald statistics
are typically expected to have different variability across the brain, meaning that using
a common threshold for the whole brain might not be an appropriate way to form the
clusters. A solution to this issue would be to homogenise first the Wald statistic images
before thresholding them by, for example, using one of the parametric tests proposed
in Chapter 3 in order to transform the Wald statistic images into p-value images.
The use of a common primary threshold on the p-value images should therefore be
more adequate, improving the quality of the inference. Another alternative would be
to obtain the p-value images using the WB procedure at every voxel as proposed by
Pantazis et al. (2005) in the context of permutation tests. However, the latter strategy
could be prohibitively time consuming as it would require two layers of WB, which are
by nature already time consuming, or require a large amount of disk space to record
the entire set of score images. Another issue that may arise for cluster-wise inferences
is the presence of spatial non-stationarity in the smoothness. This non-stationarity is
likely to alter the quality of cluster-wise inferences as bigger clusters are expected in
smoother areas. A solution to this problem would be to adjust the cluster sizes with
a local estimate of smoothness obtained using a first pass of WB as it was proposed
by Salimi-Khorshidi et al. (2011) in the context of permutation tests.

4.2.6 Monte-Carlo evaluations

As discussed previously, several WB procedures can be used in practice depending
on the choice between the U-WB and the R-WB (see Sections 4.2.1 and 4.2.2), the
choice between the U-SwE and the R-SwE (see Section 4.2.3), the choice between SHet
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and SHom, the resampling distribution (see Section 4.2.4), and the small sample bias
adjustment used on the residuals (for the resampling and the SwE computation). In
the literature, several Monte Carlo evaluations assessing the WB can be found (e.g.,
Flachaire, 2005; Davidson and Flachaire, 2008; Cameron et al., 2008; Webb, 2013).
Nevertheless, they were generally focused on cross-sectional designs or assessed only
a small number of WB procedures. In particular, Flachaire (2005) and Davidson
and Flachaire (2008) assessed the WB only in the context of cross-sectional designs,
Cameron et al. (2008) seemed to only consider the R-WB combined with the U-SwE
and FRademacher while Webb (2013) seemed to consider only procedures combining the
R-WB and the U-SwE. Moreover, all these evaluations considered only the heteroge-
neous SwE SHet and never the homogeneous SwE SHom. Therefore, it seems difficult
to infer from these studies what would be the best WB procedure to use in the context
of longitudinal neuroimaging data and further investigations seems needed.

For this thesis, we conducted several Monte Carlo simulations with the goal to
assess and compare 80 WB procedures in some of the scenarios that were investigated
in Simulation I of Chapter 3 (see Section 3.2.5). More precisely, the scenarios con-
sidered were the same as in Section 3.2.5, except the ones with 200 subjects in the
balanced designs and with more than 103 subjects in the unbalanced ADNI designs.
The 80 WB procedures differed by the choices between the U-WB & the R-WB, be-
tween the U-SwE & the R-SwE, between SHom & SHet, between S0 & SC2 (used both
for the resampling and the SwE), and between the five WB resampling distributions
described in Section 4.2.4 (i.e. the Rademacher, Mammen, Webb4, Webb6 and Normal
distributions). In addition to these 80 WB procedures, we also used 24 versions of the
parametric tests which differed by the choices between the U-SwE & the R-SwE, be-
tween SHom & SHet, between S0 & SC2, and between Test II, Test III & the asymptotic
�2- test (see Section 3.2.4 for more details about the parametric tests).

Null and non-null data were generated exactly in the same way as for the simula-
tions of Section 3.2.5 and therefore, we do not repeat the explanation here. For each
WB procedure, we use nB = 399 bootstraps. Note that we recommend to use a larger
number of bootstraps in a real data analysis (e.g., nB = 999) in order to get a more
accurate estimation of the Wald statistic null distribution. Nevertheless, in the case
of Monte Carlo simulations, it is not important to have such a large number of boot-
straps due to the averaging effect occurring across the 10,000 Monte Carlo realisations
that we considered. This would increase unnecessarily the computational time which
is already large with nB = 399. Like in Section 3.2.5, we consider 9 contrasts for the
balanced designs and 24 contrasts for the unbalanced designs. For each contrast, we
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used the 80 WB procedures and the 24 parametric tests to test for significance at 5%.
For null data, each significant test was counted as a False Positive and was used to
compute the observed FPR of each procedure. For non-null data, each significant test
was counted as a True Positive and was used to compute the observed power of each
procedure.

4.2.7 Real data analysis

Using an SPM toolbox developed for this work, we applied the WB method on the
ADNI dataset described in Section 2.6 to test for stronger atrophy visit effects in the
AD cohort vs. the Normal cohort. We used one of the best procedure isolated from
the Monte Carlo simulation, i.e. the R-WB with the R-SwE SHom

C2 and FRademacher. We
used 999 WB samples to control for a voxel-wise FWER at 5%.

In order to contrast the obtained results, we also analyse the ADNI dataset using
the U-SwE SHom

C2 , the parametric test Test III and the Benjamini-Hochberg procedure
(see Section 2.5.2) to control for a voxel-wise FDR at 5%. Finally, also for comparison
and using the software package SPM12, we analysed the ADNI dataset with the N-OLS
and SS-OLS methods using Random Field theory (see Section 2.5.2) to control for a
voxel-wise FWER at 5% and using the Benjamini-Hochberg procedure to control of a
voxel-wise FDR at 5%.

4.3 Results
In this section, we present the results obtained from the Monte Carlo simulations
described in Section 4.2.6 and from the real data analysis described in 4.2.7.

4.3.1 Monte Carlo simulations

The results of the Monte Carlo simulations have been summarised in Figures 4.2,
4.3, 4.4 and 4.5. Due to the large amount of procedure combinations investigated
in the simulations (80 for the WB and 24 for the parametric tests), the results are
commented below by comparing the different choices separately. Note that, when
some procedures were found accurate in terms of FPR control, they did not seem to
exhibit any significant differences in terms of power, explaining why, below, we do not
show any results regarding the power.
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Comparison between the U-WB and R-WB

In the unbalanced ADNI designs (see Figure 4.3), the R-WB clearly outperformed
the U-WB which tended to be liberal, particularly in small samples. However, in
the balanced designs (see Figure 4.2), while the U-WB combined with the R-SwE
performed poorly, the U-WB combined with the U-SwE seemed to perform as well
as the R-WB and seemed even to control slightly better the FPR in the scenarios
with 12 subjects. Note that, when both the U-WB and the R-WB were accurate, no
significant differences in terms of power were observed in the results.

Comparison between the resampling distributions

From Figures 4.2 and 4.3, we can see that the best distributions were clearly the Ra-
demacher, Webb4 and Webb6 distributions. The Mammen distribution yielded liberal
inferences when the U-SwE was used and conservative inferences when the R-SwE was
used. The Normal distribution yielded liberal inferences in almost all the scenarios.
The results did not seem to show strong differences between the Rademacher, Webb4
and Webb6 distributions. Nevertheless, in the smaller samples, some small differences
could be observed. The Rademacher distributions seemed to yield slightly more ac-
curate inferences than the Webb6 distribution that, in turn, seemed to yield slightly
better inferences than the Webb4 distribution. This can simply be explained by the
fact that, among these three resampling distributions, the Rademacher distribution is
the closest from the ideal distribution while the Webb4 distribution is the farthest (see
Table 4.1). Nevertheless, the results obtained from the Monte Carlo simulations can
be misleading when the contrasts tested involved less than 12 subjects (i.e. for the 6
contrasts involving only one group in the balanced designs with a total of 12 subjects
and for the 8 contrasts involving only the Normal or the AD subjects in the ADNI de-
signs with a total of 25 subjects). Indeed, in such cases, the Rademacher distribution
systematically yielded a very discrete estimate of the statistic null distribution (see,
e.g., Figure 4.1), leading to probable bad inferences, but which appeared better in
the results due to the averaging effect of the Monte Carlo simulations. Note that, for
those scenarios, while the Webb4 and Webb6 distributions had the advantage to yield
less discrete estimates of the statistic null distribution (see, e.g., Figure 4.1), they did
not seem to yield accurate inferences.

Finally, when the resampling distributions were accurate, no significant differences
were observed between them in terms of power.
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Fig. 4.2 Boxplots showing the FPR control of 40 WB procedures as a function of the
total number of subjects in the balanced designs over 162 scenarios (consisting of the
9 contrasts tested, the 6 within-subject covariance structures and the 3 numbers of
visits per subject considered in the Monte Carlo simulations). Note that, in these
scenarios, the results obtained with the heterogeneous SwE SHet were identical to the
ones obtained with the homogeneous SwE and are therefore not shown.
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Fig. 4.3 Boxplots showing the FPR control of 20 WB procedures (all using SHom
C2 ) as

a function of the total number of subjects in the unbalanced ADNI designs over 144
scenarios (consisting of the 24 contrasts tested and the 6 within-subject covariance
structures considered in the Monte Carlo simulations).

Comparison between the SwE versions used in the WB

In general, when the R-WB was combined with with the Rademacher, Webb4 or
Webb6 distributions, no significant differences was observed in the results between the
U-SwE and the R-SwE. The only strong differences seemed to occur when the U-WB
was used in the balanced designs. In such cases, the U-SwE was clearly better than
the R-SwE.

Regarding the choice between the SwE versions SHet
0 , SHet

C2 , SHom
0 and SHom

C2 , no
compelling differences could be observed in the balanced designs. Nevertheless, in the
unbalanced ADNI designs, while, in general, the differences did not appear very strong,
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it seemed that SHom
C2 was slightly better than the other versions (see, e.g., second and

fourth columns in Figure 4.5), explaining also why only this SwE version is shown in
Figure 4.3.

Comparison between the WB and the parametric tests

The best WB procedures are compared to some parametric tests in Figures 4.4 and
4.5. We can see that the parametric tests were very sensitive to the choice of SwE and
seemed to require the use of the U-SwE SHom

C2 or SHet
C2 in order to be accurate. This

was not the case for the WB procedures which seemed almost insensitive to the choice
of SwE, indicating a strong robustness of the WB against potential biases existing
in the SwE. Nevertheless, the inferences obtained with the parametric test Test III
combined with the U-SwE SHom

C2 seemed to be as good as those obtained with the
best WB procedures or even better in the majority of the small sample scenarios.
The only exceptions seemed to be in the scenarios with CS covariance structures in
the unbalanced ADNI designs where the WB procedures did not seem affected by the
conservativeness observed for the parametric test Test III combined with the U-SwE
SHom

C2 and yielded more powerful inferences.
Also, as it can be observed in Figure 4.4, the use of the R-SwE in the paramet-

ric tests typically yielded conservative inferences which seemed the most accurate
when a �2-test was used. The explanation for this is that the R-SwE systematically
overestimated the true variance of the parameters, making the inferences generally
conservative and compensating for the liberal nature of the �2-test.

4.3.2 Real data analysis

Figure 4.6 shows the estimated WB null distribution of the maximum statistic and
indicates strong evidence that the observed maximum statistic does not occur by
chance.

Figure 4.7 shows the score images of the N-OLS, SS-OLS and SwE methods, thresh-
olded after correcting for the FWER and the FDR as described in Section 4.2.7. Note
that the score images in Figure 4.7 are not equivalent across methods. In particular,
they are all t-score images, except for the SwE method controlling the FDR for which
the image is an equivalent Z-score image (needed to homogenise the threshold which
is spatially varying for a t-score image when Test III is used). As the score images
are not equivalent, they cannot be compared in terms of score values, but they can
be in terms of number of voxels surviving the thresholding. These numbers are re-
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Fig. 4.4 Boxplots comparing the FPR control of some WB procedures and some para-
metric tests in the balanced designs over 162 scenarios (consisting of the 9 contrasts
tested, the 6 within-subject covariance structures and the 3 numbers of visits per
subject considered in the Monte Carlo simulations); FRad. stands for FRademacher.

ported in Table 4.2. As is typically expected in neuroimaging, we clearly see that,
for all the methods, the use of an FWER-corrected threshold yielded less significant
voxels than an FDR-corrected threshold. Like already observed in Section 3.3.3 for an
uncorrected threshold, the N-OLS method had more supra-threshold voxels than the
SwE method, likely attributable to the presence of a complex (non-CS) longitudinal
covariance structure that results in inflated significance (see Figures 3.11 and 3.12,
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Fig. 4.5 Boxplots comparing the FPR control of the R-WB using the Rademacher
resampling distribution and the parametric test Test III in the unbalanced ADNI
designs under CS and Toeplitz covariance structures over 24 scenarios (consisting of
the 24 contrasts tested in the Monte Carlo simulations).

first row). The SS-OLS had fewer supra-threshold voxels than the SwE method, likely
attributable to conservativeness (see Figure 3.12, second row) and/or reduced power
(Figure 3.14, sixth row).
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Fig. 4.6 Histogram of the WB null distribution of the maximum statistic obtained
using the R-WB combined with the R-SwE SHom

C2 and the Rademacher distribution
(nB = 999 bootstrap samples) on the longitudinal atrophy effect difference (AD vs.
N) in the real ADNI dataset.

