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therefore come as no surprise that through the course of evolution, the human brain has 
developed a cortical region with a functional dedication to face processing (Kanwisher, 
2000; Kanwisher, McDermott, & Chun, 1997; Puce, Allison, Gore, & McCarthy, 1995). 
Found on the ventro-temporally located fusiform gyrus, FFA shows a particular strong 
response to face stimuli in comparison to objects or houses. Already decades ago, the 
neuropsychological syndrome prosopagnosia indicated the likelihood of such a distinct 
cortical machinery specialized for face perception (Hadjikhani & de Gelder, 2002; 
Kanwisher & Yovel, 2006). Prosopagnosia patients commonly suffer from the disability 
to recognize faces but still have an intact concept of a person. This suggests that visual 
and conceptual identity are represented in a different manner in the brain.  

The FFA lies on what is commonly referred to as the ventral visual pathway, 
also known as the 'what'-pathway. This pathway runs from early visual cortex in the 
occipital lobe, via the ventral surface of the temporal lobe towards anterior inferior 
temporal cortex. In contrast to the dorsal, or 'where/how' path, the ventral pathway is 
known to be involved in the identification of visual objects, as well as the representation 
of a few (discrete) category boundaries such as faces, places, limbs and tools. Several 
electrophysiology- and neuroimaging studies have demonstrated that the global 
organization of this ventral temporal area runs from a coarse object identification near 
the posterior regions, to a more specialized and complex representation towards anterior 
structures. This gradual increase in specialization along the posterior-anterior axis gives 
us a global idea about the level of processing a particular region on this part of the brain 
is involved in. When we look at the processing of faces, for instance, there are at least 
three local regions identifiable in this part of the brain that are responsive to face 
stimuli. The early visual face cluster is located on the junction of the occipital and 
temporal lobe and can be considered as the most posterior region sensitive to faces. 
Then, on the inferior occipital gyrus, Occipital Face Area or OFA can be found. Most 
anterior of these regions is FFA, and is therefore considered to be the region that is most 
'specialized' in processing faces.  

1.1.3 Person identity: visual and non-visual features 

What exactly comprises the identity of a face? As described in section 1.1.1, there is 
more to face identity than mere visual features: biographic and semantic knowledge that 
is acquired over time creates a new dimension of identity. To what extent is FFA 
sensitive to either dimensions? The knowledge base that has developed over the years 
largely focussed on the visual aspect of identity. Numerous studies suggested that FFA 
is sensitive to the visual identity of a face (Andrews & Ewbank, 2004; Barton, Press, 
Keenan, & O'Connor, 2002; Gauthier, et al., 2000; Grill-Spector, Knouf, & Kanwisher, 
2004; Haxby, Hoffman, & Gobbini, 2002; Hoffman & Haxby, 2000; Loffler, 
Yourganov, Wilkinson, & Wilson, 2005), but that the actual representation of identity is 
maintained in the anterior inferotemporal cortex or aIT (Brambati, Benoit, Monetta, 
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Belleville, & Joubert, 2010; Evans, Heggs, Antoun, & Hodges, 1995; Gainotti, Barbier, 
& Marra, 2003; Kriegeskorte, Formisano, Sorger, & Goebel, 2007; Sergent, Ohta, & 
MacDonald, 1992; Tranel, 2006; Tranel, Damasio, & Damasio, 1997). From there, 
information might be fed back to FFA when this information is required for further 
processing (Kriegeskorte, et al., 2007).  

