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Chapter 1 

Introduction to Thesis  
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1.1 Introduction 

1.1.1 Motivation 

As social scientists our goal is to better understand the social world by uncovering 

laws that govern human behavior. Uncovering these laws, however, is often 

challenging as we live in a complex social world where many phenomena are 

interconnected, and not always in a straightforward way. This makes it difficult to 

distinguish correlation from causation. Furthermore, we are often interested in 

studying abstract concepts which cannot be directly observed at all. In other words, 

we face empirical challenges to answer our research questions. As empirical social 

scientists we therefore often have to get creative by finding, collecting and analyzing 

data to overcome these obstacles. Our job is thus to cut through the complex social 

world and uncover its hidden relationships – to use creative identification strategies 

to make the invisible visible.  

1.1.2 Aim 

In this thesis, I uncover relationships in the domains of overconfidence, 

discrimination, and peer effects in education. The common denominator of all 

chapters is that they use sophisticated identification strategies. Through these 

identification strategies, I will answer three different questions: What is the 

relationship between skill and overconfidence? Are differences in outcomes driven 

by discrimination or favoritism? How does peer ability affect student achievement?  

1.1.3 Overconfidence 

The Dunnig-Krueger effect (DK effect) proposes that skill and overconfidence are 

generally inversely related, with the low skilled being most overconfident while the 

high skilled being accurate on their skill assessments (Kruger and Dunning 1999). 

Estimating the DK effect, however, is difficult because both skill and 

overconfidence are unobservable. Researchers instead use (test) performance and 

overestimation, which is the difference between expected and realized performance, 

as their respective measures. Many studies have shown that, in different populations 

and tasks, low performers usually vastly overestimate their performance while high 

performers have a more accurate view on their performance (Kruger and Dunning 

1999, Ehrlinger, Johnson et al. 2008, Ryvkin, Krajč et al. 2012, Schlösser, Dunning 

et al. 2013). However, performance measures skill with some error which can be 
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considered as luck in a test. This error, which is part of the performance measure, is 

often at the same time part of the overestimation measure. This fact alone can create 

a negative relationship between performance and overestimation, even if there is no 

systematic relationship between skill and overconfidence (Krueger and Mueller 

2002). Intuitively, think of a student with bad luck on a test: This bad luck will 

reduce her performance and, at the same time, increase her overestimation, thus 

making her appear as less skilled and more overconfident. In this thesis, I show that 

the true relationship between skill and overconfidence can be estimated with an 

instrumental variable approach by using a second performance measure as an 

instrument for a person’s first performance measure. 

1.1.4 Discrimination 

Economists have been interested in studying discrimination at least since Becker’s 

(1957) theory of discrimination. But are differences in outcomes caused by people 

discriminating against others – exophobia – or are they a result of people favoring 

their own kind – endophilia? Distinguishing between exophobia (out-group 

discrimination) and endophilia (in-group favoritism) is difficult because differences 

in outcomes could be driven by either, or by both. We show that one can disentangle 

exophobia and endophilia by comparing the treatment of randomly selected 

members the same group (e.g. females) with and without visible characteristics 

which reveal to which group they belong. We do this in a field experiment in which 

we randomly show and conceal students’ names on exams. The students without 

visible names on their exams then serve as a neutral baseline against which we 

measure exophobia and endophilia. We then have evidence for exophobia when 

students who belong to a different group as the grader (e.g. have a different gender) 

receive lower grades when their names are visible. Conversely, we have evidence 

for endophilia when students who belong to the same group than the grader (e.g. 

have the same gender) receive higher grades when their names are visible. 

1.1.5 Peer Effects in Education 

There is a large literature in economics which studies how peer ability affects 

student performance (Hoxby 2000, Angrist and Lang 2004, Carrell, Fullerton et al. 

2009, Duflo, Dupas et al. 2011, Burke and Sass 2013, Carrell, Sacerdote et al. 2013). 

However, identifying peer effects in education is empirically challenging because 

students are usually in a peer group (school, grade, tutorial group, dorm, etc.) for a 

specific reason (e.g. their ability, past performance, motivation) and it is difficult for 

the researcher to distinguish between the reason for belonging to a peer group and 
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the actual peer effect. Therefore, this selection problem can be solved by randomly 

assigning students to peer groups, like it is done at the School of Business and 

Economics (SBE) of Maastricht University. We exploit this random assignment at 

the SBE to estimate the effect of being assigned to peers with different abilities. 

1.2 Outline 

In Chapter 2 we discuss how to estimate the relationship between skill and 

overconfidence. The DK effect states that the low-skilled are generally 

overconfident while the high-skilled are more accurate (Kruger and Dunning 1999). 

This effect seems to be widely accepted in the scientific literature, to a large extent 

because many studies have shown that bottom performers usually vastly 

overestimate their own performance, while top performers are more accurate 

(Kruger and Dunning 1999, Ehrlinger, Johnson et al. 2008, Ryvkin, Krajč et al. 

2012, Schlösser, Dunning et al. 2013). However, both performance and 

overestimation measure skill and overconfidence with some error. This 

measurement error may cause the DK effect to be a statistical artifact. In this 

chapter, we discuss potential biases when estimating the DK effect, the 

shortcomings of the currently used bias correction methods, and propose an 

alternative way to estimate the DK effect by using the performance on an 

independent task as an instrument for a person’s first performance measure. We 

show that this instrumental variable approach allows for a consistent estimate of the 

true relationship between skill and overconfidence.  

In Chapter 3 we empirically estimate the DK effect using the instrumental variable 

method discussed in Chapter 2 using exam grades and grade predictions data from 

economics students. In this context, we use a natural second performance measure, 

the student’s past grade point average, as an instrument. Our results are consistent 

with the DK effect hypothesis: On average, low skilled students are more 

overconfident while high skilled students are more accurate. We further show that 

the size of these instrumental variable estimates is substantially different to the size 

of estimates with the estimation methods used in the current literature.  

In Chapter 4 we investigate whether differences in exam grades are driven by 

discrimination or favoritism. The discrimination literature usually estimates relative 

outcomes. But does a differential arise because agents discriminate against others –

exophobia - or because they favor their own kind - endophilia? We answer this 

question in the context of a field experiment at the SBE, which has large shares of 
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Dutch and German students. In this context, we assigned graders randomly to 

students' exams that did or did not contain names. We were thus able to infer 

whether the student they were grading matched or not his/her nationality or gender. 

We find on average endophilia but no exophobia by nationality, but neither by 

gender. We identify distributions of graders’ endophilic and exophobic preferences. 

Furthermore, we show that a changing correlation between endophilic and 

exophobic preferences generates changes in market (wage) differentials. 

In Chapter 5 we investigate the effect of peers’ ability on university students’ 

achievement. We use data on economics and business students who are randomly 

assigned to tutorial groups at the SBE. Being assigned to tutorial groups peers with 

higher ability, as measured by students’ past GPA, leads to very small increases in 

student grades in the linear-in-means specification. These results, however, hide 

some heterogeneity: low ability students perform worse when exposed to a larger 

share of high ability students. Our findings point to an inverse U-shaped relationship 

between performance and peer ability: students benefit from better performing peers 

as long as the difference between their own and peer ability does not exceed a 

certain threshold.  

In Chapter 6 I summarize the main findings of the thesis. Chapter 7 discusses the 

valorization in terms of policy implications of the thesis.   
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Chapter 2 

Unskilled and Unaware? On 

Estimating the Relationship 

between Skill and 

Overconfidence* 

 

 

  

                                                           
* This chapter is based on joined work with Jan Sauermann and Andries de Grip. We thank Thomas 

Dohmen, Jonas Lang, Nicolas Salamanca, and the participants of the DuHR seminar for valuable 

comments. 
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2.1 Introduction  

The Dunning-Kruger effect (DK effect) states that the low-skilled are on average 

overconfident while those who are high-skilled are more accurate in assessing their 

skill. The DK effect has received a lot of attention in the scientific literature: the 

seminal article by Kruger and Dunning (1999) has been cited more than 1,900 

times.
1
 Apart from the psychological literature many researchers in other scientific 

disciplines seem to have accepted the DK effect as a psychological fact that can be 

used to explain individuals’ behavior (for example in law (Tor, 2002), management 

science (Dane & Pratt, 2007), medicine (Haun, Zeringue, Leach, & Foley, 2000)). 

Kruger and Dunning (1999) argued that the lack of metacognitive skills of the 

unskilled can explain the DK effect. The intuition behind this explanation is that the 

skills that are required to perform well are often the same skills that are required to 

evaluate one’s skill accurately. And when not being able to evaluate one’s skill 

accurately people tend to be overconfident. 

In this chapter, we show that a closer look at the statistical methods currently used to 

demonstrate this apparent fact does not allow for this conclusion. The main reason 

why the DK effect has nevertheless been so widely accepted is probably that many 

studies have shown a pattern of high overestimation of low performing individuals, 

while high performers are more accurate (Ehrlinger, Johnson, Banner, Dunning, & 

Kruger, 2008; Kruger & Dunning, 1999; Kruger & Dunning, 2002). However, 

performance and overestimation measure skill and overconfidence with error. 

Krueger and Mueller (2002) have argued that this measurement error causes 

regression effects which combined with the better-than-average heuristic, can create 

the observed pattern between performance and overestimation even when skill and 

overconfidence are unrelated.
2
 In this chapter, we show that even the currently used 

correction methods do not take estimation biases fully into account.  

The DK effect has been studied with absolute measures (e.g. test points) as well as 

relative measures (e.g. percentiles) of performance. We will show that the choice 

between absolute and relative measures has important implications for estimating 

the DK effect. When using absolute measures, there are two potential biases: 

regression effects and attenuation bias. The reason for regression effects is that 

performance measures skill with error. This error, which can be interpreted as (bad) 

                                                           
1. As we write this on 29.07.2014 Google Scholar shows that the article has been cited 1,975 times. 
2. This explanation has later been generalized by Burson, Larick et al. (2006) in their noise-plus-bias 

model which states that over- and underestimation are a result of random error, which causes 

regression effects, and a task-induced bias, which shifts the overall level of overconfidence. 
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luck, is part of the dependent variable (overestimation) as well as the independent 

variable (performance) and artificially creates a negative relationship between 

performance and overestimation. To illustrate this, consider a student with bad luck 

on a test: bad luck will reduce her performance and increase her overestimation. 

Hence, the student appears to be less skilled and more overconfident. A second 

potential bias, which has received less attention in the literature, is attenuation bias: 

If performance measures skill with random error the absolute magnitude of the true 

relationship between skill and overconfidence will be underestimated. This means 

that if there is a negative relationship between skill and overconfidence, as proposed 

by the DK effect, attenuation bias will lead to an underestimation of the true 

relationship. When using relative measures of performance like percentiles, the 

(implicit) transformation into relative measures creates a negative correlation 

between skill and the error with which performance measures skill. We will show 

that this negative correlation further complicates the analysis.  

We contribute to the literature on testing the DK effect in two ways. First, we 

carefully document the biases associated with estimating the relationship between 

skill and overconfidence. The aim of this is to provide a framework to discuss and 

interpret the results of previous studies, to understand their shortcomings, and to see 

in which direction the estimates are likely to be biased. Second, we introduce an 

alternative estimation method that requires the same data and less restrictive 

assumptions as previously used correction methods: instrumental variable (IV) 

estimation. We will show under which assumptions the IV method will lead to a 

consistent estimate of the relationship between skill and overconfidence. 

The remainder of the chapter is structured as follows: In Section 2.2, we provide the 

framework in which the DK effect is being tested, the key variables, and the 

potential biases when testing the DK effect with absolute and relative measures of 

performance. Section 2.3 discusses the shortcomings of the currently used bias 

correction methods. In Section 2.4, we introduce the IV method and show under 

which conditions we will get a consistent estimate of the relationship between skill 

and overconfidence. Section 2.5 concludes.  
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2.2 The Framework, Key Variables and Biases  

2.2.1 The Framework 

The basic setup of DK effect studies is that individuals are asked to participate in a 

test, and are asked to guess their performance on this test. Expected performance is 

elicited either before or after the test and either in absolute terms (e.g. grades) or 

relative to their peers (e.g. percentiles). In the early studies, researchers have then 

shown the mean overestimation by different performance quartiles (Kruger & 

Dunning, 1999). A general finding is that the bottom quartile performers on average 

vastly overestimate their performance while the top quartile performers on average 

slightly underestimate their performance (Ehrlinger et al., 2008; Kruger & Dunning, 

1999; Ryvkin, Krajč, & Ortmann, 2012; Schlösser, Dunning, Johnson, & Kruger, 

2013). Krueger and Dunning (1999) explain this pattern by differences in 

metacognitive skills between the low and high-skilled. The intuition behind this 

explanation is that the skills necessary to perform well are often the same skills that 

are required to evaluate one’s performance accurately. Therefore the low-skilled are 

overconfident while the high-skilled are more accurate about their absolute skill. 

However, due to the false consensus effect (Ross, Greene, & House, 1977), the high-

skilled overestimate the skill of the others, and are therefore underconfident in their 

relative skill.   

We model overconfidence as follows: 

 oc    β
s
s uoc (1) 

Where overconfidence (    is the sum of a constant term,  , and a variable 

component,    , that depends linearly on the individual’s skill level ( );     is an 

idiosyncratic error term which captures individual differences in overconfidence that 

are unrelated to skill. We assume that skill is strictly exogenous, i.e. that E[u|   ] = 

0. If both overconfidence and skill would be observed, ordinary least squares (OLS) 

regression of overconfidence on skill would lead to unbiased estimates of   and   .
3 

Looking at estimates of   and    jointly provides a simple framework to test the DK 

effect. The DK effect predicts that overconfidence declines with skill, i.e. that    is 

negative. The DK effect further predicts that the self-assessment errors are 

                                                           
3. Throughout the chapter, we assume that all variables are uncorrelated with    , i.e. there is no other 

unobserved variable which is correlated with the explanatory variable and the dependent variable. 
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asymmetric, i.e. overconfidence of the low-skilled (  +      for low values of s) is 

large and positive while overconfidence of the high-skilled (  +      for high s) is 

small in absolute size. In the case of relative measures, this effect is negative for 

individuals with high values of s.  

As the focus of this chapter is on estimating     we will use 
    (     

   (  
, which is equal 

to the skill coefficient of the hypothetical regression of overconfidence on skill, as a 

benchmark against which we evaluate the different estimation methods.
4
 We discuss 

potential biases of estimates of   in Section 2.4. 

2.2.2 The Key Variables 

The four key variables of studies analyzing the DK effect are skill, performance, 

overconfidence and overestimation. We will here look at these variables on absolute 

scales. As we will discuss in Section 2.2.4, using relative measures complicates the 

analysis.  

The understanding of skill in the DK effect literature is domain specific. The DK 

effect has been studied in a wide variety of domains ranging from understanding 

humor to gun safety knowledge (Ehrlinger et al., 2008; Kruger & Dunning, 1999). 

We therefore define skill as domain specific ability.  

Performance, however, does not only reflect skill but also on luck. In this context 

luck captures all factors other than skill which influence test performance including 

environmental conditions (questions on the test, room temperature, noise, etc.) and 

physiological conditions (oxygen saturation in the brain, hormone levels, etc.). We 

thus model performance ( ) as the sum of skill (   and a random error component 

(    which is assumed to have zero mean and to be independent of the individual’s 

overconfidence and skill:  

        (2) 

For testing the DK effect, it is important to distinguish between overconfidence and 

overestimation. We define overconfidence as the difference between self-assessed 

and actual skill and understand overconfidence as a psychological bias. 

Overconfidence, however, is unobservable and we can instead observe 

overestimation which is the difference between expected and actual performance. 

                                                           

4. Recall that the OLS estimator of an regression of   on   can be written as  ̂ = 
    (     

   (  
. 
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The important distinction between these two concepts is that overestimation, 

because it is calculated using the performance measure, is also driven by luck. To 

see that this matters, consider the following example: A person is asked to estimate 

how often out of ten times she can predict whether a fair coin lands on heads or tails. 

She has an accurate assessment of her skill and states that she can predict five out of 

ten tosses correctly. When predicting the coin tosses she, due to bad luck, only 

predicts four out of ten tosses correctly. This overestimation, however, is a result of 

bad luck and does not reflect a psychological bias. In this case her overestimation is 

one and her overconfidence is zero. This definition of overconfidence best reflects 

the understanding of the DK effect as a psychological and not merely statistical 

phenomenon. 

We assume that expected performance (    ) is the person’s best guess of her actual 

performance in a specific test and define expected performance as the sum of actual 

skill and overconfidence:
5 
 

           (3) 

When decomposing overestimation (  ) into its respective elements one can see that 

it is equal to the difference of    and   :  

 

 

         

   (      (     
        

  

 

(4) 

This means that overestimation is equal to individual’s overconfidence about their 

skill level minus their luck on the test. 

  

                                                           
5. This assumption is more realistic when expected performance is elicited before the performance test. 

When expected performance is elicited after the performance test, the individual might already have 

some idea about her test performance (  ) and incorporate this in her expectation. We will discuss 

how such an adjustment affects the IV estimates in Section 2.4.2.  
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2.2.3 Biases When Estimating    with Absolute Measures 

To show that the estimate of    from an OLS regression with overestimation and 

performance as measures for overconfidence and skill will be biased
6
, we substitute 

overconfidence by overestimation and skill by performance in Equation (1): 

 

                

(             (          

(5) 

One can see from Equation (5) that the error component    causes the two biases.
7
 

The first bias arises because the    enters both the left-hand side variable (  ) and 

the right-hand side variable ( ). This will lead to a negative bias of   , i.e. it causes 

the estimated coefficient to be more negative than the true   . One can illustrate this 

by seeing what happens for negative values of   : Bad luck on a test will decrease 

performance and increase overestimation and will hence make unlucky individuals 

appear as less skilled and more overconfident. In accordance with the previous 

literature we call this bias regression effects (Burson, Larrick, & Klayman, 2006; 

Krueger & Mueller, 2002; Kruger & Dunning, 1999).  

The second bias arises because performance measures skill with random error. This 

bias is referred to as attenuation bias (Hausman, 2001) and biases the estimated 

coefficient towards zero. If the true    is negative, as suggested by the DK effect, 

this will lead to a positive bias, i.e. it causes the estimated coefficient to be less 

negative than the true coefficient.  

Another way to illustrate the direction of the two biases is to rewrite the OLS-

estimator  ̂    as follows: 

  ̂     
   (     

   (  
  

    (           

   (     
 (6) 

         ̂     
   (     

   (      (   
  

   (   

   (      (   
  

                                                           
6. Testing the DK effect by showing average overestimation by performance quartiles, as done by 

Kruger and Dunning (1999), suffers in principle from the same biases as estimating it with OLS 
regression.  

7. As mentioned in Footnote 3, we assume that there is no other unobserved variable which is correlated 

with the explanatory variable and the dependent variable. 
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Equation (6) shows that the estimated  ̂    is biased in two ways. First, the term 

   (    in the denominator of the first term reduces the absolute value of the  ̂    

and thus biases the estimator towards zero. This is the attenuation bias and its 

magnitude depends on    (   , i.e. how well the test measures skill, and it is 

proportional to the true   . Second, the second term shows the regression effects.
8
 It 

is always negative and its magnitude depends on    (    but is independent of   . 

The size of the effect of the two biases together is a priori not clear.
9
 

2.2.4 Biases When Estimating    with Relative Measures 

Most DK effect studies use relative measures such as percentiles (Burson et al., 

2006; Ehrlinger et al., 2008; Kruger & Dunning, 1999; Kruger & Dunning, 2002; 

Ryvkin et al., 2012). The problem with relative measures, which we denote with 

subscript r, is that the relative error (   ), i.e. relative performance (  ) minus 

relative skill (  ), is bounded at the bottom and top of the skill distribution. 

Consider, for example, individuals at the bottom of the (relative) skill distribution. 

Their performance can only be the same or higher than their skill; their (relative) 

error can thus only be positive. Individuals at the top of the skill distribution, in 

contrast, can only have negative errors. This means that even under the standard 

assumption that the absolute performance measures skill with random error, the use 

of relative performance measures will artificially create a negative correlation 

between skill and the error term, i.e.    (      )   . This negative correlation will 

lead to a more complex bias of the relative OLS estimator  ̂    : 

 ̂      
   (       

   (   
  

    (                

   (       
 (7) 

 ̂      
   (           (      )     (        )     (   )

   (   
  

                                                           

8. The term  
   (    )

   (  
 is dropped because with absolute measures we assume that skill and the error are 

uncorrelated. The term 
   (     )

   (  
 is dropped because we assume that the error is uncorrelated with 

overconfidence. 
9. Yet another way of showing the biases is to see how the explanatory variable, performance, is 

correlated with the error term. The error term of Equation (5) is equal to                . The first 

term is the idiosyncratic component. The estimate is biased because performance is correlated with 

the second component, which causes regression effects, and with the third component which causes 

attenuation bias.  
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 ̂      
   (       

   (   
 

   (   )

   (   
 

   (      )

   (   
 

   (        )

   (   
  

Equation (7) shows that there are two additional terms when using relative measures. 

