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1 Introduction

The light that falls on our retina is the starting point of the reconstructive
process called vision. Photons are emitted or reflected by our surroundings,
which may fall on photoreceptors in our eyes, where they are transduced
via a chemical cascade into an electrical signal that is transmitted to many
subcortical and cortical sites in our brain (Palmer, 2002). Our notion of
visual reality depends entirely on the electrical stimulation that is received
by these sites from the photoreceptors in our eyes. We are unaware of the
interpretative, reconstructive process that underlies the ‘image’ we experi-
ence; which is based on neural computations that have been constrained
by the phylogeny of the humans species (Nathans et al., 1986a; Nathans
et al., 1986b; Nathans, 1999), its ontogeny (Yonas et al., 1993; Sen et
al., 2001), and by experience accumulated by the individual (Thorndike,
1901; Thorndike and Woodworth, 1901; Gibson and Gibson, 1955; Shiffrin
and Schneider, 1977). These constraints profoundly determine the way in
which sensory inputs are processed, and reflect adaptations of the species
to suit environmental challenges. For example, bees are unable to see red
colors like humans do, however the former’s visual spectrum extends into
the ultraviolet range which gives them an advantage in recognizing flowers
(Menzel and Blakers, 1975). The present thesis will focus on a class of
constraints in the visual system that allows us to perceive surfaces and their
boundaries. Surfaces can be defined by multiple cues, including brightness,
color, texture and depth (Palmer, 2002). However, because of the cluttered
nature of most visual scenes, surfaces and their boundaries are often oc-
cluded by surfaces nearer to the observer. The visual system hence faces
the task of reconstructing a coherent and behaviorally relevant represen-
tation of the surfaces based on partial information. In this reconstructive
process, the system selects from an infinite pool of solutions the one that
is most likely given constraints about the physical world represented in our
brain. The constraints implemented in the visual system compute an auto-
matic assessment of the probability of a particular layout of visual surfaces
in the physical world given a partial sensory input on the retina (Lotto et
al., 1999; Purves et al., 2004; Yang and Purves, 2004; Purves and Howe,
2005).

Visual illusions as a tool to study mechanisms of
surface perception
Because of the filtering of the physical input by constraint-driven visual pro-
cesses, the resulting representations deviate from the physical input imping-
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Visual illusions as a tool to study mechanisms of surface perception

Figure 1. Kanizsa triangle.
The alignment of local cues causes the completion of boundaries and the perception of
an illusory triangular surface

ing on the retina. The way in which the visual system uses visual constraints
to reconstruct representations most likely to conform to physical reality can
be studied in stimuli generating visual illusions. The Kanizsa triangle is a
well-known example of an illusion that is informative for the way in which
the visual system uses local cues to reconstruct surfaces (Schumann, 1900;
Kanizsa, 1955; Kanizsa and Gerbino, 1982). Observers typically report a
completion of contours along the aligned segments of the inducers. These
completed contours form a closed polygon which is perceived as a surface
by an observer (Figure 1). Based on sparse information (alignment of lo-
cal cues) a representation of a visual scene is reconstructed generating the
impression of a surface in front of a set of objects in the background. Specif-
ically, observers report surface boundaries that are physically absent, and
an impression of enhanced brightness within the confines of the induced
surface. Hence, the illusion reveals that in light of the available cues, one
of two possible interpretations is highly favored. The display can be seen as
containing 4 surfaces (one in the foreground occluding 3 other background
surfaces) or as containing 3 surfaces (in which local cues are aligned by
some unknown factor). Quite clearly, the visual system favors the former
interpretation, despite the physical absence of a surface in the foreground.
This indicates that the visual system is heavily biased to interpret the align-
ment of local cues in the display as evidence for the presence of a surface
in the foreground. This visual illusion is thought to reveal the constraints
that guide the daily life perception of surfaces in visual scenes.
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1 Introduction

Figure 2. Craik-O’Brien-Cornsweet (COC) illusion
All vertical bands are of equal luminance but appear perceptually dissimilar due to the
luminance ramps near the edges of the bands. Bands with a black luminance ramp near
their edge appear darker, bands with a white luminance ramp near their edge appear
lighter.

In the Kanizsa triangle, the illusory borders appear to ‘contain’ increased
brightness within the induced surface. This suggests important interactions
between surface and boundary representations. A visual illusion that ex-
plicitly shows the importance of borders in the reconstruction of surface
information is the Craik O’Brien Cornsweet (COC) illusion (O’Brien, 1959;
Craik, 1966; Cornsweet, 1970; Lotto et al., 1999; Purves et al., 1999;
Purves et al., 2004; Purves and Howe, 2005). In the COC illusion, abutting
surfaces of the same luminance are perceived as different in brightness (Fig-
ure 2). In this stimulus, jigsaw luminance ramps along vertical boundaries
create neighboring patches that are physically identical, except that one
set is bounded by white edges, and the other by dark ones. The patches
bounded by white edges are perceived as brighter than patches bounded by
dark edges, in absence of physical differences. Hence, local luminance near
the boundaries of the vertical patches has a profound impact on perceived
surface brightness.
The two examples discussed reveal strategies the visual system uses to

reconstruct surfaces and boundaries from fragmentary retinal input. These
illusions have been used frequently as a tool to study the neural correlates
of processes underlying surface and boundary perception. A number of
landmark neurophysiological studies have revealed neuronal correlates of
illusory boundaries and surfaces. Below, these studies will be placed in the
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Boundary and surface representations: Neurophysiology

context of other research that has revealed functional subdivisions in the
early visual system relevant for surface and boundary processing.

Boundary and surface representations:
Neurophysiology
A long tradition of neurophysiological and anatomical research (for review
see Sincich and Horton, 2005b, a) has identified two processing streams
that differ functionally in a large number of aspects, such that one stream
may contribute more to boundary processing, and the other more to surface
processing. In V1, interblobs contain neurons that are often orientation
selective and that are better stimulated by luminance gradients than by
homogenous stimuli, or by isoluminant color gradients. Blobs have been re-
ported to contain less oriented neurons, are often tuned to (very) low spatial
frequencies (SF), and (therefore) are well stimulated by homogenous sur-
faces across their receptive fields (RF). In V2, pale stripes, which receive
input from V1 interblobs, contain neurons that predominantly show orien-
tation selectivity, and that produce responses to illusory boundaries (von
der Heydt et al., 1984; von der Heydt and Peterhans, 1989; Heitger et al.,
1992; Heitger et al., 1998). Thin stripes in V2, which receive input from
V1 blobs, contain neurons that show less orientation selectivity and that
are sensitive to brightness of homogenous surfaces. For example, Roe et al.
(Hung et al., 2001; Roe et al., 2005) have shown modulations of activity
in thin stripe neurons in accordance with the illusory brightness changes in
the COC stimulus. These data suggest that there are two separate streams
in V1 and V2, each of which may have specific contributions to boundary
and surface perception. The anatomical data also reveal elaborate lateral
connectivity that would permit interpolation of information within subsys-
tems, as well as interactions between them. The neurophysiological data
reviewed here also suggest that neuronal activity in V1 is more closely linked
to physical properties of local cues, while neuronal activity in V2 may be
more closely linked with subjective perception of contours and surfaces.
Note that the responses of neurons that seem to contribute to the per-

ception of visual illusions are driven by local elements outside the confines of
the classical RF. The classical RF is traditionally defined as the region in the
visual field where a stimulus has to be placed to activate the recorded cell
(e.g.,Sherrington, 1906; Hartline, 1938; Kuffler, 1953; Hubel and Wiesel,
1962). The finding that neural responses that correlate with the perception
of visual illusions are generated from outside the classical RF is in line with
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1 Introduction

a long tradition of neurophysiological research showing modulatory effects
from extra-RF stimuli (placed in the so-called ‘surround’). For example,
several studies have shown in cat area 17 that the response to a small line
segment inside the classical RF can be modulated by aligned line segments
in the RF surround (Maffei and Fiorentini, 1976; Westheimer et al., 1976;
Westheimer and McKee, 1977; Nelson and Frost, 1978, 1985; Gilbert et
al., 1990; for review: Lamme and Spekreijse, 1999). The surround ele-
ments when presented alone did not result in a measurable response. The
anatomical substrate of the surround influences may involve both lateral
connections and feedback (Gilbert, 1977; Sirosh et al., 1996; Angelucci and
Bressloff, 2006). Hence, the surround of the classical RF is important for
contextual interactions among local stimuli, and the responses associated
with the perception of illusory boundaries and surfaces can be considered
as resulting from a specific kind of contextual interactions.

Computational Models
Three main classes of computational models can be distinguished, each of
which have their own assumptions on the contribution of different anatomi-
cally and functionally defined subsystems contributing to surface and bound-
ary perception.
According to interpolation theory, surface reconstruction involves active

interpolation of surface features from a surface’s edges inward. In this the-
ory, the neural substrate of surface-related spreading exists in early visual
areas that are retinotopically organized. Boundary representations would
initiate and contain the spreading of surface information. This implies a
two-stage process. First, contour interpolation mechanisms use local dis-
continuities to construct boundary representations. Second, surface inter-
polation mechanisms use measurements close to contours as seed points
for the spread of surface feature, while inhibitory signals emanating from
boundary representations contain spreading activity within a surface’s cor-
tical projection. The basic ideas of these models have been formulated
more than half a century ago (Fry, 1948; Walls, 1954; Gerrits et al., 1966;
Gerrits and Vendrik, 1970), and have formed the basis for a productive
line of more contemporary research (Davidson and Whiteside, 1971; Grim-
son, 1982; Grossberg, 1987b, a; Todorovic, 1987; Grossberg and Todorovic,
1988; Arrington, 1994; Gove et al., 1995; Pessoa et al., 1995; Grossberg,
1997; Grossberg and Raizada, 2000; Neumann et al., 2001; Grossberg, 2003;
Grossberg and Seitz, 2003).
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Second, spatial frequency filtering theory proposes that surface repre-
sentations can be derived directly from low spatial frequency information
(McCourt, 1982; Stromeyer et al., 1984; Purves et al., 1999; Dakin and
Bex, 2003; Blakeslee et al., 2005; Blakeslee and McCourt, 2008). This the-
ory is compatible with a correlate of surface perception in retinotopic visual
areas. However, low spatial frequencies are processed before higher ones,
and therefore, surface representations might emerge prior to the completion
of precise boundary representations, which require processing of high spatial
frequencies (Hughes et al., 1996).
Third, Dennett (1991) proposed a symbolic encoding theory in which

surface qualities are not encoded at all in retinotopic areas. Instead, they
are encoded implicitly (symbolically) by a lack of discontinuities in between
identified surface boundaries. For example, if at the inside of a surface’s
contour the luminance is high, and at the outside it is low, the entire area
within the surface’s boundaries is ‘labeled’ as bright, as long as there is no
evidence for other discontinuities inside the surface’s representation. Hence,
no activity is expected in lower visual areas corresponding to the perceived
aspects of surfaces. In this view, surface encoding may take place entirely
at a higher, non-retinotopic level in the visual system where surface repre-
sentations might be an integral aspect of object encoding (Desimone and
Ungerleider, 1989; Wang et al., 1996; Biederman, 2000; Haxby et al., 2001;
Kayaert et al., 2005).

Research question and paradigms
The goal of the research presented in this thesis was to use fMRI in hu-
mans to determine whether there is a signal related to the perception of
surfaces. Specifically, we aimed to investigate whether there is a surface-
related signal within the confines of its retinotopic projection within early
visual areas. Investigating this question is important, because by answering
it we will provide support for either the interpolation (and filtering) models,
or symbolic theories. Note that the terms ‘filling-in’ and ‘completion’ are
used to refer to the perceptual effects, and interpolation to the underlying
(neural) mechanism.
Although surface perception is linked with boundary perception, this the-

sis will focus on mechanisms of surface perception (the perceptual aspect in
between boundaries). A brightness induction paradigm will be used to study
mechanisms of surface brightness perception, and the Troxler paradigm to
study mechanisms of surface texture perception. Brightness was chosen as
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1 Introduction

a topic of study, because it is a well-studied aspect of surfaces and because
the contribution of early visual cortex to the perception of surface brightness
is currently heavily debated. Texture was chosen because it so far has re-
ceived less attention and because the few studies that have been published
show contradictory results.

Surface brightness perception studied via an induction
paradigm

The presented research will focus on a dynamic version of the brightness
induction paradigm (Figure 3). In this paradigm (Paradiso and Nakayama,
1991; Rossi et al., 1996; Rossi and Paradiso, 1999), a central grey region of
constant luminance is flanked by two regions where luminance is modulated
dynamically. The central region is referred to as the probing region, as in
that region the presence or absence of an illusion is ‘probed’. The flanking
regions will be referred to as the inducers, as they ‘induce’ the illusion.
Observers consistently report a modulation of brightness in counterphase to
the luminance modulation in inducers.
There are two basic neurophysiological mechanisms that may account

for this illusion. One possibility is that neurons with RFs that are sensi-
tive to luminance gradients across their RFs (e.g., simple cells) generate
a signal that propagates in the representation of the probing region. The
counterphase aspect of the induced brightness may be explained by simple
cells with RFs positioned along the border between probing region and in-
ducer region with their OFF subregion inside the inducer region and their
ON subregion inside the physically constant probing region. This basic cir-
cuitry is in agreement with interpolation models (Davidson and Whiteside,
1971; Grimson, 1982; Grossberg, 1987b, a; Todorovic, 1987; Grossberg and
Todorovic, 1988; Arrington, 1994; Gove et al., 1995; Pessoa et al., 1995;
Grossberg, 1997; Grossberg and Raizada, 2000; Neumann et al., 2001;
Grossberg, 2003; Grossberg and Seitz, 2003), which emphasize that the
subjective aspect of surfaces is driven by spread of information from local
boundary across the surface. A second possibility is that there is a mu-
tual inhibition between neurons that are sensitive to homogenous regions
of luminance-defined surfaces. This basic idea could be seen as compati-
ble with low-spatial frequency analysis proposed in spatial filtering theory
(McCourt, 1982; Stromeyer et al., 1984; Purves et al., 1999; Dakin and
Bex, 2003; Blakeslee et al., 2005; Blakeslee and McCourt, 2008). Finally,
it is possible that the brightness of surfaces is computed in high-level areas
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Research question and paradigms

Figure 3. Brightness induction stimulus modified from Rossi and Paradiso, (1999)
A) A central grey region of constant luminance (probing region) is flanked by two regions
where luminance is modulated dynamically from white to black (inducer regions).
B) The physical luminance timecourse of the flanker regions (solid line) and central
region (dash line).
C) Perceived brightness of the flanker regions (solid line) and central region (dash line).
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1 Introduction

without the need of an explicit representation in retinotopic areas (Dennett,
1991).
Current neurophysiological research has been limited to area V1, where

a very small neural signal has been found correlated with dynamically in-
duced brightness (Rossi et al., 1996; Rossi and Paradiso, 1999). However,
fMRI studies have produced conflicting evidence. Cornelissen et al. (2006)
reported an absence of any correlates of brightness induction, while Perezev-
era et al. (2008) did find a correlate with a very similar paradigm. Hence,
the fMRI study of brightness induction presented in this thesis was driven
by the absence of information on potential extrastriate contributions to sur-
face brightness perception and by the general controversy of the contribution
by early visual cortex to surface brightness perception. We also aimed to
collect data that could inform computational models of surface brightness
perception.

Texture surface perception studied via a Troxler paradism

In 1804, a set of pioneering experiments on perceptual fading was conducted
by Ignaz Paul Vital Troxler and published in an article in Ophthalmologische
Bibliothek titled “Über das Verschwinden gegebener Gegenstände innerhalb
unseres Gesichtskreises” (On the disappearance of given objects from our
visual field) (Troxler, 1804; Iselin, 2005). In this article, Troxler reported
the observation that by fixating one’s gaze on a fixation point a peripherally
presented figure disappears from awareness after a few seconds (Troxler fad-
ing). This phenomenon can be experienced in Figure 4, by steadily fixating
the red fixation cross, which will lead to a fading of the red square and its
replacement by the surrounding texture (perceptual filling-in). This type
of delayed filling-in of a figure by its background has been observed in the
domains of brightness, color, static and dynamic texture, and motion. The
delay before filling-in takes place is shorter the more efficient image stabi-
lization is on the retina. Hence, observers that are capable of fixating bet-
ter will experience perceptual filling-in more convincingly (Martinez-Conde
et al., 2006). Very fast filling-in (as quickly as 80 ms) can be achieved
when image stabilization is (near-perfect), which has been accomplished
by strategies ranging from contact-lens-cameras, inducing an afterimage on
the retina, and monitoring eye movements and using them to compensate
for fixation errors (Riggs and Ratliff, 1952; Ditchburn and Ginsborg, 1953;
Riggs et al., 1953; Gerrits et al., 1966; Yarbus, 1967; Coppola and Purves,
1996). In the present thesis, the stimulus used to elicit filling-in will consist
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Research question and paradigms

Figure 4. Texture Filling-in stimulus
By steadily fixating the central cross, the peripheral red square will dissapear from
awareness and will become filled-in by the line texture after a few seconds.

of a grey figure equiluminant with a surrounding dynamic line texture, and
stabilization will be achieved by prolonged fixation in natural conditions.
Because of the analogy of the experience of filling-in across a figure in

the Troxler paradigm with filling-in across the blindspot (Mariotte, 1747;
Andreae, 1970; Ramachandran, 1992b, a; Grzybowski and Aydin, 2007),
Ramachandran suggested that during fixation the figure played the role of
an artificially induced scotoma (Ramachandran and Gregory, 1991; Spill-
mann and Kurtenbach, 1992; Ramachandran et al., 1993). However, con-
sidering these two examples of filling-in in the context of the interpolation
model shows that this analogy is only partially correct. Interpolation the-
ory suggests that in normal vision, as soon as a saccade lands on a point,
boundaries are reconstructed which contain inward spread of surface fea-
ture initiated at the boundaries. Surface feature spread is thought to be
contained within appropriate retinotopic boundaries by an inhibitory sig-
nal generated by the boundary representations (and possibly other sources
related to figure-ground segregation) (De Weerd, 2006). Because of the
fast rate of successive fixations during normal vision, boundary representa-
tions are highly active during the processing of rapidly occurring, successive

19



1 Introduction

retinal images. It is notable that in the domain of brightness there is com-
pelling psychophysical (Paradiso and Nakayama, 1991; Davey et al., 1998)
and neurophysiological evidence (De Weerd et al., 1995) for spread initiated
and contained by the boundary. However, in the artificial condition of main-
tained fixation, boundary representations are thought to adapt, leading to a
decline of inhibition, and a spread of surface features outside retinotopically
appropriate boundaries. This would lead to the percept of filling-in in the
Troxler paradigm, and also explains the delayed nature of the experience.
By contrast, filling-in across the blind spot is immediate as there are no
boundary representations that have to adapt to permit the spreading of
surface feature into the cortical region occupied by the natural blind spot.
The main alternative to the interpolation model is the symbolic model, ac-
cording to which the fading of the figure’s boundaries would be the sole
reason for the subjective disappearance of the figure from view. In this
model, due to the adaptation of the figure’s boundaries, high-level surface
representations are updated to ignore the area physically occupied by the
figure, thereby automatically representing the background surface without
any discontinuities.
Little is known about the neural correlates of surface texture filling-in.

It was first investigated in monkeys (De Weerd et al., 1995), by means of
single cell recording. In this study, De Weerd et al. (1995) found strong
activity increases in extrastriate neurons of V2 and V3 with RFs over a
grey region in a dynamic texture during maintained fixation away from the
figure. These activity increases coincided with the timing of filling-in in
human observers exposed to the same stimulus conditions. Surprisingly, in
recent MEG and fMRI studies, the claim has been made that in human visual
cortex, filling-in by dynamic texture is associated with activity decreases. In
light of these contradictory conclusions drawn from the two sets of studies,
we chose to reinvestigate the neural correlates of texture filling-in using
stimulus conditions closely resembling the ones used in the monkey recording
studies. In a larger perspective, we aimed to collect data that could inform
computational models of perception.

Methodological considerations
The aim of this thesis is to identify a neural signal related to surface percep-
tion using 3T fMRI in human participants, in two different paradigms. The
neurophysiological evidence suggests that the signal elicited in the early vi-
sual system by physical homogenous surfaces is small (Murphy et al., 2007),
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which makes it likely that an illusion that might reveal neural interpolation
processes will correspond to an even smaller signal. In addition, some of
the evidence suggests that this neural interpolation signal, if it exists, may
be stronger in extrastriate than striate cortex. Unfortunately, in extrastriate
cortex, cortical magnification is lower, and RF sizes are larger (Kornhuber
and Deecke, 1965) than in striate cortex. In combination with limits in
spatial resolution of 3T fMRI, the sensitivity to pick up the signal of inter-
est therefore will be comparatively smaller precisely in those brain regions
where it is most likely to occur.
Therefore, one of the challenges for the research planned in the present

thesis was to tailor the data acquisition and analysis to increase the likeli-
hood to pick up the signal of interest. A straightforward way to increase this
likelihood is by increasing the number of trials a participant has to undergo.
By averaging more trials, the signal to noise ratio increases assuming that
the noise in the signal is Gaussian, not temporarily correlated and varies
randomly across trials. In addition to merely increase power by increasing
numbers of trials, we also designed procedures for informed temporal align-
ment of relevant stimulus periods prior to averaging, and precise procedures
for functional spatial alignment prior to averaging.
The approach used for temporal averaging is similar to the approach

commonly used to find small amplitude components in EEG waveforms,
commonly referred to as event-related averaging. Typically, event-related
averaging involves that signals are time-locked to the stimulus onset, and
then averaged. This averaging reduces the noise and unveils the compo-
nents present underneath the large amplitude waves in the signal. In the
experiments investigating texture filling-in, the ‘stimulus’ is the onset of an
illusion defined by a specific criterion as measured while participants are
being scanned. For spatial alignment prior to averaging, a new method
was devised inspired by techniques that are currently used to align spectro-
grams yielded by molecular imaging experiments. The next section briefly
introduces the chapters that describe the research triggered by the scientific
questions that have been outlined here.