The study of the non-visual dimension of identity has received much less 
attention. An interesting study by von Kriegstein and colleagues demonstrated that 
activity in FFA is modulated when subjects are engaged in a voice identification task. 
When participants heard a familiar voice, FFA showed a stronger response when the 
participants were asked to identify that voice than when they were performing a syllable 
counting control task (von Kriegstein, Kleinschmidt, Sterzer, & Giraud, 2005). In 
addition, direct structural connections between voice regions (located on the planum 
temporale) and FFA have been revealed by diffusion MRI measures (Blank, Anwander, 
& von Kriegstein, 2011). These findings suggest that, to some extent, FFA has access to 
information about an identity independently of visual information. Could this also be 
the case for more complex identity features that lie beyond the sensory modalities, such 
as semantic information? The lack of attention that this domain has received over the 
years, leaves numerous important questions about the extent of interaction between 
visual and conceptual identity unanswered. Before we focus more on the nature of these 
questions and the strategies that are required to address them, a brief introduction in the 
imaging methods as well as the analysis methods used in cognitive neuroscience is of 
significant merit.  
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 In contrast to the high spatial resolution of fMRI, the accuracy of the 
measurements in time, the so-called temporal resolution, is relatively poor. Due to the 
fact that fMRI does not directly measure neural activity but rather hemodynamics, a 
typical lag of around 6 seconds can be observed between the actual occurrence of a 
neural event and the BOLD-signal that can be measured. This low temporal resolution 
creates a challenge for research questions with a temporal aspect, such as a causal 
relation between two neural events, even though there are advanced acquisition 
protocols that result in a temporal resolution of around 100 ms (Formisano, et al., 2002). 

 When a person is participating in an fMRI-study, he or she is often actively 
engaged in a task that typically involves a cognitive process like perception, mental 
imagery, working memory or decision making. During the performance of the task, the 
scanner needs to keep constant track of varying brain activity over time. Therefore, in 
predefined intervals, the scanner measures the BOLD-signal in all voxels. This interval 
between two measurement is also referred to as the repetition time, abbreviated as TR. 
In a typical experiment, the TR is around 2 seconds, but this can vary depending on the 
goal of the experiment. If, for instance, an experimental run lasts for 10 minutes, (10 * 
60s) / 2s = 300 volumes are acquired. These 3D volumes can be concatenated into a 4D 
dataset with time as 4th dimension. For each voxel in a certain brain region, the BOLD-
signal changes over time can be inspected and, after appropriate preprocessing steps, 
statistically analyzed. 

1.2.2 Diffusion Tensor Imaging (DTI) 

Diffusion Tensor Imaging or DTI is a special MRI technique that allows for accurately 
mapping the directions of the white matter connections in the brain. Its fundaments are 
based on the diffusivity of water molecules. Normally, the micromovements of water 
molecules are free: the molecules can move in all spatial directions (isotropic diffusion). 
However, when restricted by, for instance, cell membranes or fibers, the molecules can 
only move in a given direction (anisotropic diffusion). As this is the case in nerve fibers, 
this property can be employed to extract information about the directions of the 
diffusion in these fibers.  

 By using a specific magnetic field gradient pulse sequence (Stejskal & Tanner, 
1964), the diffusion direction is encoded in the MRI signal (Le Bihan, et al., 2001). In 
the resulting images, only those molecular displacements that occur along the gradient 
direction are visible. By changing the direction of this gradient pulse, differences in 
voxel signal reflect the diffusion anisotropy in the underlying tissue. During the 
subsequent analysis of the images, the direction within each voxel is quantified. This 
direction is typically expressed as a 3D diffusion tensor, which can be interpreted as an 
ellipsoid. If the diffusion of the water molecules within a voxel is equal in all directions 
and hence isotropic, the shape of this diffusion tensor will be close to a sphere. When 
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the diffusivity is anisotropic, however, the tensor will be ellipsoid. Where this tensor 
quantifies the direction of diffusion in a voxel, it provides no information on the 
strength of the diffusion. To estimate this, the fractional anisotropy (FA) parameter can 
be computed. This FA value represents the mathematical comparison of the three 
eigenvalues of the three eigenvectors (representing the directions) of the tensor. An FA 
value close to 0 represents a near-isotropic diffusion, whereas an FA value 
approximating 1 represents strong anisotropy (see figure 1.2). 

 

 

Figure 1.2. a. Fractional anisotropy (FA) map (yellow = high FA magnitude). b. Diffusion tensor 
direction map. Different directions are color coded (left-right: red, ventral-dorsal: blue, anterior-
posterior: green.) c. Diffusion tensor direction map weighted with the underlying FA values. As 
can be seen in a., the FA value is highest in the white matter where the fiber bundles generally 
have a strong directionality. The tensor directions shown in b. give a coarse impression of the 
diffusion directions across the presented transversal slice. However, this view provides no 
information on the strength of the diffusion. Therefore, in c., the tensors are weighted with the FA 
value that is computed in the corresponding voxels. This allows for a more robust interpretation, 
as this map combines the magnitude of anisotropy with the direction of the tensors. The result is a 
elaborated systems of fiber tracks within the white matter bundles, coded in separate colors per 
bundle. 