The first additional term is  
   (      )

   (   
 which is due to the artificially negative 

correlation between relative skill and the error. The second additional term is 

   (        )

   (   
. If there is a correlation between skill and overconfidence, the relative 

performance error is correlated with overconfidence through its correlation with 

skill. Consider, for example, people with a positive relative performance error. 

These people have a disproportionately low skill level – because of the negative 

errors are bounded – and – if the DK effect is correct – will also be more 

overconfident. Therefore the performance error will also be correlated with 

overconfidence if     .  

Another difference to the case of absolute measures in Equation (6) is that the 

denominator    (    is equal to    (   . When skill is measured with random 

error, this error variance will increase the variance of the absolute performance 

measure. Transforming this measure from absolute into relative – by making a 

ranking like percentiles - compresses these differences. Consider, for example, three 

people who take a test: the ranks will be one, two and three in terms of both 

unobserved skill and observed performance. Hence, the variance of the two rankings 

will also be the same. As relative performance does not have a larger variance than 

relative skill, all terms in Equation (7) will be less attenuated than in Equation (6). 

As    (    is equal to    (   , the first term is equal to the unbiased estimator. 

The second term is biased due to regression effects, which leads to a negative bias. 

The third term leads to a positive bias because    (      ) is negative as 

–    (      ) is positive. The sign of the fourth term depends on 

   (         when    (         , as predicted by the DK effect, then    (    

    ) is positive. As with absolute measures, the direction of the overall bias is a 

priori unclear. However, with these two additional terms, the properties of the bias 

become considerably more complex. This means that if absolute data are available, 

the use of absolute measures should be preferred as the biases will then be less 

complex, and can, as we will see in Section 2.4, be corrected for when using an 

appropriate method.  
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2.3 Currently Used Bias Corrections  

2.3.1 The Split Sample Method  

Regression effects are a result of the fact that it is the same error component which 

enters the performance and overestimation measures. The Split Sample Method 

(SSM) corrects for regression effects by using two performance measures, one as a 

measure of skill and the second one to calculate overestimation (Klayman, Soll, 

González-Vallejo, & Barlas, 1999).
10

 If the two performance measures are parallel 

measures and the error components of these tests are uncorrelated, the SSM does 

correct for regression effects. Intuitively, this means that if students who have bad 

luck on the test which is used as the measure for skill are equally likely to have bad 

luck on the test which is used to determine their overestimation, there is no 

artificially negative relationship between performance and overestimation. However, 

there is still attenuation bias if the second performance indicator measures skill with 

random error.  

Consider that there are two parallel performance measures (e.g. two test scores),   

and   . Both performance measures are determined by skill and random errors with 

zero mean    and    , respectively: 

 

       

         

 

The SSM relies on the existence of two parallel measures. This means that the true 

skill enters equally into both performance measures that therefore have the same 

error variance, i.e.    (  )      (   ) (Bollen, 1989). The crucial assumption for 

the SSM to correct for regression effects is that the errors    and     are 

uncorrelated. This assumption can be problematic if there are common factors other 

than skill which influence both performance measures. Consider, for example, that   

and    are two parts of the same test. There might be many factors during the test 

(e.g. sickness, distracting seat neighbors) which will influence the performance on 

                                                           
10. This method was first used in an experiment where participants had to make a number of binary 

guesses and state their confidence in each guess in the range from 50 – 100 percent. In this context 

overestimation is the average confidence minus the average proportion correct. This method is called 

Split Sample Method, because in this context all items are randomly split in half and confidence and 
proportion correct are calculated for each half separately. Thus, proportion correct of the one 

subsample is used as   while the other subsample is used as   .  
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both test parts. In general, this assumption is therefore more plausible when the time 

between the two performance tests is considerably long and the measurement 

situation is different (Bollen 1989). 

To show how the SSM corrects for regression effects but not for attenuation bias we 

can rewrite  ̂    as follows:  

 

 ̂    
   (      

   (   
  

   (           )

   (      (    
 

  
    (     

   (      (    
 

 

Note that the covariance of    and    is equal to the covariance of   and    if     

and    are uncorrelated and therefore the second term of Equation (6) disappears.
11

 

However,    (     still attenuates  ̂   . This bias of  ̂    is proportional to   . 

The bias is positive if   <0 as suggested by the DK effect; the estimated  ̂    is thus 

closer to zero than the true   . 

2.3.2 Reliability Adjustment  

Attenuation bias drives the coefficient towards zero because    (     enters the 

denominator and reduces the absolute size of the estimated coefficient (see Equation 

(9)). One way to correct for this bias is reliability adjustment (Bollen, 1989). Test 

reliability (r) is defined as variance of skill divided by variance of performance:  

    
   (  

   (  
  

   (  

   (      (   
   

The reliability adjustment corrects for attenuation bias by dividing the coefficient by 

an estimate of test reliability. Intuitively, this procedure magnifies the coefficient by 

the factor for which it has been attenuated. Ehrlinger et al. (2008) estimated   by 

using the test-retest correlation, i.e. the correlation of the two test scores   and   . 

However, the test-retest correlation is only a correct measure of the test-reliability if 

both   and    are parallel measures. This means that under the assumptions laid out 

for the SSM, the test-retest correlation leads to an unbiased estimate of the test 

reliability (Bollen, 1989).  

                                                           
11. This is because Cov(   ,   ) = 0 if     and    are uncorrelated.  
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One can see that reliability adjustment does correct for attenuation bias but increases 

the bias due to regression effects when we rewrite the reliability adjusted OLS 

estimate,  ̂   as follows:  

 

 ̂    
 ̂   

 ̂
 (

   (     

   (      (  )
  

   (  )

   (      (  )
)

 
   (      (   

   (  
  

 

  ̂      
   (     

   (  
  

   (  )

   (  
   

When multiplying the coefficient by 
   (      (   

   (  
, which is equivalent to dividing it 

by the estimate of the test reliability,    (       (    cancel out in the numerator 

and denominator of both terms and we are left with    (   in the denominator. Note 

that the first term is equal to an unbiased estimator of    while the second term is 

larger than the second term in Equation (6), which means that the overall bias of 

 ̂    is negative.  

2.4  The Instrumental Variable Method 

2.4.1 How the Instrumental Variable Method Works 

The Instrumental Variable (IV) method is a popular bias correction method in 

economics (Angrist & Krueger, 2001) and epidemiology (Greenland, 2000).
12

 It is a 

method to estimate causal effects of a variable which is endogenous, i.e. it is 

correlated with the error term of the equation, either due to reverse causality, omitted 

variable bias, or measurement error. The IV method uses additional variables, called 

instruments, to correct for the bias of the endogenous variable. These instrumental 

variables have to meet two requirements. First, they need to be correlated with the 

endogenous variable (relevance assumption). Second, they need to be uncorrelated 

with the error term of the main equation (exogeneity assumption).  

For testing the DK effect a potential instrument is a second performance measure   . 

For a consistent estimate of   , this instrument needs to be correlated with the 

                                                           
12. See Angrist and Krueger (2001) for an intuitive and Wooldridge (2002) for a more technical 

introduction into the IV method.  
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original performance measure. This is the case when the SSM assumptions hold 

because both performance measures are partly determined by skill (see Equation 

(7)). In practice this condition is not critical and can easily be tested.
13

 Moreover, it 

needs to be uncorrelated with the error term of the main equation, i.e. it should be 

uncorrelated with both    and     .
14

 This assumption is also necessary for the SSM 

(see: Section 2.3.1). This second assumption is in practice more critical because it 

cannot be tested since    and      are unobserved. For this reason, it is important to 

plausibly argue that the instrument is not correlated with the error term of the main 

equation. This is more realistic when   and    have been measured at different times 

and in different situations. 

When the assumptions hold we can get a consistent estimate of    using a two stage 

procedure: In the first stage, the endogenous variable   is regressed on the 

instrumental variable    :  

              

The estimated coefficient of the first stage,  ̂  , is equal to the correlation between 

the endogenous variable and the instrument. In the second stage, overestimation is 

then regressed on the predicted values of performance ( ̂) from the first stage 

instead of  :  

          ̂     

 

The IV estimator  ̂   is equivalent to the estimator of the instrument in the main 

regression, which is called the reduced form estimate  ̂  , divided by the coefficient 

of the first stage  ̂   (Wooldridge, 2002). This way of writing the IV estimator gives 

an insight into the way in which the IV method works: Because the instrument is 

uncorrelated with the error term of the main equation (see exogeneity assumption) 

 ̂   is an unbiased estimate of the effect of the instrument on the dependent variable. 

By dividing  ̂   by  ̂   - the correlation between the endogenous variable and the 

instrument (see relevance assumption) - the size of the reduced form estimate is 

                                                           
13. In general, higher correlation between the instrument and the endogenous variable is preferred.  See 

Murray (2006) for the problem of weak instruments.  

14. Recall that the error term of the main equation is equal to     +          (see Footnote 9). 

Therefore the instrument is not correlated with the error term of the main equation if it is uncorrelated 

with    and     .  
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adjusted to be equivalent to the effect of the endogenous variable (Angrist and 

Krueger 2001). To see how the IV method relates to the SSM and reliability 

adjustment, note that the reduced form estimate is the same as the SSM estimate 

 ̂    and the coefficient of the first stage is the same as the reliability estimate  ̂ (i.e. 

the correlation between    and  ). Hence, the IV method combines the two bias 

correction methods: 

 ̂   
 ̂  

 ̂  

  
 ̂   

 ̂
 

 ̂    
    (     

   (      (    
  

   (  

   (  
 

 ̂    
    (     

   (  
 

 

When we divide the SSM estimator by test reliability (i.e. multiply by the inverse), 

   (   and    (      (     cancel out, so we are left with 
    (     

   (  
 which 

equals the unbiased estimator of   . This shows that, when the SSM assumptions 

hold, the IV method corrects for regression effects as well as attenuation bias.
15

 

But what about  ̂? In Section 2.2.1, we assumed that skill is strictly exogenous in 

Equation (1) and a hypothetical regression of overconfidence on skill would 

therefore give unbiased estimates of   and   . Thus, the estimate of the constant in 

this regression is equal to:
16

 

 ̂    ̅̅ ̅   ̂  ̅  

The estimate of the constant in the second stage of the IV regression (see Equation 

(13)) will therefore be equal to: 

 ̂     ̅̅ ̅   ̂   ̅̂  

                                                           

15. Yet another way to show that the IV estimator is consistent is by rewriting the estimator as 
   (     

   (     
 

see: Angrist and Krueger (2001). It is then straightforward to show that this term is equal to 
   (     

   (  
 

if    (      )   . 
16. Recall that the constant of a binary regression is equal to  ̅   ̂ ̅. 
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Note that when using OLS, the average of the predicted values is always equal to the 

average of the actual values and therefore  ̅̂ =  ̅. From Equations (14) and (15), it is 

straightforward to see that, because  ̂   is equivalent to  ̂ ,  ̂   will be a consistent 

estimate of   if mean overconfidence is equal to mean overestimation (   ̅̅ ̅̅ =   ̅̅ ̅) and 

mean skill is equal to mean predicted performance ( ̅̂ =  ̅ ). Both of which hold 

when    has zero mean (see Section 2.2.2). The constant in the IV regression  ̂   is 

therefore a consistent estimate of  . 

2.4.2 Potential Biases of the IV Method 

So far we have assumed that expected performance is equal to skill plus 

overconfidence. When individuals are asked about their expected performance after 

the actual performance, individuals might have some idea on their luck    on the test 

and adjust their forecast by a some adjustment factor     . In this case      would 

enter the overestimation measure and therefore become part of the error term of the 

main equation. However, in order for the exogeneity assumption to hold, and the IV 

method to lead to a consistent estimate of   , the instrument needs to be uncorrelated 

with   ,      and     . Whether this assumption holds has to be considered for each 

application separately.  

To understand the direction of potential biases of  ̂ consider a situation in which    

has mean  , where    . Because    is part of the overestimation and performance 

measure   will affect  ̂ through   ̅̅ ̅ and through  ̅̂. The bias of the constant is equal 

to     ̂   . Intuitively, think of a situation in which the grader gave each test taker 

  additional points. These points will increase the average performance and decrease 

the average overestimation. The extra points in the overestimation measure 

decreases  ̂ by   while the extra points in the performance measure affects  ̂ by 

  ̂  c. If, for example,  ̂   is -0.5 and   = 2 the bias of the constant is equal to 

 (   (      (   = -1.  

The IV method does not lead to consistent estimates when we use relative 

performance measures. Recall that when skill is measured with random error the 

transformation of absolute into relative measures leads to a negative correlation 

between relative skill and the relative error component (see Section 2.2.4). When 

two absolute performance measures, both measuring skill with random error in 

absolute terms, are transformed into relative measures there will be an artificial 

positive correlation between the two relative error terms, i.e.    (         )   . 

Intuitively, think of the individuals at the top and bottom of the skill distribution. 
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The individual with the lowest percentile can only have positive errors on both 

relative performance measures, while the individual with the highest percentile can 

only have negative errors on both performance measures. Through this bounding of 

relative performance the errors are positively correlated even when the errors of the 

underlying absolute performance measures are uncorrelated. Because 

   (         )   , the exogeneity assumption is violated and IV does not give a 

consistent estimate of the DK effect. 

2.4.3 Advantages of the IV Method 

The main advantage of the IV method over first estimating  ̂    and then dividing it 

by estimates of the test reliability (Bollen, 1989) is that it relies on less restrictive 

assumptions. Recall that both correction methods, the SSM and reliability 

adjustment, rely on the existence of parallel tests. Tests are more likely to be parallel 

when they are of the same format. However, tests of the same format are also more 

likely to have correlated errors. The IV method just relies on the assumption that the 

performance which is used as instrument is correlated with the endogenous variable 

and uncorrelated with the error term of the main regression. This allows researchers 

to combine different kinds of performance measures such as, for example, the use of 

last year’s math course grade as an instrument for math performance on a recent test. 

When performance measures are different, the performance error is also less likely 

to be correlated and hence the exogeneity assumption is more likely to be met. 

Moreover, the IV method allows for the use of multiple instruments. Using several 

performance measures as instruments will increase the precision of the estimates. 

Including multiple instruments also enables us to test the exogeneity assumption 

(see Murray (2006) for a discussion of these tests). Finally, a more practical 

advantage is that the IV method is implemented easily with all current statistical 

software which automatically adjusts the standard errors accordingly. 

2.5 Conclusion 

While many studies have provided evidence for a negative relationship between 

performance and overestimation this does not mean that there also is a negative 

relationship between skill and overconfidence. The observed pattern between 

performance and overestimation might be a statistical artifact caused by the fact that 

performance measures skill with some error. When this error is random, which is a 

standard assumption for absolute performance measures, all of the currently used 

estimation methods give biased estimates of the DK effect. Moreover, when using 
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relative measures like percentiles, as it is frequently done in this literature, the 

transformation of absolute measures with random errors into relative measures 

creates a negative correlation between skill and measurement error. This negative 

correlation further complicates the analysis.  

This means that to this date there is no convincing empirical evidence about the 

existence of the DK effect. Many studies use relative measures and it is not straight 

forward is which directions these are biased (Burson et al., 2006; Ehrlinger et al., 

2008; Kruger & Dunning, 1999; Kruger & Dunning, 2002; Ryvkin et al., 2012).  

When using absolute measures the behavior of the overall bias becomes more 

tractable. The overall direction of the bias of studies which estimate the DK effect 

with OLS is not clear (Kruger & Dunning, 1999). Studies which use the reliability 

adjustment lead to an overestimation of the DK effect (Ehrlinger et al., 2008). 

Theoretically, estimating the DK effect with the SSM would give us a lower bound 

of the true effect size. Unfortunately, the only studies which used the SSM estimated 

the DK effect with relative measures and therefore the overall bias of these study is 

not clear (Krueger & Mueller, 2002; Kruger & Dunning, 2002). 

In this chapter, we suggest an alternative estimation method: the use of a second 

performance measure as instrument for skill. We have shown that, when using 

absolute measures, the IV method corrects for the two potential biases. IV 

estimation is thus a useful tool for testing the DK effect with absolute measures, 

which allows to further investigate the relationship between skill and 

overconfidence.  
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Chapter 3 

Skill and Overconfidence* 

  

                                                           
*  This chapter is based on joined work with Jan Sauermann and Andries de Grip. We thank Christian 

Kerckhoffs and Alexander Vostroknutov for access to their courses. We further like to thank Thomas 

Dohmen, and participants at the Maastricht University DuHR -PhD seminar for helpful discussions 

and comments. 
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3.1 Introduction  

Overconfidence has been used to explain, among other things, financial bubbles 

(Scheinkman & Xiong, 2003), excessive mergers and acquisitions of CEOs 

(Malmendier & Tate, 2005) and excess market entry of entrepreneurs (Camerer & 

Lovallo, 1999). While most economic studies have not specified the relationship 

between overconfidence and skill, Kruger and Dunning (1999) proposed that it is 

generally the low skilled that are most overconfident while the high skilled are, on 

average, more accurate. This pattern between skill and overconfidence is called the 

Dunning-Kruger effect (DK effect) (Dunning, 2011). Kruger and Dunning (1999) 

proposed a lack of metacognitive skills of the low skilled as explanation for the DK 

effect. The intuition of this explanation is that the skill that is necessary to perform 

well is often the same skill necessary to evaluate one’s performance. Hence, the low 

skilled do not only lack the skill to perform well but also the skill to recognize their 

low performance and are therefore more overconfident. Independent of the reason 

for the DK effect, such a pattern between skill and overconfidence would also be of 

interest for many situations which economists study. In general, the notion that the 

least able also tend to be most overconfident suggests that especially those who 

might fail are prone to spend more efforts than they should do (Ferraro, 2010). The 

DK effect could therefore explain, among other things, high college dropout rates 

(Turner, 2004) and excess market entry of entrepreneurs (Camerer & Lovallo, 

1999). 

Our study builds on a number of studies which have shown that for many different 

tasks low performers usually vastly overestimate their performance while high 

performers are, on average, more accurate or even slightly underestimate their 

performance (Burson, Larrick, & Klayman, 2006; Ehrlinger, Johnson, Banner, 

Dunning, & Kruger, 2008; Kruger & Dunning, 1999; Ryvkin, Krajč, & Ortmann, 

2012). We have shown in Chapter 2 that the fact that performance measures skill 

with some error can lead to biases when estimating the DK effect.  

In this chapter, we show that - in contrast to the currently used Split Sample methods 

and reliability adjustment – the DK effect can be estimated consistently with an 

instrumental variable (IV) approach. We illustrate this IV approach in the context of 

incentivized exam grade predictions using students’ grade point average (GPA) as 

an instrument for their exam grade. As prospective overconfidence is more relevant 

for choices which economists study we look at predictions instead of postdictions of 
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performance.
17

 Our empirical estimates support the DK effect. Low skilled students 

are, on average, overconfident while high skilled students are more accurate. These 

estimates are substantially lower than OLS estimates and the reliability adjustment 

but substantially higher than the Split Sample method suggest. The contribution of 

our paper is both empirical and methodological. To the best of our knowledge this is 

the first paper that consistently estimates the DK effect.  

The remainder of the chapter is structured as follows: Section 3.2 discuss the model, 

key variables and potential challenges when estimating the DK effect. Section 3.3 

describes the data. Section 3.4 shows the results and Section 3.5 concludes. 

3.2 The Model 

As in Chapter 2, we model overconfidence (  ) as a linear function of skill (s): 

               (1) 

Overconfidence is the sum of a constant term,  , and a variable component that 

depends on the individual’s skill;     is an idiosyncratic error term which captures 

individual differences in overconfidence that are unrelated to skill. The aim of this 

chapter is to estimate   and   . The DK effect suggests that skill is negatively 

related to overconfidence, i.e. that    is negative. Combining   and    shows 

estimates of the average overconfidence for different skill levels. The DK effect 

thus, predicts high positive level of overconfidence for the low skilled and low 

levels of overconfidence/underconfidence of the high skilled. This is tested against a 

null-hypothesis that there is no relationship between skill and overconfidence, i.e. 

that    is zero indicating that the high and low skilled are equally overconfident. If 

we could observe overconfidence and skill directly, and skill would be strictly 

exogenous in Equation (1), an OLS regression of overconfidence on skill would lead 

to unbiased estimates of   and   . Skill and overconfidence, however, are 

unobservable and researchers use performance on a test and overestimation of this 

performance as their respective measures.  

We define all key variables, skill, performance, overconfidence and overestimation 

as we did in Chapter 2. We define skill straightforward as the ability in the relevant 

                                                           
17. In the psychological literature several studies on the DK effect use expectations of test results after 

the test. The statistical properties of the IV method, however, also apply for these postdictions of 

performance. 