N-OLS SwE SS-OLS
FDR 110,196 99,951 85,728

FWER 57,515 44,783 32,669
Table 4.2 Number of voxels surviving the FDR and FWER thresholding at 5% sig-
nificance level after using the parametric N-OLS and SS-OLS methods (both using
Random Field Theory for the FWER control) and the SwE method (using the R-WB
combined with the R-SwE SHom

C2 , the Rademacher distribution and 999 bootstrap sam-
ples to control the FWER, and SHom

C2 under Test III to control for the FDR). Note
that the total number of in-mask voxels was 336,331 voxels for all the methods.

4.4 Conclusion
In this chapter, we have introduced the WB as a resampling method able to make
non-parametric inference with the SwE method for the analysis of longitudinal neu-
roimaging data. We have demonstrated that it can be used as a valid alternative to
permutation tests and to the parametric tests developed in Chapter 3.

Using Monte Carlo simulations, we have compared 80 possible variants of the WB
procedures and have isolated some of them as the best to use in practice. More pre-
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Fig. 4.7 FWER-corrected and FDR-corrected thresholded score images at 5% signif-
icance level (centred at the anterior commissure) on the longitudinal atrophy effect
difference (AD vs. N) obtained with the parametric N-OLS and SS-OLS methods
(both using Random Field Theory for the FWER control), and the SwE method (us-
ing the R-WB combined with the R-SwE SHom

C2 , the Rademacher distribution and 999
bootstrap samples to control the FWER, and SHom

C2 under Test III to control for the
FDR). Note that the score images are not equivalent across methods. In particular,
they are all t-score images, except for the FDR-thresholded SwE method image which
is an equivalent Z-score image.
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cisely, it seems that, in general, the R-WB combined with the Rademacher distribution
and the SwE SHom

C2 should be preferred in practice. Note, however, that we have not
found large differences when the other SwE versions were used and have not observed
any significant differences between the use of the U-SwE or the R-SWE, indicating that
the R-WB was relatively robust against the presence of bias in the SwE. This seems to
be an advantage compared to the best parametric tests developed in Chapter 3 which
appeared very sensitive to the presence of bias in the SwE. On this, we can expect
that the R-WB procedure could also be more robust than the best parametric tests
when the error terms cannot be assumed multivariate Normal. In particular, the latter
could be interesting for Voxel-Based Morphometry data that is known to be skewed
(Viviani et al., 2007; Scarpazza et al., 2013). Nevertheless, further investigation is
needed to check this.

We have also used the WB to control for the FWER in the context of a real
longitudinal neuroimaging dataset. This is clearly an advantage compared to the
parametric tests developed in Chapter 3 which cannot so far be used to control the
FWER. A possible way to envision the use of FWER inferences with a parametric
test would be to use Random Field Theory. However, further work needs to be done
to check if this would be valid in the context of the SwE method and we leave this as
a future work.

Nevertheless, some limitations of the WB need to be noted. First, in very small
samples (e.g., 6 subjects), the WB procedure using the Rademacher distribution can
be inaccurate due to the maximum of number of unique bootstraps which can be rather
small and yield a very discrete estimate of the null distribution of the statistics. While
we investigated the use of more promising distributions for such cases (i.e. the Webb4
and Webb6 distributions), which yields less discrete estimate of the null distribution,
they did not seem so accurate in such small samples, indicating that the WB procedure
should probably not be used for contrasts involving less than 12 subjects.

Another issue that can occur with the use of the WB to control for a voxel-wise
or a cluster-wise FWER resides in the fact that a spatial heterogeneity of the null
distribution of the statistics of interests is likely to exist. For a voxel-wise FWER
control, while this should not break the validity of the inference, this might penalise
it in terms of power. A solution would be to use the multi-step approach proposed by
Nichols and Holmes (2002) or the procedure proposed by Belmonte and Yurgelun-Todd
(2001) as described in Section 4.2.5. For a cluster-wise FWER control, this spatial
heterogeneity could be more problematic and may challenge the validity of the primary
thresholding step, compromising, in turn, the validity of the inference. As suggested in
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Section 4.2.5, a solution would be to transform the Wald statistics into p-values (e.g.,
by using one of the parametric tests developed in Chapter 3) before applying a primary
threshold. Another issue for cluster-wise FWER inferences is the spatial heterogeneity
of the smoothness that can influence the size of clusters. As discussed in Section 4.2.5,
this issue can be addressed using the procedure proposed by Salimi-Khorshidi et al.
(2011). Further work would be needed to check the influence of spatial heterogeneity
on the WB procedures. However, this seems to be a very challenging task due to the
variety of spatial heterogeneities that may exist in longitudinal neuroimaging data.





Chapter 5

The Shrinkage Sandwich Estimator

5.1 Introduction
In the homogeneous SwE SHom discussed in Section 3.2.3, no structure is assumed for
the nG common within-subject covariance matrix V0g’s. Provided that the assumption
of a common within-subject covariance matrix within groups is true and if the residuals
are appropriately bias corrected, the estimator V̂0g introduced in Section 3.2.3 (see
Equations (3.16), (3.17) and (3.18)) has the advantage to be unbiased (i.e. E[V̂0g] =
V0g). Thanks to this, the SwE method works well in practice to control the FPR for
any type of within-subject covariance structure existing in the data. Nevertheless, in
small samples, V̂0g has the disadvantage to carry a lot of estimation error due to its
high variability (i.e. Cov[vec[V̂0g]] is very large). This is somehow not an important
issue for the FPR control as the variability of V̂0g is taken into account in the statistical
test (see Section 3.2.4). However, this variability may affect quite strongly the power
to detect effects, particularly in very small samples. Therefore, instead of using V̂0g,
we could consider an alternative estimator �̂0g with a lot of structure (e.g., with an
imposed compound symmetric structure) which has less variability and consequently
carries less estimation error due the variability of the estimator. Unfortunately, if the
imposed structure does not hold, this type of estimators can be strongly biased and can
consequently exhibit a lot of estimation error due to the bias which, in turn, is likely
to affect badly the FPR control of the SwE method. For that reason, in this chapter,
instead of using the unstructured estimator V̂0g or a highly structured estimator �̂0g,
we propose to make a trade-off between both of them and use a shrinkage estimator
R̂0g which simply consists of a convex linear combination of both estimators such that

R̂0g = �g�̂0g + (1� �g)V̂0g; (5.1)
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where the structured �̂0g is generally referred to as the target estimator and the
shrinkage intensity �g can take any values between 0 and 1. In other words, using
the typical jargon of the shrinkage estimator literature, we propose to shrink the
unstructured estimator V̂0g towards the target �̂0g.

This idea of using a shrinkage estimator for the estimation of a covariance matrix
has already been proposed in many fields where a better estimate of the covariance ma-
trix is needed. Nevertheless, in the context of the SwE, as far as we are aware of, the use
of a shrinkage estimator can only be found in Warton (2011). More precisely, Warton
(2011) proposed, in the context of Generalised Estimating Equations (GEE) applied
to multivariate abundance data in ecology, to shrink the common within-cluster co-
variance matrix (only one group considered) towards the within-cluster working co-
variance matrix. The author also proposed to select an optimal shrinkage intensity
using a cross-validation procedure and to make inference using a permutation test
procedure. Finally, he demonstrated a substantial gain of power of its methodology
compared to the use of a SwE without shrinkage. Unfortunately, the methodology he
proposed suffers of several drawbacks that are not really appropriate for the analysis of
longitudinal neuroimaging data with the SwE method described in Chapter 3. First,
his proposal of using the working covariance matrix as target means that, in our case,
we would shrink each V̂0g towards an identity matrix that is likely to be a strongly
biased target. Second, the proposed cross-validation procedure to select an optimal
shrinkage intensity is computationally intensive and would make the SwE method pro-
hibitively slow in the context of neuroimaging data. Third, the proposed permutation
test for inference is also computationally intensive and limited by the assumption of
exchangeability under the null hypothesis which is difficult to validate in the general
context of longitudinal data. Finally, the evaluation made in Warton (2011) was only
focused on the power, not on the essential FPR control, and was performed only in
the case of abundance data which is different from longitudinal neuroimaging data.

In this chapter, we propose to modify the methodology proposed by Warton (2011)
in order to make it more suitable for longitudinal neuroimaging data. First, we pro-
pose the use of other targets, different from identity matrices and more representative
of longitudinal data within-subject covariance matrices. Second, instead of using a
cross-validation procedure for the selection of an optimal shrinkage intensity, we pro-
pose the use of the much faster Ledoit-Wolf procedure (Ledoit and Wolf, 2003) which
is non-iterative, but unfortunately more complicated to implement. More precisely,
we propose two new SwE versions based on the the Ledoit-Wolf procedure that we
will refer to as the Ordinary Ledoit-Wolf Shrinkage SwE (OLWS-SwE) and the Gener-
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alised Ledoit-Wolf Shrinkage SwE (GLWS-SwE). Third, for inference, instead of using
permutation tests, we propose to extend the much faster parametric tests developed in
Section 3.2.4 to account for the shrinkage. Finally, we evaluate the modified method-
ology using intensive Monte Carlo simulations in settings important for longitudinal
neuroimaging studies.

5.2 Methods
In this section, assuming the use of a general target, we first describe the two new SwE
versions based on the Ledoit-Wolf procedure to select an optimal shrinkage estimator.
Then, for seven specific targets, we develop the specific equations needed to compute
the optimal shrinkage intensities. In a third part, we show how the parametric test
developed in Section 3.2.4 can be modified to account for the shrinkage. Finally,
we describe in details how the evaluations were conducted to assess the proposed
methodologies.

5.2.1 The Ordinary Ledoit-Wolf Shrinkage SwE

To find an optimal shrinkage intensity in Equation (5.1), Ledoit and Wolf (2003)
proposed to minimise the expectation of a loss function LOLW

g [�g] consisting of the
square of the Frobenius norm jj � jjF of the difference between the shrinkage estimator
and the true covariance matrix such that, in our case,

LOLW
g [�g] =jj�g�̂0g + (1� �g)V̂0g � V0gjj2F: (5.2)

Note that we use the superscript “OLW”, which stands for “Ordinary Ledoit-Wolf”, to
contrast with another loss function that is proposed in Section 5.2.2. After minimisa-
tion of the expectation of the loss function LOLW

g [�g] (which actually corresponds to the
Mean Squared Error of the shrinkage estimator in the Frobenius norm sense), Ledoit
and Wolf (2003) showed that the optimal shrinkage intensity is, using our notation,
obtained by

�OLW
g =

n0gX

k=1

n0gX

k0=1
var[(V̂0g)kk0]� cov[(�̂0g)kk0; (V̂0g)kk0]

n0gX

k=1

n0gX

k0=1
var[(�̂0g)kk0� (V̂0g)kk0] +

�
E[(�̂0g)kk0]� (V0g)kk0

�2
; (5.3)
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where n0g is the number of visits in group g. Note that, using the fact that E[�2] =
var[�] + (E[�])2, the terms in the denominator of Equation (5.3) can be replaced by
E[((�̂0g)kk0� (V̂0g)kk0)2].

As, in practice, the expectations, variances, covariances and the true within-subject
covariance matrix used in Equation (5.3) are unknown, we typically replace them by
sample estimates of them, leading to an estimator �̂OLW

g . While this is usually not
mentioned in the literature, it is worth noting that this implies that �̂OLW

g cannot
be considered as a constant, but as a random variable. This is likely to introduce
another bias than the one from the target itself. Indeed, taking the expectation of the
shrinkage estimator R̂OLW

0g , we obtain

E[R̂OLW
0g ] = V0g + E[�̂OLW

g (�̂0g � V̂0g)]
= V0g + E[�̂OLW

g ](E[�̂0g]� V0g) + cov[�̂OLW
g ; �̂0g � V̂0g]; (5.4)

and we can see that two bias terms appear. The first term E[�̂OLW
g ](E[�̂0g] � V0g)

corresponds to the bias introduced by the target and will exist even if �̂OLW
g is not

random. The second term cov[�̂OLW
g ; �̂0g � V̂0g] is due to the randomness of �̂OLW

g

and would typically disappear only if �̂OLW
g is not random or if it is independent of

�̂0g � V̂0g. For a general target, the latter is unlikely to happen, even in the case
of an unbiased target. Therefore, it is important to note that, even if we select an
unbiased target, the shrinkage estimator may be biased. Finally, another important
remark is that �̂OLW

g is likely to be a biased estimator of �OLW
g . Unfortunately, due

to the non-linear form of �̂OLW
g , it seems difficult to give an exact expression for this

bias.
Replacing each V̂0g by their corresponding OLW shrinkage estimators R̂OLW

0g in the
computation of the homogeneous SwE SHom (see Section 3.2.3) yields a new type of
SwE that we will refer to as the Ordinary Ledoit-Wolf Shrinkage SwE (OLWS-SwE).