The computed tensors allow for an informative tracking of particular fibers. During this 
fiber tracking analysis, one or more given regions of interest are used as seed region. 
From this seed region, the tensors of neighboring voxels are connected into a fiber in a 
way that best follows the diffusion direction of those voxels. In addition, this analysis 
allows for tracing specific fibers that connect two regions. 

 In summary, DTI and related analysis methods provide an interesting 
opportunity to characterize structural connections between brain regions. Still, with a 
typical voxel size of ± 2 x 2 x 2mm, diffusion tensor imaging samples the diffusion 
across thousands of fibers and thus represents a noisy average of the sampled voxel 
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volume. Therefore, one has to interpret the results with some caution, especially 
whenever they are used to speculate about their role in cognitive information transfer in 
functional networks. 
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methods, however, are generally harder to interpret, especially when classification 
methods are used that are based on non-linear (radial or polynomial) kernel functions. 
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Chapter 5, we used diffusion tensor imaging (DTI) and region-of-interest (ROI) based 
fiber tracking to identify the white matter tracts that likely form the face-identity-
association network. 
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Abstract 

The identification of a face comprises processing of both visual features and 
conceptual knowledge. Studies showing that the Fusiform Face Area (FFA) is 
sensitive to face identity generally neglect this dissociation. The present study is 
the first that isolates conceptual face processing by using words presented in a 
person context instead of faces. The design consisted of two different conditions. 
In one condition, participants were presented with blocks of words related to 
each other at the categorical level (e.g. brand of cars, European cities). The 
second condition consisted of blocks of words linked to the personality features 
of a specific face. Both conditions were created from the same 8 * 8 word 
matrix, thereby controlling for visual input across conditions. Univariate 
statistical contrasts did not yield any significant differences between the two 
conditions in FFA. However, a machine learning classification algorithm was 
able to successfully learn the functional relationship between the two contexts 
and their underlying response patterns in FFA, suggesting that these activation 
patterns can code for different semantic contexts. These results suggest that the 
level of processing in FFA goes beyond facial features. This has strong 
implications for the debate about the role of FFA in face identification. 
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investigate the role of FFA in the processing of semantic information about a 
face, in the absence of direct facial information (visual features).  

In the present study, we hypothesize that FFA has access to a semantic 
context when no face is visible during the presentation of that context. Using 
high-field functional magnetic resonance imaging (fMRI), we measured the 
functional response of FFA in two different conditions: a person-specific (PER) 
and a categorical (CAT) condition. In the former, we presented blocks of words 
related to a specific face that was presented at the beginning of the block. The 
CAT condition consisted of a series of words all belonging to the same category. 
As the words used for both conditions (PER, CAT) were selected from the same 
set of stimuli, any item-related confound is to be excluded. We subsequently 
used a machine learning classifier (linear support vector machine) to analyze our 
data. This method allowed us to look at the neural response of FFA in a 
multivariate fashion. More specifically, instead of analyzing each and every 
voxel separately, we considered the pattern of activity of the total amount of 
voxels in FFA. We investigated whether the two different contexts (PER, CAT) 
elicited different patterns. 

The use of pattern recognition as method to analyze fMRI data has 
proven to be an effective way of decoding brain states from distributed patterns 
of activity rather than focusing on the average response of an entire region (Cox 
& Savoy, 2003; Formisano, De Martino, Bonte, & Goebel, 2008; Haynes & 
Rees, 2006; Kamitani & Tong, 2005; Mur, Bandettini, & Kriegeskorte, 2009; 
Norman, Polyn, Detre, & Haxby, 2006; Pereira, Mitchell, & Botvinick, 2009). 



http://psiexp.ss.uci.edu/research/software.htm
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(double gamma) hemodynamic response function. Statistical contrasts were 
considered at the multi-subject whole-brain level, FDR corrected at q=0.05. We 
subsequently performed a region-of-interest (ROI) analysis of the person > 
category contrast on the individual subject level. We focused on individual left 
and right FFA as ROI, as identified by the independent localizer run.  