 

28 

domain. The available measure of skill is performance ( ) on a test which is the sum 

of skill and random measurement error (  ): 

        (2) 

We define overconfidence as the difference between the self-assessed skill level and 

the actual individual skill level and overestimation as the difference between 

expected and realized performance. Expected performance (    ) is equal to the sum 

of a person’s actual skill and overconfidence: 

           (3) 

When decomposing overestimation into its respective elements one can see that it is 

equal to the difference of    and   :  

   

    
   

  

                        (      (     

        

 (4) 

When we use overestimation as a measure of overconfidence, the exam error thus 

enters the error term of the equation:  

                  (5) 

When we look at Equation (5) it becomes clear that using performance of the same 

test that is used to calculate overestimation as a measure for the individual skill level 

will cause regression effects because of   . Performance is correlated with the error 

term because    is included in the measured performance as well as overestimation. 

Further, if    is random it will lead to attenuation bias (see Chapter 2). 

This endogeneity problem can be solved by an instrumental variable (IV) approach. 

IV estimation can get a consistent estimate of    with the help of an additional 

variable which is correlated with the endogenous variable (relevance assumption) 

and uncorrelated with the error term of the main equation (exogeneity assumption). 

If these two assumptions are met,    can be estimated consistently with the IV 

approach. In this study, we use a second performance measure which is correlated 

with the first performance measure but arguably uncorrelated with    , and   . 
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When the error term has zero mean the IV method will also lead to a consistent 

estimate of  . 

3.3 Data  

Our sample consists of economics students of two second year bachelor courses, 

which were given in March and April 2013 at the School of Business and 

Economics (SBE) of Maastricht University in the Netherlands.
18

 91 percent of the 

students in our sample are in same economics Bachelor program and each course is 

a compulsory course of a different specialization of this program. The remaining 9 

percent of students are from other Bachelor programs who took this course as an 

elective. No student took both courses, but 87 percent of the students in our 

estimation sample took the same eight compulsory courses in the first year of their 

study. Because Maastricht is close to the German border, the SBE has a large share 

of German students. In our estimation sample 50 percent of students are German and 

30 percent are Dutch; 31 percent are female.  

We elicited students’ predictions of their exam grade with a questionnaire four 

weeks before the exam.
19

 Grades are given on a scale from 0 (lowest) to 10 (highest) 

in course 1 and from 1 to 10 in course 2. For both courses, the minimal exam grade 

necessary to pass the course is 5.5. To ensure that students state their honest 

expectations we incentivized the exam grade predictions by holding a lottery draw 

where students could win in each course one of two gift vouchers worth €20 if their 

prediction was within a range of 0.25 points around their actual exam grade (see 

questionnaire in the appendix). Furthermore, students were assured that all 

information would be kept confidential. Information on actual grades was provided 

by the course coordinators, information on student characteristics and previous 

grades is taken from the administrative records. 

In total 165 of 209 registered students filled out the questionnaire which means a 

response rate of 79 percent. The remaining 21 percent were not present during the 

distribution of the questionnaire in the class room; either because they missed the 

particular session or because they had already dropped out of the course. Table 3.2 

shows the summary statistics for the estimation sample of students’ predictions, 

actual grades, the resulting over- and underestimation as well as students’ GPA at 

                                                           
18. See Chapter 4 for more information on the institutional background. 
19. We also elicited students’ expectation about the percentile of their exam grade and their participation 

grade. We do use these predictions to test the DK effect because we do not have suitable instrument 

for participation grade problems of relative measures discussed in Chapter 2. 
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the end of the first year. On average students significantly overestimated their exam 

grade (p = 0.004). 

Table 3.1 Predictions, Grades and Overestimation  

  Obs. Mean S.D. Min 0.25 0.50 0.75 Max 

Predicted exam grade 153 7.22 0.85 4.50 6.50 7.00 8.00 9.25 

 Realized exam grade 153 6.85 1.93 0.00 5.75 7.00 8.00 10.00 

 Exam overestimation 153 0.37 1.70 -3.00 -0.75 0.25 1.50 6.20 

 GPA 153 7.17 1.15 4.34 6.37 7.17 8.08 9.38 

Note: Based on estimation sample. Exam overestimation is equal to predicted minus realized 

exam grade. 

 

In this study, we use the students’ grade point average (GPA) as an instrument for 

their exam grade - the (endogenous) measure of their skill. The instrument needs to 

be correlated with the exam grade but uncorrelated with the error term of the main 

equation. We propose students’ first year GPA, which is calculated as the weighted 

average of all grades at the end of the first year,
20

 as an instrument for the following 

reasons. First, it is correlated with the exam grade because it is often similar skills 

that determine grades in different courses. Second, because the last grade of the first 

year GPA was graded eight months before the exam students were asked to predict, 

the GPA is arguably uncorrelated with the exam error   . However, the GPA might 

be correlated with     if there are other factors which are correlated with skill as 

well as overconfidence. Student gender or nationality, for example, might be 

correlated with skill and overconfidence. To account for this possibility we estimate 

Equation (5) including dummies for gender, student nationality, course dummies and 

a dummy indicating whether the exam was taken in the second attempt.  

  

                                                           
20. The GPA is a weighted average (by ECTS points) of all graded components available at the end of 

the academic year 2011/2012. The same data is used in Chapter 5. For most of the students the GPA 

measure consist of eight regular courses (6.5 ECTS) and two skills courses (3 ECTS) which are 

compulsory in the first year of the economics Bachelor. 
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3.4 Results  

3.4.1 Main Results 

Figure 3.1 plots the average exam predictions against the actual exam grades. If all 

individuals would have perfect foresight about their exam grades, the relation 

between predicted and actual grades would be shown by 45-degree line (solid line). 

The figure shows the typical pattern of many DK effect studies: those with lower 

grades vastly overestimate their exam grade while those with higher grades slightly 

underestimate their exam grades. However, as discussed in Section 3.2, the 

relationship between performance and overestimation shown in Figure 3.1 is biased 

due to regression effects and attenuation bias.  

Figure 3.1 Actual versus Predicted Exam Grades 

 
Note: The figure shows predicted exam grades against actual exam grades. Caps show the 

95% confidence interval of the predicted exam grades. 

 

Table 3.2 shows the first and second stages of an IV regression with students’ 

overestimation as dependent variable, students’ exam grade as endogenous variable 

and students’ GPA as instrument. Column (1) and (3) show the first stages without 

and with additional control variables respectively. Unsurprisingly, past GPA is 

highly correlated with a student’s current exam grade. Students who performed well 

in previous courses are very likely to perform well on the current exam as well. If 

we control for background information of the student, the estimated coefficient is 

slightly smaller, yet not statistically different. The F-tests of the excluded instrument 
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are large. Columns (2) and (4) of Table 3.2 shows the estimated coefficients of the 

second stage without and with additional controls respectively. Both estimates are 

negative and highly significant. The coefficient of our preferred specification in 

Column (4) suggests that a one grade point increase in skill reduces overconfidence 

by 0.6 grade points.  

These results provide evidence for the DK effect: the negative coefficient of the 

(predicted) exam grade shows that students with higher skills are, on average, less 

overconfident while students with lower skills are more overconfident. We can 

further use the predicted exam grades, our unbiased measure of skill, and the 

respective estimates of   and    from Column (4) to demonstrate that the DK effect 

holds in our sample: The predicted overconfidence of the student of the 10
th

 

percentile of the skill distribution (predicted exam grade = 5.00) is equal to 2.18 

(5.18 -0.60*5.00) while the predicted overconfidence of a student of the 90
th

 

percentile of the skill distribution (predicted exam grade = 8.42) is equal to 0.12 

(5.18 -0.60*8.42). In line with the DK effect, the low skilled are very overconfident 

while the high skilled are more accurate.  

Table 3.2 IV Estimates of the DK Effect  

 (1) (2) (3) (4) 

 First Stage Second Stage First Stage Second Stage 

 Exam grade Overestimation Exam grade Overestimation 

Exam grade  -0.5539***  -0.5964*** 

  (0.080)  (0.067) 

GPA 0.9654***  0.9710***  

 (0.089)  (0.109)  

Constant -0.0663 4.1632*** -0.5737 5.1781*** 

 (0.696) (0.601) (0.823) (0.520) 

     

F-test excluded instrument  118.9  79.1 

Observations 153 153 153 153 

R-squared 0.329 0.733 0.408 0.798 

Note: Standard errors clustered at section level in parentheses, *** p<0.01, ** p<0.05, * p<0.1. 

Additional controls include dummy variables for female, German, Dutch, field of study 

economics, course 2, resit exam.  

 

3.4.2 Robustness Checks 

The results from Table 3.2 are remarkably robust. Estimating the DK effect 

separately for course 1 and 2, including the grades of all eight compulsory courses 

separately or jointly leads to qualitatively similar results (not shown). There is one 
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potential concerns about the validity of the instrument we used. It might be that 

overconfidence directly influences a student’s grade. If students who are 

overconfident behave differently in the classroom the teacher and grader might 

confuse this confidence for skill and therefore (subconsciously) give higher grades 

to more overconfident students. This is possible if the grader, who is in many cases 

the same person as the teacher, knows the students because at the SBE students are 

expected to write their names on their exams.
21

 If this is the case, overconfident 

students would appear to be more skilled and less overconfident and our estimates 

would be biased. To test whether our estimates are driven by the effect of 

overconfidence on grades we redid the analysis using a performance measure which 

was graded objectively as instrument: The grade of a first year course which only 

graded component is a machine graded multiple choice (MC) exam. Table 3.3 shows 

the analysis similar to columns (3) to (4) in Table 3.2 but with MC course grade 

instead of GPA as an instrument. Column (1) shows that MC course grade 

significantly predicts exam grade on the current course and the F-statistic is large. 

The point estimate reported in Colum (2) is remarkably close to the point estimate 

reported in Table 3.2. This result suggests that our results are not driven by the effect 

of overconfidence on grades.  

Table 3.3 Robustness, Multiple Choice Course Grade as Instrument 

 (1) (2) 

 First Stage Second Stage 

 Exam grade Overestimation 

Exam grade  -0.6198*** 

  (0.076) 

Multiple choice course grade 0.8089***  

 (0.093)  

Constant 1.4953* 4.6692*** 

 (0.716) (0.529) 

   

F-test excluded instrument  76.3 

Observations 135 135 

R-squared 0.346 0.811 

Note: Standard errors clustered at section level in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

Additional controls are as in Columns (3) and (4) of Table 3.2.  

   

 

  

                                                           
21. See Chapter 4 for more details about the examination and grading procedure at the SBE.  
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3.4.3 Contrast Findings to Current Methods 

How do the IV estimates presented in Section 3.4.1 compare to the estimates we 

would have got with the estimation methods currently used in the literature? Column 

(1) of Table 3.4 shows the IV estimates from our preferred specification of Column 

(4) Table 3.2 which we will use as baseline. Column (2) shows the results of an OLS 

estimation of overestimation on performance and additional controls. The OLS 

coefficient is about 35 percent larger than the IV coefficient which shows that in our 

sample OLS substantially overestimates the magnitude of the relationship between 

skill and overconfidence. This shows that in this setting the regression effects bias is 

larger than the attenuation bias. 

Unfortunately we do not have data of the students’ performance on a second 

comparable exam. With data on such an exam we could have calculated the test-

retest correlation and then apply the reliability adjustment method (Ehrlinger, et al., 

2008). Further, we could have applied the Split Sample method by using the 

comparable second exam grade as our measure of skill (Klayman, et al., 1999). 

However, we can simulate the magnitude of the reliability adjusted OLS estimator 

and the Split Sample estimator if we assume some plausible value for a test-retest 

correlation between the two exam grades. Values for test-retest correlation in DK 

effect studies typically range from 0.50 to 0.80. (Burson, et al., 2006; Ehrlinger, et 

al., 2008; Klayman, et al., 1999; Krueger & Mueller, 2002). We will use 0.80, an 

estimate most favorable to other methods used in the literature, as plausible value for 

a test-retest correlation. Column (3) of Table 3.4 shows the simulated reliability 

adjusted OLS estimator, which is equal to the OLS estimator divided by the 

hypothetical test-retest reliability 0.80, and the accordingly adjusted estimate the 

constant (see: Ehrlinger, et al., 2008). Note that, if measurement error is random, the 

Split Sample estimator only suffers attenuation bias and test-retest reliability is an 

indicator of the degree of this attenuation (see: Chapter 2). Hence, we can simulate 

the size of the Split Sample estimator by multiplying the IV estimator by the 

hypothetical test-retest reliability. Column (4) of Table 3.4 shows simulated 

coefficient and the accordingly adjusted constant.
22

 The OLS estimates and the 

simulations illustrate that the different estimation techniques can lead to 

substantially different estimates. While in our sample all methods would have 

supported the existence of the DK effect they differ vastly in magnitude. Compared 

to the consistent IV estimator, the OLS estimator substantially overestimates the DK 

                                                           
22. The formula to calculate the new constants for the reliability adjusted OLS and the Split Sample 

method is:   ̅̅ ̅    ̂ ̅, where  ̂ is the respectively adjusted coefficient. The average overestimation of 

the estimation sample is 0.368 and the average performance of the estimation sample is 6.852.  
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effect. As we would expect, the reliability adjusted OLS leads to an even larger 

overestimation of the DK effect because it only corrects for attenuation bias and 

even aggravates regression effects. Further, the Split Sample method, which only 

corrects for regression effects, underestimates the DK effect. It is straightforward to 

see that for more unreliable performance measures these differences would be even 

larger.  

Table 3.4 Comparison of Different Statistical Methods to Estimate the DK 

Effect 

 (1) 

Estimated 

(2) 

Estimated 

(3) 

Simulated 

(4) 

Simulated 

 IV OLS Ra. OLS SSM 

 Overestimation Overestimation Overestimation Overestimation 

Exam grade -0.5964*** -0.8077*** -1.0096 -0.4771 

 (0.067) (0.032)   

Constant 5.1781*** 6.5590*** 7.2858 3.6371 

 (0.520) (0.311)   

Observations 153 153 153 153 

R-squared 0.798 0.849   

Note: Standard errors clustered at section level in parentheses; *** p<0.01, ** p<0.05, * p<0.1. 

Column (1) is equal to column (4) in Table 3.3 and shows estimates of IV regression where first 

year GPA is used as an instrument for current exam grade. Column (2) shows estimates of an 

OLS regression of overestimation on exam grade. Additional controls for Column (1) and (2) are 

the same as in Table 3.2 column (4). Columns (3) and (4) are simulated: The coefficient of in 

column (3) is equal to the coefficient in column (2) divided by 0.80. The coefficient in column (4) 

is equal to the coefficient in column (1) multiplied by 0.80. Constants in Columns (3) and (4) are 

calculated as described in Footnote 22. 

 

3.5 Conclusion  

It is difficult to test for the existence of the DK effect because measurement error 

causes regression effects and attenuation bias. We are the first to consider both of 

these biases simultaneously by estimating the DK effect with an IV approach. In the 

context of students’ exam grade predictions we find evidence for the DK effect: Low 

skilled students are overconfident while high skilled students are more accurate. 

This finding is robust to a number of potential concerns. We further show that 

estimating the DK effect with the methods currently used in the literature leads to 

substantially different estimates.  

Future research will have to show whether the DK effect also holds for different 

tasks and in different population. If the DK effect, however, is a robust 
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psychological regularity this can inform the study of a number of situations in which 

accurate human judgment and decisions are crucial. The existence of the DK effect 

would suggest that even low levels of overconfidence on average in a given 

population hides substantial heterogeneity with the low skilled, those who often 

most benefit from accurate self-assessment, being most overconfident. 
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3.6 Appendix 

Questionnaire  

The only difference between the questionnaires for course 1 and 2 is that the 

prediction for the participation grade was only incentivized for course 2. Therefore 

students could win up to two vouchers in course 1 worth €40 and up to three 

vouchers in course 2 worth €60. Differences between the questionnaires are 

indicated with “only for course 2”.  

Dear student, 

I am Jan Feld, PhD student in Economics at the School of Business and Economics. 

My research concerns the relation between grade expectations and realised grades.  

I would like to ask you for your expectations of your grade in the [course name] 

exam and your participation grade. Please give your best estimates. You can enter 

three lotteries if your estimates are close to your actual results. In each lottery you 

can win one of [two/three] VVV vouchers worth €20. In total, you can win VVV 

vouchers of [€40/€60]. 

At the end of the survey, you will be asked to enter your student ID. The ID is 

required to compare your estimates with your actual results. If you win one of the 

lotteries, the ID will be used to look up your email so that I can inform you about 

your win. 

I will treat this information confidentially and ensure your anonymity. No individual 

information will be passed on to anybody (not even your tutor or course 

coordinator). I will also not report any information which can be used to identify 

you.  

If you have any questions, please feel free to contact me via: 

j.feld@maastrichtuniversity.nl 

Thank you for your cooperation! 

Jan Feld 

  

mailto:j.feld@maastrichtuniversity.nl
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This is how the lotteries are going to work: 

 

Lottery 1: If your exam grade (in your first attempt) is within 0.25 points of your 

expected grade, you enter a lottery in which two winners are randomly drawn. If you 

do not attend the first sit, your second sit grade is considered for the lottery. Each 

winner will receive a VVV voucher worth €20. 

 

Lottery 2: I calculate the actual percentile of your exam grade compared to the exam 

grades of the first attempts of all students in this course. If your final exam grade is 

in your expected percentile range, you enter a lottery in which two winners are 

randomly drawn. Each winner will receive a VVV voucher worth €20. 

 

[Lottery 3: If your actual participation grade is within 0.25 points of your expected 

participation grade, you enter a lottery in which we randomly draw two winners, 

who will receive a VVV voucher worth €20.] only for course 2 

 

  



 

39 

Questionnaire Grade Expectations - Course [course name] 

******************************************************************** 

 

Which grade do you expect to get in the exam of the course [course name]?  

If you do NOT intend to attend the first sit, please state your expectations for the second sit 

(resit).  

I expect to get a __ __.__ __ in the exam. [0.00-10.00]  

 

Please indicate in which percentile range you expect your exam grade to be in? 

The percentile shows the percentage of students in this course which have a lower exam 

grade (in their first attempt) than you. High values mean high exam grades compared to the 

exam grades of the other students in this course.  

Please mark your expected percentile range with an X. 

 1%- 

10%  

11%- 

20% 

21%- 

30% 

31%- 

40% 

41%- 

50% 

51%- 

60% 

61%- 

70% 

71%- 

80% 

81%- 

90% 

91%- 

100% 

Your 

percentile: 

          

 Worst 

10%  
        Best  

10%  

Which participation grade do you expect to get in this course?  

[Please state your guess rounded to the next quarter point so that it ends with .00, .25, .50 or 

.75. ]  only for course 2 

I expect to get a__ __ .__ __as participation grade. [0.00-10.00]  
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Do you consider failing on purpose in the first sit of the exam in this course – either 

by not attending or by handing in an incomplete exam – in order to get a higher 

grade in the second sit? 

 

     Yes   No  

 

   

What is your gender? 

 

     Male         Female 

 

What is your student ID?  

 

ID_______________ 

 

 

Please fold this page in half after filling it out. 

 



 

41 

Chapter 4 

Endophilia or Exophobia: 

Beyond Discrimination* 

 

 

 

 

 

 

                                                           
*  This chapter is based on joined work with Nicolás Salamanca and Daniel Hamermesh. We thank 

Jeannette Hommes, Ad van Iterson and Caroline Kortbeek for their assistance in making this 

experiment possible. Eric Bonsang, George Borjas, Deborah Cobb-Clark, Andries de Grip, Thomas 

Dohmen, Hannah Ebin, Matthew Embrey, Ilyana Kuziemko, Corinne Low, Arjan Non, Christopher 
Parsons, Joseph Price, Stephen Trejo, participants in seminars at a number of universities and 

institutes, and especially Leigh Linden provided very helpful comments. The Board of Examiners of 

the School of Business and Economics at Maastricht University formally approved this project. 
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Although we could not perceive our own in-groups excepting as they contrast to out-

groups, still the in-groups are psychologically primary. Hostility toward out-groups 

helps strengthen our sense of belonging, but it is not required. [Allport, 1954] 

4.1 Introduction 

Economists have studied labor-market discrimination at least since Becker (1957). 

Differences in labor-market and other outcomes by race, gender, ethnicity, religion, 

weight, height, appearance and other characteristics have been examined in immense 

detail, over time and in many economies. The focus has, however, been nearly 

exclusively on measuring differences in outcomes between groups, under the 

assumption that the “majority” group’s outcome is the norm while the “minority” 

group is discriminated against. But since the only concept that is measured is a 

difference, it could just as easily be that the majority group is favored while the 

minority group’s outcome is the norm. 