Thesis overview
Chapter 2 offers a report on the development and testing of an efficient
method for spatial alignment prior to fMRI data averaging. This research
is presented first, as tackling the problem of alignment is a precondition for
answering the empirical questions formulated in this Introduction. Chapter 3
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presents the results from an experiment that tested the existence of an fMRI
signal associated with surface brightness perception in early visual cortex in
a brightness induction paradigm. Chapter 4 shows a simple forward neural
network model that successfully generated a dataset that could be compared
with the empirical data from Chapter 3. This comparison was used to
evaluate the truth value of the assumptions underlying the model. Chapter
5 contains the results from an fMRI study testing the existence of correlates
of surface texture perception in a Troxler paradigm. Finally, Chapter 6
contains a summary of the findings and a discussion of the implications
of the experiments for the models put forward in the Introduction. The
chapter will end with an evaluation of the strengths and weaknesses of the
type of data reported in this thesis, and an outline of perspectives for further
research.
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2 Activity landscapes fMRI

Abstract
To compare imaging data among groups of participants, the functional data
sets must be aligned. Existing alignment methods are based on anatomical
criteria, either using sparse landmarks or cortical curvature (cortex-based
alignment, CBA) as criteria for alignment. However, because functional
maps are only loosely tied to anatomical landmarks, the enhancement of
statistical power after alignment is suboptimal, and spatial detail present in
individual maps is lost. Here, we propose pattern-based alignment (PBA),
a new method that is based on topographical patterns of activity elicited
by localizer stimuli. In empirical and simulated datasets, we used signal
analysis and other measures to quantify the amount of spatial detail in
functional data before and after alignment by CBA and PBA, and found that
PBA outperforms CBA. We suggest that the possibility to compute across-
participant maps of functional activity showing exquisite spatial detail will
make PBA a major new tool in the emerging field of high field fMRI.

Introduction
An important issue in fMRI data analysis is how to aggregate datasets from
several subjects (Lange et al., 1999). Averaging over multiple subjects is re-
quired to increase statistical power, but often a significant part of this gain
in power is lost by poor alignment. This problem is most pronounced in
datasets obtained in topographically organized areas, in which fine-grained
voxel-wise spatial patterns of data have to be properly aligned. In visual
cortex, topography is best documented (Daniel and Whitteridge, 1961; Gat-
tass et al., 1981; Sereno et al., 1995; Engel et al., 1997; Qiu et al., 2006;
Dumoulin and Wandell, 2008; Datta and DeYoe, 2009), and the present
paper will tackle the issue how to preserve spatial detail in functional data
during alignment in early, retinotopic cortex.
A classical anatomical approach to align datasets of multiple subjects

is to explicitly register each brain into a standardized space, as done in
Talairach (Talairach and Tournoux, 1988) or MNI (Chau and McIntosh,
2005) normalisation. In the Talairach method, the brain is divided in 12
parts based on anatomical landmarks. These parts are then squeezed or
stretched to fit in the standard Talairach coordinate system, which is based
on a single brain. The MNI (Chau and McIntosh, 2005; Lancaster et al.,
2007) normalisation approach is similar to the Talairach approach, except
that experimental subjects’ brains are aligned to the average of multiple
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brains. Thus, in contrast to the Talairach method, in which all brains
are aligned to that of a single arbitrarily chosen individual, MNI uses a
representative standard. Currently, a well-accepted standard is ICBM152,
which has been adopted as a standard by the International Consortium of
Brain Mapping. Although MNI has the advantage of aligning individual
brains to a more realistic standard compared to the Talairach method, both
methods share the limitation that alignment is based on sparse anatomical
landmarks.
The approach of alignment based on sparse landmarks is superseded by

modern anatomical alignment methods that explicitly align the convex and
concave parts of the cortical sheet, gyri and sulci (Fischl et al., 1999; Goebel
et al., 2006), also referred to as Cortex Based Alignment (CBA) (Fischl et
al., 1999). This is a method that does not rely on a pre-defined template
and that permits a much finer degree of anatomical alignment than can
be achieved in standard Talairach normalization (Talairach and Tournoux,
1988) or MNI (Chau and McIntosh, 2005; Lancaster et al., 2007). CBA has
indeed been shown (Fischl et al., 1999) to substantially improve statistical
group results in aggregated functional maps associated with the aligned
brains.
The principal limitation of all anatomical alignment methods is that the

relationship between function and anatomy across individuals may vary con-
siderably. If this is the case, even the most sophisticated anatomical align-
ment method will not lead to optimized power after averaging across aligned
functional datasets from different subjects. While the dissociation between
anatomy and function is well known in high-level centres of the brain (e.g.,
frontal lobe; Fischl et al., 2008), it plays a role even in early visual retino-
topic areas where the relationship between anatomy and function is often
believed to be fairly constant. For example, although according to the clas-
sical model of Holmes a close correspondence exists between the deepest
point of the calcarine fissure and the horizontal meridian representation
(Holmes, 1919; Horton and Hoyt, 1991), functional studies have put this
correspondence in doubt (Stensaas et al., 1974; Ono et al., 1990; Sereno et
al., 1995; Dougherty et al., 2003). In addition, retinotopic representations
derived from cytoarchitectonic data suggest a mismatch between anatomy
and functional visual areas (Clarke and Miklossy, 1990; Amunts et al., 2000;
Wilms et al., 2010). Moreover, the overall size of early retinotopic areas
varies greatly among individuals and even between hemispheres of the same
individual (Brindley, 1972; Stensaas et al., 1974; Kirson et al., 2008), which
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limits the effectiveness of anatomical alignment of functional data even in
retinotopic visual cortex.
Using anatomical alignment to achieve correspondence of functional areas

is a detour that is unnecessary if a priori regions of interest (ROIs) can be
defined by means of an independent localizer (Brett et al., 2002; Friston et
al., 2006; Mitsis et al., 2008). In higher-order visual cortex, specific stimulus
sets can be used to identify areas such as MT (Zeki et al., 1991; Watson et
al., 1993), the lateral occipital complex (Malach et al., 1995; Grill-Spector
et al., 2001), the fusiform face area (Sergent et al., 1992; Kanwisher et al.,
1997) or the parahippocampal place area (Aguirre et al., 1998; Ishai et al.,
1999). In lower-order retinotopic cortex a localizer stimulus at specific visual
field coordinates can be used as an independent localizer for an experimental
stimulus in that location. Typically, studies that use a region of interest
(ROI) approach average the responses to the experimental stimulus over all
voxels in the ROI in a subject, and then average over all subjects, thereby
achieving a simple form of functional alignment that bypasses the problems
of cortical alignment. A consequence of this approach, however, is that
possible spatial patterns in the functional data within ROIs are lost.
The goal of the present paper is to demonstrate a Pattern Based Align-

ment (PBA) technique that makes it possible to perform a group analysis
of fine-grained, spatial (topographical) patterns in functional data. We
will make a qualitative and quantitative comparison between anatomically
aligned data sets and functionally aligned data sets, using both real and
simulated data. The demonstration of PBA is focused on specific spatial
patterns of functional data in retinotopically organized visual cortex, but
can be expanded to other topographically organized cortex, or to any other
experiment in which a specific pattern of functional activation is expected.
The method we propose is based on a non-linear morphing of the cortical
sheet occupied by a ROI constrained by independent localizers designed
to functionally map this ROI. This results in an excellent alignment across
subjects of functional data in a normalized anatomical space.

Methods

fMRI experiments

Anatomical T1-weigthed (MP-RAGE; TR, 2,250 ms; matrix size, 256×256;
192 slices; in-plane resolution, 1 mm2) and functional echo planar imaging
(EPI) scans (14 gapless slices, TR/TE, 1,000/30 ms; flip angle 90º; square
in plane matrix size of 1282; resulting in isotropic 2mm3 voxels) were ac-
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quired of two subjects on a 3T Siemens Allegra head scanner. Note that the
functional slices were positioned oblique, parallel and below the calcarine
sulcus, restricting the visual field coverage to the upper quadrants. Func-
tional localizer and retinotopic data were pre-processed in Brainvoyager QX
(Brain Innovation, The Netherlands) including slice time correction, 3D cor-
rection for head volume movements and temporal filtering, which included
linear trend removal and a high-pass filter of 3 cycles per time course. Fi-
nally, functional data were resampled and co-registered to the Talairach
transformed anatomical data (Goebel et al., 2006). Retinotopic data were
acquired according to standard procedures (Sereno et al., 1995; Engel et al.,
1997). Polar angle mapping allowed us to identify V1v, V2v, and V3v in the
CBA data at the group level as well as in the individual native hemispheres.
During the localizer runs 3 eccentricity localizer stimuli (Figure 5A) were
presented to the subjects in 3 functional runs per eccentricity, runs lasted
290s and consisted of alternating baseline and localizer blocks with duration
of 11s. Experimental stimuli with luminance modulation in the outer ring
and inner disk were presented in runs of 460s and contained 32 luminance
modulations.
Anatomical data were corrected for field inhomogenities and volumetri-

cally normalized into Talairach space (Talairach and Tournoux, 1988). A
brightness cut-off method was used to identify the white-gray matter bound-
ary, where meshes were modelled to reconstruct the cortical sheet. These
operations facilitated the creation of participants’ 3D mesh reconstructions.
The meshes were subsequently inflated, flattened and corrected for spatial
distortions.

Cortex based alignment (CBA)

The CBA procedures consisted of down sampling the number of vertices in
the 3d meshes. This resulted in smoothing of the meshes, while preserving
their shape. The downsampled meshes were then inflated to spheres and
by using gyral and sulcal curvature constraints spheres they were aligned
using a multi scale approach. Here in a first alignment step, curvature
information is limited to gross curvature features. While the alignment
process progresses more detailed curvature information is used and aligned
to a moving group average sphere (Goebel et al., 2006). To align both right
and left hemispheres, left hemispheres are mirrored.

33



2 Activity landscapes fMRI

Functional localiser analysis and experimental data

Multiple regression analysis approach was used to fit a general linear model
(GLM) with box car predictors for each localizer condition (3 conditions;
radius inner 3 degrees visual angle º), middle 9º, outer ring 14º; see Figure
5A and Figure 5D) to the data. Beta coefficient maps were then created
for each localizer condition and used for further alignment analysis. The
experimental stimulus had the same dimensions as the localizer stimulus
and was built out of two concentric rings around a disk. The outer ring
and inner disk were brightness modulated sinusoidal from white to black
(duration 1s) followed by a period (of 8s) wherein the rings did not change
luminance and modulated back from black to white (duration 1s) while the
middle ring was constant black.

Simulations

Reference data were simulated as a weighted sum of sinoids, the signal s
was then enveloped by a Gaussian.

t = 0 . . . 7π
s = sin (t + π) + 0.5 sin (3t + π) + 0.5 sin (9t + π) + 0.25 sin (27t + π)

s = sT ∗ e

(
x−µ2

2σ2

)

SNR calculation

SNR = 10 log10


n

∑
i=1

re f erence2

n

∑
i=1

re f erence− sampled2


All alignment routines were implemented in Matlab (The Mathworks,

Natick, MA, USA) and Brainvoyager QX (Brain Innovation, The Nether-
lands).

Results
To illustrate the effectiveness of PBA, we used CBA as a benchmark. Here,
we first compare and demonstrate the two algorithms, and then compare
the effect of the two algorithms on the alignment of real and simulated
functional data.
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CBA versus PBA

Both CBA and PBA techniques rely on a surface reconstruction of the cor-
tical sheet on which subsequent alignment steps are done. Nevertheless,
already during the early step of surface reconstruction, CBA and PBA differ
(Figure 1). For the CBA technique to work a large amount of smoothing
is necessary, because spurious individual details can lead to misalignment.
Therefore, the reconstructed meshes are downsampled along with the cur-
vature information superimposed on the meshes; this leads to fewer vertices
and a less detailed description of the surface curvature. Since the functional
data undergo the same transformation as the anatomical data, the fine de-
tails in the functional data are lost as well after CBA. By contrast, the goal
of PBA is to preserve as much of the detail as possible, and therefore all
operations are applied on the native resolution meshes (meshes in which
vertices are not decimated).

PBA algorithm and illustration

We will first illustrate the effects of different alignment algorithms along
a one-dimensional sample of the 2D reconstruction of the cortical sheet
of V1, in the left and right hemisphere of a participant. To that aim, we
defined a cortical path through the map in each hemisphere, and through
an area activated by three localizer annuli (radii of 3º, 9º and 14º). We
only considered functional data along this anatomical path for alignment.
To combine functional data from ROIs, we collected data from a second set
of within-ROI functional localizers. The peaks within the functional data
along each anatomical path served as a pattern of landmarks which then
were aligned among individual paths, to construct an alignment template.
After construction of the template, there is a point-to-point correspondence
between the functional data sets along the different cortical paths, and with
the template.
The algorithm involved in establishing the correspondence between an

arbitrary cortical path and a template is described visually and by pseudo
code in Figure 2A-B. The spatial profile of the fMRI signal along the path
was divided into segments based on landmarks determined from within-
ROI localizers. Each segment was then normalized and interpolated onto
a regular grid, and once this was done for all segments, the transformed
segments were recombined. As a result of this procedure, signals coming
from different anatomical paths from different hemispheres or participants
can be compared and averaged (they are functionally aligned). Figure 3
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Figure 1. Flow chart comparison between CBA and PBA
Flow chart comparing the necessary steps for Cortex Based Alignment (CBA) and
Pattern Based Analysis (PBA). After white/grey matter segmentation, process pipelines
of CBA and PBA diverge. In CBA, anatomical alignment between brains is obtained by
downsampling the surface resulting from segmentation, and by multiscale alignment of
gyri and sulci of individual brains. Functional data are transformed accordingly. PBA
does not use whole brain information for alignment but rather aligns patterns within
ROIs identified by within-ROI functional localizers. Based on functional landmarks
within an ROI a template is formed to which individual functional data are aligned.
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Figure 2. Pattern based alignment procedure
A) Piecewise normalisation and interpolation of spatial data sampled
across a mesh path sampled in V1 from fovea to periphery (see Figure 3A
for sample paths). In the upper graph pane a signal is shown with three
peaks from within-ROI localizers, used as landmarks in the alignment
procedure. The lower graph pane shows the gridded signal of interest after
normalisation. After normalisation the distance between peaks is constant.
B) Pseudocode of the cross PBA algorithm. The signal is split up in four
intervals based on three landmark peaks in the signal. Normalization was
carried out by dividing segments in between landmark peaks into equal
numbers of points (N=20), and then standardizing the size of intervals
between points. This results in a transformation of the functional data
onto a regularly spaced grid (the alignment template).

illustrates the process of aligning and combining sections of activity profiles
from multiple cortical paths (in this case from two paths in V1 from two
hemispheres in a single individual).
To summarize: to align functional activation along different cortical

paths, four steps were required: (i) the definition of the cortical paths;
(ii) the determination of the alignment landmarks on the cortical path; (iii),
a piecewise transformation of all the intervals between the landmark points,
resulting in equalized numbers of standardized intervals and an alignment
template; (iv) averaging of functional data from different cortical paths
transformed to fit the alignment template.

Computing a mesh to mesh mapping

The one-dimensional PBA described in the previous section can be extended
to two dimensions (2D). In this case, the goal may be to align an entire
retinotopic map of an area (e.g. V1) across participants and hemispheres,
and therefore the entire map can be considered a ROI. The full representa-
tion of the cortical sheet after segmentation corresponding to the visual area
is represented by a mesh, which is a set of vertices describing the grey-white
matter boundary of an anatomical scan connected by triangles (Dale et al.,
1999). The mesh used for alignment is isolated from a full brain mesh,
flattened, and then submitted to a PBA algorithm as illustrated in Figure
4A-B. The alignment is based on landmark activity from objective localizer
stimuli overlaid onto the mesh. We will assume here that the localizer stim-
uli (e.g., presented at a set of fixed coordinates across participants) provides
a 2D pattern of multiple landmarks across the mesh. To compare and align
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Figure 3. Pattern Based Alignment: illustration of the intermediate steps A) For two
left hemispheres (LHs) a cortical path was defined for the V1 region from fovea (red) to
periphery (green). B) The signal along the cortical path was plotted (solid lines subject1
LH; dashed lines subject2 LH). Peaks were selected for the different localizers. The
cortical location of the peaks is shown in A by dots on the cortical paths. C) After PBA
the peaks of the localizers was brought into register. D) Average of the separate
localizer signals for subject 1 and subject 2.
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this activity patterns across different participants, the alignment landmarks
have to be normalized into a standardized space. In brief, the PBA algo-
rithm to transform a flattened ROI (a map, or a ROI in the map) into a
standardized space comprises four steps: (i) Conversion of the Cartesian
coordinates of vertices in the ROI to polar coordinates relative to the centre
of the mesh. (ii) Dividing the vertices into fans around the centre point of
the ROI. A fan can be visualized as a pie shaped wedge revolving around
the centre point of the mesh. At each step around its revolution, vertices
falling within the fan are grouped. The size of the fan has to be set based
on the number of vertices in the mesh. For example, a sparse mesh needs a
larger fan size because a minimal number of vertices needs to fall within the
fan at each step around its revolution. (iii) Based on the grouping in the
previous step, the radial coordinates of the ROI vertices falling within a fan
are normalized through division by the largest radial coordinate within the
fan. For example, the radius of a vertex (rv) can be normalized by dividing
it with the radius of the vertex with the largest radius (rvmax), resulting in
r
′
v. The angular coordinate of the transformed intermediate vertex is kept

Θv in order to maintain the same position relative to the other intermediate
vertices. After steps (ii) and (iii), the new normalized vertices have become
the new units of the transformed mesh, characterized by normalized polar
coordinates (Figure 4A). (iv) Finally, the still irregularly spaced normalized
mesh is then projected and interpolated onto a 2D regular grid.

Functional alignment of a localizer experiment: comparison
between PBA and CBA

We scanned 2 subjects in a visual eccentricity mapping experiment to test
the performance of PBA using empirical data. To create landmarks for
functional alignment, subjects were instructed to fixate while narrow annuli
were presented around fixation. Three annulus sizes were used covering the
visual field from fovea to periphery (Figure 5A; for details see experimental
procedures). Therefore, along a cortical path from fovea to periphery, we
observed three activity peaks corresponding to the three annuli. We opted
to demonstrate PBA in V2v data as we found large variability in inter-peak
distances in V2v among the 4 different hemispheres used in this experiment.
The three peaks served as landmarks for PBA and the resulting aligned
cortical path signals were averaged (see Figure 5B). As a comparison we
also defined cortical paths through V2v of the down sampled meshes used
for CBA. These paths were then CBA transformed and thus projected in

40



Results

41



2 Activity landscapes fMRI

Figure 4. A) ROI normalisation procedure. To be able to quantitatively
compare activity patterns across different ROIs (based on an objective
localizer) they have to be registered into a common space. The algorithm
to accomplish this comprises several steps: (i) Conversion of the Cartesian
coordinates of the flattened ROI into polar coordinates, (ii) dividing the
vertices into fans around the centre point of the ROI, (iii) normalizing the
radial coordinate within each fan. (iv) Interpolation of the normalized ROI
mesh onto a regular grid.
B) Pseudocode implementation of the ROI normalisation algorithm. A fan
rotates in steps around the centre of gravity of the mesh, vertices within
the fan are normalized with respect to the vertex with the greatest
distance to the mesh centre of gravity.

the average brain space in which the individual hemispheres were aligned.
This resulted in the average signal shown in Figure 5C.
Based on the much better preservation of the pattern of functional ac-

tivity elicited by the landmark activity in PBA compared to CBA, it can be
expected that data patterns from independent experiments that are aver-
aged after preceding PBA will be preserved much better than after preceding
CBA. We have tested this prediction by applying the two different align-
ment methods to independent experimental data collected in the same two
participants. In this experiment, participants were viewing a centrally pre-
sented disk, and a peripherally presented wide annulus. Both modulated
temporally in luminance, and were separated by a constant black region
in the middle (Figure 5D, for details see experimental procedures). The
experimental data obtained in response to the stimulus in Figure 5D were
submitted to a GLM with the luminance changes as a predictor. We then
applied the alignment template derived from prior PBA of the localizer stim-
uli to the beta coefficients along the pre-defined anatomical paths yielded by
the GLM. This resulted in the pattern of functional data along the cortical
path shown in Figure 5E. These aligned data show high Beta coefficients
in the representations of the inner disk and outer ring where de luminance
change occurred, while Beta coefficients dropped towards zero in the repre-
sentation of the middle ring where no luminance changes were present. By
contrast, alignment and averaging of the experimental data using CBA led
to a complete loss of the expected functional data pattern, and averaged
Beta values hovered around zero along the entire length of the predefined
anatomical path, except for a single, spurious peak in activation (Figure
5F).
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This comparison of CBA and PBA shows that PBA is highly efficient in
preserving patterns of functional data that are completely lost after CBA.
The superior performance of PBA was obtained after comparing the align-
ment of PBA with that after CBA in only 4 hemispheres. More data would
only reinforce the loss of signal after CBA and make the signal after PBA
more robust. Thus the example on only four hemispheres used here can
serve as a proof of concept for PBA.