The data were also analyzed via a pattern classification approach. We 
used a support vector machine (SVM), a model that performs binary 
classification on a dataset by placing all cases in a multidimensional space. Each 
individual case (or example) is expressed as a vector of N features in the N-
dimensional space. The examples are labelled as belonging to one of two 
experimental conditions. A SVM training algorithm then defines an N-1 
dimensional hyperplane that optimally separates the data in two categories. The 
resulting model can be used to predict whether a new example falls into one 
category or the other, depending on what side of the hyperplane the example 
falls. Through this means, the accuracy of the trained model can be assessed by 
considering the ratio of correctly classified examples.  

In the present study, the features were represented by the voxels 
identified by the FFA localizer. In addition, in order to analyze the right and left 
FFA independently, we considered two different feature-spaces comprising the 
voxels from the right and left FFA respectively. Each example in such a 
multidimensional space was represented by a multidimensional vector 
comprising the hemodynamic responses from all voxels in FFA (right or left) 
related to each of the 48 blocks measured along the 3 experimental runs. The a 
priori assumption on the region of interest decreases the amount of irrelevant 
features, thereby increasing the generalization performance of the classifier (Cox 
& Savoy, 2003; Formisano, De Martino, & Valente, 2008; Kamitani & Tong, 
2005). Each element of this example-vector consisted of the BOLD-response 
averaged across the time-window between 2 and 8 volumes post-stimulus onset, 
computed for each voxel of the feature-space. Subsequently, this value was 
baseline-corrected by considering the mean amplitude of the BOLD-response of 
the volumes immediately preceding the onset of the block (volumes [-1,0]), and 
subtracting this baseline from the original value.  

After the computation of the 48 multidimensional examples, the 
classification procedure worked as follows. Examples were labeled according to 
their corresponding condition: person or category. They were randomly divided 
in two sets: a training set consisting of 40 examples (20 per condition) and a 
testing set made of 8 examples (4 per condition). For each participant 
individually, a linear SVM type-1 (Mourao-Miranda, Bokde, Born, Hampel, & 
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Figure 2.2. Summary of the analysis approach. 1. An event-related average plot shows 
the univariate contrast between person (red line) and category (blue line) context during 
the presentation of words (yellow interval. [0.8] volumes) in left FFA (defined by 
independent localizer). in which no significant difference was observed. As can be seen in 
the top right inset. the BOLD signal is at baseline prior to the presentation of the block of 
words, indicating no remaining effect of the instruction images on FFA activity. 2. The 
matrices represent the responses of the selected voxels (x-axis) for all trials (y-axis). The 
trials are randomly assigned to a training set containing 20 labeled trials from each 
condition. and a test set with 4 unlabeled trials from both conditions. 3. A linear SVM is 
trained with the train set. 4. The accuracy of the classifier after training is assessed with 
the independent test set. The trials in the test set are not used in the training phase. 
guaranteeing an unbiased measure of the accuracy of the classifier after training. Steps 2 
to 4 are iterated 40 times. after which the mean accuracy is computed and tested against 
chance level of 50%. See text for details. 
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 LFFA   RFFA   