The possibility that we are measuring the extent of favoritism rather than 

discrimination has been pointed out by Goldberg (1982) and by Cain (1986) in his 

survey; but beyond that the issue appears to have been completely neglected, 

including by the more recent Handbook surveys of the literature on discrimination 

(Altonji and Blank, 1999; Fryer, 2011). Once we recognize that favoritism need not 

be the obverse of discrimination, the importance of studying preferences for 

favoritism/discrimination increases. Although the distribution of discriminating 

agents’ tastes underlay Becker’s theory, in most empirical research the demand 

side—the behavior of discriminatory agents—has not been studied explicitly. Only 

recently has there been even a small upwelling of interest in examining their 

behavior and its impacts on outcomes.
23

 These studies typically consider how 

agents’ behavior toward those who match them along some dimension differs from 

their behavior toward those who do not match them, again only estimating relative 

differences. Even then, most of these studies have looked only at averages, and none 

has combined this with the analysis of the distributions of preferences.  

Here we discuss the results of a field experiment that allows us to identify separately 

the means of favoritism and discrimination, as well as their distributions. The key to 

                                                           
23. See Price and Wolfers (2010) and Parsons et al (2011) for evidence from professional sports; Fong 

and Luttmer (2009) on charitable giving; Dee (2005), Lavy (2008), Hinnerich et al (2011), and 

Hanna and Linden (2012) for examinations of education; Cardoso and Winter-Ebmer (2010) and 
Giuliano et al (2011) on wages and hiring; Baguës and Esteve-Volart (2010) on parliamentary 

elections; and Dillingham et al (1994), Donald and Hamermesh (2006) and Abrevaya and 

Hamermesh (2012) for studies of economists’ behavior. 
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doing this that, instead of measuring differences in outcomes between groups, we 

compare outcomes of members of the same group with and without visible 

characteristics that reveal to which group they belong.
24

 In the context of our 

experiment, we do this by randomly revealing or concealing names on students’ 

final exams, and thus randomly allowing or not allowing graders to infer the gender 

and nationality of the students. Because of the random assignment, students without 

visible names on their exams have on average the same observable and unobservable 

characteristics as students with visible names on their exams. Students without 

visible names thus serve as a neutral baseline to identify discriminatory preferences. 

Differences from this baseline can be entirely attributed to the presence of the 

name—and by inference to favoritism/discrimination.
25

 Hence, we have evidence for 

favoritism if members of a group are treated better when their names are visible. 

Conversely, we can infer the presence of discrimination if members of a group are 

treated worse when their names are visible. We focus specifically on 

favoritism/discrimination by gender and nationality, but this method could be 

applied to any of the groups that have been studied in this immense literature. 

To distinguish clearly the who and the how in discrimination, we introduce four 

terms: Endophilia, endophobia, exophilia, and exophobia. The prefix endo refers to 

preferences towards people like oneself, the prefix exo to people unlike oneself. The 

suffixes philia and phobia refer to favoritism to discrimination. Hence, endophilia 

denotes preferences for member of one’s own group, while exophobia denotes 

preferences against members of other groups. One can also imagine, however, that 

some agents prefer members of other groups—are exophilic, while other agents are 

endophobic—discriminate against people like themselves. 

  

                                                           
24. A number of studies (e.g., Goldin and Rouse, 2000, Burgess and Greaves, 2013) have focused on 

“blindness” in quasi-experimental situations to infer the extent of discrimination (or favoritism, since 
neither study could distinguish between these).  

25. The only experiments like ours were conducted in laboratories (Fershtman et al, 2005; Ahmed, 

2007). The latter had artificially-designated in- and out-groups; the former dealt with nationalities but 
was based on statements by students on how they would behave in a trust game. While laboratory 

evidence is useful, as discussed by Levitt and List (2007) it suffers from a number of difficulties that 

can be addressed in field experiments.  
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4.2 Theoretical and Empirical Motivation 

The importance of the distinction between favoritism and discrimination can be seen 

both theoretically and empirically. Our theoretical work is a generalization of 

Becker’s (1957) theory of discrimination and Goldberg’s (1982) alteration of it. 

Goldberg adapted Becker’s model to show that if favoritism toward one’s own 

group drives observed, apparently discriminatory wage differentials, these 

differentials can persist in a competitive market. He reached this conclusion by 

assuming that employers have favoring instead of the discriminatory preferences as 

in Becker (1957). Employers can, however, have both discriminatory and favoring 

preferences. We extend Becker’s model to show that if both preferences are present, 

the intergroup wage differential will not only depend on the distributions of 

favoritism and discrimination but also on the relationship between their 

distributions.  

Assume, as Becker does, that all employers are White and that there is a fixed labor 

force, some fractions of which are White and Black. Let employers have endophilic 

and exophobic preferences simultaneously, so that we can characterize a typical 

employer’s utility as:  

   (                           

where we assume as usual that White and Black workers are perfect substitutes in 

the production function Q for the good sold at a constant price of unity. This utility 

function implies that employers obtain or forgo a fixed amount of utility when they 

hire Whites or Blacks according to their preferences.
26

 Analogous to both Becker’s 

and Goldberg’s models, employers here will hire Whites or Blacks depending on 

whether       is smaller or larger than δ =    , the relative preference for 

Whites over Blacks.  

In equilibrium, Blacks will be employed by employers with lower values of   and 

Whites will be employed by the remaining employers. Knowing this, we can find a 

simple expression that implicitly identifies the preferences of the marginal employer. 

Assume that the distribution of endophilia is  (   and of exophobia is  (   across 

the population of jobs on offer, and denote the relative preference of the marginal 

                                                           
26. Goldberg and Becker model discrimination and favoritism as wage premia and discounts rather than 

as a fixed utility gain or loss. Although more complex, the model here and the general intuition do 

not change if we choose to model discrimination and favoritism as they do.  
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employer, for whom           , as   . Then in long-run equilibrium the 

share of Blacks in the economy determines   : 

  

     

 ∫  (    

  

  

  

where  (   is the density function of   which, in general, will depend on the 

densities   and   and their relation. If    (     
   and    (     

  : 

  

     

  (
        

√  
    

        
)  

where   is the cumulative standard normal distribution and   is the correlation 

between endophilic and exophobic preferences in the population of jobs being 

offered. It is easy to see that, keeping the shares of Blacks and Whites and the means 

and variances of the densities   and   constant, an increase in   will result in a 

marginal discriminator with weaker relative preferences for Whites over Blacks. The 

increase in   increases the variance of  , the sum of preferences, while keeping its 

mean constant. This leads to a distribution of relative preferences for Whites with 

more extreme values; more employers now have an extremely strong and extremely 

weak relative preference for Whites. Because Blacks are hired by employers who are 

most favorable to them, the marginal discriminator now has a lower relative 

preference for Whites. A more positive correlation of endophilia and exophobia thus 

leads to a decrease in the absolute value of the equilibrium Black-White wage gap.
27

 

In other words, for the same means and variances of endophilic and exophobic 

preferences, and holding constant the share of Black workers, the wage gap is 

smaller if the most bigoted (against Blacks) employers are also those who favor 

Whites most. 

By allowing agents to have endophilic and exophobic preferences at the same time, 

our model becomes a more general version of both Becker’s and Goldberg’s, 

effectively nesting both cases.
28

 The model predicts that the wage gap increases if 

employers become more exophobic (as in Becker) and as they become more 

endophilic (as in Goldberg). By allowing endophilia and exophobia to co-exist, 

                                                           
27. See Charles and Guryan (2008) for a discussion of the empirical importance of the marginal 

discriminator. 

28. If we assume that endophilia is non-existent, the model reverts to Becker’s; if we assume that 

exophobia is non-existent, it reverts to Goldberg’s.  
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however, the model introduces an additional force that can shape market outcomes, 

the correlation of the two types of preferences.  

The concepts of endophilia, exophobia, and their correlation can be measured, albeit 

imperfectly, in the real world. Beginning in 1996, and biennially except in 2002, the 

U.S. General Social Survey has asked questions, “In general, how close do you feel 

to Whites [Blacks]?” with answers on a nine-point scale ranging from 9 = very close 

to 1 = not close at all. Table 4.1 describes these data, separating answers by Whites 

and Blacks, and pooling 1996-2000 as an early period, 2004-2006 as a later period. 

(We exclude the 2008 and 2010 data because the campaign and election of President 

Obama may have altered expressed preferences.) Several things stand out: 1) 

Unsurprisingly, expressed closeness to one’s own group exceeds that to the other 

group; 2) While Whites’ closeness to other Whites changed little over this period, 

there was a very large increase in their expressed closeness to Blacks; 3) There are 

only small changes in Blacks’ expressed closeness to either Whites or Blacks; and 4) 

The correlation between expressed closeness to one’s own group and the other is 

positive and increased (significantly) between the two sub-periods. Implicitly, those 

who favor members of their own group more disfavor members of the other group 

less, or, in our terminology, there was an increasing negative correlation between 

endophilia and exophobia.  

To illustrate how thinking about endophilia and exophobia jointly can add to our 

understanding of discriminatory outcomes, consider the implications of the GSS 

data for the evolution of the Black-White wage gap. Assume for simplicity that the 

share of Black workers remained constant and that all employers are White. In Table 

4.1 we can see between 1996-2000 and 2004-2006 Whites’ endophilia remained 

constant, Whites’ exophobia (the negative of the measure in the Table 4.1) 

decreased, and the correlation between endophilia and exophobia decreased (became 

more negative).
29

  

  

                                                           
29. Their correlation decreases because Whites’ closeness to Blacks, as reported in Table 4.1, is 

measuring exophilia, the opposite of exophobia. 
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Table 4.1 Endophilia and Exophobia in the U.S. General Social Survey, 

1996-2006, 9-point scale 

Time period: 1996-2000   2004-2006 

WHITES       

Feel Close to Whites 7.060   6.966 

  (0.031)   (0.038) 

        

Feel Close to Blacks 5.121   5.494 

  (0.032)   (0.039) 

        

N  3,550   2,174 

        

Ρ 0.146   0.226 

BLACKS       

Feel Close to Whites 5.799   5.945 

  (0.084)   (0.106) 

        

Feel Close to Blacks 7.547   7.685 

  (0.079)   (0.093) 

        

N  651   387 

        

Ρ 0.242   0.318 

Note: In general, how close do you feel to …? not close at all = 1; very close = 9. 

 

Becker’s model (where only exophobia matters) predicts that the decline in 

exophobia shown in the table would decrease the wage gap. Goldberg’s model 

(where only endophilia matters) predicts that the wage gap would remain constant. 

Our model captures one force that tended to decrease the gap—the reduction of 

exophobic preferences; and one that tended to increase it—the more negative 

correlation between endophilia and exophobia. Perhaps these opposite forces 

contributed to the constancy of the black-white earnings ratio over this period, 

although with so many other shocks over this short period attributing changes is 

difficult.   
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4.3 Constructing the Experiment 

4.3.1 The Environment 

To make the distinction between favoritism and discrimination empirically we set up 

a field experiment that we carried out during the final exam week in June 2012 at the 

School of Business and Economics (SBE) of Maastricht University in The 

Netherlands. The language of instruction throughout the SBE is English. This 

environment has a number of features that make it particularly appropriate for 

distinguishing between favoritism and discrimination. Partly because Maastricht is 

near the German border, the SBE has a large share of German students (51 percent) 

and academic staff (22 percent) mixed with Dutch and other nationalities. The 

student population is 36 percent female, and the academic staff is 28 percent 

female.
30

 German students have a reputation for being more hard-working than 

Dutch and other students. These contrasts by nationality could potentially be the 

basis for discrimination/favoritism, although it is unclear a priori in which direction 

these will be.
31

 

The grading of final exams, which we examine here, is a good setting for identifying 

discrimination/favoritism, because graders do not gain anything from favoring or 

disfavoring specific groups. Also, until the teaching period that we examine all 

students were required to write their names on their exams, enabling the graders to 

identify the students’ gender and nationality.
32

 Finally, and most important, this 

experiment has real-world consequences: The grades are important to students; also, 

much of the graders’ jobs revolves around their role in scoring exams. 

                                                           
30. The SBE homepage (http://www.fdewb.unimaas.nl/miso/index.htm) provides these statistics for 

enrolled students in 2010 for nationality and 2012 for gender. Statistics about staff refer to full-time-

equivalent academic staff in 2012 and are taken from the internal information system “Be Involved.” 

31. While it is often found that people favor (discriminate against) groups with same (different) 
characteristics, there are also situations in which the opposite is the case. One can, for example, think 

of many situations in which relative outcomes suggest that males are exophilic or endophobic (e.g., 

Donald and Hamermesh, 2006, although that study cannot distinguish between these two types of 
preferences). 

32. The grader can infer the nationality and gender of the students when she sees the family name, even 

if she does not know the student, because Dutch and German names are quite distinct. To test this we 
asked 9 staff (5 German and 4 Dutch, of whom 5 were female) to guess the nationality and gender of 

50 student names from our sample. We selected the student names block-randomly to reflect the 

nationality mix in our sample (19 German, 17 Dutch and 14 other nationalities, of whom 16 were 
female). The staff correctly identified the German names in 64 percent and Dutch names in 65 

percent of cases, and they correctly guessed gender in 90 percent of the cases. On the other hand, 

graders may be more able to infer student gender than nationality from handwriting per se.  

http://www.fdewb.unimaas.nl/miso/index.htm
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In the SBE written exams are administered in ten sessions spread over a week, with 

many courses giving their exams simultaneously. Students in all the courses 

assigned to each session take their exams together in a large conference hall filled 

with desks that are arranged in blocks of 5 columns and 10 rows.
33

 To prevent 

cheating the location of each student’s desk is predetermined by the Exams Office 

(the organization responsible for examination procedures). The desk assignment is 

based on student ID numbers, first by sorting them from lowest to highest within 

each block, and then filling in sequentially within each column from left to right.
34

 

Figure 4.1 illustrates the arrangement of desks in each block. 

  

                                                           
33. Exams in courses with more than 50 students are written in the same session in multiple blocks. 

Exams in courses with fewer than 50 students are either kept in one block or are combined with the 

exams in other courses. There are a few blocks that have as many as 12 rows.  

34. Student IDs are assigned in ascending order based on the moment a prospective student contacts 
Studielink (the Dutch centralized system for university application; https://app.studielink.nl/front-

office/). This means that earlier cohorts have lower-number IDs, and later cohorts and exchange 

students have higher-number IDs. 

https://app.studielink.nl/front-office/
https://app.studielink.nl/front-office/
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Figure 4.1 Seating Arrangement for the Experiment 

 

 

Note: One square represents one desk. Students were seated in order of their ID numbers. 

Each number indicates the order of student ID numbers in each block. The student with the 

lowest ID number sat in desk 1, the one with the highest ID in desk 50. Rows 1-3 had yellow 

sheets on the desks with instructions not to write their name, thus creating the Blind group. 

Rows 4-10 had no extra sheets. In these rows students were expected to write their name to 

create the Visible group. 

 

4.3.2 The Experiment and Data Collection 

The students in each session arrive at the exam hall and locate their assigned block 

based on the course they are taking. Within the block they then locate their assigned 
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desk, which is marked with their student ID number. Once the exam session starts 

students have three hours to complete their exams. During that time one invigilator 

(not the same person as the exam grader) supervises each block. We asked the 

invigilators to place yellow sheets on all desks in the first three rows of each block 

(see Figure 4.1), thus ensuring that the recipients were mixed by ID number, and 

thus were more or less randomly treated by seniority in the University. The sheets 

stated that the students on whose desks one was placed should not write their name 

but only their ID number on the exam sheets (see Figure 4.6 in the appendix).
35

 

Because of the predetermined arrangement of desks this meant that a random sample 

of students within each course - the “blind” group - was asked not to write their 

names, so that the grader would only observe their ID numbers when grading. For 

the rest of the students - the “visible” group - graders could observe both names and 

IDs, as in previous teaching periods. 

We collected additional information from several other sources. The Exams Office 

provided us with the nationality and gender of the students, grades in previous 

courses, and the desk arrangement during the exam. From the seating arrangement 

we could infer which students were asked not to write their names (yellow sheets, 

rows 1-3) and which were allowed to do so. To check students’ compliance with the 

experiment’s instructions, we manually went through all the exams and noted which 

students wrote down their names and which students did not.
36

 

At the SBE it is common practice to split the grading burden among various graders 

by letting each one handle all the answers to a particular set of questions on the same 

exam. The course coordinators identified the grader of each question and provided 

us with information on the grading. This information included the score on each 

question and the maximum possible points per question. They also provided other 

grades that the student had attained in the course, including on course participation, 

presentation and any term paper.
37

 A survey sent after the grading to all graders and 

course coordinators provided information on the grader’s gender, nationality, 

                                                           
35. We placed the sheets on entire rows instead of scattered seats within each block for simplicity. We 

treated rows instead of columns in order to capture students with a variety of high and low ID 

numbers within each course. The Exams Office informed the course coordinators—who were in 

charge of organizing the grading of the exams—before the examination period that a new 
examination procedure was being tested, so that some exams might only have ID numbers. They 

were asked to have those exams graded as they usually would. 

36. This was done immediately after the exam, before the course coordinators received the exams and 
started the grading process.  

37. Most course coordinators had this information readily available in an Excel file. We manually 

collected the scores on each exam question for 7 courses. 
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teaching experience and grading behavior during the experiment.
38

 From the SBE’s 

online tool for course evaluations we gathered the total number of courses in which 

the grader had been involved at the SBE and the average instructor evaluations 

provided by students for that grader in all previous courses since the creation of the 

online tool. Our sample contains 25 out of the 42 courses that had final exams, 

including 42 different graders and 1,495 exams.
39

 

The upper part of Table 4.2 examines the internal validity of the experiment, testing 

whether the questions in the treated (Visible) group were answered by students 

whose characteristics before they entered the examination room differed in 

measurable dimensions from those in the untreated (Blind) group. We present these 

results separately for those students whom we intended to treat (ITT) and those who 

were actually treated.
40

 We first examine differences by gender and nationality, the 

two characteristics on which we focus, and in the students’ grades before the final 

exam. The Blind and Visible groups are balanced in both gender and nationality: 

The p-values indicate that none of the tests of differences in the means between the 

Blind and Visible groups along the dimensions that form the focus of this study can 

reject the hypothesis that they are zero. Indeed, not only are the fractions of men and 

women, Germans and Dutch, insignificantly different from each other; the absolute 

differences between the Blind and Visible groups are never greater than two in the 

second decimal place.  

We have additional information on some of the students - other grades that were 

received before the exams were given, such as prior grade point average (GPA), and 

classroom participation, presentation in class and term-paper grades in the particular 

course. We find no significant differences between the Blind and Visible students in 

GPA and their participation grades. The Visible group performs slightly better in the 

grades assigned for student presentations. This difference is not quite statistically 

significant, however; and perhaps more important, grades for classroom 

presentations were given to only about one-third of the students.  

  

                                                           
38. We manually added the gender and nationality of the graders who did not fill out the survey. Grading 

behavior includes whether graders looked up any names while grading.  
39. We excluded 8 courses that only used Multiple Choice or Fill-In-The-Blank questions. In 7 out of the 

34 eligible courses the coordinators either declined permission to use the data or did not respond to 
repeated requests for this information. We excluded one course for which the answer sheets did not 

ask for the students’ names but only for their IDs and another course which did not hold the exam in 

the conference hall. 
40. The blind treatment group had a little over 80-percent effectiveness, and an additional 2 percent of 

the students got into the blind group but should not have. This latter was most likely due to mistakes 

by the invigilators when placing the yellow sheets or by students forgetting to write their names.  
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Table 4.2 Student Characteristics by Intended and Actual Treatment Status
 

Internal validity: Pre-experiment  

  

(1) 

Blind   

(2) 

Visible   

p-value  

of difference 

      Mean SD N   Mean SD N   
Blind-

Visible  

Female ITT   0.369 0.483 452   0.352 0.478 1,043   [0.502] 

  Treatment   0.363 0.482 399   0.355 0.479 1,096   [0.758] 

German ITT   0.374 0.484 452   0.353 0.478 1,043   [0.420] 

  Treatment   0.373 0.484 399   0.354 0.478 1,096   [0.486] 

Dutch ITT   0.363 0.481 452   0.343 0.475 1,043   [0.452] 

  Treatment   0.351 0.478 399   0.349 0.477 1,096   [0.932] 

GPA ITT   7.197 0.628 443   7.215 0.665 1,021   [0.607] 

  Treatment   7.178 0.618 389   7.221 0.667 1,075   [0.241] 

Participation ITT   7.690 0.986 306   7.633 1.031 706   [0.386] 

  Treatment   7.612 0.968 263   7.664 1.035 749   [0.452] 

Presentation ITT   7.795 1.164 191   7.930 1.059 436   [0.179] 

  Treatment   7.758 1.172 181   7.942 1.055 446   [0.070] 

Term paper ITT   7.870 0.665 109   7.743 0.898 281   [0.126] 

  Treatment   7.870 0.697 97   7.748 0.882 293   [0.166] 

 Internal validity: Within-experiment 
    

Multiple Choice  ITT   5.829 1.972 277   6.043 1.942 661   [0.128] 

  Treatment   5.792 2.009 253   6.049 1.928 685   [0.078] 

Fill-In-The-Blank   ITT   5.325 2.208 152   5.555 1.996 382   [0.264] 

  Treatment   5.367 2.167 148   5.536 2.016 386   [0.411] 

Note: The pre-experiment validity only includes students in the estimation sample. The within-

experiment validity uses information on students who participated in the experiment, but the 

information on these answers is not part of our analysis. The p-values of differences between 

the Visible and Blind groups are calculated with clustered standard errors by student. 