5.2.2 The Generalised Ledoit-Wolf Shrinkage SwE

As described in Section 5.2.1, the Ordinary Ledoit-Wolf procedure aims to reduce the
Mean Squared Error (MSE) of the covariance matrix estimators used in the SwE.
However, even if the MSE of the covariance matrix estimators is reduced, it does not
mean that the one of the SwE S or the one of a contrasted version of it, CSC>, will be
reduced as well. Therefore, instead of attempting to select shrinkage intensities which
minimise the MSE of each R̂0g, it seems more adequate to select shrinkage intensities
which minimise the MSE of S or CSC>. To achieve this, we can define, for each group
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of subjects with a common covariance, an alternative loss function LGLW
g [�g] consisting

of the square of the Frobenius norm of the difference between the group contribution
to the contrasted shrinkage SwE and the one of the true contrasted covariance matrix
of the parameters such that

LGLW
g [�g] =jj�gCS�gC> + (1� �g)CSgC> � CCov(�̂)gC>jj2F; (5.5)

where Sg, S�g and Cov(�̂)g are the contributions of group g to the SwE obtained
using V̂0g, �̂0g and V0g, respectively. Note that, if we were interested to only minimise
the MSE of the SwE S, it suffices to take the identity matrix as contrast matrix
C. Minimising the expectation of this loss function, we obtain an optimal shrinkage
intensity given by

�GLW
g =

qX

k=1

qX

k0=1
var[(CSgC>)kk0]� cov[(CS�gC>)kk0; (CSgC>)kk0]

qX

k=1

qX

k0=1
var[(CS�gC>)kk0� (CSgC>)kk0] + (E[(CS�gC>)kk0]� (CCov(�̂)gC>)kk0)2

.

(5.6)
Using the fact that vec[CSgC>] = Ggvec[V̂0g] (see Equation (3.43)), we can rewrite
Equation (5.6) such that

�GLW
g =

tr[GgCov[vec[V̂0g]; vec[V̂0g � �̂0g]]G>g ]
tr[GgCov[vec[V̂0g � �̂0g]]G>g ] + jjGgvec[E[�̂0g]� V0g]jj2E

; (5.7)

where jj � jjE is the Euclidean norm.
Note that, if we replace Gg by the identity matrix in Equation (5.7), we retrieve

the OLW optimal shrinkage intensity as given in Equation (5.3). Therefore, this alter-
native optimal shrinkage intensity can be seen as a generalisation of the OLW optimal
shrinkage intensity, explaining why, in this thesis, we refer to it as the Generalised
Ledoit-Wolf (GLW) shrinkage intensity.

Similarly to the OLWS-SwE, in practice, we simply replace the covariances and
expectations in Equation (5.7) by sample estimates of them, leading to the estimator
�̂GLW

g , which can be used in Equation (5.1) to compute the shrinkage estimator R̂GLW
0g

which, in turn, can be used to obtain a new version of the SwE that we will refer to
as the Generalised Ledoit-Wolf Shrinkage SwE (GLWS-SwE).
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5.2.3 Choice of the target matrix

Ideally, we should select a target with low variability (to decrease the estimation er-
ror due to the variability), but also with low bias (to minimise the error due to the
bias). Unfortunately, as these two properties are generally antagonistic, the choice
of a target may be difficult in practice and may depend on the data we want to
analyse. Here, inspired by the work in Schäfer and Strimmer (2005), we review
seven popular target choices (see Table 5.1) and give, for each of them, the nec-
essary formulas to ease the computation of the corresponding OLWS-SwE and the
GLWS-SwE. For six of these targets, this work has already been done for �̂OLW

g in
Schäfer and Strimmer (2005). However, as mentioned in Kwan (2011), in the denom-
inator of Equation (5.3), Schäfer and Strimmer (2005) generally assumed that the
term Pn0g

k=1
Pn0g

k0=1 var[(�̂0g)kk0� (V̂0g)kk0] = 0, which is unlikely to be true in practice.
Moreover, for some targets, they made the additional assumption that the term at the
numerator Pn0g

k=1
Pn0g

k0=1 cov[(�̂0g)kk0; (V̂0g)kk0] = 0 and, finally, for one of the targets,
consisting of heterogeneous variances and homogeneous correlations, they assumed
that the homogeneous correlations are not random, which is also not true. Therefore,
in this section, in addition to give the formulas for �̂OLW

g derived in Schäfer and Strim-
mer (2005), we also rederive them without making the same simplifications. For the
computation of the shrinkage intensities �̂GLW

g , we do not provide the exact formulas
as they can be very complicated to write down. However, we provide the formulas
expressing the elements of Cov[vec[�̂0g]] and Cov[vec[V̂0g]; vec[�̂0g]] as a function of
the elements of V0g and Cov[vec[V̂0g]]. These formulas can then be used to express the
two terms Cov[vec[V̂0g � �̂0g]] and Cov[vec[V̂0g]; vec[V̂0g � �̂0g]] present in Equation
(5.7) as a function of the elements of V0g and Cov[vec[V̂0g]].

Note that the equations provided in this section are given as a function of V0g and
Cov[vec[V̂0g]] or sample estimates of them without specifying how these can actually
be obtained. In practice, V0g may be estimated as described in Section 3.2.3 using
Equations (3.16), (3.17) and (3.18) while Cov[vec[V̂0g]] can be estimated using either
the estimator developed for Test II or the one developed for Test III (see Section 3.2.4,
Equations (3.54) and (3.69), respectively).
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(�̂0g)kk0

Target name Description k = k0 k 6= k0

Target A Identity matrix 1 0
Target B Hom. var. & no corr. 1

n0g

Pn0g
k=1(V̂0g)kk 0

Target C Hom. var. & hom. corr. 1
n0g

Pn0g
k=1(V̂0g)kk

2
n0g (n0g�1)

Pn0g
k=1

Pn0g
k0>k(V̂0g)kk0

Target D Het. var. & no corr. (V̂0g)kk 0
Target E Het. var. & perfect positive corr. (V̂0g)kk

q
(V̂0g)kk(V̂0g)k0k0

Target F Het. var. & hom. corr. (V̂0g)kk �̂
q

(V̂0g)kk(V̂0g)k0k0

Target G Hom. var. & perfect positive corr. 1
n0g

Pn0g
k=1(V̂0g)kk

1
n0g

Pn0g
k=1(V̂0g)kk

Table 5.1 Popular targets for covariance matrices. The labelling of the targets corre-
sponds to the one used in Schäfer and Strimmer (2005), except for Target G which was
not investigated therein. “Het.”, “hom.”, “var.” and “corr.” stand for “heterogeneous”,
“homogeneous”, “variances’ and “correlations”, respectively. The expression for �̂ is
given by Equation (5.37).

Target A: the identity matrix

The first target considered in Schäfer and Strimmer (2005) was very simple and con-
sisted of the identity matrix, i.e. with

(�̂0g)kk0 =

8
><

>:

1 if k = k0;

0 if k 6= k0;
(5.8)

and, in this case, the optimal Schäfer-Strimmer OLW shrinkage intensity was given
by

�̂OLW-SS
g =

n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0]
n0gX

k=1

n0gX

k06=k
(V̂0g)2

kk0 +
n0gX

k=1
(1� (V̂0g)kk)2

: (5.9)

Accounting for the variance of each term (�̂0g)kk0 � (V̂0g)kk0, the “correct” OLW
shrinkage intensity is given by

�̂OLW-C
g =

n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0]
n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0] +
n0gX

k=1

n0gX

k06=k
(V̂0g)2

kk0 +
n0gX

k=1
(1� (V̂0g)kk)2

: (5.10)
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Comparing Equation (5.9) with Equation (5.10), we directly see that, as the
term Pn0g

k=1
Pn0g

k0=1 dvar[(V̂0g)kk0] will be always superior to 0, the Schäfer-Strimmer OLW
shrinkage intensity will tend to overestimate the correct OLW shrinkage intensity as
defined by Ledoit and Wolf (2003).

Finally, as the target is not random, we simply get

Cov[vec[�̂0g]] = Cov[vec[V̂0g]; vec[�̂0g]] = 0: (5.11)

Target B: homogeneous variances and no correlation

The second target considered in Schäfer and Strimmer (2005) consisted of the diagonal
matrix with a common variance, i.e. with

(�̂0g)kk0 =

8
>><

>>:

v̂ = 1
n0g

n0gX

k=1
(V̂0g)kk if k = k0;

0 if k 6= k0;
(5.12)

and, in this case, the optimal Schäfer-Strimmer OLW shrinkage intensity was given
by

�̂OLW-SS
g =

n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0]
n0gX

k=1

n0gX

k06=k
(V̂0g)2

kk0 +
n0gX

k=1
(v̂ � (V̂0g)kk)2

: (5.13)

For this target, in addition to assuming that Pn0g
k=1

Pn0g
k0=1 var[(�̂0g)kk0�(V̂0g)kk0] = 0

in the denominator of Equation (5.3), Schäfer and Strimmer (2005) also assumed that
Pn0g

k=1
Pn0g

k0=1 cov[(�̂0g)kk0; (V̂0g)kk0] = 0 in the numerator. Avoiding these two simplifi-
cations, we get instead

�̂OLW-C
g =

�â1 +
n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0]

�â1 +
n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0] +
n0gX

k=1

n0gX

k06=k
(V̂0g)2

kk0 +
n0gX

k=1
(v̂ � (V̂0g)kk)2

(5.14)

where

â1 = 1
n0g

n0gX

k=1

n0gX

k0=1

dcov[(V̂0g)kk; (V̂0g)k0k0]: (5.15)
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In this case, only the diagonal elements of the target are random and are all the
same. Thus, for all k; k0; l; l0 = 1; : : : ; n0g, we have

cov[(�̂0g)kk0; (�̂0g)ll0] =

8
>>><

>>>:

0 if k 6= k0 or l 6= l0

1
n2

0g

n0gX

i=1

n0gX

j=1
cov[(V̂0g)ii; (V̂0g)jj] if k = k0 and l = l0;

(5.16)

cov[(V̂0g)kk0; (�̂0g)ll0] =

8
>><

>>:

0 if l 6= l0;
1
n0g

n0gX

i=1
cov[(V̂0g)kk0; (V̂0g)ii] if l = l0:

(5.17)

Target C: homogeneous variances and homogeneous covariances

The third target considered in Schäfer and Strimmer (2005) consisted of a matrix with
common variances and common covariances, i.e. with

(�̂0g)kk0 =

8
>>>><

>>>>:

v̂ = 1
n0g

n0gX

k=1
(V̂0g)kk if k = k0;

ĉ = 2
n0g(n0g � 1)

n0gX

k=1

n0gX

k0>k
(V̂0g)kk0 if k 6= k0;

(5.18)

and, in this case, the optimal Schäfer-Strimmer OLW shrinkage intensity was given
by

�̂OLW-SS
g =

n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0]
n0gX

k=1

n0gX

k06=k
(ĉ� (V̂0g)kk0)2 +

n0gX

k=1
(v̂ � (V̂0g)kk)2

: (5.19)

Avoiding the simplifications made in the numerator and the denominator in Schäfer
and Strimmer (2005), we get instead

�̂OLW-C
g =

�â1 � â2 +
n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0]

�â1 � â2 +
n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0] +
n0gX

k=1

n0gX

k06=k
(ĉ� (V̂0g)kk0)2 +

n0gX

k=1
(v̂ � (V̂0g)kk)2

(5.20)
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where

â2 = 2
n0g(n0g � 1)

n0gX

k=1

n0gX

k06=k

n0gX

l=1

n0gX

l0>l

dcov[(V̂0g)kk0; (V̂0g)ll0]: (5.21)

For all k; k0; l; l0 = 1; : : : ; n0g, we have

cov[(�̂0g)kk0; (�̂0g)ll0] =

8
>>>>>>>>>><

>>>>>>>>>>:

4
n2

0g(n0g � 1)2

n0gX

i=1

n0gX

i0>i

n0gX

j=1

n0gX

j0>j
cov[(V̂0g)ii0; (V̂0g)jj0] if k 6= k0 and l 6= l0;

1
n2

0g

n0gX

i=1

n0gX

j=1
cov[(V̂0g)ii; (V̂0g)jj] if k = k0 and l = l0;

2
n2

0g(n0g � 1)

n0gX

i=1

n0gX

i0>i

n0gX

j=1
cov[(V̂0g)ii0; (V̂0g)jj] otherwise;

(5.22)

cov[(V̂0g)kk0; (�̂0g)ll0] =

8
>>>><

>>>>:

2
n0g(n0g � 1)

n0gX

i=1

n0gX

i0>i
cov[(V̂0g)kk0; (V̂0g)ii0] if l 6= l0;

1
n0g

n0gX

i=1
cov[(V̂0g)kk0; (V̂0g)ii] if l = l0:

(5.23)

Target D: heterogeneous variances and no correlation

The fourth target considered in Schäfer and Strimmer (2005) consisted of a diagonal
matrix with heterogeneous variances such that

(�̂0g)kk0 =

8
><

>:

(V̂0g)kk0 if k = k0;

0 if k 6= k0;
(5.24)

and, in this case, the optimal Schäfer-Strimmer OLW shrinkage intensity was given
by

�̂OLW-SS
g =

n0gX

k=1

n0gX

k06=k

dvar[(V̂0g)kk0]

n0gX

k=1

n0gX

k06=k
(V̂0g)2

kk0

: (5.25)