 Subject t p t p 

1 0.30 0.76 1.99 0.05 

2 1.22 0.22 0.77 0.14 

3 -1.15 0.14 0.01 1 

4 0.93 0.35 1.45 0.15 

5 1.30 0.2 2.89 0.003 

6 -0.69 0.49 -0.76 0.45 

Table 2.2. GLM contrast (person>category) results per participant (1-6) separately for 
left and right FFA. 
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Figure 2.3. Resulting classification accuracies (%) after 40 iterations per participant 
(+SEM). depicted for left and right FFA. Average classification accuracies derived from 
FFA (bilaterally for all but one participant) show a significant deviation from chance. 
Different tints of blue represent different participants. Dashed line at 50% (chance level). 
*p<0.05. ** p<0.001 
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response related to the instructional images returned to baseline before the block 
onset. This prevented spilling-over effects from the image (as can be seen in 
figure 2.2). This approach excluded any direct interference from the instruction 
with the activation pattern within in FFA during the run. Still, one could argue 
that FFA plays a role in the working memory of faces. From this perspective, the 
face that is presented prior to the block of words could potentially bias the 
activity in FFA in the person-specific condition, offering an alternative 
explanation for our findings. Several studies, however, have demonstrated that 
the maintenance of faces in working memory exhibit delay-period activation in 
FFA (Druzgal & D'Esposito, 2003; Johnson, Mitchell, Raye, D'Esposito, & 
Johnson, 2007; Postle, Druzgal, & D'Esposito, 2003; Ranganath, DeGutis, & 
D'Esposito, 2004). Our results show that the BOLD-signal in FFA returns to 
baseline in between the face presentation and the block of words, indicating no 
transient effect of working memory. In addition, an effect of face working 
memory on the activation of FFA would most likely result in a stronger BOLD-
signal in the person-specific condition compared to the category condition, an 
effect that was not apparent in our data. These two points indicate that it is 
unlikely that the picture of the face is directly responsible for the difference 
between the two experimental conditions. 

The exact source of the observed person vs. category effect in FFA, 
however, remains subject to discussion. It is possible that FFA receives top-
down modulation from one or multiple areas from the semantic (person or 
category identification) network (Martin, 2007; Martin & Chao, 2001) that were 
involved in the processing of the contexts during the task. However, since the 
univariate contrast between the person and category conditions did not reveal 
any areas of interest, the possible source of any modulatory effects remains 
subject to speculation. Several studies observed a wide variety of modulatory 
effects on FFA, ranging from modulation by face working memory load 
(Druzgal & D'Esposito, 2001), likely via feedback from prefrontal cortex 
(Druzgal & D'Esposito, 2003), task specificity (Chiu, Esterman, Han, Rosen, & 
Yantis, 2010; Reddy, Moradi, & Koch, 2007), face/non-face category 
expectation (Puri, Wojciulik, & Ranganath, 2009) and language describing faces 
(Aziz-Zadeh, et al., 2008). Moreover, a study by von Kriegstein and colleagues 
demonstrated that familiar voices activate FFA during a speaker identification 
task (von Kriegstein, Kleinschmidt, Sterzer, & Giraud, 2005). Based on what has 
been established about the role of anterior inferotemporal cortex (aIT) in 
retrieval of semantic knowledge and face identification (Brambati, et al., 2010; 
Evans, et al., 1995; Gainotti, et al., 2003; Grabowski, et al., 2001; Haxby, et al., 
2000; Kriegeskorte, et al., 2007; Patterson, Nestor, & Rogers, 2007; Sergent & 
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to one of these categories could elicit a spatially distinct pattern of responses that 
to some extent corresponds to the category the context refers to.  
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Chapter 3 
FFA - Precuneus Interaction During Processing 

of Words in Biographic Context2  

 

  

                                                           

2 Van den Hurk, J., Laufer, S. T., & Jansma, B. M. FFA - Precuneus Interaction 
During Processing of Words in Biographic Context. Submitted. 
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Abstract 

When we identify a familiar face, our brain both processes the familiar visual 
features and the semantic knowledge we have about an individual. The Fusiform 
Face Area (FFA), a cortical region specifically dedicated to the processing of 
faces, has generally been studied in the context of visual face identity, neglecting 
the important conceptual part. Recently, we addressed this issue by presenting 
participants with words instead of faces. We created a personal (PER) and 
categorical (CAT) semantic condition from the same 8 x 8 word matrix, thereby 
instantly controlling for visual input across conditions. Conventional univariate 
analysis methods yielded no significant differences between the conditions 
across the brain. Nevertheless, multivoxel pattern analysis revealed that brain 
activity in FFA could significantly distinguish between the personal and 
categorical semantic conditions. However, it remained unclear how FFA 
obtained this background information, i.e. which regions/networks engage in 
functional interaction with FFA when personal semantic information related to 
faces is processed. In the current study we extended our previous design and 
dataset and analysis to address this issue. Using a multivariate searchlight 
algorithm, we identified four cortical regions that were sensitive to the context 
manipulation: the left precuneus, left inferior frontal gyrus (LIFG) and bilateral 
angular gyri. A custom version of psychophysiological interaction (PPI) analysis 
then showed that processing of semantic context is related to a functional 
coupling between bilateral FFA and the precuneus, and between FFA and right 
angular gyrus. The fact that FFA engages in functional interactions with a 
network underlying the processing of semantic context, even in the absence of a 
face, has substantial implications for conceptions of the role of FFA.   