 

We also have grades from Multiple Choice and Fill-In-The-Blank questions that 

were included in a minority of the final exams. We can thus test whether, despite the 

apparent randomness of assignment, outcomes differed between the two groups on 

questions on which the grading was unambiguous and could not have been affected 

by the mechanisms we study here. As the bottom part of Table 4.2 shows, the Blind 

group did have marginally higher scores on the Multiple Choice questions, but here 
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too the differences are not quite statistically significant. These results confirm that 

the research design created equivalent groups of students.
41

 

4.4 Inferring Average Outcomes and 

Distributions of Preferences 

Let a student, denoted by s, answer an exam with several questions, and let the 

grader of each question be denoted by g. We index each answer by the pair (s, g).
42

 

We also know the pair (C(s),C(g)), where C is either some student-invariant 

bivariate characteristic, such as gender, or some characteristic vector, such as 

nationality. Finally, we know whether a particular answer by a particular student 

was graded blind or visible, so that each pair (C(s),C(g)) can be expanded to the 

triplet (C(s),C(g),v), where v=1 if the grading is visible and 0 if not.
43

 

Consider the score function S(C(s),C(g),v) for each exam question, where we are 

especially interested in examining how S varies between cases when s and g match 

(i.e. share a common characteristic) and when they do not, and how that variation is 

affected by v. Define the following indicators: 

(1a)   I1{(C(s),C(g), v)} = 1, if C(s)=C(g) and v=1, 0 if not  

(1b)   I2{(C(s),C(g),v)} = 1, if C(s)=C(g) and v=0, 0 if not  

(1c)   I3{(C(s),C(g),v)} = 1, if C(s)≠C(g) and v=1, 0 if not  

and 

(1d)   I4{(C(s),C(g),v)} = 1, if C(s) ≠C(g) and v=0, 0 if not. 

 The average score of all students is: 

(2) T   θ1S
*
(I1)   θ2S

*
(I2)   θ3S

*
(I3) + [1- θ1- θ2 - θ3]S

*
(I4)  

                                                           
41. Considering that we tested several separate characteristics, it is not unlikely that some of those tests 

will reject the null hypothesis at the 10 percent level purely by chance. If we correct the p-values for 

multiple testing (using the Bonferroni, Šidák, or Holm adjustments), we find no significant 
differences between Blind and Visible students in any of the characteristics, even at the 10 percent 

level of significance. 
42. We ignore course identifiers for simplicity, since all graders except one were uniquely assigned to 

one course. 
43. Presumably all particular (s, g) combinations are either blind or visible (although we investigate the 

extent of blindness in the blind grading in Section 4.6). 
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where the weights θi are the shares of answers graded under each regime, and the (*) 

denotes an average over those answers.
44

 Because we created the neutral categories 

with blind grading, we can estimate the average treatment effect on students for 

whom C(s) = C(g) (i.e., grader and student “match” on characteristic C) as: 

(3a) e* = [S
*
(I1) - S

*
(I2)] 

and the treatment of students for whom C(i) ≠ C(g) (who do not “match” on C) as: 

(3b) x*= [S
*
(I4) - S

*
(I3)] 

If graders are endophilic and exophobic, e*, x* > 0. Identifying endophilia and 

exophobia as e* and x* relies on the assumption that graders are neutral towards 

blind exams. In Section 4.5 we present estimates of each of the effects as discussed 

here. We discuss the implications of alternative behavioral assumptions in Section 

4.6.  

From Equation (2) we can also recover the average “total” effect of the characteristic 

C(s) for a particular value, C(s)   C’. This is particularly important if we want to 

address the question of whether disclosing certain information (such as gender or 

nationality) affects an outcome, given a distribution of preferences and graders. 

Consider a variant of (2):  

(4) TC   η1S*(I1|C(s) C’)   η2S*(I2|C(s) C’)   η3S*(I3|C(s) C’)   [1- η1- η2 - 

η3]S*(I4|C(s) C’) 

where the weights η represent the shares of answers graded under each regime for all 

students with characteristic C(s)   C’. The total treatment effect of a particular 

characteristic C’ being observable is the weighted average of the treatments when 

C(g)   C’ and when C(g) ≠ C’. Thus:  

(5) MC’   (η1   η2)[S*(I1|C(g) C’) - S*(I2|C(g) C’)] - (1- η1 - 

η2)[S*(I4|C(g) C’) - S*(I3|C(g) C’)] 

Equation (5) shows that the average treatment effect of a characteristic will depend 

on two factors: 1) The degree of endophilia and exophobia (the two bracketed 

                                                           
44. While the same average would apply for a n-fold characteristic if we focus only on whether or not 

C(s)=C(g), we could analogously and generally calculate n2 average treatment effects, one for each of 

the n aspects of the characteristic compared to itself and each other aspect. 
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expressions); and 2) The share of questions that are graded by graders with matching 

characteristics (η1   η2) versus non-matching characteristics (1- η1 - η2).  

We can also observe the behavior of individual graders toward the student groups as 

defined by C(s). Each grader scores answers written by many different students, 

some with characteristics that match hers, others with characteristics that do not 

match, some of whom are graded Blind, others graded Visible. Then for a grader g 

we can calculate her average treatment of students, T
g
, in a manner analogous to the 

average effect in (2) and obtain a distribution over all graders. More interesting for 

our purposes, we can estimate each grader’s preferences for students who do and do 

not match their characteristics as: 

(6a)  e
g
 = S

*g
(I1)-S

*g
(I2)  

and 

(6b)  x
g
 = S

*g
(I4)-S

*g
(I3)  

where S
*g

(Ij), j=1,2,3,4, is the average over all students whose exams are scored by 

grader g under each regime Ij. Using these grader-specific average treatments, we 

can then obtain non-parametric estimates of the distributions of endophilia and 

exophobia, f(e) and h(x), as discussed in Section 4.4. Thus, in addition to being able 

to distinguish the average extent of favoritism toward one’s own group from the 

average extent of discrimination against other group(s), the data allow us to obtain 

complete distributions of agents’ implicit preferences. 

4.5 Empirical Strategy and Basic Results  

To estimate the impacts of nationality and gender matches on the points that graders 

assigned to students’ answers, and to infer the differences discussed above, we 

estimate the regression: 

(7)    S   β1MATCH*VISIBLE   β2MATCH*BLIND   β3NON-

MATCH*VISIBLE   β4NON-MATCH*BLIND   γ’Z  ε, 

where here S is a unit normal deviate calculated for each exam question, and the 

other variable names are self-explanatory. The matrix Z includes nationality or 

gender indicators for both students and graders, ε is a zero-mean error term and the 
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regression is estimated without a constant. From this equation the estimates of the 

average extent of endophilia and exophobia are:
 
 

(8a) e* = S
*
(I1) - S

*
(I2)   β1 – β2, 

and: 

(8b) x*= S
*
(I4) - S

*
(I3)   β4 – β3. 

Thus the estimates of (7) provide direct analogs to the concepts we seek to measure. 

Note that these calculations mean that endophilia (exophobia) is indicated by a 

positive e* (x*).  

One special benefit that we obtain from our setting is that we can be sure that the 

implied preferences on matching are not being driven by confounding factors like 

unobserved heterogeneity. In our experimental setting we are comparing arguably 

identical groups whose only difference—because the treatment was random—is that 

the graders observed the names of some but not of other students. The experiment 

allows us explicitly to compare e.g., Visible to Blind German students. This means 

that anything specifically German, such as writing style in English or particular 

calligraphic patterns, washes out in this comparison. This framework also makes it 

easy to expand Equation (7) to include interactions with some of the graders’ 

measurable characteristics and thus to examine how e* and x* vary with them. We 

deal with these extensions in Section 4.6.  

 The first two columns of Table 4.3 present the estimated β and their standard errors 

for the basic equations describing matches/non-matches along the criteria of 

nationality and gender. Since the experimental design randomized by blocks of 

students within each course, we cluster the standard errors at the Intention-To-Treat 

and course (ITT-course) level, allowing for two clusters per course. We focus 

throughout on the estimates of e* and x* and their statistical significance. 
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Table 4.3 Basic Estimates of the Extent of Favoritism and Discrimination by 

Nationality and Gender (N = 9,330) 

   (1) (2) (3) (4) 

   Nationality Gender Nationality Gender 

Interaction with:  - - German Dutch Other Female Male 

(1) MATCH*VISIBLE  0.287 -0.039 0.306 -0.012 - 0.156 -0.039 

   (0.038) (0.025) (0.021) (0.099) - (0.028) (0.027) 

(2) MATCH*BLIND  0.115 -0.099 0.165 -0.204 - 0.101 -0.101 

   (0.081) (0.039) (0.101) (0.106) - (0.075) (0.042) 

(3) NON-MATCH*VISIBLE 0.177 -0.076 0.148 -0.048 -0.123 0.150 -0.101 

   (0.050) (0.040) (0.070) (0.053) (0.067) (0.047) (0.046) 

(4) NON-MATCH*BLIND  0.172 -0.101 0.060 -0.095 -0.035 0.053 -0.071 

   (0.057) (0.047) (0.080) (0.077) (0.072) (0.038) (0.079) 

Endophilia [(1)-(2)]  0.172 0.060 0.140 0.193 - 0.055 0.062 

p =   [0.028] [0.140] [0.171] [0.049] - [0.471] [0.188] 

Exophobia [(4)-(3)]  -0.005 -0.025 -0.088 -0.047 0.088 -0.097 0.030 

p =   [0.904] [0.700] [0.095] [0.528] [0.174] [0.124] [0.740] 

                 

Adj. R2  0.015 0.009 0.016 0.010 

Note: Standard errors in parentheses and p-values in square brackets. Both are clustered by ITT-

Course. Columns (1) and (2) present the estimates of Equation (7) without a constant. Columns (3) 

and (4) are based on Equation (7), with the main variables interacted with CHARACTERISTIC, 

where CHARACTERISTIC are indicators for nationality in (3) and for gender in (4). MATCH*Other 

interactions in (3) are empty because we define MATCH = 1 only for German and Dutch students. 

Other nationalities almost never matched. Main effects are included throughout, when not perfectly 

collinear with the main coefficients. 

It is clear that there is substantial endophilia by nationality in the grading. A student 

who matches the grader’s nationality receives a score that is 0.17 standard deviations 

higher when her name is visible than when it is not. This addition to a matched 

student’s grade is statistically significant at conventional levels. This effect is also 

economically important: Given that all the scores have been unit-normalized, this 

effect is equivalent to moving from the median score to the 57
th

 percentile of the 

distribution of scores. Its magnitude is similar to that of the effect of large 

differences in teacher quality on students’ test scores that was found by Rivkin et al 

(2005). While favoritism by nationality exists in grading, there is no apparent 

exophobia by nationality: The estimated impact of being visible when not matching 

by nationality is small and positive.  
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The results of estimating the regression examining gender matching are shown in 

Column (2) of Table 4.3. Although the point estimate suggests the existence of a 

small degree of endophilia, we cannot reject the hypothesis that it is zero. For non-

matches there is exophilia, but here too the impact is statistically insignificant and 

also minute. On average grading seems gender-neutral in all dimensions.
45

 

Going behind the information in Columns (1) and (2), we can ask whether, for 

examples, endophilia by nationality is the same for Dutch and German graders, and 

whether the absence of endophilia or exophobia exists for both male and female 

graders. We do this by expanding Equation (7) to include interactions of student 

nationality or gender with MATCH*VISIBLE, MATCH*BLIND, NON-

MATCH*VISIBLE, and NON-MATCH*BLIND. Columns (3) of Table 4.3 show the 

estimates of this expanded specification by nationality. A comparison of the results 

suggests that endophilia by nationality arises more from the behavior of Dutch than 

of German graders, although the difference between the two point estimates is not 

statistically significant.  

Columns (4) of Table 4.3 show estimates of expanding Equation (7) by gender. The 

results look very much like those in Column (2): Neither male nor female graders 

exhibit significant endophilia or exophobia, and for both men and women the 

absolute impacts are small. Again, there is no sign of either statistically significant 

or important differences in behavior depending on the match or non-match of the 

grader’s and student’s gender.  

4.6 Robustness and Extensions  

4.6.1 Treatment Failures 

In interpreting these main results it is important to note that there are two potential 

sources of slippage in our treatment: Some students did not comply with the 

experimental instructions shown in the appendix and mistakenly wrote their names 

on the exam sheets; and some graders may have looked up at least some of the 

students’ names.
46

 To account for the first source of slippage we re-estimated the 

models described in the first two columns of Table 4.3 using intention to treat (ITT) 

                                                           
45. The results are also essentially the same when we include additional controls for seat number (see 

Figure 4.1) and the student’s prior GPA. 

46. Evidence on the magnitude of the first type of slippage can be seen in Table 4.2 in the differences 

between ITT and Treatment.  
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as an instrument for VISIBLE. As the first two columns of Table 4.4 show, the 

results are qualitatively identical to the ones in Table 4.3. 

To account for the second source of slippage - that the grader may have been able to 

identify the characteristic of the Blind group - in the post-grading survey we asked 

graders whether they looked up any names on the exams that only contained ID 

numbers. Six of the thirty-three graders who responded to the survey acknowledged 

having done this. When we re-estimated (7) including only those graders who 

explicitly stated that they did not look up names, the estimated endophilia by 

nationality is the same and is even more precisely estimated. The last column of 

Table 4.4 shows there is no significant endophilia but significant exophilia by 

gender among those graders who did not look up names. The results of both 

slippages suggest that, if anything, our results understate the true extent of 

favoritism by nationality and gender. 

Table 4.4 The Effects of Treatment Slippage by Students and Graders on 

Estimates of Endophilia and Exophobia 

  (1) (2)   (3) (4) 

  Nationality Gender   Nationality Gender 

Regression: IV   Did Not Look Up Names  

            

Endophilia 0.193 0.090   0.174 0.009 

p =  [0.034] [0.190]   [0.009] [0.856] 

Exophobia -0.033 -0.039   -0.008 -0.119 

p =  [0.538] [0.595]   [0.878] [0.010] 

            

N 9,330 9,330   5,108 5,108 

Adj. R2 0.015 -0.001   0.015 0.007 

Note: p-values in squared brackets, based on standard errors clustered at the ITT-Course 

level. We report linear combinations based on extensions of Equation (7). Columns (1) and (2) 

are based on an instrumental variable regression (IV) estimated by 2SLS, where we use the 

intention to treat (ITT) to instrument for the treatment. The F-tests for the instruments always 

strongly reject the null. Columns (3) and (4) are based on Equation (7) using only graders who 

did not look up any of the names in the Blind group of exams. Main effects are included 

throughout. 
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4.6.2 Alternative Behavioral Assumptions 

So far we have implicitly assumed that the graders are indifferent toward “blind” 

exams and treat these groups as a neutral baseline against which we measure 

endophilia and exophobia. Graders, however, might also form rational expectations 

about the “blind” exams, considering the underlying distribution of characteristics of 

students who wrote those exams and might score them accordingly. Let Ag be the 

share of students in the course who match grader g on the characteristic of interest, 

and let     and     be the grader’s latent endophilic and exophobic preferences. 

Under rational expectations we can rewrite Equation (7) as: 

(7’)     S      MATCH*VISIBLE +    NON-MATCH*VISIBLE -

[   Ag+ 
  (1-Ag)]   γ2’Z   ε, 

where, from the grader’s perspective, the students can either visibly match him, 

visibly not match him, or be in the Blind group (the omitted category). Equation (7’) 

specifies that the grader will treat the students in the Blind group as the weighted 

average of how he would have treated students who matched him or not, with 

weights based on the characteristics of the Visible groups. 

To determine whether assuming rational expectations about the Blind group’s 

students can alter our results, we estimate (7’) by non-linear least squares. The 

results confirm our main findings: We again find endophilia by nationality, although 

of slightly lesser but still statistically significant magnitude (0.133 standard 

deviations, p=0.025). We find no endophilia by gender and no exophobia by either 

gender or nationality. Moreover, the root mean square error of estimating (7’) 

exceeds that of the estimate of (7). Because the blind-as-neutral assumption fits the 

data better, we continue defining endophilia and exophobia as discussed in Section 

4.4 throughout the rest of the chapter.  

4.6.3 Prior Grader-Student Contact, and Exam Type  

The graders and exams differ along several dimensions on which we have 

information and which might affect their ability or interest in 

favoring/discriminating for/against students. We first look at whether the graders 

knew the students they graded, and thus whether endophilia/exophobia is present 

towards anonymous and familiar students alike.
47

 We have no specific hypothesis on 

                                                           
47. The assignment of students and teachers to classes within a course is done by the Scheduling 

Department of the SBE, which does not consider students’ preferences for particular teacher or 
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this possibility. On the one hand, it could be that prejudices are overridden by 

personal experience with the students. If so, discriminatory preferences will be 

stronger toward unknown students. On the other hand, it might not be the 

characteristic per se that the graders pay attention to, but something that graders can 

only observe on students with whom they interact. In this case discriminatory 

preferences will be stronger toward and against students whom the grader knows.  

We construct an indicator of whether the grader may know a student based on 

whether the grader also taught him or her. Most of the teaching at the SBE is done in 

tutorials of 10 to 15 students for about 10 sessions in each seven-week block, so 

teachers have a fair chance to get to know their students. Some graders taught none 

of the students they graded, others taught all of the students they graded. By this 

measure the median grader knew 47 percent of the students graded (although 

obviously in most cases the grader could not identify individual students in the Blind 

group).  

The first two columns of Table 4.5 present re-estimates of Equation (7), expanded to 

include interactions of the Know indicator with the four Match/Visible variables. 

The results show that endophilia by nationality is only present when graders did not 

know the students. This effect is twice as large as the mean effect in the baseline 

model. There is no evidence of exophobia by nationality regardless of whether the 

grader knew the student or not. There is evidence of endophilia and exophilia by 

gender, but again only when the grader did not know the student.  

The exams at the SBE differ in the extent to which they have mathematical 

questions, depending mostly on the nature of the courses. Answers on the more 

mathematical exams are arguably less ambiguous, so that showing 

favoritism/discrimination on them might be more difficult. To separate the more 

from the less mathematical exams we asked three raters (from the SBE’s pool of 

potential graders) to rate the exams as mathematical or not. Two of the three agreed 

in their categorizations of all the exams, while the third agreed in 80 percent of the 

cases. We thus created an indicator for Mathematical when at least two of the three 

raters designated an exam as such, which occurred for 9 out of 25 exams. 

The third and fourth columns of Table 4.5 present estimates of Equation (7), 

expanded to include interactions of the Mathematical indicator with the main 

                                                                                                                                        
teachers’ preferences for a particular class. (See Chapter 5 for a detailed explanation on the 

assignment of students and teachers to classes at the SBE.) Also, the students have no way of 

knowing ex ante who their grader will be.  
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variables. The point estimates suggest that endophilia by nationality is stronger for 

less mathematical exams. The point estimates for exophilia by nationality and 

endophilia by gender are also significant for the more mathematical exams. This 

latter result is surprising, as one might expect that Blind exams might be less likely 

to be assignable to nationality or gender based on handwriting styles if the exam is 

more mathematical. None of the other results in the two columns is statistically 

significant.  

Table 4.5 Endophilia and Exophobia When Graders Know the Students 

They Grade, and When the Exams are Mathematical (N = 9,330) 

    (1) (2)       (3) (4) 

    Nationality Gender       Nationality Gender 

Grader knows the student?:       
Exam was 

mathematical?: 
 

                  

Endophilia 

No 0.320 0.120   

Endophilia 

No 0.228 0.034 

p =  [0.003] [0.042]   p =  [0.039] [0.578] 

Yes 0.052 -0.001   Yes 0.060 0.094 

p =  [0.580] [0.980]   p =  [0.375] [0.042] 

Exophobia 

        

Exophobia 

      

No -0.070 -0.112   No 0.055 0.002 

p =  [0.120] [0.040]   p =  [0.345] [0.975] 

Yes 0.070 0.085   Yes -0.095 -0.081 

p =  [0.427] [0.396]   p =  [0.020] [0.197] 

                  

F-test differences:   [0.066] [0.166]       [0.024] [0.584] 

Note: p-values in squared brackets, based on standard errors clustered at the ITT-Course 

level. We report linear combinations based on extensions of Equation (7). Columns (1) and (2) 

report interactions of the main variables with GRADERKNOWSSTUDENT, Columns (3) and 

(4) of the main variables with MATHEMATICALEXAM. F-test differences reports the p-values 

from testing the null hypothesis that Endophilia and Exophobia are equal for the groups 

defined by GRADERKNOWSSTUDENT and MATHEMATICALEXAM, respectively. Main 

effects are included throughout. 