Functional alignment of simulated data: comparison between
PBA and CBA

To evaluate the spatial detail that can be resolved by using PBA, we sim-
ulated a dataset containing several frequency components (for details see
experimental methods, simulations section). In Figure 6, the same simulated
dataset was subjected to PBA and CBA, and a quantitative comparison of
the quality of functional alignment was carried out.
The synthesized fMRI signal consisted of a sum of sine waves. The overall

form of the simulated signal was characterized by 3 peaks, and detail was
added to this fundamental signal by 3 harmonics. This signal was enveloped
by a Gaussian to create a drop off near the borders of the signal (Figure
6A). The simulated data were generated in a mesh with equally spaced
vertices, and were mapped onto the vertices of a subject’s native V3 map,
using PBA.
To illustrate the effect of CBA and PBA on the aggregation of the simu-

lated datasets, we defined a cortical path through the simulated data (black
line in Figure 6A). The data sampled along this cortical path is shown in
Figure 6B. A down sampled version of the simulated signal obtained from
the CBA mesh is shown in Figure 6C. Cortical paths were defined through
both the native (black line in Figure 6D) and the CBA mesh. The data
sampled along these paths are shown in Figure 6E after PBA alignment
and Figure 6F after reading out the data on the CBA mesh. A comparison
between the signal to noise (SNR) of the signal after alignment by PBA
(SNR=3.1975 dB) and CBA (SNR=-64.4333dB) showed that the signal
was well conserved after PBA. After CBA alignment the signal was uniden-
tifiable. To quantify the preservation of fine spatial detail in activity patterns
of the PBA and CBA alignment techniques, we analysed the Fourier trans-
form and semblance (Cooper and Cowan, 2008) of the aligned signals. The
Fourier transform shows the overall power in the frequency bands of the
signal along the cortical path as a whole. The semblance measure shows
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Figure 5. Localiser experiment after CBA and PBA
A) Three annuli centred around a central fixation spot were presented
block wise (see experimental procedures) to 2 subjects whom maintained
steady fixation.
B) Cortical paths were defined through V2 in parallel to the horizontal
meridian (derived from retinotopy) for the left –and right native resolution
mesh of the subject’s hemispheres. After identification of the landmarks
(vertical gray dash lines), creation of an alignment template, normalisation
and averaging, beta coefficient were plotted as a function of cortical space
(along the cortical path).
C) Cortical paths were defined through V2 of the CBA down sampled
subject meshes. The cortical paths were transformed into a common brain
space by applying CBA. The cortical paths of the 4 hemispheres were then
averaged.
D) The experimental stimulus was made out of two annuli around a disk.
The white parts in the Figure showed luminance modulations from white
to black (duration of 1s) and back. The two annuli and disk were localized
by the checkerboard stimuli in A.
E) The alignment template obtained by alignment of the localizer peaks
(C) was applied to the data of the experimental stimulus and plotted as a
function of cortical distance. F) Beta coefficients maps of the
experimental stimulus plotted as a function of cortical distance after CBA.

the correspondence in the frequency bands between the reference and the
sampled signal at each point along the cortical path.
Figure 6G shows the Fourier power spectrum of the reference signal (Fig-

ure 6B, red line), the native PBA signal (Figure 6E, blue line) and the CBA
signal (Figure 6F, green line). The power spectrum of the reference sig-
nal shows the 4 frequency peaks in the simulated signal. The signal after
PBA shows a response to the first 3 peaks, while the signal after CBA only
shows a response to the very lowest frequency peak. This indicates that fine
grained frequency information was best preserved after PBA alignment. Im-
portantly, this analysis underestimates the efficiency of PBA, because local
misalignments distort the Fourier power spectrum.
The interpretation of the semblance results (Figure 6H-I) is similar to

a correlation coefficient; it also ranges from minus one to one, with one
meaning the best preservation of the original signal. Figure 6H displays the
semblance between the reference signal (Figure 6B) and the native sampled
signal (Figure 6E), and shows a very high correspondence for low to high
frequencies between the PBA aligned signal and the reference signal. The
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poor semblance for the CBA transformed signal (Figure 6C versus Figure
6F) is shown in Figure 6I. Sampling a limited number of points along the
cortical path without PBA resulted in a poor alignment. Only very low
spatial frequencies were aligned properly while middle and higher frequency
bands lacked semblance between the reference and the sampled CBA signal.

Discussion
This paper demonstrates an alignment technique (PBA) that makes it pos-
sible to perform a group analysis of fine-grained, spatial (topographical) pat-
terns in functional data. PBA is based on non-linear morphing of anatomical
distances between locations activated within a topographical map by multi-
ple functional localizers (landmarks). By evaluating this technique on both
empirical and simulated data after CBA and PBA, we clearly showed that
PBA is superior in preserving the fine details of a functional signal after
alignment.
PBA can be particularly useful in the evolving field of fMRI research. On

the one hand, fMRI paradigms often aim to understand subtle aspects of
various types of sensory processing and cognition. For example, a number
of studies have aimed to find fMRI correlates of visual illusions to study
the processes underlying boundary and surface perception (Komatsu, 2006;
Goebel and De Weerd, 2009). These paradigms often require the analysis
of small signals that are lost without optimal alignment. On the other
hand, high field fMRI permits (or is close to permitting) imaging at the
level of columns and layers (Cheng et al., 2001; Kim and Ogawa, 2002;
Silva and Koretsky, 2002; Duyn et al., 2007). To preserve patterns of
activity distributed over these cortical compartments after alignment across
participants, new alignment techniques such as PBA are extremely useful.

Functional alignment in topographic maps using PBA

In a recent study, we used PBA to reveal a small signal related to brightness
induction (Van de Ven et al., submitted manuscript). The area within which
the induction was generated consisted of an annulus with inner and outer
radii of 3º and 9º respectively. The luminance of this area was constant
(grey), while in the disk enclosed within the grey annulus and in a large
annulus enclosing the grey annulus (the inducers), the luminance was mod-
ulated dynamically. The luminance modulation in the inducers generated
an antiphase brightness percept in the grey region of constant luminance,
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Figure 6. Sensitivity simulations of mesh mapping method.
A) A composite sinusoidal signal consisting of 4 frequencies enveloped by
a Gaussian with a periodicity that allowed for 3 peaks was synthesized in
order to be projected on a mesh region corresponding to a visual area. The
solid black line shows the sampling path on which the PBA was based.
B) A reference signal for PBA was obtained by reading out the signal
along the cortical path in (a).
C) A reference signal for CBA was obtained by down sampling the
reference signal in (b) (with respect to the vertex distance of a CBA
mesh).
D) The synthesized signal in (a) was projected onto V2v hemisphere. The
black solid line shows the path parallel to the horizontal meridian for PBA.
E) The signal along the sampling paths (average of 4 hemispheres of 2
subjects) in (d) shows the three peaks as well as some of the higher
frequency information present in the synthesized signal (a).
F) Signal of the simulated data when projected onto a CBA mesh
(average of 4 hemispheres of 2 subjects).
G) Fourier spectra of the reference (subfigure B; red solid line), the
sampled signal in the native resolution (subfigure E; blue solid line) –and
the sampled signal in the CBA resolution (subfigure F; green solid line).
H) Semblance plot of the sampled signal (e) and the reference signal (b),
both signals are decomposed into frequency components over cortical
distance, semblance shows the degree of correspondence between the 2
signals for all frequencies at specific points along the cortical path. Colors
ranging from blue (-1) to red (+1) code the correlation coefficient, depict
the resemblance, of the 2 signals in the frequency space domain.
I) Semblance of the signal after CBA (f) and the reference signal for CBA
(c). Color conventions are the same as in (h).

which did not occur when the region of constant luminance was black. In
agreement with prior observations in single cell recording studies (Rossi et
al., 1996; Rossi and Paradiso, 2003), the signal corresponding to this illusion
was very weak, and was undetectable without PBA. We carried out PBA
along a cortical path through the representations of inducers and an inter-
spersed area of constant luminance in V1, V2 and V3, using peak activity
of localizers centred in each stimulus part as landmarks. The same trans-
formations were then applied to the functional datasets from the induction
experiment. This helped us to reveal antiphase activity in the region of
constant luminance in V2, when that region was grey, but not when it was
black. Thus, PBA was instrumental in this study in demonstrating a corre-
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late of surface perception in early visual cortex, thereby contributing to an
important debate in visual neuroscience (Cornelissen et al., 2006; Komatsu,
2006). Using PBA, we also recently demonstrated for the first time an
fMRI correlate of texture filling-in in early visual cortex in a Troxler fading
paradigm (Jans et al., submitted manuscript), replicating earlier findings
from single cell recordings in monkeys (De Weerd et al., 1995).
Another important debate in visual neuroscience is the extent to which

deafferentation (due to a retinal scotoma) leads to topographical remapping
in early visual cortex. A long tradition of neurophysiological (for reviews see:
Buonomano and Merzenich, 1998; Kaas et al., 2003) and molecular work
(Arckens et al., 2000; Arckens et al., 2003; Kaas et al., 2003) has accu-
mulated evidence for retinotopic re-mapping, during which neurons in the
deafferented cortical region gain receptive fields outside the scotoma corre-
sponding to the deafferented region. However, more recent work combining
neurophysiology and high-field neuroimaging in monkeys (Smirnakis et al.,
2005) has put in doubt the extent of this reorganization. While it is likely
that the reorganization is less important (or applies to smaller numbers of
cells) than hitherto assumed, it seems unlikely that there is no reorganiza-
tion at all. We suggest that PBA of fMRI data in large groups may increase
sensitivity to detect these plastic changes.
In addition to studying sensory processes, PBA can be useful to enhance

sensitivity for the modulation of sensory processes by high-level cognitive
factors, such as short-term memory and attention. In the field of atten-
tion, an important unresolved question is whether spatial attention can be
divided into multiple foci (Jans et al., 2010). If attention could be di-
vided in multiple foci, this will likely entail a cost (Cave et al., 2010) so
that the attentional enhancement of visual processing in retinotopic regions
corresponding to the hypothesized foci is likely to be small. In these experi-
ments, and others using subtle cognitive manipulations of visual processing
in retinotopic maps, we suggest that PBA can be an important tool to en-
hance sensitivity for fMRI correlates. Importantly, while we have stressed
the potential of PBA in visual neuroscience, this method of alignment can
be applied equally successfully in all other sensory modalities showing topo-
graphical representations of sensory space. For example, PBA can be useful
in somatosensory, motor and auditory investigations of topographic changes
in conditions of use (training) or under-use (deafferentations) (for reviews
see: Buonomano and Merzenich, 1998; Pessoa and De Weerd, 2003), and
investigations that monitor and influence adaptive and maladaptive effects
of plasticity in topographic maps (Ziemann, 2004).
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Applications of PBA in high field imaging

Since the advent of high-field and ultra-high field fMRI the spatial reso-
lution of the acquired functional and structural images has increased to
the point that functional imaging at the level of resolution of columns and
layers is within reach (Chen and Ugurbil, 1999; Kim and Ogawa, 2002;
Logothetis, 2008). Several fMRI studies have revealed in animals and hu-
mans the underlying columnar organisation of cortex (Ohki et al., 2006;
Moon et al., 2007; Ohki and Reid, 2007; Yacoub et al., 2007; Yacoub et
al., 2008), and others have demonstrated in humans the existence of ocular
dominance domains and orientation columns in primary visual cortex (Ohki
et al., 2006; Yacoub et al., 2007; Yacoub et al., 2008). These functional
details in 2D topographic maps can be exploited to bring topographic maps
of entire cortical areas in register across hemispheres and participants. For
example, when identified, the centre of a pinwheel representing an orien-
tation column could serve as an alignment landmark. The centres of all
the imaged pinwheels together form an irregularly spaced grid which can
be aligned between areas or subjects. Furthermore, alignment by matching
pinwheel centers would open the possibility to separate processes in blobs
and interblobs, and investigate different functions of these anatomical com-
partments in sensory function (Livingstone and Hubel, 1983; Roe and Ts’o,
1999; Sincich and Horton, 2005). Detailed landmarks in topographic maps
cannot only help to bring functional maps of different hemispheres and par-
ticipants in alignment, they also permit direct mapping of model data onto
meshes containing the empirical data. This, in turn, permits direct tests of
model predictions against empirical data in the brain (Goebel and De Weerd,
2009; Peters et al., 2010). Moreover, thanks to the possibility to image the
laminae of the cortical sheet (Harel et al., 2006), separate mesh models of,
for example, granular, infra-granular, and supra-granular layers can be con-
structed, which combined with functional connectivity analysis (Roebroeck
et al., 2005) might provide a window on detailed feedforward – feedback
interactions. Again, this would critically depend on accurate alignment of
maps within and across participants, where PBA can be useful.

Conclusion

We have shown a pattern based alignment technique that makes it possible
to perform a group analysis of fine-grained, spatial (topographical) patterns
in functional data, and how this method can be useful in existing paradigms
as well as in the evolving field of high field imaging.
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3 Brightness Induction

Abstract
Visual scene perception owes greatly to surface features such as color and
brightness. Yet, early visual cortical areas predominantly encode surface
boundaries, rather than surface interiors. Whether human early visual cortex
may nevertheless carry a small signal relevant for surface perception is a
topic of debate. We induced brightness changes in a physically constant
surface by temporally modulating the luminance of surrounding surfaces in
seven human participants. We found that functional magnetic resonance
imaging (fMRI) activity in the V2 representation of the constant surface was
in anti-phase to luminance changes of surrounding surfaces (i.e., activity was
in-phase with perceived brightness changes). Moreover, the amplitude of the
anti-phase fMRI activity in V2 predicted the strength of illusory brightness
perception. We interpret our findings as evidence for a surface-related signal
in early visual cortex, and discuss the neural mechanisms that may underlie
that signal in concurrence with its possible interaction with properties of
the fMRI signal.

Introduction
Traditional views and empirical work of early vision have emphasized the
role of local contrast in the reconstruction of the visual image (Hubel &
Wiesel, 1962). However, mechanisms extracting local contrast appear ill-
suited to encode homogenous surfaces, and despite a significant amount of
work, the question by which means surface properties are encoded remains
unresolved (Komatsu, 2006; Pessoa, Thompson, & Noe, 1998). Neurophys-
iological studies have demonstrated that a minority of neurons responds to
homogenous surface luminance (Haynes, Lotto, & Rees, 2004; Kinoshita &
Komatsu, 2001; Roe, Lu, & Hung, 2005; Rossi, Rittenhouse, & Paradiso,
1996), and fMRI has confirmed the existence of a signal related to sur-
face luminance in early visual cortex (Haynes et al., 2004). Furthermore,
neurophysiological studies indicate that there are neurons in anatomical sub-
compartments of V2 that carry a signal related to the perception of surface
brightness in the Craik-O’Brian Cornsweet Illusion (Roe et al., 2005), and
other studies showed a correlate of brightness perception in a small number
of V1 neurons using an induced brightness paradigm (Rossi et al., 1996;
Rossi and Paradiso, 1999). The goal of the present study was to investi-
gate whether the signal related to surface brightness perception that has
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been reported by neurophysiological and optical imaging studies in cats and
monkeys could also be demonstrated with fMRI in humans.
To study the perception of surface brightness, we used a dynamic bright-

ness induction paradigm similar to that used by Paradiso and colleagues,
who recorded from neurons in cat area 17 (primary visual cortex) while a
grey surface of constant luminance was placed over their receptive fields
(RFs) (Rossi et al., 1996). A minority of neurons (approx. 10%) responded
in anti-phase to luminance modulations in abutting inducer surfaces far
outside the RFs, which suggests that these neurons helped encoding the
counter-phase brightness changes that humans perceive in the same stim-
uli. The illusion and its neural correlate were present with a fixed grey
surface (induction condition), and absent with a black surface (control con-
dition). We will refer to the area of fixed luminance as the probing region,
as it was designed to probe mechanisms of surface perception.
The anti-phase relationship between perceived brightness and inducer lu-

minance is the hallmark of brightness induction (Rossi et al., 1996). To
demonstrate this property in human visual cortex with functional magnetic
resonance imaging (fMRI), we used a slow event-related design in which
changes between high and low inducer luminance levels were separated by
several seconds, thereby taking into account the slow fMRI hemodynamic
signal (Boynton, Engel, Glover, & Heeger, 1996). Furthermore, we op-
timized the spatial dimensions of the stimulus to take into account the
spatial resolution limits of the fMRI signal (Cornelissen, Wade, Vladusich,
Dougherty, & Wandell, 2006; Sereno et al., 1995) and limits in the spatial
extent of brightness induction (Pereverzeva & Murray, 2008). A possible
brightness-related anti-phase signal in the probing region could be partly an-
nulled or masked by opposite-phase signals from abutting inducers, which
would be strongest near the retinotopic projections of the inducer and prob-
ing region borders. Therefore, we hypothesized that a brightness-related
anti-phase fMRI signal would be strongest near the middle of the retinotopic
projection of the probing region, and would counteract in-phase responses
to inducers. We used localizer stimuli to delineate retinotopic projections
of inducers and probing region.

Methods
Participants Seven healthy adults (25 - 30y) with (corrected-to) normal
visual acuity participated after written informed consent. All participants
completed the main fMRI brightness induction and control experiments with
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stimulus patterns that comprised two inducers, as well as associated retino-
topy and eccentricity localizers, and brightness psychophysical rating task.
Three of the participants completed additional fMRI experiments in which
luminance changes were presented in only one inducer, as well as associated
psychophysical ratings of brightness induction

Stimulus Design

Radius of the inner inducer disk was 3°, width of the probing region was
6°, and width of the outer inducer annulus was 5°. Stimuli were presented
concentrically around a fixation cross (1° width and height) placed on the
inner inducer. The probing region was grey (7.9 cd/m2; induction condition)
or black (1.1 cd/m2; control condition). The inducers changed between
minimum and maximum luminance in a sinusoidal fashion in 1s (range =
1.1 – 164 cd/m2) (cf, Rossi and Paradiso, 1999). During inducer luminance
modulations, contrast at the borders with the probing region varied between
-76% and 91% in the induction condition, and between 0% and 99% in the
control condition (Michelson indexes). Figure 1A shows the induction and
control stimuli at different luminance levels of the inducers.
The size of the probing region satisfied two opposite demands: maximiza-

tion of probing region size to reduce effects of fMRI spatial signal spread
(Sereno et al., 1995) (De Weerd, P., Karni, A., Kastner, S., Ungerleider,
L. G., and Jezzard, P. Presented at the Third International Conference on
Functional Mapping of the Human Brain, 1997), and minimization of prob-
ing region size to maximize the illusion across its extent (Pereverzeva &
Murray, 2008). First, the spatial spread of fMRI signal dictates that the
probing region should be maximized because the signals associated with
probing region and inducers were expected to be in anti-phase during bright-
ness induction. Anti-phase signals attenuate each other when they spread
into each other’s retinotopic territory. Point spread of the fMRI signal has
been estimated to be on the order of just a few mms (Sereno et al., 1995;
Engel et al., 1997], but recent estimates suggested spread of approximately
7mm at half-width-at-half-maximum (HWHM) (Cornelissen et al., 2007).
According to an estimate of V1 cortical magnification by (Sereno et al.,
1995), the distance from the inner to the outer border of the probing region
projected on V1 is about 15mm. In light of this estimate of fMRI signal
spread and chosen stimulus dimensions, a sufficient proportion of a hypo-
thetical counter-phase signal related to brightness induction was expected
to survive in the middle of the probing region, potentially even directly re-
vealing anti-phase activity (depending on the strength of that signal). Going
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Figure 1. Stimuli and experimental design.
(A) Brightness induction and control stimuli (top), and timing of events
(bottom). A fixation period (grey area in timing diagram) preceded each
block of luminance changes. A block started with a grey-to-dark change in
inducers (white area in timing diagram), followed by dark-to-bright (red
area) and bright-to-dark changes (blue area) (1s duration) after which the
new luminance value was kept constant for a variable inter-trial-interval
(ITI 7-9s). The block ended with a dark-to-grey change (not shown).
Luminance changes occurred only in the inducers (concentric rings, left
inset), while probing region luminance (single annulus inset) was kept
constant throughout the measurement (straight line timing diagram). The
brightness perception in the grey probing region (bottom timing diagram)
follows a course inverse to the physical luminance changes in inducers.
(B) Schematic of a single run (color coding as in Figure. 1A). Between
the fourth and fifth block a short ‘relaxation period’ was used
(black-and-white textured region), during which participants could briefly
refrain from fixation (see Supplementary Material – Experimental Design).
(C) Localizer rings map onto the center of the probing and inducer regions
of the stimuli. Smaller insets illustrate localizer stimulus separately for the
central inducer (left), probing region (middle) and peripheral inducer areas
(right) (stimuli are scaled for visualization purposes).

from the middle of the probing region to its border, in-phase activity from
inducers was expected to increasingly dominate the hypothetical anti-phase
signal in the probing region. A hypothetical anti-phase signal associated
with induction would also spread into the territory of the inducers, and
thereby reduce in-phase signal of inducers. Thus, suppression of in-phase
activity from inducers is an important and integral aspect of expected results
during brightness induction. We anticipated that smaller cortical magnifi-
cation and other factors in extrastriate areas could render the separation of
signals from probing and inducer regions more difficult. Second, although
the spatial spread of fMRI signal argues in favour of making the probing
region as large as possible, this manipulation also decreases the strength of
the illusion, which puts a limit on the extent to which the probing region
can be enlarged. Using a probing region with a cortical projection in V1
that was larger than ours (18mm), Pereverzeva and colleagues (Pereverzeva
& Murray, 2008) found a decline of brightness induction towards the middle
of the probing region. The smaller probing region in our study (both in the
visual field and on cortex) was chosen to limit the decline of the illusion
towards the middle.
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Localizer stimuli were centred in the three parts of the stimuli. The inner
radii of central, middle and outer localizer rings were 0°, 5.4° and 11°,
respectively, and their outer radii 0.5°, 6.6° and 13°, respectively. Each
localizer consisted of 20 sequentially positioned black-and-white segments,
which reversed contrast at a rate of 16 Hz. Localizer stimuli were presented
on a fixed grey background (7.9 cd/m2).
Stimuli were projected onto a diagonally positioned mirror attached to

the head coil in the scanner bore using an LCD-projector controlled by a PC
(screen refresh rate, 60 Hz) running Presentation software (version 9.90,
Neurobehavioral Systems Inc.). The onsets of luminance modulations were
pulse-triggered by the T2*-weighted image acquisition.