Avoiding the simplification made in the denominator in Schäfer and Strimmer



5.2 Methods 119

(2005), we get instead

�̂OLW-C
g =

n0gX

k=1

n0gX

k06=k

dvar[(V̂0g)kk0]

n0gX

k=1

n0gX

k06=k

dvar[(V̂0g)kk0] +
n0gX

k=1

n0gX

k06=k
(V̂0g)2

kk0

: (5.26)

For all k; k0; l; l0 = 1; : : : ; n0g, we have

cov[(�̂0g)kk0; (�̂0g)ll0)] =

8
><

>:

0 if k 6= k0 or l 6= l0;

cov[(V̂0g)kk; (V̂0g)ll] if k = k0 and l = l0;
(5.27)

cov[(V̂0g)kk0; (�̂0g)ll0] =

8
><

>:

0 if l 6= l0;

cov[(V̂0g)kk0; (V̂0g)ll] if l = l0:
(5.28)

Target E: heterogeneous variances and perfect positive correlation

The fifth target considered in Schäfer and Strimmer (2005) consisted of a matrix with
heterogeneous variances and correlations equal to one such that

(�̂0g)kk0 =

8
><

>:

(V̂0g)kk0 if k = k0;
q

(V̂0g)kk(V̂0g)k0k0 if k 6= k0;
(5.29)

and, in this case, the optimal Schäfer-Strimmer OLW shrinkage intensity was given
by

�̂OLW-SS
g =

�â3 +
n0gX

k=1

n0gX

k06=k

dvar[(V̂0g)kk0]

n0gX

k=1

n0gX

k06=k

�q
(V̂0g)kk(V̂0g)k0k0� (V̂0g)kk0

�2
(5.30)

where

â3 =
n0gX

k=1

n0gX

k06=k

vuut(V̂0g)k0k0

(V̂0g)kk
dcov[(V̂0g)kk; (V̂0g)kk0]: (5.31)

Note that, in order to estimate the covariances cov
hq

(V̂0g)kk(V̂0g)k0k0; (V̂0g)kk0

i
,

Schäfer and Strimmer (2005) used the delta method which is based on the approxi-
mation of

q
(V̂0g)kk(V̂0g)k0k0 by a first-order Taylor series around the point estimates
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of (V̂0g)kk and (V̂0g)k0k0.
Avoiding the simplification made in the denominator in Schäfer and Strimmer

(2005) and using the delta method to estimate the variances var
hq

(V̂0g)kk(V̂0g)k0k0

i
,

we get instead

�̂OLW-C
g =

�â3 +
n0gX

k=1

n0gX

k06=k

dvar[(V̂0g)kk0]

â4 � 2â3 +
n0gX

k=1

n0gX

k06=k

dvar[(V̂0g)kk0] +
n0gX

k=1

n0gX

k06=k

�q
(V̂0g)kk(V̂0g)k0k0� (V̂0g)kk0

�2
;

(5.32)

where

â4 =1
2

n0gX

k=1

n0gX

k06=k

 
(V̂0g)k0k0

(V̂0g)kk
dvar[(V̂0g)kk] + dcov[(V̂0g)kk; (V̂0g)k0k0]

!

: (5.33)

Using the delta method, we get, for all k; k0; l; l0 = 1; : : : ; n0g,

cov[(�̂0g)kk0; (�̂0g)ll0] �

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1
4

0

@

vuut(V̂0g)k0k0(V̂0g)l0l0

(V̂0g)kk(V̂0g)ll
cov[(V̂0g)kk; (V̂0g)ll]

+

vuut(V̂0g)kk(V̂0g)l0l0

(V̂0g)k0k0(V̂0g)ll
cov[(V̂0g)k0k0; (V̂0g)ll]

+

vuut(V̂0g)k0k0(V̂0g)ll

(V̂0g)kk(V̂0g)l0l0
cov[(V̂0g)kk; (V̂0g)l0l0]

+

vuut (V̂0g)kk(V̂0g)ll

(V̂0g)k0k0(V̂0g)l0l0
cov[(V̂0g)k0k0; (V̂0g)l0l0]

1

A if k 6= k0 and l 6= l0;

1
2

0

@

vuut(V̂0g)k0k0

(V̂0g)kk
cov[(V̂0g)kk; (V̂0g)ll]

+

vuut (V̂0g)kk

(V̂0g)k0k0

cov[(V̂0g)k0k0; (V̂0g)ll]
1

A if k 6= k0 and l = l0

1
2

0

@

vuut(V̂0g)l0l0

(V̂0g)ll
cov[(V̂0g)kk; (V̂0g)ll]

+

vuut (V̂0g)ll

(V̂0g)l0l0
cov[(V̂0g)kk; (V̂0g)l0l0]

1

A if k = k0 and l 6= l0

cov[(V̂0g)kk; (V̂0g)ll] if k = k0 and l = l0;
(5.34)
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cov[(V̂0g)kk0; (�̂0g)ll0] �

8
>>>>>>>>>><

>>>>>>>>>>:

1
2

0

@

vuut(V̂0g)l0l0

(V̂0g)ll
cov[(V̂0g)kk0; (V̂0g)ll]

+

vuut (V̂0g)ll

(V̂0g)l0l0
cov[(V̂0g)kk0; (V̂0g)l0l0]

1

A if l 6= l0;

cov[(V̂0g)kk0; (V̂0g)ll] if l = l0:

(5.35)

Target F: heterogeneous variances and homogeneous correlations

The last target considered in Schäfer and Strimmer (2005) consisted of a matrix with
heterogeneous variances and homogeneous correlations such that

(�̂0g)kk0 =

8
><

>:

(V̂0g)kk0 if k = k0

�̂
q

(V̂0g)kk(V̂0g)k0k0 if k 6= k0;
(5.36)

where

�̂ = 2
n0g(n0g � 1)

n0gX

k=1

n0gX

k0>k

0

@ (V̂0g)kk0
q

(V̂0g)kk(V̂0g)k0k0

1

A : (5.37)

For this target, the optimal Schäfer-Strimmer OLW shrinkage intensity was given
by

�̂OLW-SS
g =

��̂â3 +
n0gX

k=1

n0gX

k06=k

dvar[(V̂0g)kk0]

n0gX

k=1

n0gX

k06=k

�
�̂
q

(V̂0g)kk(V̂0g)k0k0� (V̂0g)kk0

�2
:

(5.38)

For this target, Schäfer and Strimmer (2005) assumed again that the denominator
term Pn0g

k=1
Pn0g

k0=1 var[(�̂0g)kk0�(V̂0g)kk0] = 0 and used the delta method to estimate the
covariances cov

h
�̂
q

(V̂0g)kk(V̂0g)k0k0; (V̂0g)kk0

i
, but assumed that �̂ is not random. Note

that Kwan (2008) modified the Equation (5.38) by accounting for the randomness of
�̂ in the delta method, but did not correct for the simplification at the denominator
of Equation (5.3). Here, using the correction proposed by Kwan (2008) and avoiding
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the simplification made at the denominator, we get

�̂OLW-C
g =

��̂â3 � â5 +
n0gX

k=1

n0gX

k06=k

dvar[(V̂0g)kk0]

â6 + �̂2â4 � 2�̂â3 � 2â5 +
n0gX

k=1

n0gX

k06=k

 

dvar[(V̂0g)kk0] +
�
�̂
q

(V̂0g)kk(V̂0g)k0k0� (V̂0g)kk0

�2
!

(5.39)
where

â5 = 1
n0g(n0g � 1)

n0gX

k=1

n0gX

k06=k

n0gX

l=1

n0gX

l06=l

vuut(V̂0g)kk(V̂0g)k0k0

(V̂0g)ll(V̂0g)l0l0

�
dcov[(V̂0g)ll0; (V̂0g)kk0]

�
(V̂0g)ll0

(V̂0g)ll
dcov[(V̂0g)ll; (V̂0g)kk0]

�
; (5.40)

â6 =dvar[�̂]
n0gX

k=1

n0gX

k06=k
(V̂0g)kk(V̂0g)k0k0

+ 2�̂
n0g(n0g � 1)

n0gX

k=1

n0gX

k06=k

n0gX

l=1

n0gX

l06=l

(V̂0g)k0k0
q

(V̂0g)ll(V̂0g)l0l0

�
dcov[(V̂0g)ll0; (V̂0g)kk]

�
(V̂0g)ll0

(V̂0g)ll
dcov[(V̂0g)ll; (V̂0g)kk)

�
; (5.41)

dvar[�̂] = 1
n2

0g(n0g � 1)2

n0gX

k=1

n0gX

k06=k

n0gX

l=1

n0gX

l06=l

1
q

(V̂0g)kk(V̂0g)k0k0(V̂0g)ll(V̂0g)l0l0

�
�
dcov[(V̂0g)ll0; (V̂0g)kk0]� 2(V̂0g)ll0

(V̂0g)ll
dcov[(V̂0g)ll; (V̂0g)kk0]

+ (V̂0g)ll0(V̂0g)kk0

(V̂0g)ll(V̂0g)kk
dcov[(V̂0g)ll; (V̂0g)kk]

�
: (5.42)

Using the delta method, we get, for all k; k0; l; l0 = 1; : : : ; n0g,

cov[(V̂0g)kk0; (�̂0g)ll0] �

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

q
(V̂0g)ll(V̂0g)l0l0cov[�̂; (V̂0g)kk0]

+ �̂2

0

@

vuut(V̂0g)l0l0

(V̂0g)ll
cov[(V̂0g)kk0; (V̂0g)ll]

+

vuut (V̂0g)ll

(V̂0g)l0l0
cov[(V̂0g)kk0; (V̂0g)l0l0]

1

A if l 6= l0;

cov[(V̂0g)kk0; (V̂0g)ll] if l = l0;

(5.43)
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cov[(�̂0g)kk0; (�̂0g)ll0] �

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

q
(V̂0g)kk(V̂0g)k0k0(V̂0g)ll(V̂0g)l0l0var[�̂]

+ �̂2

0

@

vuut(V̂0g)k0k0(V̂0g)kk(V̂0g)l0l0

(V̂0g)ll
cov[�̂; (V̂0g)ll]

+

vuut(V̂0g)kk(V̂0g)k0k0(V̂0g)ll

(V̂0g)l0l0
cov[�̂; (V̂0g)l0l0]

+

vuut(V̂0g)k0k0(V̂0g)ll(V̂0g)ll

(V̂0g)kk
cov[�̂; (V̂0g)kk]

+

vuut(V̂0g)kk(V̂0g)ll(V̂0g)l0l0

(V̂0g)k0k0

cov[�̂; (V̂0g)k0k0]
1

A

+ �̂
2

4

0

@

vuut(V̂0g)k0k0(V̂0g)l0l0

(V̂0g)kk(V̂0g)ll
cov[(V̂0g)kk; (V̂0g)ll]

+

vuut(V̂0g)kk(V̂0g)l0l0

(V̂0g)k0k0(V̂0g)ll
cov[(V̂0g)k0k0; (V̂0g)ll]

+

vuut(V̂0g)k0k0(V̂0g)ll

(V̂0g)kk(V̂0g)l0l0
cov[(V̂0g)kk; (V̂0g)l0l0]

+

vuut (V̂0g)kk(V̂0g)ll

(V̂0g)k0k0(V̂0g)l0l0
cov[(V̂0g)k0k0; (V̂0g)l0l0]

1

A if k 6= k0 and l 6= l0;
q

(V̂0g)kk(V̂0g)k0k0cov[�̂; (V̂0g)ll]

+ �̂2

0

@

vuut(V̂0g)k0k0

(V̂0g)kk
cov[(V̂0g)kk; (V̂0g)ll]

+

vuut (V̂0g)kk

(V̂0g)k0k0

cov[(V̂0g)k0k0; (V̂0g)ll]
1

A if k 6= k0 and l = l0;
q

(V̂0g)ll(V̂0g)l0l0cov[�̂; (V̂0g)kk]

+ �̂2

0

@

vuut(V̂0g)l0l0

(V̂0g)ll
cov[(V̂0g)kk; (V̂0g)ll]

+

vuut (V̂0g)ll

(V̂0g)l0l0
cov[(V̂0g)kk; (V̂0g)l0l0]

1

A if k = k0 and l 6= l0;

cov[(V̂0g)kk; (V̂0g)ll] if k = k0 and l = l0;
(5.44)

where

cov[�̂; (V̂0g)ll0] �
1

n0g(n0g � 1)

n0gX

k=1

n0gX

k06=k

1
q

(V̂0g)kk(V̂0g)k0k0

�
 

cov[(V̂0g)kk0; (V̂0g)ll0]�
(V̂0g)kk0

(V̂0g)kk
cov[(V̂0g)kk; (V̂0g)ll0]

!