 

4.6.4 Distinguishing by Graders’ Other Characteristics  

We also examine whether discrimination or favoritism varies with grader experience 

and grader quality. We measure grader experience at this University as the number 
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of separate courses taught or tutored during the grader’s tenure. We have no 

hypotheses about how university-specific experience might mitigate or exacerbate 

endophilia/exophobia. On the one hand, the set of more experienced graders may 

exclude those whose behavior was so egregiously unfair that the University did not 

renew their contracts. On the other hand, more experienced graders may be secure in 

their positions and feel able to indulge their preferences for students who match their 

characteristics and/or against those who do not. 

The total number of courses taught/tutored at the University since the online data 

became available (including the courses we are using here) ranges from 1 to 94; the 

5
th

, 50
th

 and 95
th

 percentiles, for which we present estimation results, are 1, 8 and 59 

courses.
48

 Figure 4.2 shows the kernel density of courses taught by grader, which 

demonstrates the distribution’s very long right tail. The first and second columns of 

Table 4.6 present re-estimates of Equation (7), expanded to include interactions of 

grader experience with the four match/visible variables.  

Figure 4.2 Kernel Density of the Distribution of Grader Experience 

 

While the point estimate of the extent of endophilia by nationality is almost identical 

to the estimate in Table 4.3 at the median value of grader experience, it is not quite 

significantly nonzero. Rather, the significant average endophilia shown in Table 4.3 

                                                           
48. 59 and 94 might seem outlandishly large; but at this University there are 6 teaching blocks in each 

academic year, so it is not difficult to accumulate 50 or more courses of experience.  
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results disproportionately from the behavior of the more experienced graders. By 

inference, they feel less inhibited about indulging their preferences for students who 

match their nationality. Inexperienced graders, perhaps because they feel themselves 

to be under greater scrutiny, show no significant endophilia (although the point 

estimate of their behavior is 60 percent of that of highly experienced graders). As 

with the basic estimates, there is no evidence of exophobia by nationality at any 

level of grader experience. The results by gender remain very similar: Just as at the 

sample means, so too at various levels of grader experience the parameter estimates 

show no sign of any significant endophilia or exophobia. The exception is the 

evidence of exophilia by gender for the most experienced graders. 

Table 4.6 Effects of Grader Experience and Grader Teaching Quality on 

Outcomes (N = 9197)
*
 

      (1) (2)   (3) (4) 

  Percentile:   Nationality Gender   Nationality Gender 

 At the mth percentile of:     Experience   Teacher Quality 

                

Endophilia 

5th   0.154 0.076   0.307 0.039 

p =    [0.162] [0.141]   [0.020] [0.575] 

50th   0.166 0.073   0.170 0.068 

p =    [0.097] [0.118]   [0.130] [0.108] 

95th   0.248 0.045   0.048 0.093 

p =    [0.001] [0.517]   [0.651] [0.158] 

                

Exophobia 

5th   -0.024 0.008   -0.014 -0.140 

p =    [0.639] [0.919]   [0.859] [0.048] 

50th   -0.016 -0.007   -0.005 -0.013 

p =    [0.718] [0.920]   [0.896] [0.842] 

95th   0.045 -0.121   0.002 0.100 

p =   [0.635] [0.053]   [0.962] [0.289] 

                

F-test interactions:     [0.547] [0.261]   [0.356] [0.075] 

*p-values in square brackets, based on standard errors clustered at the ITT-Course level. We 

report linear combinations based on extensions of Equation (7). Columns (1) and (2) interact 

the main variables with TEACHEREXPERIENCE and evaluate the linear combinations at 

different percentiles. Columns (3) and (4) do the same with TEACHERQUALITY. F-test 

interactions reports the p-values from testing the joint significance of interactions of Endophilia 

and Exophobia with TEACHEREXPERIENCE and TEACHERQUALITY, respectively. Main 

effects are included throughout. 
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We measure grader quality as the average of all the evaluations that the instructor 

received from students during her career at the University. Evaluations are given on 

a ten-point scale. In our sample the averages range from 6.5 to 9.2, with the 5
th

 

percentile being 7.1, the median being 8.0, and the 95
th

 percentile equaling 8.8. As 

Figure 4.3 shows, the distribution of average evaluations is quite close to symmetric. 

Figure 4.3 Kernel Density of the Distribution of Student Evaluations of 

Graders 

 

We interact the grader’s average instructional evaluation with all the variables in 

Equation (7) and present the results in Columns (3) and (4) of Table 4.6. Our finding 

of endophilia by nationality at the mean demonstrated in Table 4.3 arose from 

behavior that varies sharply with the regard in which graders have been held by 

students. Those graders/instructors who have been rated highest by students show no 

significant endophilia, and the point estimate of this effect is small. An instructor 

whose teaching has been rated at the median of this measure behaves much like the 

mean instructor—substantially favoring those who match her nationality, 

unsurprisingly given the symmetry in the distribution of teaching evaluations. The 

worst-rated instructors, however, favor those students who match their nationality 

much more strongly than does the median or average instructor. Implicitly a poorly 

rated instructor raises the score of the median student who matches her nationality 

from the mean to the 61
st
 percentile of the distribution of scores. There is no 

evidence of exophobia by nationality. In a similar fashion, the little evidence there 
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was of exophilia by gender seems to be driven by the worst-rated teachers. In sum, 

worse teachers behave differently from better ones, favoring students of their own 

nationality and, to a lesser extent, the other gender. 

 

4.7 The Average Treatment Effect of Visible 

Student Characteristics 

To evaluate whether the visibility of names differentially favors or disadvantages 

certain groups of students, and also to see how these students would be affected by 

the introduction of anonymous grading, we calculate the average treatment effect 

(ATE) of each characteristic’s visibility. Recall from Equation (5) that the ATE can 

be calculated as the difference between endophilia and exophobia, each weighted by 

the share of questions that was graded by graders with matching and non-matching 

characteristics. Table 4.7 shows the ATE of being seen as German, Dutch, or any 

other nationality, and of being seen as female or male. The point estimates for 

German and Dutch students are similar in size and (marginally) significantly 

positive, demonstrating that both German and Dutch students benefit from visible 

grading. The point estimates further suggest that other nationalities are 

disadvantaged by it, although the ATE is not statistically significant. Even if they are 

not suffering from an absolute disadvantage, however, the notion that other 

nationalities are disadvantaged becomes straightforward for situations in which they 

compete with German and Dutch students. An example is the allocation of student 

exchange positions at popular universities abroad, which is done based on relative 

grades. The difference between Germans and others is significant (p=0.004), as is 

the difference between Dutch and others (p= 0.025). Consistent with our previous 

results, the point estimates for females and males are positive but smaller in size.  

Columns (1) to (4) of Table 4.7 decompose the ATE by showing endophilia and 

exophobia (Columns (2) and (4)) and the share of students with the given 

characteristic that was graded under each regime (Columns (1) and (3)). (The 

estimated effects of endophilia and exophobia are taken from Table 4.3.) The ATE 

for German and Dutch students is small because of the relatively small shares of 

questions that are graded by graders of the same nationality. It is easy to simulate the 

sizes of these effects for a situation in which a large share of the students in either 

category were matched to the graders. Notice also that the mix of graders is not 

always the most important determinant of the ATE: The difference between the 
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effects when matched and not matched for females is rather small, so that the ATE 

will be small regardless of the gender mix of graders. 

Table 4.7 The Average Treatment Effect (ATE) of the Visibility of Student 

Characteristics
 

  

Total ATE p-value 

  (1) (2) (3) (4) 

Student 

  

Share 

matched 
Endophilia 

Share not 

matched 
Exophobia 

    (η1+η2)   (1-η1-η2)   

                

German 0.103 [0.049]   0.29 0.140 0.71 -0.088 

Dutch 0.107 [0.067]   0.41 0.193 0.59 -0.047 

Other -0.088 [0.174]   - - 1 0.088 

                

Female 0.078 [0.142]   0.45 0.055 0.55 -0.097 

Male 0.027 [0.548]   0.62 0.062 0.38 0.030 

Note: The ATE is calculated as shown in Equation (5). The p-values are based on standard 

errors clustered at the ITT-Course level. Columns (1) and (3) show the share of questions, for 

a given characteristic, which were graded by graders with matching and non-matching 

characteristics. Columns (2) and (4) show the ATE on the treated, as reported in Table 4.3. 

 

4.8 Heterogeneity in the Distributions of 

Preferences 

The results thus far describe either average responses of endophilia or exophobia by 

nationality or gender over all graders, or examine how this behavior differs in 

relation to a few of the graders’ specific characteristics. This parallels but expands 

upon the focus in the literature on average differences between groups. In this 

section we move to a different dimension, the distribution of implicit tastes for 

favoritism and discrimination, first considering the shapes of the entire distributions 

of graders’ preferences and then calculating their correlations, as suggested by the 

theoretical discussion. 

To obtain a feel for why examining heterogeneity in preferences might be 

interesting, consider the kernel density estimates of the graders’ endophilia and 

exophobia by nationality, shown in Figure 4.4, and their kernel densities by gender, 
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shown in Figure 4.5. Each kernel is based on those graders for whom we could infer 

the extent of both endophilia and exophobia (for nationality, 24 graders, for gender, 

38 graders).
49

 The estimates along the criterion of nationality suggest that 

preferences are distributed fairly symmetrically, in the case of endophilia around a 

positive mean, and around zero in the case of exophobia. Both densities are 

consistent with our inferences in Table 4.3 about the mean effects. A similar 

conclusion is suggested by the kernels of endophilia and exophobia by gender, 

although there are a few outliers.
50 

Figure 4.4 Kernel Density Estimates of Graders’ Preferences by Nationality 

 

 

  

                                                           

49. We derive the shape of the graders’ preferences based on the estimates of e
g
 and x

g
 calculated as in 

equations (6a) and (6b). We infer these two measures for each grader based on how each scores the 

student who does or does not match them under the blind and visible regimes. 
50. We can examine whether extreme values in the distributions of preferences for nationality or gender 

are driving our mean effects. We trim those graders with the most extreme preferences from the 

samples, dropping the two most extremely endophilic/endophobic and exophobic/exophilic graders in 
each case. Despite the small amounts of asymmetry in some of the distributions, trimming does not 

qualitatively alter the conclusions about the absence of endophilia or exophobia by gender on 

average, nor does it alter the conclusions about these outcomes by nationality. 
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Figure 4.5 Kernel Density Estimates of Graders’ Preferences by Gender 

 

By observing the entire distribution of preferences we can also test two hypotheses: 

1) There is evidence of endophilia or exophobia in the overall distribution (not just 

at the mean), and 2) There is heterogeneity in endophilia or exophobia among 

graders. Testing these two hypotheses is equivalent to testing whether e
g
=0 (x

g
=0) 

for all g, and whether the e
g
 (x

g
) are equal to each other for all g, respectively. The F-

tests of these hypotheses (eight in total) all reject the null hypothesis at conventional 

significance levels, showing that endophilia and exophobia in both nationality and 

gender are real phenomena (even though at the means only endophilia by nationality 

seems to matter), and that there is significant heterogeneity in these preferences 

across graders.
51

 

As we showed in Section 4.2, the impact of the interaction of endophilia and 

exophobia depends on their correlation across potentially discriminating agents. In 

our data the correlations are -0.36 for preferences on nationality, and -0.16 for 

preferences on gender (weighting each grader by the number of students graded). 

Those who are more endophilic are less exophobic. Interestingly, and remarkably, in 

the GSS data summarized in Table 4.1, the correlations are in the same direction: 

                                                           
51. The demonstrated heterogeneity of preferences should reduce any concern about the absence of 

exophobia at the mean because the possibly large (psychological) costs of giving lower grades. Also, 

it should vitiate concerns about our behavioral assumption on how graders treat Blind exams, since it 

shows that Visible non-matches are treated differently from Blind ones by most graders.  
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Those Whites who feel closer to Whites also feel closer to Blacks, and to roughly 

the same extent as implied by behavior in our sample.  

4.9 Conclusions and Implications 

We have demonstrated that what is called discrimination—a relative difference in 

outcomes between two groups—is composed of differential treatment of the in-

group and the out-group, and that it is possible in real-world situations to measure 

the sizes of these two components simultaneously. In our example we find that most 

of the apparent discrimination by nationality results from substantial endophilia and 

that there is no evidence on average of exophobia. We find some evidence of graders 

favoring the opposite gender on average, though it is less definitive. 

These are average effects. At least as interesting is the heterogeneity in the 

demonstrated preferences of the individuals deciding how to treat those who match 

or do not match them. We have further shown that apparently discriminatory 

outcomes can be vitiated in a variety of ways, operating both on the endophilic and 

exophobic preferences of the discriminating agents and the share of matching and 

non-matching characteristics. 

We also show the importance of measuring the relation between endophilia and 

exophobia in the labor market: Their joint distribution will influence market-based 

measures of discrimination. This result makes it even clearer that they are non-

redundant measures. It also forces us to reconsider what we know about the 

effectiveness of anti-discrimination policies and the advances against discrimination 

in the labor market. The change over time in measures of discrimination, such as the 

market discrimination coefficient, may not only reflect a change in the means and 

variances of the distributions of expressed preferences. It may also reflect a change 

in the correlation between endophilia and exophobia. This changing correlation 

might explain the unchanging Black-White wage gap over a period when racial 

attitudes appear to have become more tolerant. 

Assuming that the dominance of endophilia over exophobia that we have 

demonstrated for nationality is ubiquitous in labor markets, the fact has important 

implications for the measurement of “discrimination” in labor markets. 

Decompositions that adjust a gross wage differential into parts due to different 

characteristics or different treatments in the labor market can be made using either 

the majority or the minority wage as the base case. In the literature (e.g., Neumark, 

1988; Booth et al, 2007; Elder et al, 2010) that discusses these decompositions of 
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wage differentials (by race, gender, and many others) a crucial question has been 

which group’s actual wage to treat as the baseline. Endophilia dominating exophobia 

would suggest using the minority group’s wage as the baseline and adjusting the 

wages of the majority. More generally, if we knew the relative importance of each 

type of behavior, the appropriate treatment would be a weighted average of the 

different methods of decomposition. 

Having shown that we can distinguish endophilia from exophobia, it is also worth 

considering how policy might be tailored to reduce relative differences arising from 

prejudice. Assume that our results carry over to the labor and other markets, and that 

endophilia is the main source of apparently discriminatory outcomes. If so, we can 

infer, for example, that moral suasion that stresses to members of the majority group 

that minority-group members are not “bad” might be ineffective.  

Can the distinctions that we have defined and measured here be inferred in the still 

more important labor-market context using actual wage and/or employment 

outcomes? One might imagine cases where a majority group deals with several 

minority groups, about one of which it feels demonstrably neutral. In that case too 

endophilia and exophobia (toward the other minorities) are identifiable. So too, one 

might link differences in economic outcomes to information on attitudes in a 

population about one’s own and other groups. The main point is that these 

preferences generate different outcomes with different distributions of welfare, so 

that determining their relative sizes is economically important and, as we have 

shown, possible. 
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4.10 Appendix 

Figure 4.6 Yellow Sheet Placed on Some Students’ Desks Before the Exam. 
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Chapter 5 

On the Nature of Peer Effects in 

Academic Achievement* 

  

                                                           
* This chapter is based on joined work with Ulf Zölitz. We thank Joël Castermans, Sanne Klasen and 

Kim Schippers from the SBE Scheduling Department and Sylvie Kersten from the SBE Exams 

Office and Jeannette Hommes from the Educational Research and Development Department for 

providing data and valuable background information. We further like to thank Sandra Black, Lex 
Borghans, Andries de Grip, Thomas Dohmen, Armin Falk, David Figlio, Bart Golsteyn, Daniel 

Hamermesh, Nicolás Salamanca, Benedikt Vogt and participants at various seminars and conferences 

for helpful discussions and comments. 
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5.1 Introduction 

Identifying peer effects is empirically challenging because the reason why a student 

is in a certain peer group (school, grade, section, dorm, etc.) is likely to be correlated 

with factors unobserved to the researcher which also affect student performance. 

The most convincing peer effects studies have therefore exploited random 

assignment of students to peer groups. This, however, has only been done in very 

particular situations and/or for very particular peer groups. At the university level 

studies have exploited (conditionally) random assignment of students to dorm rooms 

(e.g. Brunello, De Paola, & Scoppa, 2010; Sacerdote, 2001; Zimmerman, 2003) and 

conditionally random assignment of students to living communities in military 

colleges (Carrell, Fullerton, & West, 2009; Carrell, Sacerdote, & West, 2013; Lyle, 

2007). At the pre-university level, Duflo, Dupas and Kremer (2011) have randomly 

assigned students to classes in elementary schools in rural Kenya. It is not clear how 

findings from these contexts generalize to the western classroom. The school 

classroom or university section is the unit where most of the peer interaction takes 

place and where students are forced to interact with each other. The 

classroom/section is, as compared to the dorm room or living community, also the 

most policy relevant peer group because it can most easily be influenced. 

In this chapter we exploit random assignment of students to sections to study peer 

effects at the university level. Our dataset consists of all students enrolled at the 

School of Business and Economics (SBE) at Maastricht University over a period of 

three years, which amounts to 7,746 students and 41,749 student grades. Course 

participants are assigned to sections, groups of 10 to 15 students, which spend most 

of their contact hours together in one classroom.
52

 Our measure of student 

performance is course grades. Following the standard approach in the literature, we 

use a pre-treatment indicator of peer quality: the GPA of the peers, to avoid the 

reflection problem as described by Manski (1993).  

In the linear-in-means specification, we find that being assigned to a section with on 

average higher ability peers increases students’ grades in that course by a 

statistically significant, but small amount. One standard deviation increase in the 

average peer GPA causes a .0116 standard deviation increase in student grade. As 

expected under random assignment, the size of our estimate is unaffected by the 

inclusion of large sets of teacher fixed effects and fixed effects for other courses 

taken at the same time. The peer effects we identify are heterogeneous and point to 

                                                           
52. Throughout the chapter we will use the word “section” when we refer to the tutorial group to which 

the students get assigned within each course.  
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an inverse U-shape relationship between peer quality and own performance. High 

and medium ability students are positively affected by high ability peers and 

negatively affected by low ability peers. Low ability students seem to benefit from 

the presence of medium rather than high or low ability students. Taken together our 

findings suggest that students benefit from better peers as long as the difference 

between own and peer ability is not too large.  

This work is to the best of our knowledge the first that uses random assignment to 

estimate peer effects at the university section level.
53

 Our study closely relates to 

Carrell et al. (2013) who study peer effects at the squadron level at the United States 

Air Force Academy (USAFA).
54

 The authors exploit random variation in peer 

quality and find that low ability students benefit from high ability peers. Based on 

these results they then conduct an experiment designed to increase performance of 

low ability students by assigning them to squadrons with a large fraction of high 

ability peers. This intervention, however, failed and had perverse effects on low 

ability students who were supposed to be helped by the intervention. Contrary to 

their own previous finding, but consistent with the evidence we present in this 

chapter they find that, low ability students were negatively affected by an increase in 

the share of high ability peers.
55

  

The roommate literature, which exploits conditionally random assignment of 

students to dorms, generally finds small positive or no significant peer effects 

(Brunello et al., 2010; Sacerdote, 2001; Zimmerman, 2003). De Paola and Scoppa 

(2010) investigate peer effects in a sample of 212 Italian university students and use 

random first year assignment of students as an instrument for current university 

peers. They find that a one standard deviation increase in peer quality measured as 

first year GPA increases exam performance by .11 standard deviations (OLS 

estimation) and .19 (IV estimation). Martins and Walker (2006) use the fact that the 

                                                           
53. Peer effects at the university level, as compared to pre-university education, might not only be 

different in size but also follow different dynamics. On the one hand, university students, as opposed 
to students in pre-university education, are more homogeneous, spend less time in the classroom and 

invest a greater share of their time in self-study. This would suggest that peer effects are generally 

less important at the university level. On the other hand, students learn arguably more from each 
other in classroom discussions and study groups and comparably less from the teachers. 

54. The squadron is the living community at the campus of the USAFA where students have much of 

their social and academic interactions. Sections, however, are composed of members of different 
squadrons. 