Psychophysical Ratings of Induction

All participants rated the strength of induced brightness change in a psy-
chophysical experiment in the scanner. Participants mimicked perceptual
changes in the probing region of an experimental stimulus by setting a
physical luminance value in the probing region of a testing stimulus. Par-
ticipants were presented with 6 conditions: Three types of stimulus display
(two inducers, only inner inducer, only outer inducer) combined with the
two luminance levels of the probing region (grey and black). For each condi-
tion, participants completed 24 trials. Each trial comprised 1) a 1s starting
phase, in which one or both inducers were shown at their maximum or min-
imum luminance, 2) a luminance modulation phase, in which one or both
inducers gradually changed luminance in 1s from maximum to minimum
(down-sweep) or minimum to maximum luminance (up-sweep), 3) a 1s end
phase, in which one or both inducers remained at final luminance, and 4) a
masking phase, in which the surfaces of both inducers (but not the probing
region) were masked by a black-and-white checkerboard mask. At the start
of each trial, the probing region was set to grey or black, which remained
fixed throughout the four trial phases. During the masking phase, partic-
ipants could manually set on a continuous scale (using two buttons) the
luminance level of the probing region to the luminance level that matched
perceived brightness at the end of the modulation phase. The physical lu-
minance of the probing region and the luminance set to match induction
(cd/cm2) were log-transformed (natural log). A rating index (RI) was ob-
tained by subtracting the log-transformed starting luminance values of the
probing region from the log-transformed ratings provided by the subjects.
The resulting RI was negative when the luminance deviation in probing re-
gion was set in anti-phase to inducer luminance modulations, and a positive
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Figure 2. Psychophysical Rating Results.
Rating indexes (bars) plotted as a function of the 6 stimulus conditions averaged over
all participants (N=7). Grey bars refer to stimulus conditions in which the probing
region was grey; black bars to conditions in which the probing region was black. Insets
above the bars are schematic illustrations of the stimuli. The white regions in the
illustrations indicate the inducers of which the luminance levels were modulated (two
insets on the left: two inducers; two insets in the middle: inner inducer; two insets on
the right: outer inducer). The luminance of the probing region in the insets refers to the
fixed luminance of the probing region during the rating trials, which then could be
adapted by participants to reflect experienced induction. Error bars (SEM) and bar sizes
for the black probing region were close to zero as subjects did not perceive brightness
changes during inducer luminance modulations.

sign was used for in-phase settings. Figure 2 shows the mean rating indexes
in the 6 conditions (error bars represent 1 SEM) obtained in seven subjects.

Functional Imaging Experimental Design

Functional runs in induction and control condition (Figure 1A) lasted each
460s. Eccentricity localizer functional runs lasted 290s, and consisted of an
alternation of 11s baseline and 11s localizer stimulation blocks (three blocks
for each localizer). Four participants were shown three runs in induction
condition, then three runs in control condition, and finally two localizer runs.
The other participants started with control runs, followed by induction and
localizer runs. A single session thus contained eight runs and anatomical
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scan. In three participants, additional data were collected in separate ses-
sions using stimulus patterns in which outer or inner inducer was removed
and replaced with constant black (1.1 cd/m2).

Scanning Parameters

Structural and functional MRI scanning was performed on a 3T Siemens
Allegra head scanner using standard procedures and bird-cage head coil.
Slice positioning was directed at calcarine sulcus and lower gyrus. A high-
resolution T1-weighted three-dimensional (3D) anatomical scan was ac-
quired for each participant (MP-RAGE; TR, 2,250 ms; matrix size, 256×256;
192 slices; in-plane resolution, 1 mm2). To measure blood oxygen level-
dependent (BOLD) contrast, standard T2*-weighted gradient-echo echo-
planar imaging (EPI) was used to acquire 14 slices (TR/TE, 1,000/30 ms;
flip angle 90°; slice thickness, 2 mm; no slice gap; matrix size, 128×128;
in-plane resolution, 2 mm2). Chosen parameters maximized temporal and
spatial resolution, at the price of being able to cover only 28 mm from top
to bottom of slice block. Resulting coverage is insufficient to cover ventral
and dorsal representations of early visual cortical areas. We chose to align
the top of the block of slices to the calcarine fissure, so that data collection
typically was limited to the contralateral upper quadrant representation in
ventral V1, V2 and V3.

Preprocessing and Analysis of MR Images

Anatomical images were transformed to 3D standardized space (Talairach
& Tournoux, 1988) with a resampled voxel size of 1 mm3. Functional mea-
surements were co-registered to pre-standardized 3D anatomical space and
preprocessed using BrainVoyager QX (Brain Innovation, The Netherlands).
Of each functional run, the first six images were discarded. Functional im-
ages were transformed to 3D standardized space (Talairach & Tournoux,
1988) with a resampled isotopic voxel size of 2 mm3. Preprocessing steps
of functional time series included slice time correction, 3D correction for
head volume movements (sinc interpolation) and temporal filtering, which
included linear trend removal and a high-pass filter of 3 cycles per time
course (BrainVoyager QX, Brain Innovation, The Netherlands).
The spatially standardized anatomical images were segmented according

to the grey and white matter boundaries, and the cortical sheet of each hemi-
sphere was then tessellated into a 3D surface representation (Kriegeskorte
and Goebel, 2001; Goebel et al., 2006). The cortical surfaces were then
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inflated in order to push the sulci outwards, and flattened to achieve a 2D
representation of the entire cortical surface of each hemisphere. The time-
series of the volume were resampled to the cortical surfaces and slightly
spatially smoothed using a 2mm smoothing kernel based on nearest vertex
neighbors. The timeseries on the surface were used for functional analysis.
Time series analysis was conducted using multiple regression analysis in

the frame of the general linear model (GLM) for fMRI (Worsley & Friston,
1995). For induction and control conditions, the GLM consisted of a single
predictor (luminance changes relative to grey level in fixation periods; effect
coding, 0 = baseline) and a covariate (relaxation period; dummy coding) for
each functional run. For the localizer experiment, the model comprised three
predictors that modelled the sequence of blocks of eccentricity localizers
(dummy coding). All predictors were convolved with a two-gamma function
to correct for the hemodynamic response delay.

Retinotopic Mapping and Functional Alignment

Retinotopic mapping (polar angle mapping) was carried out using standard
procedures (Engel, Glover, & Wandell, 1997; Linden, Kallenbach, Heinecke,
Singer, & Goebel, 1999; Sereno et al., 1995). Polar mapping was used to
delineate borders between V1, V2, and V3, which were mapped on inflated
cortical renderings of individual participants. The borders were used as
guidelines to draw an equipolar line from central to peripheral represen-
tations within each visual area (Figure 2B) in each hemisphere. Because
vertices in the inflated brain representation preserve anatomical distances
(Goebel et al., 2006), matching an appropriately drawn equipolar line with
outcomes of the localizer experiment permits localizing activity distributions
(Beta coefficients resulting from linear regression analysis) as a function of
anatomical distance in mms. We observed large differences in cortical mag-
nification among participants, hemispheres, and visual areas, and, hence,
the length of sampling differed from case to case. To average across hemi-
spheres, we functionally aligned the anatomically selected cortical paths
within each visual area across hemispheres into a common space by non-
linear morphing, similar to previously published approaches [e.g., (Forshed,
Schuppe-Koistinen, & Jacobsson, 2003; Listgarten, Neal, Roweis, & Emili,
2005)]. Alignment, analysis and plotting of results were performed using
custom-written routines in Matlab (The Mathworks, Natick, MA, USA). By
functionally aligning the cortical paths, constrained by localizer data, our
data became spatially comparable over hemispheres and could be collapsed.
As a result, averaged Beta coefficients are shown as a function of anatomi-
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cal distance. The method is described in more detail elsewhere (Jans et al.,
submitted).

Results

Psychophysics

Participants verbally reported seeing the brightness illusion most strongly
and consistently when the probing region was grey, and only in cases in
which the outer inducer changed luminance, alone or in conjunction with
the inner inducer. The psychophysical ratings obtained in a separate session
in the scanner supported the participants’ verbal reports (see Figure 2).
Ratings differed significantly from the initial brightness of the grey probing
region immediately after a change in luminance of both inducers (T[6] =
-6.7, P = 0.0005) or immediately after a luminance change in only the
outer inducer (T[6] = -4.2, P = 0.0055). In both cases, the rated changes
in brightness were in the direction opposite to the luminance changes of
the inducers. Participants did not see the brightness illusion in the grey
probing region when luminance changed only in the inner inducer (T[6] =
1.9, P = 0.11). Participants perceived no brightness changes in the black
probing region after luminance changes in any of the inducers (Ps > 0.23).
Interestingly, the ratings suggested that the brightness illusion in the grey
probing region was stronger when luminance changed simultaneously in both
inducers, compared to only the outer inducer. Analysis of the difference in
ratings between the two conditions was significant (T[6] = -2.2, P = 0.034,
one-tailed). There was no difference in the strength of the induction effect
when the data for inducer luminance increases and decreases were compared
(Ps > 0.27).

Neural Correlates of Brightness Induction on the Cortical
Surface

We analyzed fMRI signal during the brightness induction and control condi-
tions sampled along cortical paths drawn in the ventral part of early visual
areas V1, V2 and V3 to which data collection was limited (see Methods).
In the remainder of the paper we use V1, V2 and V3 as shorthand for
the ventral part of these visual areas. Data were sampled along cortical
paths through the stimulus representations in V1, V2 and V3 (Figure 3A)
in 14 hemispheres from 7 participants. After alignment, Beta coefficients
were averaged along the 14 anatomical paths drawn through the stimulus
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representations in each area (see Methods). The resulting distributions of
Beta coefficients show the correlation of fMRI signal with repeated localizer
presentations or repeated inducer luminance modulations (Figure 3B-F).
Figs 3B and C show the Beta coefficients in localizer and brightness in-

duction experiments sampled across the cortical paths in V1, V2 and V3.
Beta coefficients for the inner (purple line), middle (orange) and outer lo-
calizers (green) are shown in Figure 3B. The peaks indicate the approximate
anatomical location of the localizer stimuli, and distributions of Beta coeffi-
cients show a large spread away from the peaks of the localizer stimuli. Fig-
ure 3C shows the coefficients of the brightness induction (blue) and control
condition (green) in the main experiment. We applied a repeated measures
analysis of variance (ANOVA) to the data in Figure 3C, with within-subject
factors Visual Area (V1, V2, V3), Condition (illusion, control) and Stimulus
Region (probing region, inducers) to the Beta coefficients. We found signif-
icant main effects for Condition (F[1,6] = 66.6, P < 0.001) and Stimulus
Region (F[1,6] = 36.3, P = 0.001), and a significant Visual Area x Condi-
tion interaction effect (F[2,12] = 4.5, P = 0.035). In the control condition
(green line), in which participants reported no brightness induction (see
Figure 1), mostly in-phase fMRI signal was found in the cortical projection
areas of the localizers and probing region in all three visual areas (i.e., sig-
nal correlated positively with inducer luminance modulations; see Table 1).
The in-phase signal was strongest for inducers and became weaker towards
the middle of the probing region (Inducer > Probing; (V1: T[6] = 5.0, P =
0.0025; V2: T[6] = 2.9, P = 0.0282; V3: T[6] = 2.2, P = 0.069). At the
probing region center, fMRI signal remained in-phase with the luminance
changes (i.e., average beta coefficients were of positive sign) in all three
visual areas (minimum T = 1.9; see Table 1). In the induction condition
(blue line in Figure 3), in which participants reported anti-phase brightness
induction, beta coefficients at the probing region were significantly smaller
than coefficients at the inducers in all three visual areas (V1: T[6] = 9.3, P
< 0.001; V2: T[6] = 8.6, P < 0.001; V3: T[6] = 4.3, P = 0.005). In ad-
dition, however, three findings suggest the presence of another, anti-phase
signal in the probing region associated with surface brightness perception.
First, there was a strong decline of Beta values in the probing region during
brightness induction compared to the control condition, as is evidenced by
the divergence of green (control condition) and blue lines (induction condi-
tion) (Control > Induction at probing region; V1: T[6] = 4.8, P = 0.003;
V2: T[6] = 4.6, P = 0.004; V3: T[6] = 2.5, P = 0.045). Second, this
divergence was statistically significant not only in the probing region, but
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Induction Control
Inducers Probing Region Inducers Probing Region

T P T P T P T P
V1 5.2 0.0021 -0.8 0.4292 4.8 0.0032 3.0 0.0232
V2 5.0 0.0026 -3.7 0.0101 5.6 0.0014 1.9 0.1023
V3 4.8 0.0029 -0.5 0.6179 5.9 0.0010 2.3 0.0642

Table 1. fMRI signal in inducers and probing region. Tests were performed on the Beta
coefficients sampled aling the cortical paths in visual areas V1, V2 and V3.

Figure 3. Cortical responses for the localizer and brightness stimuli.
(A) illustration of cortical paths along which functional data were sampled
in V1, V2 and V3. The cortical paths contain a colour gradient (purple
to green) corresponding to the continuum from fovea to periphery. (B-F)
Overview of fMRI results for localizer and brightness induction experiments.
Rows are plots for V1 (upper row), V2 (middle row) and V3 (bottom row).
(B) Beta coefficients of the inner (purple), middle (orange) and outer
(green) localizers sampled along the cortical paths (x-axis is marked with
the same colour gradient as the cortical paths in figure 3A) plotted as a
function of cortical distance (mm). Each localizer shows one peak of posi-
tive beta coefficients and a decline away from the peaks.
(C) Beta coefficients of the brightness induction (blue) and control (green)
stimuli sampled along the cortical paths plotted as a function of cortical
distance (mm). Shaded regions represent ± 1 SEM (N=7, hemispheres
averaged within participants). Conventions as in column (B).
(D) Means of beta coefficients in inducers (black) and probing region
(white).

also in the inducer region (Control > Induction at inducers; V1: T[6] = 2.7,
P = 0.035; V2: T[6] = 4.4, P = 0.004; V3: T[6] = 2.9, P = 0.029). Third,
the average of the coefficients was negative at the cortical center of the
probing region for all three visual areas (all Ts < -0.5), but was significant
only for V2 (T[6] = -3.7, P = 0.01), but not for V1 (P = 0.4) or V3 (P =
0.6) (see Table 1). Taken together, this analysis indicates that in V2, but
not in V1 or V3, there is an anti-phase signal in early visual cortex related
to brightness induction in the probing region that due to spatial spread also
attenuated in-phase activity of inducer regions.
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Control Experiments

The observation that in V2, anti-phase activity during induction was lost
during the control condition strongly suggests that activity in early visual
cortex contributed to the encoding of brightness in the probing region. How-
ever, local contrast changes at the border between inducers and probing
region were different in the induction and control conditions (see Exper-
imental Procedures and Figure 1A). Prior fMRI studies have shown that
local changes in activity at one location in the retinotopic map can lead to
opposite changes in activity in surrounding regions (Shmuel, Augath, Oel-
termann, & Logothetis, 2006), possibly due to long-range lateral inhibition
(Angelucci et al., 2002; Levitt & Lund, 2002). Hence, the specific local con-
trast changes in the induction condition may have led to anti-phase activity
inside the probing region, while, for unknown reasons, the specific local con-
trast changes in the control condition may not have. Under this scenario,
the anti-phase fMRI activity in the probing region during brightness induc-
tion might have been an artifact of local contrast conditions, rather than
a correlate of surface brightness induction. To exclude this possibility, a
stimulus was devised in which the outer inducer was replaced with constant
black, and only the luminance of the inner inducer was manipulated. In this
stimulus, there is no brightness induction neither for the grey nor for the
black probing region (see rating results and Figure. 2), yet local contrast
changes at the border between probing and inner inducer regions were iden-
tical to those in the original induction and control stimuli. If local contrast
changes indeed determined the fMRI response irrespective of experienced
surface brightness, then anti-phase activity would be expected for the grey,
but not the black probing region, mimicking results with two inducers. How-
ever, if the perception of brightness induction were the determining factor
for anti-phase activity in the probing region, then anti-phase activity would
be expected neither for the grey nor the black probing region. Our results
in V2 support the latter hypothesis, as the responses to the inducer next
to the black and grey probing regions were indistinguishable (Figure 4A).
This confirms that differences in local contrast changes between brightness
induction and control stimuli are insufficient to explain the anti-phase ac-
tivity observed during brightness induction (with a grey probing region and
two inducers).
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Figure 4. fMRI signal in brightness induction. (A) Beta coefficients of luminance
modulations of the inner inducer-only condition shown as a function of V2 cortical
distance. Responses to the stimulus with the grey (black) probing region are shown in
red (blue) (shaded regions 1 SEM). Activity did not differ between conditions at any
cortical position. (B-D) Rating index (RI) as a function of amplitude index (AI) from
selected probing region voxels (see Figure 3) plotted for 3 stimulus conditions with the
grey probing region in V1 (B), V2 (C) and V3 (D) during luminance up and down
modulations. Colored symbols refer to participant data for induction conditions (see
legend inset). Number of participants (N) for three types of brightness induction
experiments: N(inner) = 3, N(outer) = 3, N(inner & outer) = 7.
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Association Between Ratings and Neural Correlate of
Brightness Illusion

Finally, to investigate the perceptual relevance of anti-phase activity in the
probing region, we tested whether the strength of anti-phase activity pre-
dicted the strength of brightness induction. We correlated the ratings of the
participants and conditions for which we obtained functional imaging data.
Results are shown in the scatterplots of Figure. 4B-D, with the correlation
value, 95% confidence interval (CI) and associated P-value listed at the
top of each panel. Ratings correlated significantly with the AI across the
conditions only in area V2 (r = 0.5, P < 0.001), but not in V1 (r = 0.13, P
= 0.48) or in V3 (r = 0.35, P = 0.08). Thus, fMRI activity in the probing
region’s representation in V2 predicted the perceived strength of induced
surface brightness in the different stimulus conditions, but not in V1 and
V3.

Discussion
Using fMRI, we have investigated whether early visual cortex shows a func-
tional neural correlate for brightness induction. We found an fMRI correlate
of the anti-phase property of brightness induction in early human visual area
V2. Furthermore, this correlate predicted the strength of experienced sur-
face brightness modulations in a physically constant probing region. Our
data converge with findings from single cell recording and hemodynamic
measurement studies in animals that demonstrated a correlate of bright-
ness induction in V2 (Roe studies), and suggest that brightness induction
reveals a basic property of surface brightness perception, related to other
types of contextual surface perception (Komatsu, 2006; Pessoa et al., 1998).
Further, we demonstrated that our results are unlikely to reflect unspecific
spread of activity generated by contrast changes at the border between
inducers and probing regions. Instead our data suggest the existence of a
small signal related to the perception of surfaces, in addition to a large signal
related to the encoding of boundaries. Our results are unlikely to be associ-
ated with variations in pupil dilation as a result of luminance manipulations.
Previous studies did not find differences in the retinotopic distribution of
visual cortical activity after changes in pupil dilation (Haynes et al., 2004;
Rooney & Cooper, 1988).
The finding of a correlate of brightness induction that was stronger in V2

than in V1 is in agreement with a number of other studies that have used
other paradigms to manipulate brightness of neighboring surface of identi-
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cal luminance. For example, several brightness perception studies used a
static brightness induction display (Craik-O’Brian-Cornsweet (COC) stimu-
lus). Neuronal recording and optical imaging experiments in monkeys that
were presented with a COC display demonstrated that the activity of V2
interstripe neurons reflected the illusory differences in COC-induced surface
brightness, while V1 blob neurons did not (Roe et al., 2005). A recent
human fMRI study confirmed that extrastriate cortex may contribute more
to surface brightness perception in COC stimuli than V1 (Perna, Tosetti,
Montanaro, & Morrone, 2005). Furthermore, neurophysiological studies of
texture filling-in in a Troxler fading paradigm also demonstrated contribu-
tions of extrastriate but not striate areas (De Weerd et al., 1995). The
stronger contribution of V2 compared to V1 also has been described in the
domain of contour perception (Peterhans & von der Heydt, 1989, 1991; von
der Heydt & Peterhans, 1989; von der Heydt, Peterhans, & Baumgartner,
1984). The evidence suggests that V2 contributes importantly to contextual
processes that contribute to contour and surface perception.
However, several animal neurophysiological studies (Rossi et al., 1996;