; (5.45)
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var[�̂] � 1
n2

0g(n0g � 1)2

n0gX

k=1

n0gX

k06=k

n0gX

l=1

n0gX

l06=l

1
q

(V̂0g)kk(V̂0g)k0k0(V̂0g)ll(V̂0g)l0l0

�
�

cov[(V̂0g)ll0; (V̂0g)kk0]� 2(V̂0g)ll0

(V̂0g)ll
cov[(V̂0g)ll; (V̂0g)kk0]

+ (V̂0g)ll0(V̂0g)kk0

(V̂0g)ll(V̂0g)kk
cov[(V̂0g)ll; (V̂0g)kk]

�
: (5.46)

Target G: homogeneous variances and perfect positive correlations

In this thesis, we also consider a seventh target, similar to Target E, but with homo-
geneous variances such that

(�̂0g)kk0 =

8
>><

>>:

v̂ = 1
n0g

n0gX

k=1
(V̂0g)kk if k = k0;

v̂ if k 6= k0:
(5.47)

This target was not investigated in Schäfer and Strimmer (2005), but, we can
make the same simplifications as performed for Targets B and C, and the optimal
Schäfer-Strimmer OLW shrinkage intensity would be given by

�̂OLW-SS
g =

n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0]
n0gX

k=1

n0gX

k0=1
(v̂ � (V̂0g)kk)2

: (5.48)

Avoiding the simplifications, we get instead

�̂OLW-C
g =

�â7 +
n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0]

n0gâ1 � 2â7 +
n0gX

k=1

n0gX

k0=1

dvar[(V̂0g)kk0] +
n0gX

k=1

n0gX

k0=1
(v̂ � (V̂0g)kk)2

; (5.49)

where

â7 = 1
n0g

n0gX

k=1

n0gX

k0=1

n0gX

l=1

dcov[(V̂0g)ll; (V̂0g)kk0]: (5.50)
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Finally, for all k; k0; l; l0 = 1; : : : ; n0g, we have

cov[(�̂0g)kk0; (�̂0g)ll0] = 1
n2

0g

nX

i=1

n0gX

j=1
cov[(V̂0g)ii; (V̂0g)jj]; (5.51)

cov[(V̂0g)kk0; (�̂0g)ll0] = 1
n0g

n0gX

i=1
cov[(V̂0g)kk0; (V̂0g)ii]: (5.52)

5.2.4 Parametric inferences

If the shrinkage intensity �̂g is greater than 0, the variability of the shrinkage esti-
mator R̂0g will typically be different from the one of the unstructured estimator V̂0g.
Therefore, the parametric tests developed in Section 3.2.4 have to be modified to ac-
count for the change of variability implied by the shrinkage. Here, we propose to
modify Test II and Test III by replacing the estimator of each Cov[vec[V̂0g]] by an
estimator of Cov[vec[R̂0g]]. Nevertheless, to achieve this, we need to get an estimator
of Cov[vec[R̂0g]]. Unfortunately, due to the non-linearity of �̂g, this seems to be a very
challenging task if we do not assume that �̂g is not a random variable. Therefore,
here, we first make the assumption that �̂g is not random and we then get

cov[(R̂0g)kk0; (R̂0g)ll0] =�̂2
gcov[(�̂0g)kk0; (�̂0g)ll0] + (1� �̂g)2cov[(V̂0g)kk0; (V̂0g)ll0]

+ �̂g(1� �̂g)(cov[(�̂0g)kk0; (V̂0g)ll0] + cov[(V̂0g)kk0; (�̂0g)ll0]):
(5.53)

We can see that the elements of Cov[vec[R̂0g]] depends on the target choice. For
each of the seven targets introduced in Section 5.2.3, the formulas provided in that
section for cov[(�̂0g)kk0; (�̂0g)ll0)] and cov[(V̂0g)kk0; (�̂0g)ll0)] can be used to express
cov[(R̂0g)kk0; (R̂0g)ll0] as a function of the elements of V0g and Cov[vec[V̂0g]]. Then,
we propose to replace V0g and Cov[vec[V̂0g]] by sample estimates of them. Specifically,
for V0g, we propose to use the unstructured estimator V̂0g and, for Cov[vec[V̂0g]], we
propose to use the estimator proposed for Test II (see Section 3.2.4, Equation (3.54))
or the one proposed for Test III (see Section 3.2.4, Equation (3.69)), leading to two
estimators for Cov[vec[R̂0g]] that we will refer to as dCovII[vec[R̂0g]] and dCovIII[vec[R̂0g]].

Finally, in order to modify Test II, we propose to simply replace dCovII[vec[V̂0g]]
by dCovII[vec[R̂0g]] in Equation (3.58). Similarly, we propose to modify Test III by
replacing dCovIII[vec[V̂0g]] by dCovIII[vec[R̂0g]] in Equation (3.70).
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5.2.5 Monte Carlo evaluations

To evaluate the shrinkage method proposed in this chapter, we performed several
Monte Carlo simulations in the same scenarios as in the Monte Carlo Simulations
performed in Chapter 3 (see Section 3.2.5). Each simulated dataset was analysed using
56 versions of the shrinkage SwE, differing by the use of one of the eight shrinkage
SwE versions mentioned in Table 5.2 combined with one of the seven targets (A-G)
presented in Section 5.2.3.

Shrinkage SwE name Estimator to shrink Formula type Covariance estimator type

OLWS-SwE-SS II V̂0g “Schäfer-Strimmer” dCovII[vec[V̂0g]]
OLWS-SwE-SS III V̂0g “Schäfer-Strimmer” dCovIII[vec[V̂0g]]
OLWS-SwE-C II V̂0g “Correct” dCovII[vec[V̂0g]]
OLWS-SwE-C III V̂0g “Correct” dCovIII[vec[V̂0g]]
GLWS-SwE-S II S - dCovII[vec[V̂0g]]
GLWS-SwE-S III S - dCovIII[vec[V̂0g]]

GLWS-SwE-CSC II CSC> - dCovII[vec[V̂0g]]
GLWS-SwE-CSC III CSC> - dCovIII[vec[V̂0g]]

Table 5.2 Shrinkage SwE versions investigated in the Monte Carlo simulations. The
first column gives the name of the shrinkage SwE versions. The second column in-
dicates which estimator is targeted by the loss functions Lg[�g] for MSE reduction.
The third column indicates, when applicable, which formula is used to compute the
optimal shrinkage intensity (i.e. �̂OLW-SS

g or �̂OLW-C
g given in Section 5.2.3). Finally, the

fourth columns indicates which estimator is used to estimate Cov[vec[V̂0g]]; note that
dCovII[vec[V̂0g]] is given by Equation (3.54) while dCovIII[vec[V̂0g]] is given by Equation
(3.69).

All the shrinkage SwE versions were computed using the small sample adjustment
used in SHom

C2 as it was found to be the best in the simulations performed in Chapter
3. As baseline for comparison, we also used the SwE SHom

C2 without any shrinkage. For
inference, we considered the same contrasts as in the simulations of Chapter 3, and
used Test II and Test III, modified as described in Section 5.2.4.

Assessment metrics

As a first set of assessment metrics, we used the Mean Squared Error (MSEF), the
Variance (VARF) and the Squared Bias (SBIASF) of each shrinkage estimator R̂0g
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defined in the sense of the Frobenius norm, i.e. given by

MSEF =
n0gX

k=1

n0gX

k0=1
E[((R̂0g)kk0� (V0g)kk0)2]; (5.54)

VARF =
n0gX

k=1

n0gX

k0=1
E[((R̂0g)kk0� E[(R0g)kk0])2]; (5.55)

SBIASF =
n0gX

k=1

n0gX

k0=1
(E[(R̂0g)kk0]� (V0g)kk0)2: (5.56)

Note that it can be easily verified that MSEF = VARF + SBIASF.
As a second set of assessment metrics, we used the Mean Squared Error (MSE),

the Variance (VAR) and the Bias (BIAS) of each contrasted SwE CSC>, i.e. given by

MSE = E[(CSC> � var[C�̂])2]; (5.57)
VAR = E[(CSC> � E[CSC>])2]; (5.58)
BIAS = E[CSC>]� var[C�̂]; (5.59)

which are linked by the fact that MSE = VAR + BIAS2.
Finally, as a third set of assessment metrics, we used the FPR and power in order

to assess the quality of the inferences.

5.3 Results
In this section, we summarise the results of the Monte Carlo simulations described
in Section 5.2.5. Note that we only show results for the smallest sample sizes (i.e.
for the balanced designs with 12 subjects and the unbalanced ADNI designs with 25
subjects) as these corresponded to the designs where the effect of shrinkage was the
most important.

5.3.1 Estimation error of R̂0g

Figure 5.1 and 5.2 compare the OLWS-SwE versions in terms of the estimations errors
of R̂0g for two specific groups of subjects (the group B in the balanced designs with
12 subjects and the MCI group in the unbalanced ADNI designs with 25 subjects)
across several scenarios. Overall, it seems that the best results were achieved when
the Schäfer-Strimmer simplifications were not used, particularly in the four scenarios
with correlated data (see rows 2-5 in the figures). When the Schäfer-Strimmer simpli-
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fications were used, the shrinkage estimator had the tendency to overshrink, increasing
quite strongly the bias and even leading to an increase of the MSEF in some scenarios.

Fig. 5.1 Barplots comparing the MSEF, VARF and SBIASF of the shrinkage estimator
R̂B obtained using several versions of the OLWS-SwE in the balanced designs with
12 subjects in total. A description of the target can be found in Table 5.1 while a
description of the shrinkage methods can be found in Table 5.2.

Regarding the target choice, Targets E and G, which both assume perfect positive
correlations, yielded the smallest reductions of MSEF while Targets A, B and D, which
all assume no correlation, seemed to yield overall the largest reduction of MSEF.
Targets C and F, which both assume homogeneous correlations, seemed to have an
intermediary behaviour with Target C working better than Target F. While Target
C was less performant that Target A, B and D in some scenarios (see, e.g., rows 2-5
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in Figure 5.1), it seemed to perform as well or even better than them in some other
scenarios (see, e.g., Figure 5.2) and had the tendency to carry a lot of less estimation
error due to the bias, making it an interesting candidate.

Fig. 5.2 Barplots comparing the MSEF, VARF and SBIASF of the shrinkage estimator
R̂MCI obtained using several versions of the OLWS-SwE in the unbalanced ADNI
designs with 25 subjects in total. A description of the target can be found in Table
5.1 while a description of the shrinkage methods can be found in Table 5.2.

Finally, for the OLWS-SwE using the Schäfer-Strimmer simplifications, the results
obtained with dCovII[vec[V̂0g]] seemed better than those obtained with dCovIII[vec[V̂0g]].
However, for the OLWS-SwE avoiding the Schäfer-Strimmer simplifications, the results
seemed to indicate the converse, i.e. better performances with dCovIII[vec[V̂0g]].
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5.3.2 Estimation error of the contrasted SwE CSC>

Figures 5.3 and 5.4 compares the relative MSE (defined as the ratio between the MSE
obtained with shrinkage and the one obtained without shrinkage) of several contrasted
shrinkage SwE. We clearly see that al the OLWS-SWE versions yielded poor results
exhibiting, in some scenarios, an increase of MSE, mainly when the Schäfer-Strimmer
simplifications were used. The GLWS-SwE versions targeting the reduction of the
MSEF of the whole SwE (GLWS-SwE-S) seemed to work poorly as well, exhibiting, in
some scenarios, an increase of MSE. Only the GLWS-SwE versions focusing directly
on the minimisation of the MSE of the contrasted SwE (GLWS-SwE-CSC) seemed to
work appropriately, particularly when the estimator of covariances dCovIII[vec[V̂0g]] was
used (GLWS-SwE-CSC III).

Fig. 5.3 Boxplots showing the relative MSE (defined as the ratio between the MSE
obtained with shrinkage and the one obtained without shrinkage) of several contrasted
shrinkage SwE over 9 contrasts, 3 numbers of visits and 6 covariance matrix structures.
Note that, for clarity, the scales are different over targets.

Figures 5.5 shows the results in more details for GLWS-SwE-CSC III in the unbal-
anced ADNI designs with 25 subjects. It seemed that the best target choice depends
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Fig. 5.4 Boxplots showing the relative MSE (defined as the ratio between the MSE
obtained with shrinkage and the one obtained without shrinkage) of several contrasted
shrinkage SwE over 24 contrasts and 6 covariance matrix structures. Note that, for
clarity, the scales are different over targets.

strongly on the type of effects. Indeed, for the cross-sectional effects considered, Tar-
gets A, B and D, all assuming no correlation, seemed to outperform the other targets
while this was not the case for the longitudinal effects. For those effects, Target C,
which has a compound symmetric structure, seemed overall the best performing choice.

5.3.3 Parametric inference

Figure 5.6 (bottom) shows some typical results about the control of the FPR obtained
with Test III using a shrinkage estimator. We clearly see that the use of a shrinkage
SwE systematically yielded a liberal control of the FPR. This can be explained by the
fact that the shrinkage tended to introduce a negative bias (see top of Figure 5.6) into
the SwE which, in turn, tended to inflate the Wald scores. This liberal control of the
FPR were observed across the majority of the scenarios investigated, indicating that
no valid parametric inference was typically obtained when a shrinkage estimator was
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Fig. 5.5 Boxplots showing the relative MSE of several contrasted shrinkage SwE after
using the GLWS-SWE-CSC III over 12 cross-sectional contrasts (top) and 12 longitu-
dinal contrasts (bottom) in the unbalanced ADNI designs with 25 subjects in total.
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used.
As the observed inferences were typically invalid, we do not show any results re-

garding the power. Note, though, that the use of shrinkage seemed to improve the
power. Nevertheless, this can be attributed to both the reduction of variability and
the negative bias observed in the shrinkage SwE, which is not acceptable.