55. Carrell et al. (2013) explain this finding with new patterns of social interactions caused by the new 

peer group assignment. In the same context, Carrell et al. (2009) find positive peer effects in linear-
in-means specification at the squadron level. In a similar setting at the West Point Military College, 

Lyle (2007) does not find significant peer effects but this might be due to limited variation in peer 

quality. 
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allocation of students to sections conducted alphabetically by last names. In their 

sample of 441 students they do not find significant effects of section peers. 

The remainder of the chapter is structured as follows: Section 5.2 provides 

information about the institutional environment, and the assignment procedure of 

students to sections. Section 5.3 discusses the dataset. Section 5.4 provides evidence 

that the assignment to sections is random, controlling for scheduling constraints. 

Section 5.5 describes our empirical strategy. Section 5.6 shows the estimation 

results. Section 5.7 concludes.  

5.2 Background 

5.2.1 Institutional Environment 

The School of Business and Economics (SBE) of Maastricht University is located in 

Maastricht, a city in the south of the Netherlands. Currently there are about 4,200 

students at the SBE enrolled in Bachelor, Master and PhD programs. Because of its 

proximity to Germany, it has a large German student population (53 percent) mixed 

with Dutch (33 percent) and other nationalities. About 37 percent of the students are 

female. The academic year at the SBE is divided into four regular teaching periods 

of two months and two skills periods of two weeks. Students usually take two 

courses at the same time in the regular periods and one course in the skills period. 

We exclude courses in skills periods from our analysis because these are often not 

graded and we could not always identify the relevant peer group.
56

  

The courses are organized by course coordinators, mostly senior staff, and most of 

the teachers are PhD students and teaching assistants. Each course is divided into 

sections of maximum 16 students. These sections are the peer group we are focusing 

on. The course size ranges from 1 to 638 students and there are 1 to 43 sections per 

course. The sections usually meet in two weekly sessions of two hours each. Most 

courses also have lectures which are followed by all students of the course and are 

usually given by senior staff. 

The SBE differs from other universities in its focus on Problem Based Learning 

(PBL).
57

 The general PBL setup is that students generate questions about a topic at 

the end of one session and then try to answer these questions through self-study. In 

                                                           
56. In some skills courses, for example, students are scheduled in different sections but end up sitting 

together in the same room. 

57. See http://www.umpblprep.nl/ for a more detailed explanation of PBL at Maastricht University. 

http://www.umpblprep.nl/
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the next session the findings are discussed with the other students of the section. In 

the basic form of PBL the teacher takes only a guiding role and most of the learning 

is done by the students independently. Courses, however, differ in the extent to 

which they give guidance and structure to the students. This depends on the nature 

of the subject covered, with more difficult subjects (e.g. Quantitative Methods) 

usually requiring more guidance, and the preference of the course coordinator and 

teacher. 

Compared to the traditional lecture system, the PBL system is arguably more group 

focused because most of the teaching happens in small groups in which group 

discussions are the central part of the learning process. Much of the students’ peer 

interaction happens with members of their section, either in the sessions, during 

work for common projects or in homework and study groups. 

5.2.2 Assignment of Students to Sections 

The Scheduling Department of the SBE assigns students to sections, teachers to 

sections, and sections to time slots. Before each period, there is a time frame in 

which students can register online for the courses they want to take. After the 

registration deadline, the scheduler gets a list of registered students and allocates the 

students to sections using a computer program. About ten percent of the slots in each 

group are initially left empty and are filled with students who register late.
58

 This 

procedure balances the amount of late registration students over the sections. Before 

the start of the academic year 2010/11, the section assignment for Master courses 

and for Bachelor courses was done with the program Syllabus Plus Enterprise 

Timetable using the allocation option “allocate randomly” (see Figure 5.5 in the 

appendix). Since the academic year 2010/11 all Bachelor sections are stratified by 

nationality with the computer program SPASSAT.
59

 Some Bachelor courses are also 

stratified by exchange student status. After the assignment of students to sections, 

the sections are assigned to time slots and the program Syllabus Plus Enterprise 

Timetable indicates scheduling conflicts.
60

 Scheduling conflicts arise for about 5 

                                                           
58. About 5.6 percent of students register late. The number of late registrations in the previous year 

determines the number of slots that are left unfilled initially by the scheduler. 
59. The stratification goes as follows: the scheduler first selects all German students (which are not 

ordered by any observable characteristic) and then uses the option “Allocate Students set SPREAD” 

which assigns an equal number of German students to all classes. Then the scheduler repeats this 
with the Dutch students and lastly distributes the students of all other nationalities to the remaining 

spots. 

60. There are four reasons for scheduling conflicts: (1) the student takes another regular course at the 
same time. (2) The student takes a language course at the same time. (3) The student is also teaching 

assistant and needs to teach at the same time. (4) The student indicated non-availability for evening 

education. By default all students are recorded as available for evening sessions. Students can opt out 



 

80 

percent of the initial assignments. If the computer program indicates a scheduling 

conflict the scheduler manually moves students between different sections until all 

scheduling conflicts are resolved. After all sections have been allocated to time slots, 

the scheduler assigns teachers to the sections.
61

 The next step in the scheduling 

procedure is that the section and teacher assignment is published. After this, the 

scheduler receives information on late registering students and allocates them to the 

empty spots. Throughout the scheduling process, the schedulers, who do not know 

the students, do not observe the previous grades of the students. 

Only 20-25 students (less than one percent) officially switch section per period. This 

is only possible through a student advisor and is only allowed for medical reasons or 

due to conflict with sports practice for students who are on a list of top athletes.
62

 

Students sometimes switch their section unofficially when they have extra 

appointments. However, these are usually limited to one session and students rarely 

switch sections permanently.
63

  

There are a few exceptions to this general procedure. We excluded a number of 

special courses and sections where the section assignment was not random.
 
When 

the number of late registering student exceeds the number of empty spots, the 

scheduler creates a new section which mainly consist of late registering students. We 

excluded eight late registration sections from the analysis.
64

 For some Bachelor 

courses there are special sections consisting mainly of repeating students. Whether a 

repeater section is created depends on the preference of the course coordinator and 

the number of repeat students. We excluded 34 repeater sections from the analysis. 

In some Bachelor courses students who are part of the Maastricht Research Based 

Learning (MARBLE) program are assigned to separate sections where they often are 

assigned to more experienced teacher. Students of this program are typically the 

highest performing students of their cohort. We excluded 15 sections that consist of 

                                                                                                                                        
of this by indicating this in an online form. Evening sessions are scheduled from 6 p.m. to 8 p.m. and 

about three percent of all sessions in our sample are scheduled for this time slot. 
61. About ten percent of teachers indicate time slots when they are not available for teaching. This 

happens before they are scheduled and requires the signature from the department chair. 

62. We do not have a record for these students and can therefore not exclude them. However, section 
switching in these rare cases is mostly due to conflicts with medical and sports schedules and 

therefore unrelated to section peers. 

63. It is difficult to obtain reliable numbers on unofficial switching. From our own experience and 
consultation with teaching staff we estimate that session switching happens in less than 1 percent of 

the sessions and permanent unofficial class switching happens in less than 1 percent of students. 

64. Students who register late, for example, generally have a lower GPA and might be particularly 
busy/stressed in the period which the register late which also might affect their performance in this 

course. This might create a spurious relationship between GPA and grade which is due to factors like 

stress. 



 

81 

MARBLE students from the analysis.
65

 In six courses the course coordinator or 

other education staff influenced the section composition.
66

 We excluded these 

courses from our analysis. Some Master tracks have part time students. Part time 

students are scheduled mostly in evening classes and there are special classes with 

only part time students. We excluded 95 part time students from the analysis. We 

excluded first year first period courses of the two largest Bachelor programs 

(International Business and Economics) because in these courses only particular 

students, such as repeating student, have previous grades. Moreover, we exclude 

sections for which less than five students had a past GPA. For these courses the peer 

GPA does not reliably capture the peer quality of the students in the section. We 

excluded sections with more than 16 students (two percent) because the official class 

size limit according to scheduling guidelines is 15 and in special cases 16. Sections 

with more than 16 students are a result of room availability constraints or special 

requests from course coordinators.  

After removing these exceptions, in our estimation sample neither students nor 

teachers, and not even course coordinators, influence the composition of the section. 

5.3 Data 

We obtained data for all students taking courses at the SBE during the academic 

years 2009/2010, 2010/2011 and 2011/2012. Scheduling data was provided by the 

Scheduling Department of the SBE. The scheduling data include information on 

section assignment, the allocated teaching staff, information on which day and time 

the sessions took place as well as a list of late registrations for our sample period. In 

total we have 7,746 students, 450 courses, 3,928 sections and 41,749 grades in our 

estimation sample. Panel A of Table 5.1 provides an overview of courses, sections 

and students in the different years.
67

 

  

                                                           
65. We identified pure late registration classes, repeater classes and MARBLE classes from the data. The 

scheduler confirmed the classes which we identified as repeater classes. The algorithm by which we 

identified late registration classes and MARBLE classes is available upon request. 
66. The schedulers informed us about these courses. 

67. We refer to each course-year combination as separate course. That means that we count a course with 

the same course code that takes place in three years as three separate courses. 
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Table 5.1 Descriptive Statistics 

Panel A 

Academic 

year 

Number of 

courses 

Number of 

unique students 

Number of 

sections 

Average 

number of 

students per 

section 

Number of 

grades 

2009 / 10 120 3,858 1,154 13.21 12,090 

2010 / 11 162 4,069 1,449 13.07 14,721 

2011 / 12 168 4,192 1,325 14.15 14,938 

All years 450 7,746 3,928 13.49 41,749 

 

 

Panel B 

  Obs. Mean S.D. Min 25p Median 75p Max 

Student level information 

          Course dropout 45,534 0.08 0.28 0.00 0.00 0.00 0.00 1.00 

  Grade first attempt 41,749 6.57 1.88 1.00 6.00 7.00 8.00 10 

  Final grade 45,534 6.79 1.20 1.00 6.13 6.99 7.58 10 

  GPA 45,501 6.57 1.37 1.00 5.70 6.75 7.52 10 

         Section level information 

          Number of students registered for section 45,534 13.49 1.33 5.00 13.00 14.00 14.00 16.00 

  Number of students that dropped class 45,534 1.23 1.42 0.00 0.00 1.00 2.00 10.00 

  Peer GPA (based on final grades) 45,534 6.76 0.47 4.90 6.44 6.78 7.10 8.75 

  Peer GPA (based on first sit grades) 45,501 6.53 0.51 3.78 6.20 6.54 6.88 8.75 

  Within section standard deviation of peer GPA 45,506 0.91 0.32 0.00 0.67 0.89 1.12 3.10 

         Student Background information 

          Age 42,147 20.79 2.21 16.19 19.2 20.48 22.04 41.25 

  Female 42,147 0.37 0.48 0.00 0.00 0.00 1.00 1.00 

  Dutch 45,534 0.31 0.46 0.00 0.00 0.00 1.00 1.00 

  German 45,534 0.49 0.50 0.00 0.00 0.00 1.00 1.00 

  Bachelor student 45,534 0.79 0.41 0.00 1.00 1.00 1.00 1.00 

  BA International Business 45,534 0.39 0.49 0.00 0.00 0.00 1.00 1.00 

  BA Economics 45,534 0.28 0.45 0.00 0.00 0.00 1.00 1.00 

  Exchange student 45,534 0.07 0.25 0.00 0.00 0.00 0.00 1.00 

Note: This table shows the descriptive statistics of the estimation sample.  
 

The data on student grades and student background, such as gender, age and 

nationality were provided by the Examinations Office of the SBE. The Dutch 

grading scale ranges from 1 to 10, with 5.5 being the lowest passing grade. Figure 

5.1 shows the distribution of final grades in our estimation sample. The final course 

grade is often calculated as the weighted average of multiple graded components 

such as the final exam grade, participation grade, presentation grade or midterm 
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paper grade. The graded components and their respective weights differ by course, 

with most courses giving most of the weight to the final exam grade. For some 

courses part of the final grade consists of group graded components such as a group 

paper or a group presentation, for which all members of the group receive the same 

grade. 

The influence of these group grades on the final course grade might be one of the 

channels through which peers affect grades. Unfortunately, we only observe the final 

grade and not its individual components. If the final course grade of a student after 

taking the final exam is lower than 5.5, the student fails the course and has the 

possibility to take a second attempt at the exam. We observe final grades after the 

first and second attempt separately. 

Figure 5.1 Distribution of Grades After the First Examination 

 

For our analysis we only use the final grade after the first exam attempt as an 

outcome measure, since first and second attempt grades are not comparable.
68

 For 

the construction of the student GPA we use the final grades after the last attempt.
69

 

                                                           
68. The second attempt exam usually takes place two months after the first exam. 

69. We decided to use the GPA calculated from final grades because this is closer to the popular 

understanding of GPA.  
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Panel B of Table 5.1 shows some descriptive statistics for our estimation sample. 

Our sample contains 45,534 student course registrations. Out of these 3785 (8 

percent) dropped out of the course throughout the course period. We therefore 

observe 41,749 course grades after the first sit. Dropping out of a course means that 

a student was registered for a course but did not receive a grade. The average course 

grade after the first attempt is 6.57. About one fifth of the graded students obtain a 

course grade lower than 5.5 after the first attempt and therefore fail the course. The 

average final course grade (including grades from second and third time attempts) is 

6.79, and the average GPA is 6.57. Figure 5.2 shows the distribution of the GPA 

based on final grades. 

The peer GPA is the section average GPA excluding the grades of the student of 

interest.
70

 The mean of the section level standard deviation of the GPA is 0.91. For 

93 percent of our sample we know the age, gender and nationality of the students.
71

 

Figure 5.3 shows the distribution of peer quality measured as the average past GPA 

of all other students in the section.  

Figure 5.2 Distribution of Own GPA

  
 

 

 

                                                           
70. For a more detailed explanation, see Section 5.5 where we describe our empirical strategy. 

71. We do not know age, gender and nationality for most of the exchange students. 
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Figure 5.3 Distribution Peer GPA 

 

 

 

 

 

 

 

 

5.4 Test for Random Assignment of Students to 

Sections 

The scheduling procedure we describe in Section 5.2.2 shows that section 

assignment is random. Nevertheless, we want to provide a test on whether section 

assignment has the properties which one would expect under random assignment. In 

the spirit of standard randomization checks in experiments, we test whether section 

dummies jointly predict student pre-treatment characteristics when controlling for 

scheduling and balancing indicators. The pre-treatment characteristics we look at are 

GPA, age, gender, and student ID rank.
72

 More specifically, for each course in our 

sample we perform an F-test of joint significance of the section dummies in a 

regression of student pre-treatment characteristic on section dummies and 

scheduling and balancing controls. Under conditional random assignment the p-

values of these F-tests should be uniformly distributed with mean 0.5 (Murdoch, 

Tsai, & Adcock, 2008). Furthermore, if students are randomly assigned to sections 

within each course, the F-test should reject the null hypothesis of no relation 

                                                           
72. At Maastricht University, ID numbers are increasing in tenure at the university. ID rank is the rank of 

the ID number. We use ID rank instead of actual ID because the SBE recently added a new digit to 

the ID numbers, which creates a discrete jump in the series.  
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between section assignment and students’ pre-treatment characteristics at the 5 

percent, 1 percent and 0.1 percent significance level in close to 5 percent, 1 percent 

and 0.1 percent of the cases, respectively.  

The results of these randomization tests confirm that the section has the properties 

one would expect under random assignment (we provide a more detailed description 

on our randomization check in the appendix). The average of the p-values of the F-

tests does not significantly differ from 0.5 (see Table 5.5 in the appendix) and the p-

values are roughly uniformly distributed (see Figure 5.6 in the appendix). Table 5.2 

shows in how many cases the F-test actually rejected the null hypothesis at the 

respective levels. Column (1) shows the total number of courses for each pre-

treatment characteristic. Column (3) shows that the actual rejection rates at the 5 

percent level are close to the expected rejection rates under random assignment. The 

F-tests for the regressions with the dependent variables GPA, age and ID rank are 

rejected slightly more often than 5 percent, the rejection rates for the dependent 

variable gender is slightly less than 5 percent. Columns (5) and (7) show the actual 

rejection rates at the 1 percent and 0.1 percent level. Also these rejection rates as a 

whole are close to the expected under random assignment, with the exception of age 

where the rejection rates is only slightly higher than we expected. All together, we 

present strong evidence that section assignment in our estimation sample is random, 

conditional on scheduling and balancing indicators. 

Table 5.2 Randomization Check of Section Assignment 

  (1)   (2) (3)   (4) (5)   (6) (7) 

Dependent 

variable 

Total 

number 

of 

courses 

 

Number 

significant 

Percent 

significant  

Number 

significant 

Percent 

significant  

Number 

significant 

Percent 

significant 

Joined F-test 

significant:  
at the 5 percent level 

 
at the 1 percent level 

 
at the 0.1 percent level 

GPA 433  26 6.00%  8 1.85%  1 0.23% 

Age 428  26 6.07%  11 2.57%  4 0.93% 

Gender 424  17 4.01%  3 0.71%  0 0.00% 

ID rank 433  22 5.08%  8 1.85%  2 0.46% 

Note: This table is based on separate OLS regressions with past GPA, age, gender and ID rank 

as dependent variables. Explanatory variables are a set of section dummies, dummies for other 

course taken at the same time, and dummies for day and time of the sessions, German, Dutch, 

exchange student status and late registration status. Column (1) shows the total number of 

separate regressions. Columns (2), (4) and (6) show in how many regressions the F-test 

rejected the null and the 5 percent, 1 percent and 0.1 percent level respectively. Columns (3), 

(5) and (7) show what percentage of the regressions the F-test rejected the null at the 

respective levels. Differences in number of courses are due to missing observations for some of 

the variables. 
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5.5 Empirical Strategy 

When trying to estimate peer effects, there are two main empirical challenges. The 

first challenge is the so-called reflection problem, as defined by Manski (1993), 

which states that one cannot disentangle the effect from the peers on the student 

from the effect of the student on the peers if student and peer outcomes are both 

determined simultaneously. In order to avoid the reflection problem we follow the 

standard approach in the recent peer literature and use pre-treatment measures for 

student and peer ability (e.g. Carrell et al., 2009; Lyle, 2007). The second challenge 

is selection into peer groups. The estimation of peer effects is biased when peer 

group assignment is related to unobservable characteristics correlated with student 

outcomes. However, we do not face this selection problem because the assignment 

of sections is random conditionally on scheduling constraints, as we have shown in 

Section 5.4.  

We use the following model to estimate the effect of peers on grades:  

              ̅̅ ̅̅ ̅̅
                                  (2) 

The dependent variable      is the grade of student  , in a course-specific section  , at 

time  .   is a constant;    ̅̅ ̅̅ ̅̅
        is the average past GPA of all the students in the 

section excluding student  ,          is the past GPA of student  ;      is a matrix 

of additional controls and      is an error term with the usual properties. Note that 

both    ̅̅ ̅̅ ̅̅
        and          are constructed using only grades before period   in 

order to avoid the reflection problem. We standardized         and    ̅̅ ̅̅ ̅̅
        over 

the estimation sample to simplify the interpretation of the coefficients.
73

 In all 

specifications,      consist of dummies for day and time of the sessions, German, 

Dutch, exchange student status and late registration status, and year-course-period 

fixed effects.
74 

The year-course-period fixed effects control for mean differences in 

outcomes across courses and time. This takes into account different grade levels in 

different years and courses with differing degrees of difficulty. In other 

specifications we also include other-course fixed effects – i.e. fixed effects for the 

                                                           
73. The standardized coefficients of own past GPA should be interpreted with caution because  

74. For some sections the time and day of the sessions were missing. We include separate dummies for 

these missing values. 
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other course taken at the same time - and teacher fixed effects.
75

 Conceptually, 

including scheduling controls and other-course fixed effects should pick up all non-

random variation in section assignment that is due to conflicting schedules. 

Including stratification controls should increase the precision but not affect the size 

of the estimates. Teacher fixed effects should control for potential non-random 

assignment of teachers to sections. To allow for correlations in the outcomes of 

students within each course, we cluster the standard errors at the course level.
  

5.6 Results 

Table 5.3 shows the results of OLS regressions with the standardized grade as the 

dependent variable.  

Table 5.3 Student Grades and Peer Quality (OLS) 

  (1) (2) (3) (4) 

 

Std. Grade Std. Grade Std. Grade Std. Grade 

          

Standardized peer GPA 0.0099* 0.0103* 0.0114** 0.0116** 

 

(0.005) (0.006) (0.005) (0.006) 

Standardized GPA 0.5507*** 0.5505*** 0.5522*** 0.5520*** 

 

(0.016) (0.016) (0.016) (0.016) 

     Observations 41,749 41,749 41,749 41,749 

R-squared 0.432 0.440 0.448 0.455 

Course FE YES YES YES YES 

Teacher FE NO YES NO YES 

Other course FE NO NO YES YES 

Note: Robust standard errors clustered at the course level are in parentheses; *** p<0.01, ** 

p<0.05, * p<0.1. The dependent variable is the standardized course grade. All specifications 

include dummies for day and time of the sessions, German, Dutch, exchange student status 

and late registration status. 
 