Rossi and Paradiso, 1999; Kinoshita and Komatsu, 2001) have shown a
contribution of V1 to brightness induction. In addition, a few recent fMRI
studies showed a brightness induction correlate in human V1 using a dy-
namic (Pereverzeva and Murray, 2008) as well as a static brightness induc-
tion stimulus (Boyaci et al., 2007). Our results do not exclude the possibility
that V1 may also contribute to the perception of brightness, although this
effect may be smaller compared to V2, and our paradigm or stimulus may
not have been sensitive enough to pick up the effect in V1. Some fMRI
studies in fact did not find a brightness correlate in neither V1 nor extras-
triate cortex using brightness induction (Cornelissen et al., 2006; Perna et
al., 2005) as experimental paradigms.
Experimental design and its interaction with known limitations in tempo-

ral and spatial resolution (Bandettini, 2002; Kim, Richter, & Ugurbil, 1997;
Menon & Kim, 1999) may be a factor that explains the different results in
different studies of brightness induction. In the fMRI studies by Pereverzeva
and Murray (2008) and Cornelissen et al. (2006), changes in inducer lumi-
nance were presented at a relatively high temporal rate of 1 Hz. While this
presentation rate could be resolved in neurophysiological measurements, it
may have reduced the sensitivity to pick up small surface-related signals in
the presence of large boundary related signals (Boynton et al., 1996; Lo-
gothetis et al., 2001). The problem of lack of sensitivity might have been
worsened by putative spatial or lateral spread of signals, which can be ex-
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pected to be in counterphase. Nevertheless, it is difficult to determine why,
despite very similar designs, the study from Pereverzeva and Murray (2008)
and (Cornelissen et al., 2006; Pereverzeva & Murray, 2008) led to different
conclusions.
Further, spatial resolution limitations of fMRI likely have determined in

important ways with the fMRI correlate of brightness induction we have
observed. Estimates of the spatial spread of the fMRI signal vary from 2
to 7mms HWHM (Cornelissen et al., 2006; Engel et al., 1997; Sereno et
al., 1995). Our own data are rather in agreement with the estimates from
Cornelissen et al. (2006). Several factors may contribute to the fMRI sig-
nal spread, including receptive field sizes in the cortical area under study
(Dumoulin & Wandell, 2008; Smith, Singh, Williams, & Greenlee, 2001),
neuronal signal spread due to lateral connectivity and feedback loops (An-
gelucci et al., 2002; Levitt & Lund, 2002) as well as hemodynamic factors
(Buxton et al., 1998; Malonek & Grinvald, 1996). Because of this, fMRI
signals generated in close spatial proximity will spread into each other’s
territory. Therefore, in our fMRI study anti-phase activity associated with
brightness induction not only competes with in-phase activity related to lu-
minance surfaces, but also with signals that encode the boundary of the
probing region. This mix of signals related to physical aspects of the in-
ducers is unrelated to the fMRI signal associated with brightness induction,
and could contribute to the masking of the signal related to brightness in-
duction. If this were true, then decreased fMRI point spread should be
associated with increased magnitude of anti-phase activity in the probing
region during brightness induction. We tested this hypothesis by computing
in each participant the point spread of signals (in mms HWHM) from the
inner and outer inducers into the probing region in the control condition,
and comparing these with the Beta coefficients in the probing region during
brightness induction. We found that larger brightness induction responses
(i.e., negative beta coefficients further away from 0) correlated with smaller
signal spread from the inducers into the cortical representation of the prob-
ing region (r=0.59, P=0.042). Another sign of the interaction between
spread and induction is the finding that in-phase responses to inducer lu-
minance modulations overall were smaller in the induction condition than
in the control condition. This may be due to antiphase activity present in
the probing region during induction spreading into the territory of inducers
thereby attenuating in phase activity from inducers.
The precise neural circuitry that underlies brightness induction is currently

unknown. Brightness induction may result from contextual interactions
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among neurons that are sensitive to physically homogenous stimulation, lo-
calized in V1 blobs and V2 thin stripes, under the assumption that these
interactions only take place among surfaces that sufficiently drive stimu-
lated neurons (i.e. not when one of the surfaces is black). Alternatively, or
in addition, contrast-polarity sensitive neurons (Zhou, Friedman, & von der
Heydt, 2000) may contribute to induction, or to filling-in effects in which
a signal at boundaries is interpolated into surfaces (Grossberg, 2003). Fur-
thermore, it is possible that linear filtering explains a significant portion or
all of the induction effects. Blakeslee and McCourt (2004) have shown that
many brightness effects can be explained by assuming multi-scale spatial
filtering in the human visual system combined with contrast normalization.
In this proposal, neurons in V1 blobs and V2 thin stripes might play a spe-
cial role in low spatial frequency filtering, rather than being a substrate for
spreading of surface information (Goebel & De Weerd, 2009; Grossberg,
1987a, 1987b, 2003). This is related to Cornelissen et al.’s suggestion that
surface-related information is derived from spatial filtering, without the need
for spreading activity. However, our fMRI data do not permit to distinguish
between the various possible mechanisms.
Although participants were required to carefully fixate, which by itself may

be an attention-demanding task (Martinez-Conde, Macknik, Troncoso, &
Dyar, 2006), the possibility exists that at least some attention was covertly
allocated to the peripherally presented stimuli, which might have influenced
the described effects. However, neural signals related to surface percep-
tion have been observed in prior studies in the absence of attention (Boy-
aci, Fang, Murray, & Kersten, 2007; Meng, Remus, & Tong, 2005; Weil,
Watkins, & Rees, 2008), and even under anesthesia (Roe et al., 2005; Rossi
& Paradiso, 1999; Rossi et al., 1996). Therefore, we consider it unlikely
that the reported data reflect predominantly attention effects.
Research into the neural correlates of surface perception has yielded con-

flicting data and views. For example, a neurophysiological study on surface
texture in monkey visual cortex provided evidence for surface-related signals
in V2 and V3 (De Weerd, Gattass, Desimone, & Ungerleider, 1995), but a
recent fMRI study did not confirm that evidence (Weil et al., 2008). An
fMRI study on color filling-in reported a correlate in human V1 (Sasaki &
Watanabe, 2004), but a neurophysiological study in monkey V1 and V2 did
not (Friedman, Zhou, & von der Heydt, 2003). Similar differences between
studies remain in the domain of surface brightness perception, and further
research is required to resolve them. The present study, however, supports
the idea that there is a signal related to surface brightness in extrastriate
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cortex, although much more work is required to understand the mechanisms
underlying that signal.
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4 Brightness Induction Modeling

Abstract
Computational neuromodeling may help to further our understanding of how
empirical neuroimaging findings are generated by underlying neural mech-
anisms. Here, we used a simple computational model that simulates early
visual processing of brightness changes in a dynamic, illusory display. The
model accurately predicted illusory brightness changes in a grey area of con-
stant luminance induced by (and in anti-phase to) luminance changes in its
surroundings. Moreover, we were able to directly compare these predictions
with recently observed fMRI results on the same brightness illusion by pro-
jecting predicted activity from our model onto empirically investigated brain
regions. This new approach in which generated network activity and mea-
sured neuroimaging data are interfaced in a common representational “brain
space” can contribute to the integration of computational and experimental
neuroscience.

Introduction
How surface perception is achieved is not well understood, and a lot of
empirical and computational modeling work is devoted to tackle questions
on its underlying neuronal mechanisms. The present paper focuses on the
perception of surface brightness, and its aims are twofold. First, we aim to
build a simple model that generates neuronal activity that correlates with
the perception of surface brightness. The model generates specific predic-
tions in the form of a dynamically changing topographic map of activity that
captures specific aspects of surface brightness perception. Second, we aim
to integrate empirical and computational research by representing empirical
and modeled data in a common space. The approach we propose is to
project the predicted activity in a modeled area onto corresponding cortical
regions where the data will be collected, to achieve direct and quantita-
tive hypothesis testing. This requires large scale neural network modeling
combined with a strategy to link modeled units (cortical columns) with spe-
cific neuroimaging units (voxels, vertices) in the empirically obtained brain
model. To achieve this, modeled and empirical units are connected in a
common anatomical space. Here, we show the feasibility of that approach.
To demonstrate our modeling approach, we will focus on the paradigm of

brightness induction, in which an intermediate luminance patch on a bright
background appears darker than on a dark background (White, 1979). This
illusion is maximized in a dynamic display developed by DeValois (De Valois
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et al., 1986), in which a grey area of constant luminance is flanked by
areas whose luminance varies sinusoidally between black and white. We
refer to the gray area of constant luminance as the “probing region” as
we use it to probe mechanisms of surface perception, and refer to the
areas whose luminance is modulated as the “inducers” (see Figure 2). The
brightness percept in the gray area with fixed luminance varies in anti-phase
to sinusoidal changes in physical luminance of the inducers. The neuronal
mechanisms that cause these illusory brightness changes are not well-known.
The most convincing evidence comes from neurophysiological recordings in
the cat (Rossi and Paradiso, 1999; Rossi et al., 1996), which showed that
in about 10% of area 17 neurons with their receptive fields (RFs) placed
within the probing region, activity was modulated in anti-phase to inducer
luminance (i.e., activity correlated to perceived brightness changes). Two
human studies using functional magnetic resonance imaging (fMRI) have
reported data that appear in agreement with the neurophysiological data
(Pereverzeva and Murray, 2008; van de Ven et al., submitted), whereas a
third fMRI study (Cornelissen et al., 2006) did not observe a brightness
induction correlate in early visual cortex.
The model we propose contains three main parts (Figure 1). It con-

sists of an input layer (which in essence captures physical luminance values
in the image), and gives input to a layer where contours are extracted
from this input, and to another layer where measurements across surfaces
are modulated by information spreading from contours. In broad terms,
this approach is similar to the models of Grossberg and coworkers (Gross-
berg, 1987a, 1987b; 2003; Grossberg and Todorovic, 1988; Grossberg and
Raizada, 2000; Raizada and Grossberg, 2001; see also Gerrits et al., 1966;
Gerrits and Vendrik, 1970;) in which an interaction between contour rep-
resentations (in the Boundary Contour System or BCS) and spreading of
surface features (in the Feature Contour System or FCS) leads to the ex-
perience of ‘visible’ surfaces (e.g., Grimson, 1982;). The idea that there
are separate but interacting streams of visual processing related to the pro-
cessing of boundaries and the processing of surfaces is also supported by
anatomical and neurophysiological evidence (see Discussion). For example,
V1 blob regions contain neurons that are often well stimulated by homoge-
nous surfaces that extend beyond their RFs, while V1 interblob regions con-
tain neurons that are preferentially stimulated by oriented contrasts (e.g.
contours and edges). Without claiming that our model captures the com-
plexity of early visual processing, we will refer to the input layer as the
Model-retina (M-<retina>), and the two other layers as the Model V1
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blobs (M-<V1blob>), and Model V1 interblobs (M-<V1inter>). Processing
in our model thus occurs in two stages: In the first stage of processing,
contour information is extracted from local discontinuities in visual input
(in M-<V1inter>); in the second stage, in M-<V1blob>, contour-related ac-
tivity from M-<V1inter> is integrated with M-<retina> activity reflecting
surface-related input. More specifically, contours are used as seeding points
from which modulatory activity spreads, affecting the luminance represen-
tation in line with the percept. Specific aspects of the present modeling
approach that differ from earlier modeling efforts, and their physiological
interpretation will be treated in the Discussion.
In parallel with the development of the computational model, we recently

acquired fMRI data in an experiment in which induced brightness percep-
tion was correlated with activity in early visual areas (van de Ven et al.,
submitted). We used a stimulus design adapted from neurophysiological
studies (Rossi and Paradiso, 1999; Rossi et al., 1996), in which the bright-
ness perception in a probing region of constant luminance is modulated by
surrounding inducer regions that dynamically vary in luminance. In the il-
lusion condition, participants reported a strong brightness illusion in a grey
probing region, which was in anti-phase with luminance modulations in the
inducers. Participants did not report the illusion in the control condition in
which the probe was black instead of grey. This induced brightness percept
correlated with activity in retinotopically mapped clusters in striate and ex-
trastriate visual cortex. That is, activity in the probing region changed in
anti-phase to physical luminance modulations in inducers in the illusion con-
dition, whereas no activity was observed when the probe surface was black.
We investigated the extent to which our simple model predictions captured
aspects of cortical activity in response to induced surface brightness.
To relate the output of our model directly to acquired fMRI data, we fol-

lowed the “Common Brain Space” (CBS) framework (Goebel and Horwitz,
in preparation, Goebel and De Weerd, 2009). In this new framework, the
processing units of a neural network model are connected to points (vertices)
of brain models (cortex meshes) implementing specific spatial hypotheses.
As a result, a running network simulation creates time course data directly
on a linked brain model allowing to relate predicted and measured topo-
graphic neuroimaging data in a highly specific manner, i.e. by using the
same data analysis tools (e.g., general linear model or multi-voxel pattern
analyses).
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Methods

Brightness illusion and brightness control design

We presented a comparable stimulus design to the neural model and to
human subjects (van de Ven et al., submitted). In the fMRI experiment,
the stimulus (see example in lower left of figure 3) consisted of an annulus
of constant luminance (6º width; probing region) interspersed between a
central disk (3º width) and a peripheral annulus (6º width; the inducers).
The inducers of the stimulus changed luminance quasi-linearly in 2s (range
= 1.1 – 164 cd/m2), whereas the probe region had a fixed grey (7.9 cd/m2;
induction condition) luminance. After each "up" (inducer change from black
to white) and "down" (inducer change from white to black) event, the
inducers stayed at maximal and minimal luminance respectively, for 5s. The
control condition was identical to the brightness induction condition, except
that the probe region was black (1.1 cd/m2) instead of grey.
The experimental design was similar for the simulation experiments, ex-

cept that the stimulus covered the entire "visual field", and luminance of
the inducers changed quasi-linearly from 0.00-1.00 input with probe region
luminance fixed on 0.50 (induction condition) or 0.00 (control condition).

Large-scale neural network model

Our large-scale neural network model (Figure 1) is composed of three retino-
topically organized, square layers representing the retina (M-<retina>), and
the blob (M-<V1blob>) and interblob (M-<V1inter>) areas in V1. In the
employed CBS framework, individual processing units are not representing
single neurons but are conceptualized as “cortical column units” (CCUs).
We believe this is the appropriate level of modeling, as measuring at the
level of cortical columns - the building blocks of the visual system (Hubel
and Wiesel, 1959, 1962) - is becoming in reach when employing state-of-
the-art ultra high-field, fMRI measurements (Yacoub et al., 2008). The
CCU’s dynamics are defined by the subsequent equations (Goebel, 1993):

neti(t) =
n

∑
j=1

wijaj

ai(t) = (1− τ)ai(t− 1) + τσ(neti(t) + bi)

where ai(t) is the average spike output of unit i at time t, neti(t) is the
net input (excitatory minus inhibitory input) for unit i at time t, bi is a
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bias term, and σv(x) is the logistic (sigmoidal) function. Finally, the value
wij is the directed weight from CCU j to CCU i. The value τ(0 < τ ≤ 1)
determines how strongly the activation value (average spiking activity) at
the last time point (t–1) is influencing the activity of a unit at the current
time point t.
Area M-<retina> contains 256x256 CCUs representing retinotopically or-

ganized cortical columns signaling physical surface luminance. In M-<V1>,
the number of CCUs is a factor of four lower as in M-<retina> (Burt and
Adelson, 1983), corresponding to an increased receptive field size. The M-
<V1inter> area is subdivided in 8 layers with each layer representing cells
with a specific “contour detection sensitivity” (i.e., a specific combination
of orientation sensitivity and contrast polarity). As depicted in Figure 1,
each of the cells in the M-<V1inter> area receives two inhibitory and two
excitatory inputs from M-<retina>, the combination of which creates a re-
ceptive field with a specific contour detection sensitivity. Specifically, cells
in M-<V1inter> that receive two excitatory inputs on the left, right, bot-
tom, or upper side of the 2x2 array of inputs, correspond to respectively left,
right, bottom or top contour detection cells. Although these cells are inter-
mingled within the interblob area of V1, they are displayed in separate layers
for clarity. In addition to the input from M-<retina>, each CCU receives (a
weak) inhibitory input from its eight direct neighbors within the same layer.
This lateral inhibition is modeled as a Gaussian distribution with a weight
of -0.3 and a decay of 0.5. Finally, area M-<V1blob> integrates the con-
tour information of M-<V1inter> with the brightness information signaled
by area M-<retina>. Each CCU of this area receives four excitatory con-
nections from M-<retina>, which is modulated by inhibitory or excitatory
input from M-<V1inter>, as depicted in Figure 1. Furthermore, a lateral
spreading (with weight 0.3 and decay 0.5) was implemented in M-<V1blob>.
This connection scheme leads to edge-induced brightness filling-in in area
M-<V1blob>. Thus, whereas area M-<retina> represents physical lumi-
nance information, neural activity in area M-<V1blob> should be more akin
to the perceived brightness of visual input. The connection weights from
M-<retina> to M-<V1inter> and from M-<retina> to M-<V1blob> were
4, and 0.5, respectively. In addition, the first and second halves of the M-
<V1inter>layers were connected to M-<V1blob> with a weight of 4 and -4,
respectively.
To increase the comparability between the two data sets in the temporal

dimension, we transformed the CCU activity from spiking to BOLD signals
by applying the following computations on the network activity: First we
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Figure 1. Model Architecture. The model is composed of three areas.
Physical luminance information enters the first area, M-<retina>, and is
directly conveyed to the third area, M-<V1blob>, via connection weight
w4. Through the group of w1 weights, the activity of four M-<retina>
CCUs converges on one CCU of the second area, M-<V1inter>. CCUs in
this area are clustered in eight sheets (2-9) according to their “contour
detection” sensitivity, as indicated by the connection pattern of w1 (blue
and red rectangles) M-<V1inter> is connected to M-<V1blob> with
excitatory (w2) or inhibitory (w3) connections depending on the contour
detection sensitivity of the M-<V1inter> cluster. Note that the rows of
colored CCUs indicating the connection patterns of these weights
represent 40 CCUs. In M-<V1blob> contour and luminance information is
integrated, resulting in activity reflecting perceived brightness. In layer two
to nine, there is local lateral inhibition (not shown) with strength decaying
over distance following a Gaussian distribution. In layer ten, there is a
lateral Gaussian excitation.

calculated the integrated synaptic activity, netabs
i netiabs, as the sum of the

absolute activity arriving via excitatory and inhibitory synapses at CCU i
(which differentiates netabs

i from the standard ‘netto’ input net):

netabs
i = |∑ wex

ij aj|+ |∑ winh
ij aj|

Subsequently, we computed the proto-fMRI signal by integrating synaptic
and spike activity (akin to the local-field potentials, LFP):

a f MRI
i = λnetabs

i + (1− λ)ai

with the weight factor λ set to 0.8, as LFP and fMRI data have been
shown to predominantly reflect (subthreshold) synaptic activity (Logothetis
et al., 2001; Maier et al., 2008). Then, we transformed this signal into the
fMRI signal yi by convolving it with a two-gamma hemodynamic response
function HRFi (Friston et al., 1998):

yi = HRFi

(
a f MRI

i

)
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We finally mimicked physiological, measurement, and instrumental noise
in the BOLD response by incrementally adding 30% of white Gaussian noise
(N (t)) (Roebroeck Formisano, and Goebel, 2005). Note that for any time
instants ti, the corresponding N (ti) values are independent Gaussian ran-
dom variables:

ynoise = yi + N (t) with E [N (t)] = 0

The network performed ten runs (460 volumes each) with the bright-
ness induction design and one run with the brightness control design (290
volumes each) similarly to the human fMRI study described below.

fMRI data

Seven healthy adults participated in the fMRI brightness induction, control,
and (stimulus) localizer experiments. In addition to six functional runs
for the brightness induction and control conditions (460 volumes each), two
functional runs (290 volumes each) were acquired to localize the retinotopic
representation of the inducer and probe regions using standard retinotopic
mapping procedures.
Standard T2*-weighted gradient-echo echoplanar imaging were acquired

(3T Siemens Allegra; TR/TE: 1,000/30 ms; flip angle: 90°; slice thickness:
2 mm; 128×128 matrix) and submitted to standard preprocessing steps us-
ing BrainVoyager QX (Brain Innovation, The Netherlands). Based on the
independent stimulus localizer Patches-of-Interest (POIs) were defined for
each subject, constituting the retinotopic representations of the probing re-
gion and abutting inducer stimulus surfaces in area V1 and V2. Conditional
effects between V1 POIs timecourses were analyzed in a similar fashion as
the simulated M-<V1blob> activity as described in the next section. In ad-
dition, a high-resolution anatomical scan (T1; MPRAGE) was measured for
each participant, and a cortical mesh (constituting the white-gray matter
boundary of the cortical sheet) was reconstructed, inflated and flattened
(see Figure 6 for an example). Additional details are described in van de
Ven et al. (submitted).

fMRI and neural net integration in Common Brain Space
framework

Figure 2 shows the essential features of the CBS approach. To enable the
direct comparison between our model’s predictions and experimental fMRI
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data, we projected our model on a cortical mesh of a subject who partici-
pated in our fMRI study (left side of Figure 2). On this mesh, we marked
the subject-specific V1 POIs (brown, green, and blue patches in Figure
2). Then, we connected each CCU with the topographically corresponding
patch in the visual cortex via a Network-Brain link (NBL; see right side of
Figure 2). Via these NBLs, CCU activity can be directly projected on the
cortical sheet at each time step of a running simulation.
Thereby, complete time series of network activity can be created with a

similar data format as measured fMRI time series. This enables the analyses
of activity changes in simulated and measured data using identical analyses
methods. To illustrate this, we created time series of V1 POI activity (Figure
6) as provided by CCU ynoise activity in the upper quadrant of M-<V1blob>
(Figure 2), plotted event-related averages (Figure 7), run a General Linear
Model (GLM; Figure 8), and compared results based on the observed V1 and
simulated M-<V1blob> data (Figure 9). The GLM design matrix contained
a single predictor to model luminance changes (relative to grey level during
rest periods) and was convolved with a two-gamma hemodynamic impulse
response function to account for the hemodynamic delay.
All modeling was performed with Neurolator 3D, a neural network sim-

ulation software package, which can be conveniently interfaced with fMRI
data analyses software such as BrainVoyager QX (Brain Innovation BV,
Maastricht, The Netherlands).