5.4 Conclusion
In this chapter, inspired by the work of Warton (2011), we have investigated the use of
shrinkage in the computation of the SwE. More precisely, we have proposed two main
version of shrinkage SwE, the OLWS-SwE and the GLWS-SwE, both based on the
use of the Ledoit-Wolf procedure (Ledoit and Wolf, 2003) to estimate the shrinkage
intensity. These have the advantage, compared to cross-validation procedures, to be
relatively fast to compute. For seven potential targets, we have also provided the
necessary equations allowing an easy computation of these shrinkage SwE versions.

Using Monte Carlo simulations, we have showed that the shrinkage estimator R̂0g

used in the OLWS-SwE versions may effectively be used to reduce the MSEF of the co-
variance matrix estimator, but that it is preferable to avoid the simplifications made
in Schäfer and Strimmer (2005) as they had the tendency to overshrink. However,
the Monte Carlo simulations also showed that the OLWS-SwE is not a reliable way
to reduce the MSE of a contrasted SwE CSC> and that only the GLWS-SwE ver-
sion targeting specifically the reduction of MSE of CSC> and using the estimator
dCovIII[vec[V̂0g]] was able to achieve valid reductions of MSE.

Regarding the target choice, the Monte Carlo simulations seemed to indicate that
the best choice may depend on the type of effects we are interesting in. For cross-
sectional effects, it seemed that the targets assuming no correlation (Targets A, B and
D) were the most appropriate while Target C, which assumes a compound symmet-
ric structure, seemed the best choice for longitudinal effects. Note that alternative
targets could be considered. For example, we could use a target obtained by pooling
information from several voxels, such as one of the smooth estimators of covariance
matrix proposed in Chapter 6 or, as suggested by Gerard Ridgway, a target based on
the global covariance structure estimated by the SPM procedure described in Section
2.3.4. However, further work is needed to investigate this idea.

Unfortunately, while the GLWS-SwE was able to somehow improve the quality of
the estimation of var[C�̂], at least in terms of MSE, it seemed clear from the Monte
Carlo simulations that it was unsuitable to make parametric inferences due to the bias
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Fig. 5.6 Boxplots showing the relative bias (defined as the ratio between the bias
and var[C�̂]) and the FPR obtained after using Test III for several shrinkage SwE
versions over 24 contrasts in the unbalanced ADNI design with 25 subjects under
Toeplitz correlations and heterogeneous variances. Note that, for clarity, only the
results between 0% and 32% of FPR are shown, affecting only the results related to
Target G.
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induced by the shrinkage. Nevertheless, as a future project, it would be interesting
to investigate the use of the Wild Bootstrap investigated in Chapter 4 in order to
make non-parametric inferences with the shrinkage SwE. Indeed, in Section 4.3.1, the
Wild Bootstrap appeared to be relatively robust against the presence of bias in the
SwE, indicating that it might also be robust against the bias typically observed in the
shrinkage SwE.

Finally, note that we did not apply the shrinkage SwE approach to the real ADNI
dataset as the Monte Carlo simulations showed that the parametric tests developed in
Section 5.2.4 are invalid. Nevertheless, even if we have not found any direct application
of the shrinkage SwE in our context, as our main goal is to make statistical inference,
the work made in this chapter could still be useful in other contexts, for example, when
an estimate of variance (or covariance matrix) with less estimation error is needed.





Chapter 6

Covariance matrix smoothing in
the Sandwich Estimator

6.1 Introduction
When the number of subjects is small, each covariance matrix estimator V̂0g used in
the homogeneous SwE SHom (see Section 3.2.3) is expected to be highly variable, po-
tentially limiting the power to detect effects. In Chapter 5, we attempted to reduce
the variability of the covariance matrix estimators by shrinking them towards less vari-
able estimators. While the latter allowed a reduction of variability, we showed that it
also typically induced a bias in the SwE, which unfortunately prevented to make valid
parametric inference. Nevertheless, instead of attempting to reduce the variability
using only the information at the voxel level, we may try to use the information from
several voxels. Indeed, if each covariance matrice V0g is homogeneous across the brain,
at least locally, we may want to pool the information across voxels by, for example,
spatially smoothing the covariance matrix images.

This idea has already been proposed in neuroimaging, but, to our knowledge, only
in the context of a scalar variance (Nichols and Holmes, 2002; Worsley et al., 2002).
In particular, Nichols and Holmes (2002) proposed this in the context of permutation
tests while Worsley et al. (2002) proposed this in the context of parametric tests
where the scalar variance could be decomposed into two components, a fixed effect
variance with low variability and a random effect variance with high variability. In
this context, Worsley et al. (2002) argued that the global variance image is in general
not homogeneous and proposed instead to smooth the ratio between the random effect
variance and the fixed effect variance, arguing that it is a more homogeneous image.

In our case, however, we do not have scalar variances, but covariance matrices that
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are far more challenging to handle. First, a covariance matrix belongs to the space
of positive semi-definite matrices and, as such, the use of a simple metric like the
Euclidean metric may not be appropriate for the smoothing. Indeed, in the context
of Diffusion Tensor Imaging (DTI), Dryden et al. (2009) reported that other metrics
such as the Root-Euclidean or the Log-Euclidean metric should be preferred when one
wants to average or interpolate covariance matrices. However, the sample covariance
matrices we encounter in longitudinal neuroimaging data and, more particularly, in
the context of the SwE method may differ from the ones we encounter in DTI. There-
fore, it is relatively unclear which metric should be used in our context. Another
challenge resides in the fact that, in general, the covariance matrices are not homoge-
neous across the brain, even locally. Therefore, it would be desirable to first spatially
homogenise the covariance matrices before smoothing them, like it was proposed in
Worsley et al. (2002). Nevertheless, the homogenisation proposed in Worsley et al.
(2002) concerned scalar variances which can be decomposed into fixed and random
effect terms and, therefore, it cannot be reproduced for our purpose. In our case, we
need to find a proper way to homogenise covariance matrices, which is definitively
more challenging. Finally, in the context of parametric inference, even if we find a
good smoothing metric and a good homogenisation, we still need to quantify how the
effective number of degrees of freedom is increased after the spatial smoothing. This
might be also challenging as this depends on several factors such as the smoothing
metric, the homogenisation and the degree of spatial smoothness initially present in
the images.

In this chapter, inspired by the work in Dryden et al. (2009), we first review
several possible smoothing metrics. Then, we propose several homogenisations of the
covariance matrices and discuss how we could estimate the effective number of degrees
of freedom after spatial smoothing. Finally, we use Monte Carlo simulations to assess
the smoothing metrics and the proposed homogenisation in settings important for
longitudinal neuroimaging data.

6.2 Methods

6.2.1 Smoothing metrics

In Nichols and Holmes (2002) and in Worsley et al. (2002), the smoothing was made
on scalar values using the Euclidean metric. In our case, we can also consider the
Euclidean metric, for which, the smoothed covariance matrix at voxel v is given by
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smE[V̂0g[v]] =
X

v0

K[v; v0]V̂0g[v0]; (6.1)

where V̂0g[v0] is the original sample covariance matrix estimate at voxel v0 and K[v; v0]
is a Gaussian kernel.

In order to define other metrics, let us first consider the spectral decomposition
V̂0g[v] = U [v]�[v]U>[v], where U [v] is a matrix containing the eigenvectors of V̂0g[v]
and �[v] is a diagonal matrix containing the eigenvalues of V̂0g[v] in its diagonal.
Based on this spectral decomposition, we can define the matrix logarithm, the matrix
exponential and the matrix square root of V̂0g[v] as

log[V̂0g[v]] = U [v]log[�[v]]U>[v]; (6.2)
exp[V̂0g[v]] = U [v]exp[�[v]]U>[v]; (6.3)

V̂ 1=2
0g [v] = U [v]�1=2[v]U>[v]; (6.4)

respectively, where log[�[v]], exp[�[v]] and �1=2[v] are the diagonal matrices with
diagonal elements obtained by taking the logarithms, the exponentials and the square
roots of the eigenvalues of V̂0g[v], respectively.

Using these definitions, we can define the Log-Euclidean metric (Arsigny et al.,
2007), for which, the smoothed covariance matrix at voxel v is given by

smL[V̂0g[v]] = exp
hX

v0

K[v; v0]log[V̂0g[v0]]
i
: (6.5)

Also, we can define the Square-Root-Euclidean metric (Dryden et al., 2009), for
which, the smoothed covariance matrix at voxel v is given by

smSR[V̂0g[v]] =
�X

v0

K[v; v0]V̂ 1=2
0g [v0]

��X

v0

K[v; v0]V̂ 1=2
0g [v0]

�
: (6.6)

Finally, using the Cholesky decomposition V̂0g[v] = chol[V̂0g[v]]chol[V̂0g[v]]>, we can
define the Cholesky metric (Wang et al., 2004), for which, the smoothed covariance
matrix at voxel v is given by

smC[V̂0g[v]] =
�X

v0

K[v; v0]chol[V̂0g[v]]
��X

v0

K[v; v0]chol[V̂0g[v]]
�>
: (6.7)

Other metrics may also be considered such as, for example, the Procrustes size-and-
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shape metric (Dryden et al., 2009). However, these type of metric seems generally more
complicated to handle and, therefore, in this thesis, we only consider the Euclidean,
the Log-Euclidean, the Square-Root-Euclidean and the Cholesky metrics as defined
above.

6.2.2 Spatial homogenisations

Using Equations (6.1), (6.5), (6.6) or (6.7), the sample covariance matrix images are
smoothed directly without any transformation. To be valid, the covariance matrices
have to be homogeneous across the brain or at least locally homogeneous. Unfor-
tunately, this is unlikely to be true in practice. Therefore, we can attempt to first
homogenise the sample covariance matrices, before smoothing them. This type of
strategy has already been proposed in Worsley et al. (2002), but only on scalar values
and, to our knowledge, no extension to covariance matrices exists in the literature.
Therefore, here, we propose several smoothing strategies relying on some form of ho-
mogenisation of the sample covariance matrices as described below.

The first idea is to homogenise the sample covariance matrices by dividing them
by their respective traces. All the transformed covariance matrices should then have a
trace equal to one and lead to a smoothing for which the smoothed covariance matrix
at voxel v is given by

eV tr
0g [v] = sm

"
V̂0g[v]

tr[V̂0g[v]]

#

tr[V̂0g[v]]; (6.8)

where the smoothing operator sm can be either smE, smL, smSR or smC as defined in
Section 6.2.1. Note that V̂0g[v] and tr[V̂0g[v]] are not independent random variables.
This could be problematic as, even if the true covariance matrices are perfectly ho-
mogeneous (i.e all equal to a common covariance matrix), the expectation of eV tr

0g [v]
could be different from the true common covariance matrix due to the dependence of
the sample covariance matrix with its trace. Also, with this homogenisation, even if
the extent of smoothing is very large, we will not be able to decrease Cov[vec[ eV tr

0g [v]]]
towards zero, but towards the value

var[tr[V̂0g[v]]]vec
2

4sm
"

V̂0g[v]
tr[V̂0g[v]]]

#3

5vec
2

4sm
"

V̂0g[v]
tr[V̂0g[v]]]

#3

5
>

; (6.9)

meaning that the possible reduction of variability could be rather limited in practice.
To develop another type of homogenisation, let us assume for a moment that
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the true covariance matrix at each voxel is known. In such a circumstance, one of the
most straightforward homogenisations would be to use the square root or the Cholesky
decomposition of the true covariance matrix such that the smoothed covariance matrix
at voxel v would be given by

eV SR
0g [v] = V 1=2

0g [v]sm
h
V �1=2

0g [v]V̂0g[v]V �1=2
0g [v]

i
V 1=2

0g [v] or (6.10)
eV C

0g[v] = chol[V0g[v]]sm
h
chol[V0g[v]]�1V̂0g[v]chol[V0g[v]]�>

i
chol[V0g[v]]>; (6.11)

respectively.
Unfortunately, in practice, the true covariance matrices used in Equations (6.10)

and (6.11) are unknown and, therefore, we need to replace them by sample estimates
of them which are less variable than V̂0g, but also with as little bias as possible. One of
such candidates could be one of the targets �̂0g investigated in Section 5.2.3, yielding
smoothed estimates given, at voxel v, by

eV SR
0g [v] = �̂1=2

0g [v]sm
h
�̂�1=2

0g [v]V̂0g[v]�̂�1=2
0g [v]

i
�̂1=2

0g [v] or (6.12)
eV C

0g[v] = chol[�̂0g[v]]sm
h
chol[�̂0g[v]]�1V̂0g[v]chol[�̂0g[v]]�>

i
chol[�̂0g[v]]>: (6.13)

Unfortunately, while we can expect a decrease of variability, we can also expect some
bias appearing and it is relatively unclear what would be the effect of this on the
smoothing. Moreover, similarly to the trace homogenisation, it will not be possible to
decrease Cov[vec[ eV SR

0g [v]]] or Cov[vec[ eV C
0g[v]]] towards zero, but only towards a matrix

of finite values closely related to the variability of the target �̂0g[v] used for the ho-
mogenisation. This means again that the reduction of variability could be relatively
limited in practice.