The table shows that being assigned to section peers with a higher GPA causes 

higher course grades. The coefficient of standardized peer GPA is small but 

statistically significant in all models. The inclusion of teacher fixed effects and 

                                                           
75. Other-course fixed effects are dummies for the other course taken in the same period. These are only 

defined for students who take up to two courses per period. In only 1.5% of the cases students were 

scheduled for more than two courses and these students drop out of our sample when we include 
other-course fixed effects. Teacher fixed effects are fixed effects of the first teacher assigned to a 

session. For less than 0.4 percent students have a second teacher assigned to one section. For these 

teachers we use the first teacher.  
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other-course fixed effects hardly changes the effect size or its standard errors. The 

estimates reported in our preferred and most conservative specification in column 

(4) shows that being assigned to peers with a one standard deviation higher GPA 

increases the student’s grade by 1.16 percent standard deviations. This effect size is 

about 2 percent of the effect of own GPA. In terms of the Dutch grading scale this 

means that, for example, an increase of peer GPA from 6.5 to 7.0 is associated with 

a grade increase from 6.50 to 6.521, a small and economically insignificant effect. 

The specification in Table 5.3 is linear-in-mean, which implicitly assumes that all 

students are linearly affected by the mean ability of their peers. However, previous 

studies have shown that peer effects are likely heterogeneous by both student and 

peer ability (e.g. Burke & Sass, 2013; Carrell et al., 2013). We test for these two 

sources of heterogeneity simultaneously by estimating a two way interaction model 

similar to Carrell et al. (2013) and Burke and Sass (2013). To do this, we classify 

students as high GPA, middle GPA and low GPA if their GPA is in the top, middle 

or bottom third of the course GPA distribution respectively. We further calculate for 

each section the fraction of peers with high and low GPA. We then include six 

interactions of students’ own type (high, middle and low) with fraction of high GPA 

and fraction of low GPA peers. Interactions with fraction of middle GPA peers are 

excluded because of collinearity. The interaction “High GPA * Fraction of high 

GPA peers”, for example, can then be interpreted as the effect for high GPA 

students of increasing the fraction of high GPA peers in the section while keeping 

the fraction of low GPA peers constant. Or, put differently, the coefficient shows 

how high GPA students are affected if middle GPA peers (baseline) are replaced 

with high GPA peers. 

Table 5.4 shows the coefficients of the six interactions. Overall, these effects are 

small in magnitude. For example, the coefficient “High GPA * Fraction of low GPA 

peers” suggests that an increase of 20 percent of low GPA peers, which is equivalent 

to replacing three out of 15 middle with low GPA peers, decreases the grade of a 

high GPA students by 1.9 percent standard deviations. The results for high and 

middle GPA students are in line with the linear-in-mean model. High and middle 

GPA students are positively affected by high GPA peers and negatively affected by 

low GPA peers. This can be seen from the sign of the interaction terms. The 

coefficients of the interactions with fraction of high GPA peers are positive and the 

coefficients of the interactions with the fraction of low GPA peers are negative. The 

effect of increasing the fraction of high GPA peers is (marginally) significantly 

different from the effect of increasing the fraction of low GPA peers for high GPA 

students (F-test, p = 0.000) and middle GPA students (F-test, p = 0.052). The sizes 
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of the effects of increasing the share of high and low GPA peers are not significantly 

different for high and middle ability students.  

The results for low GPA students, however, are substantially different. The point 

estimates suggest that low GPA students are negatively affected by high GPA peers 

and negatively affected by low GPA peers. The point estimates of the interactions of 

low GPA student with high and low GPA peers are negative. The difference 

between these two estimates is not statistically significant (F-test, p = 0.692). The 

effect of increasing the fraction of high GPA peers is statistically different for low 

GPA compared to high and middle GPA students. There are no significant 

differences in the effect of increasing the share of low GPA peers.  

These results point to an inverse U-shape relationship between peer quality and 

students’ own performance. Students seem to benefit from better peers as long as the 

difference between own and peer ability is not too large. To visualize this 

relationship we plot the coefficients of the interactions in Table 5.4 in Figure 5.4. 

The figure shows how an increase in the fraction middle and high GPA peers 

(compared to the fraction of middle GPA peers) affects the students’ grades 

depending on their own ability, measured as high, middle and low GPA. Increasing 

the fraction of low GPA peers in the section has a negative effect on the grades for 

high, middle and low GPA students while increasing the fraction of high GPA peers 

has a positive effect for high and middle GPA students and a negative effect for low 

GPA students. 
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Table 5.4 Heterogeneous Effects  

 

Std. Grade 

  High GPA * Fraction of high GPA peers 0.0500 

 

(0.051) 

High GPA * Fraction of low GPA peers -0.0969** 

 

(0.048) 

Middle GPA * Fraction of high GPA peers 0.0836 

 

(0.051) 

Middle GPA * Fraction of low GPA peers -0.0291 

 

(0.050) 

Low GPA * Fraction of high GPA peers -0.1241* 

 

(0.073) 

Low GPA * Fraction of low GPA peers -0.0952 

 

(0.067) 

  Observations 41,735 

R-squared 0.459 

  F all peer variables 3.31 

p-value [0.003] 

F fraction of high peers [high vs middle] 0.217 

p-value [0.641] 

F fraction of high peers [high vs low] 4.015** 

p-value [0.046] 

F fraction of high peers [middle vs low] 4.971** 

p-value [0.026] 

F fraction of low peers [high vs middle] 1.066 

p-value [0.302] 

F fraction of low peers [high vs low] 0.000 

p-value [0.984] 

F fraction of low peers [middle vs low] 0.634 

p-value [0.426] 

Note: Robust standard errors clustered at the course level are in parentheses; *** p<0.01, ** 

p<0.05, * p<0.1. The dependent variable is the standardized course grade. Additional controls 

include Std. GPA as well as dummies for high GPA, low GPA, course, teacher, other course, 

day and time of the sessions, German, Dutch, exchange student status and late registration 

status.  
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Figure 5.4 The Effect of Increasing Fractions of High, Middle and Low GPA 

Peers for Students with High, Middle and Low GPA  

Note: The data points in this figure are taken from Table 5.3 using the fraction of low GPA peers 

as a reference category. The point estimates for “Fraction of high GPA peers” is statistically 

different between low GPA versus middle GPA and low GPA versus high GPA (see F-tests 

Table 5.3). 
 

At the university level, our findings relate to the results of Carrell et al. (2013) who 

study peer effects at West Point military academy. They find that low ability 

students benefited from being randomly assigned to a squadron (military living 

community) with a high fraction of high ability peers. Based on these results, Carrell 

et. al (2013) then set out to maximize performance of low ability students by 

experimentally assigning them to squadrons with a large fraction of high ability 

peers while assigning middle ability students to squadrons with predominantly 

middle ability peers. Contrary to their own pre-treatment results, but in line with our 

findings, they find that this intervention negatively affected performance of low 

ability students. Burke and Sass (2013) studied heterogeneous peer effects at the  
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primary and secondary school level.
76

 Their results for low ability students are in 

line with ours. Their estimates suggest that across school type (elementary school, 

middle school and high school) and subjects (mathematics and reading) low ability 

students are negatively affected by high and low ability peers. High ability students 

across all school types and subjects seem to, contrary to our results, benefit from low 

ability peers and, in line with our results, benefit from high ability peers. The results 

for middle ability students are mixed across school type and subject. 

 

5.7 Conclusion 

This article investigates peer effects in a large sample of university students where 

assignment to sections within a course is random conditional on scheduling 

constraints. Consistent with previous research we find small in size but statistically 

significant peer effects on student grades in the linear-in-means specification. These 

average effects hide some heterogeneity. While the high and middle ability students 

benefit from better peers, low ability students are negatively affected by both high 

and low ability peers compared to the middle ability baseline. These results suggest 

that, at least in our setting, peer effects are inverse U-shaped with respect to own 

ability: students seem to benefit from better peers as long as the difference between 

own and peer ability is not too large.  

  

                                                           
76. Note, however, that it is difficult to compare peer effects across different contexts because of 

differences in student ability distributions. Because it is mostly high ability students that go on to 

study at universities the student ability distribution is likely more narrow at the university than at the 
school level. Hence, the difference in ability between students which Burke and Sass (2013) classify 

as high and low ability at the primary and secondary level is likely larger than the differences 

between students which we classify as high and low ability. 
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5.8 Appendix 

Figure 5.5 Screenshot of the scheduling program used by the SBE 

Scheduling Department  

 

Note: This screenshot shows the program Plus Enterprise Timetable©.  
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Randomization Check 

We use the following empirical specification for our tests. Take    as a 1xNi vector 

of pre-treatment characteristics of students in course i. The pre-treatment 

characteristics we look at are GPA, age, gender, or student ID rank.   

 (        is a nxNi matrix of section dummies (where each of the section dummies 

tk is of size 1xNi), Z is a matrix which includes dummies for other course taken at the 

same time, and dummies for day and time of the sessions, German, Dutch, exchange 

student status and late registration status, and    a 1xNi vector of zero-mean 

independent error terms.  

Our randomization tests consist of running, for each course, the following 

regression:  

                (A1) 

Under the null-hypothesis of (conditionally) random assignment to sections within 

each course,                = 0. That means that the section assignment does 

not systematically relate to students’ pre-treatment characteristic holding scheduling 

and stratification indicators constant. Therefore, we expect the F-test to be 

significant at the 5 percent level in around 5 percent of the cases, at 1 percent in 

around 1 percent of the cases, and at 0.1 percent in around 0.1 percent of the cases. 

Table 5.2 in Section 5.4 shows that the actual rejection rates are close the rejection 

rates expected under random assignment.  

In order to investigate this issue more closely we also look at the distribution of p-

values. Under the null hypothesis of conditionally random assignment, we would 

expect the p-values of all the regressions to closely fit a U[0,1] uniform distribution 

with a mean of 0.5 (Murdoch et al., 2008). Figure 5.6 shows histograms of the p-

values of all four specifications, all of which are roughly uniformly distributed. 

Column (2) of Table 5.5 show the mean of the p-values over all regressions reported 

in Table 5.2. The mean of the p-values ranges from 0.48 to 0.52. In column (3) we 

report p-values of a t-test, which tests whether the mean of the p-values reported in 

column (2) is significantly different from 0.5. None of the four t-tests rejects the null 

hypothesis. 
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Figure 5.6 Distribution of F-test P-values of β from Equation (A1) as 

Reported in Table 5.5 

Note: These are histograms with p-values from all the regressions reported in Table 5.2.The 

vertical line in each histogram shows the 0.05 significance level.  
 

Table 5.5 Randomization Check: Mean P-values 

  (1) (2) (3) 

Dependent variable: 
Total number of courses Mean of p-value  

p-value of t-test (H0: 

Mean = 0.5) 

GPA 431 0.48 0.11 

Age 426 0.48 0.11 

Gender 422 0.51 0.39 

ID rank 432 0.52 0.12 

Note: This table is based on the regressions reported in Table 5.2. Column (2) show the means 

of the p-values, C olumn (3) shows the p-values of t-tests testing whether the mean of the p-

values in Column (3) is equal to 0.5 
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Chapter 6 

Summary of Main Findings 
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6.1 Summary of Main Findings 

In this thesis I have uncovered hidden relationships in the domains of 

overconfidence, discrimination and peer effects in education.  

Chapters 2 and 3 are about the Dunning-Krueger effect (DK effect) which states that 

the low skilled tend to be overconfident while the high skilled are more accurate in 

assessing their skill. Chapter 2 is a methodological discussion on how to estimate the 

DK effect. We show how the fact that performance and overestimation - the 

respective measures of skill and overconfidence - contain measurement error can 

lead to biases in estimating the DK effect. This measurement error can lead to an 

inverse relationship between performance and overestimation even if there is no 

systematic relationship between skill and overconfidence. Although this problem has 

been recognized in the scientific literature we show that the currently used 

estimation methods, the split sample method and the reliability adjustment, still lead 

to biased estimates of the DK effect. We further show that the DK effect can be 

estimated consistently with the instrumental variable method using an independent 

performance measure as an instrument for skill. In Chapter 3 we estimate the DK 

effect consistently using the instrumental variable methods. In the context of 

students’ exam grade predictions we find that the low skilled are indeed 

overconfident while the high skilled are more accurate. This effect is large: a one 

(grade) point increase in skill is associated with a 0.6 (grade) points increase in 

overconfidence. Comparing this estimate with three estimates from other currently 

used estimation methods, we show that OLS as well as the reliability adjusted OLS 

overestimates this effect, while the split sample method underestimates it.  

Chapter 4 is about the difference between discrimination and favoritism. Most of the 

economic literature on discrimination assumes that differences in outcomes are 

driven by preferences against others – exophobia. However, we argue that they can 

also be driven by preference for people like oneself – endophilia. We identify 

endophilic and exophobic preferences with a field experiment at the SBE that 

assigned graders randomly to students’ exams with and without names from which 

they could infer students’ gender and nationality. We argue that there is evidence for 

endophilia if graders treat students who match their gender/nationality more 

favorable when their names are visible. Conversely, there is evidence for exophobia 

when graders treat students who do not match their nationality less favorable when 

their names are visible. On average we find endophilia but no exophobia by 

nationality, and neither endophilia or exophobia by gender. The effect of endophilia 

by nationality is large; students who are graded by a grader with matching 
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nationality receive on average 0.17 Std. higher grades when their names are visible. 

Endophilia by nationality seems to be strongest for graders with low teaching 

evaluations and a lot of teaching experience. Interestingly, endophilia by nationality 

is only present for students which the grader did not know from his/her class. We 

identify distributions of graders' preferences for favoritism and discrimination. 

Further, we extend Becker’s model of discrimination to include discriminatory and 

favoritism preferences and show that the correlation between the two matters for 

observed wage differentials.  

In Chapter 5 we study peer effects in education. We do this with a large dataset from 

the SBE where students have been randomly assigned to tutorial groups. We find 

that being assigned to tutorial groups with higher ability, as measured by past GPA, 

leads to very small increases in student grades in the linear-in-means specification. 

An increase in peer ability from 6.5 to 7.0 (one standard deviation) is associated 

with a grade increase from 6.50 to 6.52. This finding hides some heterogeneity: 

while middle and high ability students benefit from high ability peers, low ability 

students benefit from middle ability students but are harmed by high ability peers. 

These findings point to an inverse U-shaped relationship between performance and 

peer ability: students benefit from better performing peers as long as the difference 

between own and peer ability does not exceed a certain threshold. 
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Chapter 7 

Valorization: Policy 

Recommendations  
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Valorization: Policy Recommendations  

Here I will discuss the policy implications of the three empirical chapters of this 

thesis. Since all of them have been done with data of students and teachers at the 

SBE, many policy implications are particularly relevant for the SBE and other 

higher education institutions. 

Key Policy Recommendations 

Low ability students overestimate their academic ability. Warn low ability students 

that they have a high probability of dropping out, or apply stricter acceptance criteria 

for enrolment (Chapter 3). 

There is discrimination in grading. Make grading anonymous by asking students not 

to write their names on the exams but only their student ID number (Chapter 4). 

Peer effects are small in magnitude and we don’t yet understand where they come 

from. Therefore, the mechanisms of peer effects should be studied more before 

attempting to optimize peer groups (Chapter 5). 

 

7.1 Policy Implications of Chapter 3  

In Chapter 3, we showed that it is especially the low skilled students who are most 

overconfident while the high skilled are more accurate. This pattern is there, 

although the students in this study are in their second study year and they have 

therefore already received plenty of feedback on their academic ability in terms of 

previous.  

Overconfidence in one’s academic ability is potentially very costly if students make 

wrong choices based on their inflated self-assessment. At many colleges there are 

large dropout rates. In the US, for example, six years after starting postsecondary 35 

percent of students have dropped out, 15 percent were enrolled but did not complete 

a degree and only 50 percent attained a degree (Radford, Berkner et al. 2010). For 

most students who dropped out, going to college was very costly, for themselves but 

especially in Europe also for the tax payer. I realize that the fact that we observe a 

high drop-out rate does not necessarily mean that students make mistakes; they 



 

103 

might still be maximizing their utility given the circumstances and the information 

they have. Students, however, make their decisions not based on their actual but on 

their perceived academic ability. Knowing that especially the low skilled students 

vastly overestimate their academic ability suggests that many of them make a 

mistake by starting college or by not realizing that they need to put in more effort to 

graduate.  

Mistakes in university enrolment might be prevented by being more careful with the 

admission of students who, based on their grades in high school or standardized tests 

like the GMAT or GRE, have a high likelihood of dropping out. Being careful could 

mean that these students are warned about the danger of dropping out or that they 

are not accepted in the program at all. I recognize that many universities are already 

selective in their admission. However, the high dropout rates suggest that they are 

not selective enough or do not succeed to motivate the study efforts of the low-

performing students. Moreover, the main motivation of universities for being 

selective in the admission of students is to decide who can study if there are limited 

spaces. I suggest that one should also consider restricting access based on prior 

performance, even if the university does not have limited capacity. Doing so might 

prevent students from making inefficient study decisions that are costly to 

themselves as well as to taxpayers. Filling up every available seat at a university 

classroom regardless of the students’ ability therefore consists of a hidden transfer 

from taxpayers’ money to the university’s coffers, and is very costly in student’s 

welfare. 

7.2 Policy Implications of Chapter 4  

In Chapter 4, we show that graders give students who have the same nationality as 

themselves higher grades when students’ names on the exams are visible than when 

their names are not visible. We further show that this discriminatory bias is only 

present for graders who did not know the students from their tutorial group.  

The most straightforward implication of this result is that objectivity in grading can 

be increased by making exam grading anonymous. Universities can do this by 

simply requesting students not to write their name but only their student ID number 

on the exam, a step which has already been adopted at a number of universities. 

Until such an anonymous grading policy is implemented, individual graders who are 

aware of this bias and wish to correct it can cover students’ names, for example by 

putting a sticker on top of them. There are many situations in which anonymous 
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grading is not possible. In these situations it will be helpful to be aware that not only 

discrimination but also favoritism has often negative consequences for the not 

favored group. In many aspects grading can be considered a zero-sum game. At the 

SBE, for example, grades are used as criteria to assign students to spots at popular 

exchange universities. For this assignment, students who are not favored are 

automatically disadvantaged.  

Furthermore, the fact that discrimination in grading is only present when the graders 

do not know the students has implications for reducing discrimination in job 

application procedures. In job applications the cover letter and C.V. of the applicant 

contains the names which can often be used to infer the gender and nationality of the 

applicant. And indeed, by randomly assigning foreign sounding names to C.V., 

researchers have shown that the name of the applicant influences the probability of 

getting invited to an interview (see for example: Bertrand & Mullainathan, 2004). 

This raises the question of whether discrimination could be reduced by masking the 

name on the applicants’ C.V. and cover letters (see for experimental evidence on this 

question: Behaghel, Crépon, & Le Barbanchon, 2011). Whether this will be 

successful in reducing discrimination is, however, not obvious because the minority 

status of the applicant can still be inferred at the job interview at which stage the 

interviewer can still discriminate (cf. Goldin & Rouse, 2000). By showing that 

knowing the students reduces discrimination of graders, we provide evidence that 

getting to know the applicant in an interview might also reduce discriminatory 

attitudes. This suggests that making the first stage of the application anonymous can 

be successful in reducing discriminatory outcomes.  

7.3 Policy Implications of Chapter 5  

In Chapter 5 we show that, on average, students who are randomly assigned to peers 

with high GPA get higher grades. Having better peers, however, is not always 

helpful: Low ability students are harmed by high ability peers. These heterogeneous 

effects suggest that one can increase overall student performance with a 

reassignment of students to peer groups. However, all effects are small in magnitude 

which suggests that the gains from peer reassignment are limited.  

Economists like to evaluate decisions in terms of their costs and benefits, whereas 

our study has only shown the benefits of peer effects. To evaluate whether a 

reassignment of students to peer groups is worthwhile we also need to think about 

the costs of such an intervention. The organizational costs of such an intervention 
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are in many situations probably very cheap – in our case they would be almost zero. 

The mechanisms which drive the estimated peer effects, might however be costly. 

Peer effects might, for example, be explained by higher effort provision of the 

student and/or the teacher. Furthermore, recent research has suggested that social 

dynamics and thus the peer effect might change when students are assigned to 

supposedly optimally designed peer groups (Carrell, Sacerdote et al. 2013). Since 

we only know a small part of the information necessary to make a decision – the 

benefits in terms of grades – it is not justified to give a policy recommendation yet. 

In light of the small magnitude of our estimated peer effects and how little we know 

about the mechanisms driving them, I suggest that the mechanism should be studied 

further before we start reorganizing peer groups. 
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