Results
The current model provides a simulation of brightness processing in the pri-
mary (V1) visual cortex. The network’s connection scheme is explained in
Figure 3, in which the model areas display schematic activation profiles in re-
sponse to a stimulus with inducers that are brighter than the probing region.
Depicted grey levels indicate the strength of CCU activity. Several CCUs are
enlarged and shown on top of the activity profiles to illustrate the activity
flow. The first layer, M-<retina>, represents physical luminance informa-
tion. This information is processed in two subsequent stages: In the first
stage, contours are extracted from local luminance discontinuities, which
are signaled from M-<retina> to M-<V1inter>. Activity in M-<V1inter>
depends on the contour detection sensitivity, specified by the connection
pattern (see colored figures accompanying w1 weights). An M-<V1inter>
CCU connected to four M-<retina> CCUs that represent a homogeneous
surface will receive a balanced input of excitation and inhibition. In contrast,
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Figure 2. The neural model and MRI data conjointly represented in a
common brain space framework. In this framework, neuromodeling and
neuroimaging data can be directly integrated. On the left the CBS is
shown similar to its visualization in Neurolator, whereas the right shows a
schematic outline of how we connected the CCUs to this irregularly
shaped patch of vertices. Network-Brain links (NBLs; 1) connect network
CCUs with corresponding positions on the cortical sheet. In this example,
the NBLs connect the upper quadrant of model area M-<V1blob> (2) to
regions in the left visual cortex (3) representing the inducer (orange and
blue NBLs/cortical patches) and probing (green NBLs/cortical patches)
areas as identified by an fMRI localizer mapping. To optimally visualize
the relation between V1 and M-<V1blob>, the cortical sheet is inflated
(inset) and flattended. However NBLs can be connected to all sorts of
cortical mesh representations. Note that this example shows connections
from initial tests, modeling input to a stimulus with different annulus
widths than used in the final simulations.

cells at a surface boundary will mainly excite or inhibit the corresponding
M-<V1inter> cell if the excitatory connections represent the lighter (as in
e1) or darker (e2) surface, respectively. In this figure, the M-<V1inter>
layers with top (left sheet) and bottom (right sheet) contour detection cells
are shown, but activation mechanisms are similar for the other six layers.
The top and bottom contour detection layers have opposite activity profiles,
which will lead to antipodal activations at the subsequent stage.
In the second stage, this contour-related activity modulates luminance-

related activity in M-<V1blob>. CCUs of M-<V1inter> with high activity
(the white cubes) will inhibit corresponding cells in the next layer according
to the depicted connection pattern. Thus, active CCUs in the top contour
detection (left) sheet will induce a downward inhibition, whereas active
CCUs in the bottom contour detection (right) sheet induce an upward inhi-
bition. This results in an inhibition of the probing region, corresponding to
the decreased perceived brightness of this region. However, although a gray
area appears to be darker in bright surroundings, the illusion also holds true
when abutting inducers become darker, causing the grey probing region to
appear brighter. Our network is also able to handle this stimulus situation,
as half of the M-<V1inter> layers excite rather than inhibit M-<V1blob>
activity. As shown in Figure 1, layers 2-5 of M-<V1inter> are identical
to layers 6-9, except for the polarity of their connection to M-<V1blob>.
Therefore, when inducers become darker, active CCUs in layers 2 and 3 will
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Figure 3. Illustration of the model’s computational mechanisms. The
model areas display schematic activation profiles (grey levels indicate
activity strength) with several CCUs shown magnified on top to illustrate
the activity flow. Physical luminance information from the stimulus (with
a probing region surrounded by bright inducers) enters M-<retina>. This
information is further processed in two discrete stages: In the first stage,
contour information is extracted from local luminance discontinuities,
which is signaled from M-<retina> to M-<V1inter>. Activity in
M-<V1inter> depends on the contour detection sensitivity, specified by the
connection pattern (w1). An M-<V1inter> CCU that is connected to four
M-<retina> CCUs representing a homogeneous surface, will receive a
balanced input of excitation and inhibition. In contrast, cells at a surface
boundary will mainly excite or inhibit the corresponding M-<V1inter> cell
if the excitatory connections represent the lighter (e1) or darker (e2)
surface, respectively. In this figure, the M-<V1inter> cell clusters with top
(left sheet) and bottom (right sheet) contour detection are shown, but
activation mechanisms are similar for the other six contour detectors.
Note that the top and bottom contour detection layers have opposite
activity profiles. In the second stage, activity reflecting physical luminance
(from M-<retina> via w4) is integrated with contour-related activity
(from M-<V1inter> via w3) in M-<V1blob>. M-<V1inter> CCUs with
high activity (the white cubes) will inhibit corresponding cells in the next
layer according to the depicted connection pattern (w3). Thus, active
CCUs in the top contour detection (left) sheet will induce a downward
inhibition, whereas active CCUs in the bottom contour detection (right)
sheet induce an upward spread. This resulted in an inhibition of the
probing region, corresponding to the 20 decreased perceived brightness of
this region (see inset). The thickness of the arrows indicates the strength
of activity conveyed. Further conventions are identical to Figure 1.

increase activity in the probing region of M-<V1blob>, as opposed to the
inhibitory influence of layer 6 and 7 as shown in the example in Figure 3.

Activity in M-<retina> and M-<V1blob> reflect physical and
perceived brightness respectively

Figure 4 shows an example of the model’s behavior. As in Figure 3, activity
in M-<retina> reflects the physical luminance of the image, which provides
information on luminance discontinuities to model area M-<V1inter>. The
activity profile of layers two to nine, constituting M-<V1inter>, emphasizes
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Figure 4. Activity in the network. When luminance values of a stimulus with bright
inducers (see lower left image in Figure 3) enter the network, activity in model area
M-<retina>, M-<V1inter>, and M-<V1blob> reflect physical brightness, contours, and
perceived brightness, respectively. Grey values indicate response strength (black = no
activity, white = maximum activity). See Figure 1 and 3 for network details.

the contours of the surfaces, whereby the distribution of low (black) and
high (white) activations depend on the contour detection sensitivity of the
specific layer. This contour information subsequently modulates activity in
layer M-<V1blob>, leading to decreased activity in the probing region.
Figure 5 provides the opportunity to directly compare the physical and

perceived luminance, as reflected by M-<retina> and M-<V1blob> respec-
tively. Here, we show the network’s behavior for two stimuli at the extremes
of the continuum (i.e., at the maxima of the sinusoidal changes), whereas
Figure 6 gives more information on the model’s performance along the entire
continuum. When comparing activity in the probing region of M-<retina>
and M-<V1blob> in the first row of Figure 5, one can clearly see that activa-
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tion is reduced in the second area, corresponding to a decreased brightness
percept. The opposite is true for the second row, in agreement with an
increase in perceived brightness of a gray surface in dark surroundings. So,
although the equal luminance of the probing region in both stimuli elicited
an identical activation in M-<retina>, the activation in M-<V1blob> greatly
differs, due to contextual influences.

Activity in M-<V1blob> corresponds to hemodynamic
correlates of perceived brightness in V1

The NBLs in the CBS framework provide a precise one-to-one correspon-
dence between the CCUs and the cortical patches representing the inducer
and probing regions. Moreover, they allow the direct projection of network
activity on the cortical sheet.
We connected the cortical mesh to a running neural network, and created

time series of M-<V1blob> activity changes that were projected on the
corresponding cortical representation (see Figure 2) Figure 6 displays the
average time series of the simulated data in the localized probe and inducer
POIs. As shown in Figure 6a and 6b, the synaptic activity (netiabs) in the
inducer area is clearly in-phase with the actual luminance changes of the
inducer. In contrast, activity changes in the probing region are in anti-phase,
robustly mimicking the perceived brightness changes. The second column
of Figure 6 presents the simulated fMRI signal (ynoise), which is obtained
by convolving the spike data with an HRF function and by adding Gaussian
noise.
Figure 7 shows the event-related averages of this signal in the illusory

(left column) and control (right column) condition when the luminance
of the inducers gradually increase ("up"; green line) or increase ("down";
blue line). In line with the activity patterns in Figure 6b, the event-related
fMRI signals of the up and down period are in anti-phase in the inducer and
probe POI. This anti-correlation between inducer and probe POI activity also
emerges in the statistical map: As shown in Figure 8, voxel-wise regression
clearly segregates the inducer and probe POIs (compare Figure 8A and 8B),
indicating that when activity increases in the inducer POI, it decreases in
the probe POI and vice versa.
This anti-phasic activity of inducer regions following luminance changes,

and of probe regions corresponding to perceived luminance, is very obvious
when the amplitudes of the event-related averages are plotted, as is done in
Figure 9: In the "up" condition (green bars), inducer POI activity goes up
(in line with increasing inducer luminance), whereas probe POI activity goes
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Figure 5. Activity profiles in M-<retina> and M-<V1blob> induced by a
stimulus with bright (A.) versus dark (B.) inducers. A.) Activation in the
probing region is reduced in M-<V1blob> compared to M-<retina>,
corresponding to a decreased brightness percept.B.) Probe activity is
higher in M-<V1blob> than M-<retina>, in agreement with an increased
perceived brightness of the probing region. Comparison of the red and
yellow bars, indicating activation strength of the corresponding CCUs,
confirms that CCUs representing the probing region elicited an identical
activation in M-<retina>, whereas these activations diverge in
M-<V1blob>. Note that the (dashed) red circle is for illustration purposes
only.
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Figure 6. Simulated neural activity elicited by dynamically changing
inducer luminance. A. Illustration of experimental design. Each trial starts
with an "up" event in which inducer luminance changes from black to
white, accompanied by an increasing perceived brightness of the inducers,
and a decreased brightness percept of the probe annulus. After a static
period, there is a "down" event in which inducer luminance decreases with
positive and negatively correlating brightness percepts of inducers and
probe regions, respectively. Our simulations (right column) suggest that
neural activity in blob areas of V1 change in correspondence to the
brightness percept (middle column). Thus, activity in the inducer (upper
row) and probe (lower row) regions show anti-phasic changes in activity.
B. The average time series of probe and inducer POIs, respectively
reflecting activity of probe and inducer CCUs in model area M-<V1blob>.
The brown, green, and blue patches (POIs) on the inflated mesh (medial
view on the occipital pole) correspond to the cortical representations of
the outer inducer, probe, and inner inducer in the primary visual cortex,
respectively. Note that in this and in the subsequent figures, the colored
surfaces in the accompanying stimuli indicate the corresponding POIs
rather than the actual stimulus colors. The left column shows the spike
output of the model in these three POIs, whereas the right column
presents the simulated fMRI signal. The timeseries show the antiphasic
activity changes in inducer and probe POIs (compare for example, activity
in the first and second timeseries during the blue interval).

down (though probe luminance is fixed). The reversed is true in the "down"
condition (blue bars), showing that increased as well as decreased illusory
brightness changes are reflected by hemodynamic activity. This reversal
effect of probing region activity was absent in the control condition (i.e.,
fixed black probing region). Moreover, Figure 9 provides a direct comparison
between POI activity of simulated and empirically-obtained fMRI data. In
the first case, POI activity represents data of probe or inducer CCUs in
model area M-<V1blob>, which are projected to the corresponding mesh
vertices by NBLs (see Figure 2 and Methods for details). In the second
case, POI activity reflects activity of real fMRI measurements which were
aligned to the corresponding anatomical cortical vertices. The similarity of
the amplitude patterns in the left (simulations) and right (empirical data)
plots of Figure 9 suggest that M-<V1blob> activity can predict observed
activity in human V1 fairly well.
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Discussion
In this paper, we apply a new approach to compare empirical data and
model predictions in a common brain space (Goebel & Horwitz, in prepa-
ration; Goebel & De Weerd, 2009). We suggest that this approach can
facilitate hypothesis testing, thereby contributing to deciphering cortical
circuits involved in surface brightness perception and other perceptual and
cognitive abilities. Below, we discuss the potential neural mechanisms of
brightness perception and how we and others have modeled these mecha-
nisms. Finally we discuss current possibilities of the CBS framework as well
as future perspectives.

Neural mechanisms of brightness perception

At a subcortical level, the neural mechanisms of contour and surface per-
ception are relatively well understood: The visual image is filtered by center-
surround antagonistic RFs of retinal ganglion and Lateral Geniculate Nuclear
(LGN) cells, leading to image normalization. Since normalization leads to
a strong emphasis on discontinuities in luminance distribution, the primary
visual cortex (V1) mainly receives contour- rather than surface-related infor-
mation. Most models suggest that at the cortical level surfaces have to be
reconstructed from local contour information (Grossberg, 1987a,b; 2003),
which can also explain why brightness percepts can differ from the actual
brightness in brightness illusions. However, not all surface information is
lost in the subcortical processing stage: The LGN (Rossi et al., 1996), V1
blobs (Roe et al., 2005), and V2 thin stripes (Ts’o et al., 2001; Wang et al.,
2007) contain neurons that are readily stimulated when large, homogenous
stimuli are placed over their RFs. The presence of such ‘Luxotonic’ (Kayama
et al., 1979) or ‘Type-I’ (Kinoshita and Komatsu, 2001) neurons that code
absolute luminance, was confirmed by others in monkey V1 ( Friedman et
al. 2003; Huang and Paradiso, 2008; Kayama et al., 1979; Kinoshita and
Komatsu, 2001; Maguire and Baizer, 1982; Wachtler et al., 2003) and in
cat area 17 (Bonhoeffer et al., 1995; Shoham et al., 1997). Visual illu-
sions offer a valuable tool to study at which stage of processing surface
percepts are constructed, as physical and perceived surface features (e.g.,
brightness or color) can be segregated. The findings above suggest that
physical surface information is reflected along the subcortical and cortical
pathway, but it is less clear at which stages of processing perceived surfaces
are represented. LGN activity appears to only reflect physical brightness
(Rossi et al., 1996), whereas divergent observations are reported for V1
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Figure 7. Figure 7. Event-related averaged time series of the simulated fMRI data for
the outer inducer (upper row), probe (middle row), and inner inducer (lower row). The
left and right columns show the event-related averages of the illusory and control
condition, respectively. The probe had a static intermediate luminance in the illusory
condition, whereas it was black in the control condition. In both conditions, the
inducers gradually varied in luminance from black to white and vice versa (see Figure
6b), as indicated by the gradient in the column header icons. The profile of the
event-related averages, as well as the differences between conditions, is akin to the
event-related averages of the observed fMRI signal (not shown). Note the sign-reversal
of the probe POI average, in comparison to the inducer POIs in the illusion condition,
whereas there is no probe POI activity in the control condition. Errorbars indicate 1
standard error of the mean (SEM).

102



Discussion

which might be due to the different visual illusions that were used. Studies
investigating the Craik-O’Brien-Cornsweet illusion (Cornsweet, 1970) ob-
served mainly perceived brightness correlates in V2 (Hung, Ramsden, Chen,
and Roe, 2001; Perna, Tosetti, Montanaro, and Morrone, 2005; Roe et al.,
2005), although V1-V2 interactions significantly contribute (Hung, Rams-
den, and Roe, 2007; and see Boyaci, Fang, Murray, and Kersten, 2007 for
cornsweet effects in V1). In contrast, activity related to neon color spread-
ing has been established in monkey V1 (Murakami et al., 1997; Matsumoto
& Komatsu, 2005; Komatsu, Kinoshita, & Murakami, 2000) and human
V1 (Sasaki and Watanabe, 2004). Also for brightness induction, which is
the type of brightness illusion used in the present study, correlates of per-
ceived brightness have been observed in V1 (Pereverzeva and Murray, 2008;
van de Ven et al., submitted; but see Cornelissen et al., 2006) in V1. To-
gether, these findings suggest that, at least for brightness induction, both
physical as well as perceived brightness-related surface information is rep-
resented in V1. Note that neural activity underlying brightness perception
can be modulated by cognitive factors. For example, Sasaki and Watanabe
(2004) showed that neural correlates of color spreading are constrained to
V1 when attention is controlled, whereas otherwise correlates of spreading
effects can be found in extrastriate areas as well. Surprisingly, Mendola et al
(2006) observed decreased activity in V1 and V2 during luminance filling in.
This discrepant finding might be related to the different paradigm used in
that study (i.e., Troxler’s fading; Troxler, 1804), which might have engaged
higher-level processes (indicated by the additional activations observed in
cortical association regions).
Contour and surface information appear to be processed in two seg-

regated, but interacting, streams: Neurons in V1 blobs respond to ho-
mogenous surfaces, whereas V1 interblob regions contain neurons that are
preferentially stimulated by oriented contrasts (e.g. contours and edges).
Likewise, neurons in V2 thin stripes areas react to surfaces (Roe et., 2005),
while V2 interstripe 13 regions show preferential responses to lines and edges
(Bartfeld and Grinvald, 1992; Blasdel et al., 1985; DeYoe and Van Essen,
1988; Fitzpatrick et al., 1985; Hubel and Livingstone, 1987; Landisman and
Ts’o, 2002; Lu and Roe, 2008; Yabuta and Callaway, 1998). Taken together,
these data support the idea that there are separate (but interacting) pro-
cessing streams for contour and surface processing, with a blob/thin stripe
system for surface representation and an interblob/interstripe system for
contour representation. For a more extensive review on neural mechanisms
of brightness perception, the reader is referred to the existing literature
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Figure 8. A. Medial view on the occipital pole of an inflated cortical mesh. The brown,
green, and blue patches (POIs) correspond to the cortical representations of the outer
inducer, probe, and inner inducer in V1, respectively. B. Results of contrasting V1
activity (with the map constraint to the V1 POIs) of the network simulations that is
in-phase (red-yellow) and in counter-phase (blue-green) with the changing luminance of
the inducers. Note that the borders where in-phase and counter-phase activity segregate
(in B), coincidence with the borders between the probe and inducer regions (in A).

(Pessoa and De Weerd, 2003; Goebel and De Weerd, 2009; Neumann et
al., 2001).

Our model and other computational models of brightness
perception

Our model is based on empirical research discussed in the previous section.
An essential feature in our model’s architecture is the modulation of physi-
cal brightness information represented by “luxotonic” cells in M-<V1blob>,
by contour information in M-<V1inter>. Results showed that our model
performs well in simulating dynamical changes in perceived surface bright-
ness. It was able to predict illusory brightness changes in a grey area of
constant luminance when brightness of its surroundings was dynamically
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varied. Moreover, the activation changes in CCUs representing the probing
region, varied in a similar fashion as V1 activity in a subject presented with
the same stimulus design. This suggests that V1 plays a role in generating
surface brightness percepts, which is not only in agreement with our own
fMRI data (van de Ven et al., submitted) and those of others (Pereverzeva
and Murray, 2008), but also with neurophysiological findings in the cat
(Rossi et al., 1996; 1999).
Our modeling approach is rather different from previous modeling ap-

proaches. Our work started from the assumption that surface brightness is
explicitly represented in early visual cortex, represented by the “luxotonic”
cells in model area V1 signaling surface information. This hypothesis differs
from proposals that surface perception relies on ‘symbolic tagging’ (Den-
nett, 1991). According to the symbolic tagging theory, surface qualities are
not encoded in retinotopic areas. Instead, surfaces are implicitly (symboli-
cally) represented as a lack of discontinuities in between identified surface
boundaries, and surface encoding takes place entirely at later visual stages,
where surfaces form an integral aspect of object representations. In addition,
our surface representation at the earliest cortical stages of visual processing
is also not in agreement with multi-scale spatial filtering theories assuming
that brightness perception does not require an explicit spreading mechanism
(Blakeslee et al., 2005; Dakin and Bex, 2003; McCourt, 1982; Purves et al.,
1999; Stromeyer et al., 1984). Based on multi-scale spatial filtering theory,
some models were developed to simulate brightness assimilation (Barkan,
Spitzer, and Einav, 2008; Blakeslee and McCourt, 1999; 2001; 2004; Otazu,
Vanrell, and Párraga, 2008), such as in the classic White’s effect (White,
1979). The most well-established model in this category is the oriented
difference-of-Gaussians (ODOG) model of Blakeslee and McCourt (1999,
2001, 2004) that performs an oriented multiscale spatial filtering of input
and a subsequent global contrast normalization to equalize responses at
each orientation across the visual field. This model can simulate a range
of brightness illusions (Blakeslee and McCourt, 2004). Although we do not
model receptive fields (RFs) with oriented multiscale filters, the RFs in our
model are orientation-specific. In addition, these RFs have excitatory and
inhibitory subzones, which effectively resemble local normalization. Yet, al-
though RF creation in the current model thus already in some sense share
similarities with the approach of Blakeslee and McCourt (2004), we will
implement Gabor filters (Jones and Palmer, 1987) in future versions of our
model to simulate V1 responses even more accurately. Although differences
of Gaussians mimic retinal ganglion responses properly (Rodieck, 1965)
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other aspects of the Blakeslee and McCourt (and related) models have a
less close neurobiological correspondence, and some processes such as the
global normalization across orientations might be neurally less plausible as
normalization is commonly considered a more local process. Interestingly, a
recent neuroimaging study of Kay et al. (2008) used multiscale spatial fil-
tering to decode natural scene processing in visual cortex measured. In the
first stage of the fMRI experiment, they recorded fMRI responses in V1-V3
to 1,750 natural images and used these data to estimate a RF model (based
on a Gabor wavelet pyramid) for each brain voxel. Subsequently, this model
was employed to predict neural responses to 120 novel images and then to
identify which image was viewed by finding the best match between model
predictions and observed fMRI activity (Fig. 1b). We believe that our CBS
framework provides an excellent context to integrate the modeling efforts
like those of Blakeslee and McCourt with advanced neuroimaging analyses
such as those employed by Kay et al. (2008).
Our model has some commonalities with the models of Grossberg (Gross-

berg, 1987a, 1987b; 2003; Grossberg and Todorovic, 1988; Grossberg and
Raizada, 2000; see Neumann et al., 2001 for a related approach) in which
surfaces are created by a spreading activation of surface features from the
contours of the surface inward. However, according to Grossberg’s the-
ory, contours initiate surface spreading and all surface information is recon-
structed by an interaction between contour information and surface features.
Different to our approach, these surface features are sampled from positions
with large luminance or color transitions, to discount variable illumination.
In our model on the other hand, we explicitly model luminance-related infor-
mation of the entire surface, based on direct input (modeled as w4) from the
subcortical pathway (i.e., cells in the LGN signaling surface brightness; Rossi
and Paradiso, 1999). Subsequently, the surface information represented by
these “luxotonic” CCUs is modulated by – rather than reconstructed from
– contour information. Arrington (1994) used a simplified version of Gross-
berg’s model to simulate psychophysical findings in the masking experiments
of Paradiso and Nakayama (1991), which tested the speed of brightness
spreading in a homogeneous bright circle on a black background, by dis-
rupting the inward spread with a masking stimulus. Arrington’s model con-
tained only four neuronal layers: an On-FCS and an Off-FCS layer modeling
retinal cells with DOG RFs, and one BCS layer in which “boundary cells” are
activated at locations were On-FCS and Off-FCS activations are spatially
adjacent. Finally, there is the filling-in layer where brightness spreading
by FCS input is regulated by parallel BCS input. This simple but elegant
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model was able to simulate, with a range of masks, the brightness percepts
observed by Paradiso and Nakayama (1991). The model of Arrington is, to
our knowledge, the only other computational model that models brightness
induction using a homogenous stimulus (which can be compared to our
homogenous probe region). However, whereas Arrington’s model aims to
simulate the rapid (i.e., in millisecond-range) brightness filling-in in a static
stimulus with fixed luminance, our model attempts to simulate dynamic
changes in fMRI activity induced by slow (i.e., in second-range), continuous
luminance changes in a dynamic stimulus. These different objectives led to
different modeling choices, making it difficult to directly compare our model
to that of Arrington or, in fact, to all other models as none of them used
–to our knowledge- dynamically changing stimuli.
As the present paper represents a ‘proof of principle’, we deliberately

chose a simple network architecture that focuses on a limited set of mecha-
nisms at a large-scale level. Although it is interesting to see that this limited
model has sufficient features to mimic empirically observed fMRI activity, it
is clear that we did not implement many relevant principles of neural process-
ing in early visual areas, such as orientation and spatial frequency tuning,
or processing in pre-striate processing pathways. Furthermore, although
our and other models (e.g., Heitger et al., 1998) show that appropriate
contour detection can be obtained with solely feedforward and horizontal
connections, boundary detection can be performed faster and more reliable
by adding feedback connections (Jehee, Lamme, and Roelfsema,2007; see
also Roelfsema et al., 2002). Finally, we modelled only V1 as we (van de
Ven et al., submitted) and others (Pereverzeva and Murray, 2008) observed
the strongest fMRI correlates of brightness induction in this area. However,
V2 appears to play a significant role in computing perceived brightness in
the Cornsweet stimulus (Roe et al., 2005). This suggest that both V1
and V2, and especially their interactions (Hung, Ramsden, and Roe, 2007),
are important for generating brightness percepts, although their respective
contributions seem to shift depending on the studied brightness illusion.
Computational modeling offers a promising way to gain insights in the roles
of V1 and V2 in brightness perception. By extending our model with re-
current V1-V2 loops, and subsequently comparing observed and simulated
fMRI data at V1 and V2 level in different brightness illusion paradigms,
a general mechanism of brightness computation might be uncovered that
reconciles the various findings.
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Figure 9. Comparison between amplitudes of the simulated (left) and real (right) fMRI
signals in probe and inducer POIs. Amplitudes were quantified by subtracting an early
time segment (2-4 s) from a late time segment (8-10 s) of the event-related averages,
and averaging the differential responses. Amplitudes are shown when inducer luminance
increases (UP) and decreases (DOWN) in the outer inducer (upper row), probing region
(middle row) and inner inducer (bottom row). For the illusion condition, both the
simulated and real fMRI signal show inducer activity in phase with the physical
luminance changes, but probing region activity in anti-phase with luminance changes.
This reversal effect is not found in either the simulated or real signal in the control
condition. Amplitudes are normalized to the maximum amplitude across POIs. Errorbars
indicate 1 SEM.
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Large-scale neural models and neuroimaging data in a
common brain space: Current possibilities and future
perspectives