http://psiexp.ss.uci.edu/research/software.htm
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3.2.3 Procedure  

The experiment consisted of three runs in a block design. Each run consisted of 8 
blocks from each condition (CAT, PER), and started with a fixation cross lasting 
for 26 seconds. At the beginning of each block an instructional image (face or 
object) was presented for 6 seconds. The image was followed by a fixation cross 
that lasted for 10 seconds. This interval allowed the BOLD response elicited by 
the stimulus in the instruction phase to return back to baseline before the onset of 
the actual block. Next, a block of 8 words was presented, where each word lasted 
for 1500 ms, followed by 500 ms of fixation (see figure 3.1). Participants were 
instructed to pay close attention to the block of words and to associate each of 
them with the image in the instruction (i.e. to associate the category sports with 
the image of a softball glove, within the category condition). The intention of 
this approach was to encourage the participants to actively create a semantic 
context out of the presented words they were facing. This in turn ensured that the 
block of words were not merely processed as a within category (CAT) vs a 
between category (PER) condition. They were informed that after each run, all 
images were presented one by one. The task of the participants was to recall as 
many word as possible related to that category or person. This additional 
debriefing phase was included to encourage participant to attend to the block of 
words inside the scanner. 
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we collected 355 functional volumes, of which the first 2 were excluded due to 
T1 saturation. In addition to the experimental runs, an independent FFA localizer 
run was included. Anatomical images covering the whole brain were obtained 
after the experimental runs but before the localizer, using a 1 × 1 × 1 mm 

resolution T1-weighted ADNI sequence ([TR] = 2250 ms; [TE] = 2.6 ms; flip 
angle = 9°).  

The participants were placed comfortably in the scanner and their head 
was fixed with soft foam pads. Participants saw the stimuli projected on a screen 
through a mirror mounted on the head coil. Stimulus presentation was 
synchronized with MR data acquisition by triggering the stimulus program 
(Presentation software, Neurobehavioral Systems Inc, Albany, CA) with the first 
MR pulse.  

3.2.5 Analysis  

Functional and anatomical data were pre-processed and analysed using the 
BrainVoyager QX 2.2 package (Brain Innovation, Maastricht, The Netherlands). 
Functional volumes were first corrected for slice scan-time differences and 3D 
head motion using 3 translation and 3 rotation parameters. In order to enhance 
the subsequent alignment of the functional images to the anatomical volume, the 
first and second runs were corrected with the third run as intra-session reference, 
as the acquisition of this run was temporally adjacent to the anatomical scan. 
Subsequently, linear trends and low frequency temporal drifts were removed 
from the data using a high-pass filter, removing temporal frequencies below 2 
cycles per run. After the pre-processing, functional data were co-registered to the 
high-resolution anatomical volume and normalized to Talairach space.  

For each participant, the location of the Fusiform Face Area was 
determined bilaterally by an independent localizer run, using grey scale images 
of faces, scrambled faces and houses. The procedure defines the FFA as the 
result of a conjunction analysis (FDR-corrected at q = 0.05) between a face 
responsive contrast (%BOLD signal change faces > scrambled faces) and a face 
selective contrast (%BOLD signal change faces > houses). 