6.2.3 The smooth SwE

After smoothing the sample covariance estimate images using one of the metrics and
one of the homogenisations (or none) described in the two previous section, we simply
use, at each voxel v, the resulting smooth estimate eV0g[v] to estimate each subject
covariance matrice Vi in the SwE (see Equation (2.7)) to obtain a new version of the
SwE that we refer to as the smooth SwE in this thesis.
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6.2.4 Parametric inferences

To make inference using smoothed estimates of the covariance matrices, we could adapt
one of the parametric tests introduced in Section 3.2.4. However, this would require
the estimation of Cov[vec[ eV0g]] which does not seem straightforward, particularly when
a non-Euclidean metric and/or a homogenisation are used. Nevertheless, in some strict
circumstances, we can provide some ways to estimate Cov[vec[ eV0g]] and consequently
the number of degrees of freedom used for the parametric testing.

The first circumstance would be when we consider the Euclidean metric, no ho-
mogenisation and the assumptions that the true covariance matrices and the data
smoothness are spatially homogeneous. With the additional assumption that we have
only one measure per subject (i.e. V0g would be a scalar variance) and an infinite
number of voxels, Zhang (2008, Section B.1.1) showed that

var[ ~V0g] = var[V̂0g]
0

@1 + 2
 

FWHMV

FWHMD

!2
1

A
�3=2

; (6.14)

where FWHMV is the Full Width at Half Maximum of the Gaussian smoothing kernel
and FWHMD is the Full Width at Half Maximum of the data smoothness (assuming a
Gaussian kernel). Here, we simply propose to extend Equation (6.14) to a longitudinal
setting in which case we get

Cov[vec[ eV0g]] = Cov[vec[V̂0g]]
0

@1 + 2
 

FWHMV

FWHMD

!2
1

A
�3=2

: (6.15)

Note that, from Equation (6.15), it is interesting to note that, for a smoothing with
FWHMV = FWHMD, we can expect to reduce the variability by a factor superior to
five.

For all the other cases, due to the non-linearity of the metrics or of the homogeni-
sations, it seems harder to estimate the variability of eV0g. Nevertheless, if we use the
trace homogenisation (see Equation (6.8)) and if the extent of smoothing is very large,
we can assume that the smoothed part of Equation (6.8) is not random and use the
value given in Equation (6.9) to estimate Cov[vec[ eV tr

0g ]].
Similarly, the same kind of considerations could be made for Cov[vec[ eV SR

0g ]] and
Cov[vec[ eV C

0g]] if we assume that the extent of smoothing is very large and that the
smoothed parts of Equations (6.12) and (6.13) asymptotically yield the identity matrix.
In such a circumstance, Cov[vec[ eV SR

0g ]] and Cov[vec[ eV C
0g]] can then be estimated by
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Cov[vec[�̂0g]], which can, in turn, be estimated using the relevant equations given in
Section 5.2.3.

6.2.5 Monte Carlo evaluations

To assess the smoothing metrics defined in Section 6.2.1 and the homogenisation pro-
cedures proposed in Section 6.2.2, we used Monte Carlo simulations with 10,000 real-
isations. To simplify the simulations, we only simulated spatial longitudinal data in
two dimensions (21 � 21 pixels) without spatial correlation. The data at each pixel
was generated as in the Monte Carlo simulations of Chapter 3 (see Section 3.2.5), but
only for the balanced design scenarios. For each scenario, the data was generated with
the same covariance matrix (one of the 6 covariance matrix described in Section 3.2.5)
at every pixel, i.e. without spatial heterogeneity of the covariance matrix. We then
estimated each covariance matrix V̂0g at every pixel as described in Section 3.2.3, but
using the small-sample bias adjustment used for SHom

C2 , as it was shown to be the best
in the simulations of Chapter 3 (see Section 3.3.1). We then applied 16 smoothing
procedures on the central pixel differing by the use of one of the four metrics described
in Section 6.2.1, and the use of one of the three homogenisations proposed in Section
6.2.2 or without any homogenisation. For the homogenisation based on the Cholesky
decomposition and the one based on the square root decomposition, we used the target
with a compound symmetric structure (Target C in Chapter 5). For each smoothing
procedure, a discrete Gaussian smoothing with four different FWHM of 1, 2, 3 and
4 pixels was used. Finally, using the resulting smooth estimates, we computed the
smooth SwE at the central pixel. Also, for comparison, we considered the SwE SHom

C2

at the central pixel obtained without any smoothing.
To assess the smoothing procedures, we used the relative bias (defined as the ratio

between the bias and the true value) and the variance ratio (defined as the ratio
between the variance after and before smoothing) of nine contrasted SwE CSC> (see
Section 3.2.5 for details about the contrasts used) extracted from the central pixel
after using in turn every smoothing procedure.

6.3 Results
Figure 6.1 compare the smoothing procedures in terms of the relative bias of several
contrasted SwE in the balanced designs with 12 subjects. In all the scenarios, the
smoothing using the Cholesky, Root-Euclidean or Log-Euclidean metrics seemed to
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introduce an important negative bias in the estimation of the SwE, indicating a strong
underestimation of the covariance matrix of the parameters. The Euclidean metric
seemed to work better than the three other metrics and seemed even to yield unbiased
estimates when no homogenisation was used. However, when a homogenisation was
used, the smoothing had the tendency to introduce a bias, but clearly smaller in
absolute value than those observed for the three other metrics. As it can be more
clearly observed in Figure 6.2, the bias was in general positive, but also appeared to
be negative in a few scenarios. The homogenisation by the trace seemed to yield the
worst results while the homogenisation based on the square-root decomposition seemed
to yield the best results, but still inducing a non-negligible bias in some scenarios.

Fig. 6.1 Boxplots showing the effect of smoothing in terms of the relative bias of several
contrasted SwE in the balanced designs with 12 subjects over 162 scenarios (consisting
of the 9 contrasts tested, the 6 within-subject covariance structures and the 3 numbers
of visits per subject considered in the Monte Carlo simulations).

Figure 6.3 shows how the variance of the contrasted SwE was modified after
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Fig. 6.2 Boxplots showing the effect of smoothing for the Euclidean metric in terms of
the relative bias of several contrasted SwE in the balanced designs with 12 subjects
over 27 scenarios (consisting of the 9 contrasts tested and the 3 numbers of visits per
subject considered in the Monte Carlo simulations).

smoothing using the Euclidean metric. As expected, the strongest decreases were ob-
tained for the cases without homogenisation. The homogenisation by the trace seemed
to be able to reduce the variance for cross-sectional effects, but struggled with the lon-
gitudinal effects, even yielding an increase of variance in many scenarios that are likely
attributable to the presence of a large positive bias. The homogenisations based on the
square-root and Cholesky decompositions of the compound symmetric estimator were
able to decrease the variance of longitudinal effects with approximatively the same
extent, but far less strongly than the smoothing without homogenisation. Clearly, the
latter is due to the fact that both of these homogenisations are asymptotically limited
by the variability of the compound symmetric estimator. While the homogenisations
based on the square-root and Cholesky decomposition had similar performance for
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the longitudinal effects, their behaviours differed for the cross-sectional effects. For
those effects, the homogenisation based on the Cholesky decomposition seemed to
decrease the variance of the cross-sectional effects while the one based on the square-
root decomposition could not. This difference can simply be explained by the fact
that the homogenisation based on the square-root decomposition seemed unbiased for
those effects while the one based on the Cholesky decomposition had the tendency to
introduce a negative bias, which naturally tended to decrease the variances.

Fig. 6.3 Boxplots showing the effect of smoothing for the Euclidean metric in terms of
the variance ratio (defined as the ratio between the variance of CSC> after smoothing
and the one before smoothing) of several contrasted SwE in the balanced designs with
12 subjects over 27 scenarios (consisting of the 9 contrasts tested and the 3 numbers
of visits per subject considered in the Monte Carlo simulations).

6.4 Conclusion
In this chapter, we have studied the possibility to spatially smooth the common covari-
ance matrices V̂0g used in the SwE in order to decrease its variability. More precisely,
inspired by the work of Dryden et al. (2009), we have investigated the use of four
smoothing metrics. Moreover, we have also proposed three forms of smoothing based
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on three type of homogenisation of the covariance matrices and assessed them in com-
bination of the four smoothing metrics using Monte Carlo simulations in simple spatial
scenarios.

From the Monte Carlo simulations, it appeared clearly that the best metric was
the Euclidean metric. This is in total contradiction with the results found in Dryden
et al. (2009) where the authors found that the three other metrics were outperforming
the Euclidean metric in their simulations. Nevertheless, it seems that the sample
covariance matrices simulated in Dryden et al. (2009) were not representative of those
we encounter in the context of the SwE method. Indeed, taking the expectation of
the models they used to produce the sample covariance matrices, a positive bias term
seems to systematically appear for the diagonal elements, meaning that the sample
covariance matrices they generated were positively biased estimates of the population
covariance matrix. Now, for the sake of understanding why the results differ, we can
imagine to add a positive bias in the results of Figure 6.1. Consequentely, the results
obtained with the Cholesky, Root-Euclidean and Log-Euclidean metrics would appear
better than they are while the results obtained with the Euclidean metric would appear
worse than they are. This may simply explains the contradiction existing between the
results of this thesis with those in Dryden et al. (2009). Nevertheless, a more rigorous
verification might be needed to confirm this explanation. On this, it is important to
note that, in the context of the SwE method, we try hard to get sample covariance
matrices as unbiased as possible and, as such, the conclusion of our simulations seems
to be more trustworthy than those in Dryden et al. (2009) in our context. Nevertheless,
this comment might not be valid in other context like the one of DTI investigated in
Dryden et al. (2009) where the sample covariance matrices can be different from those
encountered in this thesis. Moreover, the results obtained in this thesis are only
valid for the averaging of unbiased sample covariance matrices coming from the same
distribution. In other applications like, for example, the interpolation of covariance
matrices, it would be surprising to find the Euclidean metric to be a good metric.

Even if the Euclidean metric was the best metric in our simulations, it seemed
to perform well only when no homogenisation was used. As, for a real longitudinal
neuroimaging dataset, it is unlikely that the covariance matrices would be spatially
homogeneous, it seems essential to use some form of homogenisation before smooth-
ing. Unfortunately, some non-negligible bias was observed in the smooth SwE when
one of the three proposed homogenisations was used. This is likely to be an issue if
a parametric test is used to make inference. Moreover, in order to use a parametric
test, it is important to estimate accurately the effective number of degrees of freedom
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after smoothing. While we have suggested some ways to achieve this in Section 6.2.4,
this seems to be a very challenging and error prone task as the effective number of
degrees of freedom after smoothing typically depends of several factors such as the
homogenisation, which is generally non-linear, and the degree of smoothness initially
present in the data. Therefore, a more promising strategy to make inference would be
to use the Wild Bootstrap introduced in Chapter 4 which appeared to be relatively
robust against the presence of bias in the SwE and does not need any estimation of de-
grees of freedom due to its non-parametric nature. Nevertheless, further investigations
are required to check this in the simple spatial scenarios investigated here, but also
in more complicated scenarios with more realistic spatial correlations and spatially
heterogeneous covariance matrices. We leave this as a future work.

Finally, it seems evident that other metrics or homogenisations than those inves-
tigated in this chapter could be considered. For example, as suggested by Gerard
Ridgway, one could homogenise the covariance matrices by dividing them by their re-
spective determinants. This would be particularly relevant for the log-euclidean metric
which is known to smooth the determinant (Arsigny et al., 2007).



Chapter 7

Discussion

Inspired by the growing importance of longitudinal neuroimaging studies and the need
for more appropriate tools to analyse the data obtained from such studies, the initial
goal of this thesis was to improve the analysis of longitudinal neuroimaging data.
Our main proposition to achieve this has been the use of the SwE method due to its
appealing simplicity, its robustness against misspecifications and the fact that it is
free of iterative algorithms (thus, fast and without convergence failure).

In Chapter 3, we have reviewed and proposed many adjustments of the SwE method
to improve its behaviour, specifically in small samples. In particular, we have proposed
three novel parametric statistical tests that showed promising results. Using Monte
Carlo simulations, we have isolated the best variants of the SwE method and have
shown their strengths and weaknesses compared to other popular approaches such as
the N-OLS, SS-OLS and LME methods.