The approach used in the present paper shows that empirical data and
model predictions can be compared in the same brain space. Importantly,
when simulated and measured data co-exist in the same representational
space, the same analysis tools (e.g., univariate GLM, multi-voxel pattern
analysis, effective connectivity analysis) can be applied to both data sets.
Furthermore, dynamic activity patterns of running neural network models
can evolve directly on cortex representations or meshes obtained from MRI
scans of specific subjects (Kriegeskorte and Goebel, 2001; Sereno et al.,
1995), and therefore, online hypothesis testing against incoming empirical
data is possible.
In addition to the manner in which neuromodeling and neuroimaging data

were compared in the CBS framework in the present paper, there are several
more useful approaches that have not been shown in the present paper. We
have confined our comparison to modeled activity in two V1 model-layers,
which was projected as predicted activity in a single (functionally local-
ized) anatomical region in the human brain (V1). However, comparisons
between multiple layers and multiple regions are also possible. In addition,
comparisons do not have to be constrained to the visual cortex, but can
cover different portions of the brain. To study for example the observa-
tions of Sasaki and Watanabe, 2004, the model could be extended with
layers representing the frontal eye fields (FEF) and regions in the posterior
parietal cortex exerting top-down attentional influences (Corbetta and Shul-
man, 2002) on brightness computations in the visual areas. Subsequently,
we could study how the processing of brightness illusions is modulated by
attentional demands in an fMRI and a simulation study. In our CBS frame-
work, we would then compare concurrent activity in higher-level attentional
control regions (e.g., functionally localized FEF; Tehovnik et al., 2000) and
visual areas (e.g., V1) that is observed in the empirical and in the modeling
study.
In general, NBLs can connect output of different types of neural nets to

any kind of functionally localizable regions, ranging from sensory retinotopic
(DeYoe et al., 1996), tonotopic (Formisano et al., 2003), and somatotopic
(Blankenburg et al., 2003) areas, to higher level regions such as object-
preferring higher visual areas (e.g., fusiform face area; Kanwisher et al.,
1997) or language areas (Fernández et al., 2001). Likewise, all sorts of
anatomically defined regions can be linked to model areas. If a localizer
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scan had been lacking, we could have for example projected our V1 activity
to an anatomically defined V1 (Hinds et al., 2009).
Further, not only perceptual processes, but also potential neural sub-

strates of cognitive processes (e.g., Brown and Braver, 2005; O’Reilly, 2006;
Tagamets and Horwitz, 1998) can be facilitated by the CBS framework. The
wide applicability of integrating simulated and real data in 17 brain space
is becoming increasingly recognized. Arbib and coworkers (1995) were the
first to compare computational simulations (on saccade generation) to neu-
roimaging (Positron Emission Tomography or PET) data. Subsequently,
Tagamets and Horwitz (1998) simulated fMRI data on a visual short-term
memory task by transforming spiking output from their large-scale neural
model into fMRI activity by means of a hemodynamic response function.
Furthermore, they downsampled the resulting time series according to the
appropriate TR and mimicked features of the empirical study, such as trial
repetition and corresponding intertrial intervals. The Tagamets and Horwitz
model was extended to working memory processes in the auditory domain
by Husain and colleagues (2004), and for the first time a quantitative com-
parison between simulated and observed fMRI data was made. Other mod-
eling efforts that simulate fMRI data in the field of working memory come
from Deco and coworkers (Deco et al., 2004), and from Chadderon and
Sporns (2007) who implemented dopaminergic modulations in their neural
network. Although working memory received a lot of attention, there have
also been attempts to relate neuromodeling and fMRI data in the field of
attention (Corchs and Deco, 2002) and conflict processing (Herd, Banich,
and O’Reilly, 2006; Brown and Braver, 2005).
However, none of the previously mentioned integration approaches pro-

vided the direct one-on-one topographic correspondence between computa-
tional units at the model and brain level that our CBS framework offers.
This close correspondence greatly facilitates the direct spatial comparison
between the simulated and the fMRI results, and it permits modeling the
contribution of anatomical microcircuits to predicted fMRI activity. This
permits investigators to develop increasingly more mechanistic and biolog-
ically valid types of modeling, which may stimulate a tighter integration
of computational and experimental neuroscience. Specifically, our topo-
graphically more detailed modeling approach could assist in bridging the
theoretical and empirical gaps between multiple levels of resolution of the
various measurement modalities. That goal is advanced further by the
ability of our modeling approach to generate multiple output data types,
ranging from integrative synaptic activity levels and mean spike activity to
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fMRI and EEG/MEG data types. In CBS, it is possible to simply switch
between displaying the different output data types produced by the same
running network simulation. This switching between data types in a com-
mon space can be easily accomplished as the CBS modeling framework can
be conveniently integrated with recently developed extensions of the Brain-
Voyager QX software package that permits signal projection for fMRI as
well as electro- & magneto-encephalography (EEG/MEG) data (Esposito
et al., 2009).
In addition to integrating levels of understanding at different spatial (and

temporal) resolution, the detailed modeling approach we propose might
help to reconcile apparently conflicting results from human fMRI studies
and spike recording studies in animals that investigate the same phenomena
across species (Maier et al., 2008). For example, we believe that the ability
to 18 compare different model output in terms of different methods may
help to investigate unanswered fundamental question about the coupling
between integrated synaptic activity and fMRI signal (Logothetis et al.,
2001), or about the relationship between neuronal activity distributions and
the spread of fMRI signal.
With the advent of high field fMRI imaging (= 7 Tesla), it may become

possible to image brain activity in response to perceptual and cognitive
events at a high spatial resolution that may enable investigators to monitor
activity in separate layers, columns, and other anatomical and functional
subcompartments of cortical areas in the human brain. The activity patterns
predicted by advanced computational models that implement the details
of cortical circuitry may therefore be projected onto a very detailed brain
space, in which also the empirical data can be collected. For example, it
may become possible to directly test the hypothesized specific contributions
of different compartments of V1 and V2 to surface brightness perception.
We suggest that the approach of testing model predictions in brain space
will become a particularly important tool in future cognitive neuroscience
research.
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5 Texture Filling-in

Abstract
During maintained fixation away from a figure, the figure becomes percep-
tually filled in by the surrounding background. For brightness and color,
some studies, but not all, have demonstrated a signal within the extent
of the figure’s retinotopic projection in early visual areas correlating with
perceptual filling-in. Here, we investigated the neural correlates of a more
complex surface feature, namely texture. While human participants fixated
a point away from a grey figure surrounded by dynamic texture, we observed
fMRI signal within the confines of the figure’s retinotopic projection in V2
that correlated with filling-in ratings collected during scanning. Moreover,
perceptual filling-in and its correlate in V2 were strongest during accurate
fixation, and while the fluctuating signal elicited by the background texture
was highest. Hence, we have demonstrated for the first time a link between
activity increases and perceptual filling-in of texture in early human visual
cortex (in V2, but not V1), thereby confirming and extending earlier obser-
vations in a neurophysiological study in monkeys. The data point to the
importance of boundary adaptation as a permissive factor for filling-in, to
a competitive interaction between figure and background, and to a possi-
ble contribution of interpolation processes in V2 to the visual awareness of
surfaces.

Introduction
Perceptual filling-in refers to the visual fading or the disappearance of
an object from awareness during stabilization of the object on the retina
(Martinez-Conde et al., 2004). We used a paradigm already used by Trox-
ler (Troxler, 1804) in the late 18th century, in which observers fixate their
eyes on a point away from a figure for several seconds, after which the fig-
ure fades and becomes perceptually replaced by the background (Krauskopf,
1963; Gerrits et al., 1966). Filling-in takes place in various stimulus domains
including luminance (Roe et al., 2005; Cornelissen et al., 2006; Mendola et
al., 2006; Pereverzeva and Murray, 2008), color (von der Heydt et al., 2003;
Sasaki and Watanabe, 2004) and texture (De Weerd et al., 1995; Weil et
al., 2007; Weil et al., 2008; Weil and Rees, 2010), and has been a favored
paradigm to study mechanisms of surface perception.
It is well established that the accuracy of fixation determines the delay

before filling-in takes place (Troncoso et al., 2008). This finding agrees
with proposals in which the spread of surface-related activity is contained
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within retinotopically appropriate boundaries by an inhibitory signal from
boundary detectors (Walls, 1954; Gerrits et al., 1966; Gerrits and Vendrik,
1970; Grossberg, 1987a, b). According to these proposals, accurate fix-
ation increases the rate of adaptation in the boundary detectors, leading
to faster disinhibition, and a spread of background-related activity into the
prior retinotopic territory of the figure (interpolation model). The data sug-
gest that the time course of adaptation is slow (lasting seconds), and that
once boundary representations fail, spread takes place quickly (on a mil-
lisecond time scale) (Paradiso and Nakayama, 1991; Arrington, 1994; De
Weerd et al., 1998; Angelucci and Bressloff, 2006; De Weerd, 2006; Huang
and Paradiso, 2008). In other models of filling-in, neural signals related to
surface perception are thought to result from the properties of linear fil-
ters in the visual system (Grimson, 1982; Ohzawa et al., 1985; Grossberg,
1987a, b; Grossberg and Todorovic, 1988; Blakeslee et al., 2005).
Despite compelling behavioral data and computational models, the neu-

ral processes underlying surface perception remain poorly understood. Even
on the presence of increased activity within the confines of the retinotopic
projection of a filled-in surface, which would be expected if spread or inter-
polation played a role, data are conflicting. Using a variety of paradigms,
a number of studies reported positive correlations between neural activ-
ity and perceived changes in surface brightness or color (De Weerd et al.,
1995; Sasaki and Watanabe, 2004; Meng et al., 2005; Roe et al., 2005;
Pereverzeva and Murray, 2008), but other studies reported an absence of
activation changes (von der Heydt et al., 2003; Cornelissen et al., 2006),
or deactivations (Mendola et al., 2006; Weil et al., 2007; Weil and Rees,
2010). The present study aimed to identify neural processes within the pro-
jection of a large grey figure related to perceptual filling-in by a background
of dynamic texture, in human participants.
In the only preceding study that investigated neural correlates of texture

filling-in using comparable stimuli (De Weerd et al., 1995), monkeys fixated
a point away from a grey square surrounded by dynamic texture, and V2
and V3 neurons with RFs contained in the grey figure showed strong activity
increases that coincided in time with filling-in reports of humans exposed to
the same stimulus conditions. So far, this finding has not been reported in
humans. Here, we measured fMRI activity in the retinotopic projection of a
grey figure surrounded by equiluminant dynamic texture in humans (Figure
1A) while they reported the strength of the illusion.
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Figure 1. Stimulus design and experimental conditions A) Representative stimulus
frame: Each frame was composed of randomly positioned horizontal line elements on a
black background which served as a background for a grey equi-luminant figure. The
center of gravity of the figure was presented at 7o eccentricity (see Experimental stimuli
in Experimental procedures section). Participants were instructed to fixate on the small
red square. B) Filling-in (FI) condition: Stimulus frames with randomly positioned line
elements were refreshed at 20 frames per second, making the texture background
dynamic. When fixating the red square participants perceived PFI. C) Filling-in
prevention (FIP) control condition: To prevent the filling-in percept from occurring the
filling-in the first texture frame of the stimulus movie (played at 20 Hz) was dropped.
This has been shown previously to prevent filling-in [ref]. Participants were instructed to
perform a demanding hue discrimination task at fixation in order to promote strong
fixation.

Methods
Five healthy and naïve participants (1 male and 4 female, mean age 28
years) with normal or corrected to normal vision gave written informed
consent before starting the fMRI experiment, and were debriefed following
completion of data acquisition.

Retinotopic mapping and localizer stimuli

Following standard retinotopic mapping (Engel et al., 1997; Engel et al.,
1994; Sereno et al., 1995), an localizing the centre of the figure with a sta-
tionary circular checkerboard, an additional set of localizer stimuli was used
to determine a more fine grained map of the figure region to make precise
spatial inferences possible. An expanding, high contrast green-red check-
board ring in the same shape as the figure was used. The ring expanded
continuously from center to its maximum extent in 40s, while remaining
centered at the point of gravity of the figure region (Figure 3B). This re-
sulted in an accurate eccentricity representation and demarcation of the
figure region and its surround (Figure 3C). Experimental Stimuli Filling-in
stimuli consisted of a grey figure and a texture surround. The texture in all
stimuli used was made up of horizontal line segments (0.8° by 0.1°, posi-
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tion 0.5° apart on average, Figure 1A), which randomly changed position
on each frame update (Figure 1B). Frames were updated every 50ms re-
sulting in an average luminance of 5.46 cd/m2 over time. The grey figure
was equi-luminant with the background, and its center of gravity was at 7
degrees eccentricity relative to the fixation point (small red square 0.2° by
0.2°). To have the middle of the figure’s projection on retinotopic cortex
roughly equally far from surrounding boundary representations, we used an
egg-like figure derived from an inverse visual field mapping function (Sereno
et al., 1995). This approach was devised to maximally protect the center
of the figure’s projection from fMRI signal spread unrelated to perception.
Participants reported filling-in in this stimulus filling-in condition (FI), ex-
cept when once every 20 frames the texture was replaced by equi-luminance
grey (filling-in prevention, FIP, Figure 1C), which counteracted the filling-
in process. In the FIP condition, participants performed a demanding hue
detection task at fixation. In addition, a dynamic full field texture stimu-
lus was presented, of which the elicited fMRI activity served as a reference
against which to compare fMRI activity in FI and FIP conditions.

Experimental design and participant instructions

We used a block design in which 8 experimental block (30s) were inter-
spersed with rest periods (30s) during each run. A total of 9 experimental
runs (1 full field texture run, 4 filling-in runs, and 4 filling-in prevention
runs) and 5 localizer runs (2 retinotopy runs, 1 full field texture run, 3
figure eccentricity localizer runs) were presented to the participants, while
they maintained fixation. To counteract participants’ fatigue, we divided
the runs over 2 experimental sessions. In the FI condition, participants were
instructed to fixate the fixation point and covertly attend to the figure re-
gion. They were asked to report the extent to which the texture surround
entered the figure region. This filling-in rating (FIR) was carried out by mov-
ing a joystick lever from the center (not filled-in) forward to the maximum
extent of the throttle (completely filled-in). Participants were asked to map
the extent of intrusion of texture into the figure by the extent of forward
movement of the joystick, with maximal forward movement signaling that
the figure was completely and strongly filled-in. During the FIP condition,
participants fixated the fixation point and performed a hue detection task
at fixation, in which participants had to detect small and brief deviations
from red occurring unpredictably at an average frequency of 0.5 Hz. In
the texture condition, participants passively fixated the fixation point (red
square).
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Apparatus

A Siemens 3T Allegra MRI scanner (Siemens Erlangen) was used to collect
both anatomical and functional images. Anatomical T1-weigthed (MP-
RAGE; TR: 2250ms; matrix size, 256×256; 192 slices; in-plane resolution,
1 mm2) and functional echo planar imaging (EPI) scans (28 gapless slices,
TR/TE, 2,000/30ms; flip angle 90°; square in plane matrix size of 1282;
resulting in isotropic 2mm3 voxels) were acquired of two participants on a
3T Siemens Allegra head scanner. Because we chose to maximize spatial
resolution, the block of functional slices was positioned centered around the
calcarine sulcus, covering both dorsal and ventral V1 and V2. Stimuli were
presented to the participants via the LCD stereo displays in the Visuastim
Digital (Resonance Technology, Northridge USA) with a built-in Arrington
Viewpoint eyetracking system (Arrington Research, Scottsdale USA) with
a refresh/sample rate of 60 Hz.
Analog ratings of the percept experienced by the participants were col-

lected with a joystick fiber optic response pad (Current Designs, Philadelphia
USA). Calibrated rating data were stored at over 1000 Hz, post processing
steps included drift correction for each trial and temporal resampling to the
scanning repetition time (TR = 2000ms).

Functional data preprocessing

Functional localizer and retinotopic data were pre-processed in Brainvoy-
ager QX (Goebel, 2010; Goebel et al., 2006) including slice time correction,
3D correction for head volume movements and temporal filtering, which
included linear trend removal and a high-pass filter of 3 cycles per time
course. The functional data were resampled and co-registered to the ta-
lairach transformed anatomical data (Goebel et al., 2006). Anatomical
data were corrected for field inhomogeneity, and volumetrically normalized
into Talairach space. A brightness cut-off method was used to identify the
white-grey matter border where a mesh was modelled to reconstruct the
cortical sheet. The meshes were subsequently inflated, flattened and cor-
rected for spatial distortions. To perform a surface based functional analysis,
the volumetric functional data were sampled along the grey-white matter
boundary and transformed into a 2D coordinate system with Brainvoyager
QX.
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Functional and psychophysical data analysis

The localizer data obtained from the continuously expanding rings resulted
in a slow wave of activity which was analyzed using a cross correlation
analysis with 20 lags. This revealed a detailed mapping of the figure region
(in analogy with standard retinotopic mapping).
Based on the stimulation protocol, the experimental blocks were trans-

formed to percent signal change relative to the time points preceding each
block (epoch based PSC transform). Condition wise averaging of all blocks
across participants resulted in event related averages. The event related av-
erages were split into an early (6-12s) and a late (12-18s) part. Data from
the early and late part were averaged for each condition and submitted to
ANOVA; Post-hoc comparisons were bonferroni corrected.
In conjunction with retinotopy data and localizer data, cross sectional

paths across figure representations were defined in V1v and V2v for all par-
ticipants separately. Along the cross sectional paths, landmarks indicating
the edges and centre of the figure region were defined. By using these
landmarks as constraints, activity patterns along the cortical paths could be
aligned and averaged without loss in data detail due to variations in path
length and landmarks among participants. To link fMRI activity along the
cross sectional paths with FIRs, we down sampled the continuous ratings
to the time resolution of the 2s TR, and subdivided the ratings into 5 equal
bins. By dividing the number of events in each bin by the total number,
we computed the FIR in each bin (Figure 2A). We then selected the cross
sectional data patterns for fMRI time points corresponding to the highest
FIR bin in all participants. Based on this selection of the data, we computed
the multi participant cross sections of the figure region for V1v and V2v in
filling-in (FI) and filling-in prevention (FIP) conditions. Cross sectional data
from the centre region were submitted to an ANOVA with condition as a
fixed factor and participant as a random variable. From the cross sectional
data, a metric summarizing the amount of overlap between the FI and FIP
condition was computed by calculating the surface between the FI and FIP
curve (Net Filling-in Index NFI).
The NFI was then computed also for the other 4 rating bins, and the

linear relationship between the NFI and FIR across all bins was quantified
by a Pearson correlation coefficient. In addition, texture activity levels were
obtained from full field texture stimulus, and activity elicited by the texture
was correlated with the FIR.
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Eye movement data

Raw eye movement data were binned with bin duration equal to scanning
repetition time (TR = 2000ms). The bin offset was chosen to occur at
the onset of the image acquisition. The distribution of gaze points within
the duration of a TR was fitted with an ellipse of minimal area (MEA)
(Nachmias, 1959; Sun and Freund, 2004), which was used as an index of
fixation error.