Conventional univariate statistical analysis of functional was performed 
on an average cortical surface, obtained by reconstructing both hemispheres for 
each participant. The surfaces were subsequently aligned using a cortex-based 
alignment procedure, an algorithm that uses individual curvature information to 
align corresponding gyri and sulci across participants (Goebel, Esposito, & 
Formisano, 2006). The analysis was performed using a random effects GLM, 
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FFA and the target regions identified by the searchlight. More specifically, we 
hypothesized that in the light of the functional role of FFA, the functional 
coupling in the person context would be stronger between FFA and one or more 
target regions than in the category context. To exclude covariation in the BOLD 
signal between regions that is purely based on shared task input, we aimed to 
focus our custom PPI analysis solely on the signal fluctuations after the BOLD-
signal had reached its peak and before it decreased back to baseline. The 
rationale behind this approach is that after a few seconds after block onset, the 
BOLD signal will reach its peak at which it will remain until block offset. The 
signal variations on this BOLD plateau are largely contributable to specific 
processes related to the semantic contexts used, corrupted by scanner noise. By 
consecutively segmenting the BOLD plateaus of each block into condition-
specific time series, we have the means to accurately investigate the processing 
of the semantic contexts. We therefore segmented the time courses, spatially 
averaged across voxels of a region, in condition specific time series. For each 
block, the time windows between 2 and 10 volumes post block onset (based on 
the length of the block (8 TR), taking the hemodynamic lag into account) were 
segmented. Each segment was zero-centered and then concatenated to the other 
segments of the corresponding condition. This process was repeated for each 
region as defined by the searchlight and resulted in PER- and CAT-specific time 
series, all with a length of 3 runs * 8 blocks * 8 volumes = 192 time points. See 
figure 3.2 for an overview of this segmentation process. We also created 
condition-specific time series for left and right FFA.  
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Figure 3.2. Creating condition-specific time series. 1. Example of a simulated time 
course of a region. BOLD-signal is modulated by both the category (blue) and person 
(red) conditions as illustrated by the colored bars. 2. The measured signal is segmented in 
epochs of 8 volumes each. The segmentation window starts with 2 volumes after block 
onset and ends with volume 10 after block onset. Each acquired segment is subsequently 
zero-centered by subtracting its mean. 3. Zero-centered segments are concatenated to the 
other segments from the corresponding condition, resulting in two time series, one for 
each condition. See text for more details. 

Temporal correlation coefficients were computed between the time 
course from left and right FFA and from the target regions for the PER and CAT 
time series independently. Before statistically inspecting the results, we applied a 
variance stabilizing Fisher transformation (Fisher, 1915) on the computed 
correlation coefficients by transforming them with an inverse hyperbolic tangent 
function. This transformation leads to an correction of variance inhomogeneity 
and results in approximate normal distribution of the coefficients, making them 
suitable for statistical analysis. All computations were carried out using 
MATLAB R2008a (Mathworks Inc, Natick, MA). Finally, the results were 
analyzed using a repeated measures GLM with factors FFA (2) * condition (2) * 
target region (6). To account for a possible violation of the sphericity 
assumption, the degrees of freedom were adjusted using the Greenhouse-Geisser 
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epsilon correction. The subsequent pair wise comparisons were computed using 
paired samples t-tests. 

 We also looked into the pair wise relationship between the 6 target 
regions by using the same approach. We computed the pair wise inter-region 
correlation per condition, transformed the coefficients and tested them using a 
repeated measures GLM. The pairs were compared using paired samples t-tests. 

Although the approach we used to assess functional coupling is based 
on the procedure of PPI analysis, it differs on two important points from the 
original procedure. First, we used predefined regions of interest and estimated 
the functional coupling between them instead of the traditional approach, i.e. 
computing the interaction coefficients for each functional voxel in the brain with 
respect to a seed region. By localizing the target regions independently of the PPI 
analysis, we created an a priori assumption on the brain regions involved rather 
than performing blind mapping. This allows for a more focused interpretation of 
the results with regard to the networks of interest. Second, we only investigated 
the extent to which the activity in FFA and the target regions covary on the 
BOLD plateau, thus during the processing of the semantic context, instead of 
focusing on the entire time course. By ignoring modulations unrelated to the 
processing of the semantic contexts as much as possible, the PPI analysis is 
purely focusing at - and thus more sensitive to - the effects of interest.  
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Figure 3.3. Example of FFA time course during experiment. The figure shows that FFA 
clearly responds stronger to the instructional image in the person condition (face) than in 
the category condition (object). After the initial response, the BOLD-signal returns to 
baseline in both conditions before the block of words commences. It can be seen that FFA 
responds to the words, but shows no obvious difference between the two conditions. 
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