While the SwE method exhibits many advantages, we have however noticed some
limitations. First, in scenarios with missing data and where the covariances were
close to the variances, the homogeneous SwE had the tendency to yield conservative
inference (see Section 3.3.1), likely due to a bias induced by the correction (consisting of
zeroing the negative eigenvalues) made on non-positive semi-definite covariance matrix
estimates. While this does not break the validity of the method, it would be desirable
to find some solutions to adjust for the observed conservativeness. One solution would
be to use the heterogeneous SwE instead, as it did not appear affected by the bias
observed for the homogeneous version. Nevertheless, the heterogeneous SwE seemed
to struggle to control the FPR when the number of subjects was small, indicating
that it could be a good alternative only for moderate or large sample sizes. Another
solution would be to decrease the effective number of missing data per homogeneous
group by splitting the problematic homogeneous groups into sub-homogeneous groups



150 Discussion

with less missing data per group. While the latter strategy will increase the number of
homogeneous group and yield groups with fewer subjects, it should make the estimator
V̂0g (see Section 3.2.3) be less prone to non-positive semi-definite covariance matrix
estimation. Further research might be useful to check if better solutions exists to solve
this issue.

A second limitation regards the power of the SwE method, which may be lower than
alternative methods (see Section 3.3.2). This is somehow the reasonable price to pay
for all the advantages that the SwE method has compared to other alternative methods
(e.g., no iterative algorithms, accurate inferences in scenarios where other methods are
inaccurate). However, this is probably the main disadvantage of the method and some
propositions to improve this have been investigated in Chapter 5 and 6. Unfortunately,
the shrinkage SwE (Chapter 5) and the smooth SwE (Chapter 6), while showing some
promising results for the reduction of estimation error, were typically characterised
by the introduction of bias which unfortunately prevents the use of valid parametric
inference. Nevertheless, some hope exists that the Wild Bootstrap investigated in
Chapter 4 might be combined with one of these two new SwE variants and yields
accurate and more powerful inferences than with a more traditional SwE. Indeed, the
results obtained in Chapter 4 seems to indicate that the the Wild Bootstrap procedure
is robust against the presence of bias (in the resampling or in the SwE), indicating that
it might be robust against the bias observed in the shrinkage SwE or in the smooth
SwE. Nevertheless, further research is needed to investigate this in more details.

Another way which could potentially improve the power of the SwE method would
be to use, for each subject, a non-identity working covariance matrix Wi that is to
be estimated alongside the other parameters using Generalised Estimating Equations
(Liang and Zeger, 1986) as suggested by Li et al. (2013) in the context of neuroimag-
ing. However, this procedure typically requires the use of an iterative algorithm and,
due to the random nature of the working covariance matrices, the parametric tests
developed in Section 3.2.4 might not be valid. Alternatively, we could define a “poor
man’s Generalised Estimating Equations” procedure by estimating the working co-
variance matrices in a first pass and then use them as non-random working covariance
matrices, in which case no iterative algorithm would be needed and the parametric
tests developed in Section 3.2.4 might be valid. One possible way to achieve this
would be to estimate first the subject covariance matrices separately at every voxel
as it is performed for the heterogeneous or homogeneous SwE, apply some form of
smoothing to the resulting covariance matrix image (see Chapter 6 for some smooth-
ing procedure examples) to reduce the variability of the estimates enough to treat
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them as non-random, and finally used the resulting smooth estimates as working co-
variance matrices. As suggested by Gerard Ridgway, a second option would be to use
the global covariance matrix structure estimate obtained by the SPM procedure (see
Section 2.3.4) and use it to define the working covariance matrices, which would then
be identical across voxels. Further research is however needed to validate this “poor
man’s Generalised Estimating Equations” approach.

A third limitation is the current impossibility with the SwE method to control for
a FWER with a parametric test. A possible solution would be to validate the use of
Random Field Theory (see, e.g., Worsley et al., 1996) to achieve this like it is done
with more standard neuroimaging models. However, further research is needed for
this validation. Thus, so far, the alternative is to parametrically control the FDR or
to use the Wild Bootstrap to make a non-parametric control of the FWER.

Another possible improvement of the SwE method concerns the use of the hetero-
geneous SwE in small samples. In such scenarios, the inferences obtained through Test
I and Test III (which are equivalent for a heterogeneous SwE) appeared to be conser-
vative. This misbehaviour can simply be explained by the use of biased estimators for
Cov[vec[V̂i]] and Cov[vec[CSC 0]]. While we have attempted to solve this issue in Test
II, the inferences had the tendency to be liberal in very small samples. A possible
explanation for this is the assumption that the pure within-subject covariates do not
affect the effective number of degrees of freedom. While this seems to be a reasonable
assumption for many sample sizes (even moderately small), in very small samples, it
seems that the their influence might become non-negligible, explaining the observed
liberality. Nevertheless, further work is needed to check this explanation and find an
appropriate solution to correct for this liberality in very small samples. Note, however,
that this liberality was not present when a homogeneous SwE was used, indicating
that such kind of SwE might be preferred in practice in very small samples. As a
reminder, this accuracy of the homogeneous SwE can be explained by the fact that
the bias terms that need to be adjusted are inherently smaller for a homogeneous SwE
than for a heterogeneous SwE as they are approximatively inversely proportional to
the number of subjects per homogeneous group.

An aspect of longitudinal data, which has not be studied in this thesis, is about
the process behind the missing data and its effect on the SwE method. We have
always assumed that the data is, using the terminology of Little and Rubin (2002),
missing completely at random (i.e. the probability of missingness does not depend on
observed or unobserved data). If the process of missingness is more complicated such
as, using the terminology of Little and Rubin (2002), missing at random (i.e., given
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the observed data, the probability of missingness does not depend on the unobserved
data) or missing not at random (i.e., even given the observed data, the probability of
missingness depends on the unobserved data), the SwE method might yield inaccurate
results. Nevertheless, there is a possibility to modify the SwE method to handle data
which is missing at random. Indeed, Robins et al. (1995) proposed a modification
of Generalised Estimating Equations, generally referred to as Weighted Generalised
Estimating Equations, which can handle data that is missing at random by weighting
the data according to their probability of missingness. As the SwE method can be
seen as a particular case of Generalised Estimating Equations, it should therefore be
relatively easy to modify the methods developed in this thesis to handle data that is
missing at random. Nonetheless, further research would be needed to check this.

While we implemented the SwE method into an SPM toolbox and made it freely
available at http://warwick.ac.uk/tenichols/SwE, the last release was based on an
early work that was published in Guillaume et al. (2014). Since then, additional
research has been conducted and has notably allowed the discovery of a more accurate
bias-adjustment (i.e. SC2) and more accurate parametric statistical tests (i.e. Test II
and Test III). Also, the last release did not implement the use of the WB for non-
parametric inference. However, for the purpose of analysing the ADNI dataset, these
features have actually been implemented in a non-released version of the toolbox,
but unfortunately in a non-user-friendly format. Therefore, we intend to modify the
implementation of these features in a more user-friendly format before the next release
of the toolbox.

An important aspect of statistical analyses which was missing in this thesis and,
more generally, often neglected in neuroimaging is the use of model diagnostics that
check the assumption of the model used (e.g., the assumption of multivariate normality
of the error terms) or detect potential outliers. Diagnostic tools specifically developed
for the SwE method seems unfortunately missing in the literature, but, it does not
seem too complicated to adapt existing diagnostic tools developed for other models
like the Generalised Linear Model. Such tools could, in turn, be implemented in the
SwE toolbox that we have released and be part of the whole analysis process.

Finally, while, in this thesis, we have focused our attention on the use of the SwE
method to analyse specifically longitudinal neuroimaging data, it is worth noting that
it could also be used for many other types of data, in neuroimaging or in other fields.
For example, in the neuroimaging context, it could also be used to analyse repeated-
measures data, family data (where subjects from the same family cannot be assumed
independent) or even cross-sectional data where the assumption of homogeneous error

http: //warwick.ac.uk/tenichols/SwE
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terms may not hold. In particular, it could be an alternative option to multivariate
linear regression models that are sometimes used in neuroimaging (see, e.g. Naylor
et al., 2014). It would be, however, interesting to compare them, particularly in term
of the quality of inference, to see what would be their respective advantages and
disadvantages.
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Appendix A

Valorisation

According to the regulation governing the attainment of doctoral degrees at Maastricht
University, an addendum about valorisation must be added to each doctoral thesis.
This is the purpose of this appendix.

A.1 Introduction
As described in Chapter 1, the number of longitudinal neuroimaging studies has been
increasing in recent years. This is not surprising as this kind of studies can help
to study longitudinal changes occurring in the brain while this is not possible with
cross-sectional studies. In particular, for the past few years, this type of studies
has been increasingly used to study dementia, which affects an increasing number of
people that is currently estimated at 44 million worldwide (Prince et al., 2014a) and
around 850,000 in the United Kingdom (Prince et al., 2014b), and has an important
cost on society which is currently estimated at US $604 billion a year worldwide
(Prince et al., 2014a) and at £26 billion a year in the United Kingdom (Prince et al.,
2014b). Unless some actions are taken, all these alarming figures are even set to
rise in the next years due to the population ageing (Prince et al., 2014a,b). That is
why, in recent years, several initiatives have been conducted with the goal to lessen
the impact of dementia on individuals and society. One of such initiatives is the
Alzheimer’s Disease Neuroimaging Initiative (Mueller et al., 2005) which has collected
a large amount of longitudinal neuroimaging data (see, e.g., the dataset described
in Section 2.6). In order to be effective, it is however essential to analyse the data
obtained from these initiatives as accurately as possible. This was notably pointed
out by the “World Alzheimer Report 2014” (Prince et al., 2014b, pages 93 & 94) that
highlighted the importance of enhancing the quality and relevance of evidence from
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observational studies. This thesis completely enters into this philosophy as its main
goal is to improve the quality of the analysis of longitudinal neuroimaging data. In the
remainder of this appendix, we summarise the actual impacts of this thesis to achieve
this goal and discuss the potential impacts that this thesis may have on other type of
studies as well as the importance of further research on this topic.

A.2 Thesis impact
The impact of this thesis on the enhancement of the quality of the analysis of lon-
gitudinal neuroimaging data can be divided into four main points that are described
below.

A.2.1 Raising awareness about the limitations of current pop-
ular analysis methods

The first impact of this thesis has been to raise awareness about the limitations of
popular analysis methods that are currently used to analyse longitudinal neuroimaging
data. This has been achieved in Chapters 2 and 3 by discussing and evaluating them.
This is important because many users of these methods are unfortunately unaware
about their limitations and may use them when it is not appropriate. The latter can
be very problematic as this may lead to very misleading conclusions that can, in turn,
yield negative socio-economic impacts.

A.2.2 Proposition of alternative methods

The second impact of this thesis has been the proposition and evaluation of promising
alternative methods. In particular, the Sandwich Estimator method investigated in
Chapter 3 appeared to be accurate in much more scenarios than alternative meth-
ods, indicating that it might be a better choice to analyse longitudinal neuroimaging
data. Also, the non-parametric Wild Bootstrap methodology investigated in Chapter
4 seemed to be a promising way to non-parametrically control for the Family-Wise
Error Rate with longitudinal neuroimaging data.

A.2.3 Dissemination

A third impact of this thesis work regards the dissemination of the research results.
Indeed, throughout this doctoral work, an important amount of time and effort has
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been dedicated to communicate the results obtained for this thesis through the use of
many poster presentations (e.g., at OHBM 2012, 2013 and 2014), many oral presenta-
tions (e.g., at OHBM 2012 and at the Reading Emotions Workshop 2014: Capturing
Brain Changes Across the Lifespan) as well as a publication in NeuroImage (Guillaume
et al., 2014).

A.2.4 Software

Finally, an important contribution of this doctoral work has been the implementation
of the Sandwich Estimator method (see Chapter 3) into an SPM toolbox that has
been made freely available at http://warwick.ac.uk/tenichols/SwE (see Figure A.1
for an overview of the toolbox user interface). An important effort has been made
to make it easy to use by mimicking as much as possible a typical analysis made
with the SPM software package. Additional features for the toolbox are currently
under implementation and are expected to be available soon (e.g., the Wild Bootstrap
methodology proposed and studied in Chapter 4).

A.3 Further perspectives
While, in this thesis, we have specifically focused on the analysis of longitudinal neu-
roimaging data, the results obtained could also be useful for the analysis of other type
of neuroimaging data like repeated-measures data, family data or cross-sectional data
where the subject variances cannot be assumed homogeneous. Furthermore, the re-
sults could also be useful for the analysis of such kind of data, but not obtained from
neuroimaging. This means that the potential socio-economic impact of this thesis can
be wider than it could appear at first thought.

To finish this valorisation appendix, it seems important to note that much more
research could be done to improve further the quality of the analysis of longitudinal
neuroimaging data. For example, there is an obvious lack of diagnostic tools that are
able to check the validity of the model used to analyse the data. While this kind of
tools exists for other type of data and their use are considered as a mandatory step in
the analysis process, this seems lacking in neuroimaging, particularly for longitudinal
data. We can therefore imagine the importance that future research on this thesis topic
may have to enhance further the quality of the analysis of longitudinal neuroimaging
data.

http://warwick.ac.uk/tenichols/SwE
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Fig. A.1 User interface of the SwE toolbox. Bottom right: the main interface window,
top right: the batch system used to specify the model, middle and left: interface
windows for the analysis of results.
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