Results and discussion
This experimental design permits directly linking perceptual filling-in and its
neural correlate, which is important because the link between both reported
earlier (De Weerd et al., 1995) was indirect and based on an across-species
comparison.
Participants (N=5) were exposed to 30s periods of stimulation with a dy-

namic texture stimulus that either permitted filling-in (FI condition, Figure
1B), or prevented filling-in (FIP condition, Figure 1C). In the FIP condi-
tion, filling-in was prevented by replacing single frames with equiluminant
grey each sec [16]. In the FI condition, participants continuously monitored
and reported their impression of filling-in using a joystick, and generated
a continuous Filling In Rating (FIR). To facilitate the comparison of FIRs
with fMRI data, the FIRs were downsampled to the resolution of the TR
(2000ms), and reduced to a relative frequency distribution over 5 equal bins
representing the extent of joystick movement (0-20, 20-40, 40-60, 60-80,
80-100%), with the highest bin corresponding to (near) complete filling-in
(for details see Functional and psychophysical data analysis section in Ex-
perimental procedures). Figure 2A shows that in 11% of the TRs, complete
filling-in was perceived. In addition, Figure 2B shows that on average, par-
ticipants perceived the strongest filling-in (FIS, filling-in strength) near the
second half of the trial. This is in line with the idea that boundary adap-
tation – a process which is time consuming – takes place before perceptual
filling-in can be perceived.
Throughout the entire experiment fixation behavior was recorded. The

eye movement data (Figure 2C) show that fixation accuracy was high during
the filling-in trials. Moreover, in line with previous studies (Martinez-Conde
et al., 2004; Martinez-Conde et al., 2006), we found that good fixation
accuracy facilitated perceptual filling-in (Figure 2D). Accuracy was quanti-
fied as the Minimum Ellipsoid Area (MEA) encompassing a cluster of gaze
points within every TR. Because the MEA reflects the magnitude of fix-
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Figure 2. Stimulus ratings and eye movements
A) Frequency of FIR binned in 5 equal intervals. The histogram (pie
chart) shows average relative frequency per bin averaged over all 160 30s
filling-in trials across all participants.
B) Average filling-in strength (FIS) increases over time. From each
participant (N=5) we collected 32 filling-in trials with a duration of 30
seconds. The FIRs during these trials for 5 participants, a total of 160
trials, were collapsed per TR resulting in the average FIR. A majority of
the time participants did not perceive a strong filling-in percept, therefore
the FIS distribution was skewed. This was due to the choice of a very
large figure, which was necessary to overcome effects of fMRI signal
spread (see text). The error bars on the bars represent semi- inter quartile
ranges, a measure of dispersion robust to skewness.
C) Participants fixation errors as a function of trial time. Fixation errors
were quantified as minimum ellipsoid area (MEA) of gaze points around
fixation, from 160 trials in 5 participants (details in text). Between the
trial onset and offset MEA magnitude was minimal, indicating very
accurate fixation. Error bars show semi- interquartile ranges, note the
large error bars at the trial offset when participants relax their eyes.
D) High fixation accuracy predicts average FIS. The strong negative
correlation between high fixation accuracy (small MEA) and FIS results in
a significantly negative correlation (r=-0.67939; p= 0.0003).

ation errors in squared visual degrees, a low MEA corresponds to a high
FIS which was revealed by a negative correlation between MEA and FIS
(r=-0.65;p=0,003, N=5).
To identify an fMRI correlate of filling-in, signal during FI and FIP trials

(blocks) was compared. However, large fMRI signal spread into the rep-
resentation of the figure was expected in both FI and FIP conditions, due
to the low spatial resolution of fMRI (Cornelissen et al., 2006; Engel et al.,
1994). Therefore, any neural correlate of filling-in in the figure’s representa-
tion might be undetectable against the large effects of fMRI signal spread.
Hence, we chose a size for the grey shape (34o2) that based on a prior
study using shapes at the same eccentricity is close to the largest size that
would still permit filling-in (about 36o2 (De Weerd et al., 1998)), and then
developed a set of localizers to precisely determine the cortical projection
of the center of the figure in retinotopic visual areas V1 and V2 (Figure
3). The central representation of the grey shape is farthest removed from
the effect of intrinsic spread of fMRI signal, and we expected that in the
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central representations of V1 and V2, the likelihood of finding a correlate
of perceptual filling-in would be maximized.
Using event-related averaging (based on 160, 30s stimulus presentations;

32 events x 5 participants), we found strong activation inside the overall
figure representation (defined by the eccentricity localizer of the figure) in
the full-field texture condition (4.63% change against baseline), and in the
FIP condition (3.75%). This was true in V1 (Figure 4A) and V2 (Fig-
ure 4B). Note that activity in the FIP condition was significantly but only
slightly smaller than with a full field texture, witnessing of the enormous
signal spread from the texture background into the figure representation.
Despite this signal spread, we observed a dynamic increase in fMRI signal
with time in the FI condition. To test this effect, we carried out a 3-
way ANOVA including the factors Condition (FI, FIP, Tex), area (V1, V2),
and Time Window (1st vs 2nd half of trial). We observed a two way in-
teraction between area and condition (F[2]=15.59, p>0.001) and between
time window and condition (F[2]=11.75, p>0.001). We then performed
bonferroni-corrected (α/18; area(3) x timewindow(2) x condition(3)) post
hoc tests separating visual areas, and early and late intervals.
In V1, activity in the early time interval did not differ significantly between

FI and FIP conditions (Figure 4A, early interval, blue vs. green bars), and
this remained true in the late interval. In V2, activity in the early time
interval did not differ between FI and FIP conditions (Figure 4B, early
interval, blue vs. green bars), but in the late interval activity in the FI
condition significantly differed from that in the FIP condition (Figure 4B,
late interval, blue vs. green bars). Moreover, activity in the FI and full
texture conditions became indistinguishable in the late time window (Figure
4B, late interval, blue vs. red bars).
We then aimed to correlate fMRI signal in the center of the figure’s

representation in V2 with filling-in reports as they fluctuated during the
length of single trials. To that aim, we used the FIRs downsampled to
the resolution of the TR (Figure 2A), and reduced to a relative frequency
distribution over 5 equal bins (0-20, 20-40, 40-60, 60-80, 80-100%). The
events in each of these bins served as a regressor for computing a profile of
Beta-values along a cross section (cortical distance axis in Figure 3C) of the
figure representation for the FI and FIP conditions. Figure 4C shows these
profiles for a regressor based on events belonging to the bin of strongest
FIRs. Along the cortical distance axis in V2 we found a highly significant
signal increase of the FI condition as compared to the FIP condition in
the center of the figure region in V2 (F(3,4) = 10,52; p = 1.09 x10e-6).
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Figure 3. fMRI localizer data
A) Retinotopic localization of the figure region: Mapping results projected on a
segmented right hemisphere.
B) Mapping stimuli: The extent of the grey figure was mapped by presenting green/red
reversing oval outlines which slowly moved from the center towards the edge. The
yellow outline shows the extent of the grey figure, the mapping included a part of the
texture surround. C Enlarged results of mapping the figure region in a single participant.
The localization procedure results in a systematic mapping of distance from center
(blue) to edge (red) of the figure’s cortical projection in V1v and V2v (see
supplementary materials), as the stimulus was presented in left upper quadrant and
represented in the lower bank of the calcarine sulcus. Red dash lines are iso-eccentricity
lines based on eccentricity mapping, white dash lines represent the horizontal meridians,
white dotted lines the the vertical meridian. The statistical map outlines on the right
show the cross section path through the center of the figure representation along a line
of equal polar angle from the fovea (yellow) to the periphery (blue) in V1v and V2v.
The paths were defined individually for each hemisphere and visual area, and their
position visualized in statistical map outlines.
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In agreement with neurophysiologic findings (De Weerd et al., 1995) this
result was not found in V1 (F(3,4) = 1,12; p =0,3405). The difference
between the activity profiles in FI and FIP conditions can be quantified by
the surface contained between the two curves (Net Filling-in Index (NFI),
see Figure 4C). Figure 4D reveals a high correlation between the FIR and
their corresponding NFI, (r = 0.96, p = 0.0094). This shows that the area
between the FI and FIP curve in the center of the figure region (NFI) is
directly related to the strength of the filling-in process as perceived by the
participant (FIR).
The data provide support for the presence of activity within the con-

fines of the retinotopic projection that is relevant for surface perception.
In agreement with neurophysiological data (De Weerd et al., 1995), this
activity appears to be present in extrastriate cortex, but not in V1. Further,
the increasing activity found in human V2 (Figure 3B) is remarkably similar
to that reported in monkey extrastriate areas V2 and V3. However, whereas
the activity increases in neurons with RFs inside the grey figure region were
recorded while the monkey ignored the stimuli, the present experiment per-
mitted for the first time to directly correlate activity modulations inside the
figure representations with strength of perceptual filling-in.
Furthermore, we found that filling-in was more probable during accurate

fixation, which agrees with the idea that boundary stabilization and disin-
hibition leads to surface feature spread (Walls, 1954; Gerrits et al., 1966;
Gerrits and Vendrik, 1970; Grossberg, 2003). We also found that higher ac-
tivity in the texture region immediately surrounding the figure representation
during filling-in episodes (2.5 mm on cortex extending into the background
representation from the figure edge representation) correlated with the NFI
based on the strongest FIR bin (r = 0.906, p = 0.034, n=5). This suggests
that while boundary adaptation progresses, perceptual filling-in is stronger
and more likely when the texture surrounding the figure happens to elicit
stronger activity. This indicates a competitive relationship between back-
ground texture representations and boundary (or figure) representations (De
Weerd et al., 1998). This competitive relationship is in line with prior find-
ings indicating that the larger surface (seen as the background) will fill in the
smaller part of a stimulus (seen as the figure), with probabilities predicted
by their relative sizes (De Weerd et al., 1998; Hsieh and Tse, 2006). Recent
reports of ‘feature mixing’ during maintained fixation in displays made of
equal size ‘background’ and ‘figure’ areas suggest that also surface features
themselves may compete during filling-in (Hsieh and Tse, 2009, 2010).
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Figure 4. fMRI results of the filling-in paradigm
A) fMRI activity during filling-in and control conditions of the entire figure
region in V1. Event related average (N=5, error bar = 1 SEM) shows V1
fMRI signal as a function of time in the FI (green), FIP (blue) and texture
(red) stimulus conditions. The bar graph below the time series show the
average activity level of the event related averages for an early and late
interval (indicated by grey vertical lines). Error bars on the bars are 95%
confidence intervals, linked bars marked with an asterisk differ significantly
(Bonferroni corrected). When comparing activity levels between time
intervals, the only significant increase was found in the FI condition in V2
(not shown) (F(2) = 1.35, p = 0.001).
B) fMRI activity during filling-in and control conditions of the entire figure
region in V2 (conventions as in A).
C) Activity profiles along an anatomical path across the figure
representation in V2 for filling-in (FI) and Filling-in prevention (FIP)
conditions. Activity along the cortical path (see Figure 3C) in FI (blue
line) and FIP (green line) conditions is shown from more foveal to more
peripheral locations. For reference, to the average activity level for the full
field texture stimulus is shown (thin red dashed line). Along and above the
abscissa a color gradient is shown corresponding to the cortical sampling
path as (Figure 3B) through V2. To outline the localizer data in this
figure, grey vertical lines are used to delineate the edges of the figure or
the transition from the figure region into the texture. The area used to
estimate the fMRI correlate of filling-in is the blue shaded area between
the FI an FIP curve (NFI) and extends over 2.9 mm cortex along the line
sample.
D) fMRI signal correlates with texture filling-in. The fMRI correlate was
defined as the NFI (see Figure 4C), and is correlated with the FIR.

The presence of enhanced activity in surface representations during filling-
in, the evidence for a role of boundary adaptation, and the competitive re-
lationship between background and boundary are all elements in our data
that are consistent with interpolation models of surface perception. How-
ever, in a recent interesting study, Weil et al. (Weil et al., 2007; Weil et
al., 2008) concluded that texture filling-in is associated with a decrease in
fMRI and MEG signal. Importantly, Weil et al.’s experiments differed in an
important aspect from ours: while we used a large static grey figure region,
they used a very small flickering target. It is possible that the decrease in
activity found in their study reflected adaptation to the flickering target,
rather than a correlate of texture filling-in. Our data are in support of that
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interpretation, and although our data do not support interpolation directly,
they confirm that surface texture interpolation can be associated with an
excitatory process within the extent of a surfaces’ retinotopic projection in
early visual areas. The same conclusion is supported by a number of stud-
ies in the domains of color and brightness (De Weerd et al., 1995; Sasaki
and Watanabe, 2004; Meng et al., 2005; Roe et al., 2005; Pereverzeva and
Murray, 2008).
We present the first human evidence linking increases in the levels of

fMRI activity in the representation of a physically grey surface with the
percept of texture filling-in across that surface. The fMRI data show strong
convergence with neurophysiological data from the monkey obtained with
similar stimuli. However, the temporal resolution of fMRI does not permit to
test directly whether the activity increases correlated with perceptual filling-
in reflect a fast neural interpolation process. Further neurophysiological
experiments in monkeys may be an effective manner to investigate this
open question.
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Summary
An overwhelming amount of visual processing resources is devoted to the
reconstruction of surface boundaries based on fragmentary retinal input.
Boundary reconstruction is well-studied, and there is common agreement
that neural interpolation processes contribute to this reconstruction pro-
cess. However, the signal elicited by the interior of homogenous surfaces is
small, and computational models as well as empirical studies disagree on the
question whether this signal has any relevance for the subjective perception
of the interior of surfaces. The studies presented here were focused on the
principal, heavily debated question whether there is a signal associated with
the perception of a surface’s interior within the confines of its retinotopic
representation in early visual cortex. To address this question we performed
fMRI studies at 3T using two different psychophysical paradigms to manip-
ulate the perceptual aspect of surfaces in the absence of physical surface
changes.
Prior to investigating this question, a method for efficient functional spa-

tial alignment was developed to minimize signal loss during averaging due
to cross-individual differences. This methodological development was nec-
essary in view of the small signals that were the target of the research.
In traditional alignment procedures, imperfect alignment of the spatial lo-
cations of small signals in different participants would lead to a complete
loss of that signal in the average activation map. By contrast, the de-
veloped method, which was coined the ‘pattern based alignment (PBA)
technique’ permits to find fine spatial activity patterns in averaged data.
In the empirical studies presented here, the alignment problem was solved
by morphing regions of interest (ROIs) to a common reference template.
The PBA technique is generally applicable as long as corresponding refer-
ence points or landmarks can be defined to constrain the alignment and
construct a common reference template. PBA promises to gain even more
in relevance with the advent of (ultra)-high field fMRI. High-field fMRI al-
ready yields functional maps with functional patterns of uncommonly high
spatial resolution, which with PBA now can be referenced and averaged
across individuals without major signal loss.
The first paradigm used to investigate correlates of surface perception

was dynamic brightness induction. In this paradigm, an illusory brightness
effect was induced in a static grey surface in counter phase to the luminance
modulations in two abutting inducer surfaces. The grey and inducer surfaces
were localized by independent localizers, which produced peaks in local
activity that were used as corresponding reference points for PBA of activity
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patterns in V1 to V3. PBA permitted the identification of a signal in
antiphase with luminance modulations in inducer surfaces, which is a likely
correlate of brightness induction. This correlate varied in magnitude in
accordance with the strength of brightness induction across a large set of
experimental and control conditions, and was present in extrastriate cortex
(stronger in V2 than in V3), but absent in V1.
Based on the findings of a correlate of brightness induction, a biolog-

ically inspired neural network of the early visual areas was built. In this
network, the elementary unit was a cortical column. A matrix of columns
was constructed to represent an area of the visual field, and columns were
interconnected according to biologically plausible rules. By pooling network
units and by applying hemodynamic constraints, activity in the model net-
work could be converted into a modeled fMRI signal. By projecting the
network generated data into the same brain space as the empirical data,
a direct comparison could be made between empirical and model data us-
ing identical analysis tools. The model assumes a signal related to the
physical luminance of the constant surface, which is modulated by (the
dynamic changes in) local contrast information at the edges between con-
stant grey surface and inducers. In essence, this is an interpolation model
applied to brightness induction, although some of our assumptions were
different from classical interpolation models. Although there is a good
match between the model data and the empirical data, building additional
or even very different assumptions might lead to an even better correspon-
dence. Hence, the presently used modeling approach opens the possibility
for straightforward testing of model data derived from different possible
model assumptions against the empirical data. The higher the correspon-
dence between model data and empirical data, the higher the plausibility
of the mechanisms incorporated in the model. However, a relatively simple
neural network model incorporating edge representations interacting with
a surface spreading mechanism was already able to approach the empirical
data closely.
The second paradigm used to investigate correlates of surface perception

was the Troxler fading paradigm. In this paradigm, when a participant fix-
ates a point, a peripheral figure becomes stabilized on the retina, which
leads to a disappearance from awareness, and filling-in of the figure by the
surrounding background. This illusion, referred to as ‘perceptual filling-in’
was used to probe the mechanisms underlying texture surface representa-
tion. Specifically, the question was asked whether in the cortical retinotopic
representations of the interior of a physically grey figure, activity increases
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would be found corresponding to activation by the texture. Participants
in this experiment underwent fMRI scanning, and were required to fixate
a centrally presented fixation point while being presented with stimuli de-
signed to permit filling-in, and with stimuli designed to prevent the filling-in
percept. To find a retinotopic correlate of the filling-in percept, a filling-in
condition was compared with a filling-in prevention condition. PBA was
used to aggregate activity profiles in V1 and in V2 across hemispheres and
participants. We found a signal in the center of the figure’s V2 representa-
tion during the filling-in condition as compared to the filling-in prevention
condition. This spatially specific increase in response to the texture filling-
in condition is attributed to the percept of texture in the figure region, in
the absence of physical evidence for texture. This signal in V2 was closely
correlated with the strength of experienced texture filling-in as measured
during fMRI scanning. This signal was not present in V1.
In summary, evidence from fMRI using two different paradigms suggests

that area V2 carries a signal related to the subjective perception of surfaces.
The evidence provided is in good agreement with findings from recording
and optical imaging studies in cats and monkeys. The fMRI studies pre-
sented here differ with previously published fMRI studies with respect to
stimulus design, experimental design, and cross subject alignment. Some or
all of these aspects may explain the positive findings reported in this thesis,
compared to negative or opposite findings in other studies. Hence, the data
provide strong support for an explicit encoding of both surface brightness
and surface texture in V2. Interestingly, no such support was found in V1,
suggesting a hierarchical process in which V2 computes perceptual aspects
of surfaces that go beyond what is encoded in V1. The data reject ‘sym-
bolic’ models that deny any explicit topographic surface encoding, and are
compatible with surface interpolation models, and any other models that
do explicitly represent the perceived aspect of surfaces. To more precisely
test specific computational models of surface perception, further research
is required.

Limits of the presented research
Throughout this work, filling-in was defined as the perception of a surface
feature in a region where that feature is physically absent. The empirical
evidence we have obtained and the modeling we have performed show that
it is plausible to assume that the neural mechanism underlying perceptual
filling-in is some kind of neural interpolation process. Although less rele-
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vant for brightness induction, for texture filling-in, a prominent unanswered
question is which features are preserved during interpolation. The dynamic
texture used was a multidimensional stimulus characterized by bars of a
specific orientation and luminance, a background of lower luminance, mo-
tion, etc. Prior research (Ramachandran and Gregory, 1991) has shown that
the filling-in of different features of a surface can be initiated at different
moments for different surface features. In our study, we do not know which
aspects of the texture are spread into the figure region during perceptual
filling-in, and we do not know to what extent this spreading mechanism
preserves the different aspects and statistics of the texture. Therefore, it is
likely that the fMRI signal that we have called a correlate of texture filling-
in is a multiplex signal consisting of temporally offset signals driven by a
variety of properties of the texture.
Furthermore, we have explicitly used perceptual filling-in as a paradigm

to study neuronal processes that lead to a specific visual experience of a
surface. The underlying assumption is that specific sets of neurons may
be involved for surface interpolation of different surface properties, through
spreading in horizontally connected networks. For example, in the texture
stimulus used, lateral connectivity among neurons that code brightness or
color in V2 thin stripes may be a substrate for brightness or color spreading
during perceptual filling-in, orientation selective neurons in V2 interstripes
may contribute to spreading of information about texture element orienta-
tion, and motion selective neurons in V2 thick stripes may contribute to
spreading of the dynamic aspects of the texture (Gattass et al., 1998; Sin-
cich and Horton, 2005b, a). By contrast, Lamme, (1995); Zipser et al.,
(1996), have published a series of important papers (Lamme et al., 1998;
Lamme and Roelfsema, 2000) showing that V1 neurons increase their ac-
tivation when a large area overlaying their RFs is perceived as a figure as
opposed to a ground. Their work also shows that the activation increase
starts about 100ms after stimulus onset at the figure-background border,
and then proceeds quickly to the middle of the figure surface (for review,
Lamme and Roelfsema, 2000). Importantly, the same neurons show this
effect irrespective of the manner in which the surface is defined against
its background (by color, stereopsis, texture, or luminance; Lamme, 1995;
Zipser et al., 1996; Levitt and Lund, 1997). Hence, the filling-in process
that is revealed in this experimental paradigm may correspond to a general,
contextual process that helps determine the figural status of a surface. This
interpretation is consistent with the computational models that have been
proposed to simulate the observed data, in which the importance of feedback
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from high-level visual areas is emphasized (Roelfsema et al., 2002; Jehee
et al., 2007). It is likely that the neural processes related to visual feature
spreading across a surface, and the neural processes related to spreading
of figural status across that surface interact. It will be important to start
teasing apart these different forms of filling-in and their neural correlates in
future studies.

What have we learned at the mechanistic level?
Although the presented empirical work has led to strong support for explicit
encoding of the visually perceived aspects of surfaces across their spatial ex-
tent, the fMRI data we have collected say little about the neuronal circuitry
that produce the fMRI responses. Based on neurophysiological and optical
imaging studies, it is possible to formulate specific hypotheses as to the
contributions of different subsystems within V1 and V2. Evidence reviewed
in the Introduction suggests that a pathway involving V1 blobs and V2 thin
stripes may play a privileged role in the spreading of visual surface features,
while a pathway involving V1 interblobs and V2 inter and thick stripes may
play a privileged role in the construction of boundary representations (Sin-
cich and Horton, 2005b, a). In addition, anatomical evidence shows that
lateral connectivity that could contribute to spreading is especially promi-
nent in superficial layers of cortex (Gilbert, 1977; Gilbert and Wiesel, 1979,
1985, 1989; Gilbert et al., 1990; Gilbert and Wiesel, 1990, 1992; Grinvald
et al., 1994; Tanifuji et al., 1994), and that the results of global, contextual
operations in high-level areas may re-enter preferably through deep layers
of V1 and V2 (Angelucci and Bressloff, 2006). The above mentioned hy-
pothetical assignment of different functions to different compartments in
V1 and V2 leads to specific predictions for filling-in in a Troxler fading
paradigm. For example, during stabilization there may be a decline of ac-
tivity in the V1 interblob – V2 thick/inter stripe subsystem. Furthermore,
only during time periods in which this decline is sufficient (during accurate
fixation), one may observe a lateral spreading process involving the V2 thin
stripe system. In general, measuring activity within the different subsystems
in V1 and V2, and measuring functional connectivity (Goebel et al., 2003;
Roebroeck et al., 2005, 2009) across these subsystems and across cortical
layers will be a prerequisite to test specific aspects of computational models,
such as the interactions between boundary and surface processing systems
hypothesized in interpolation theory.
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Future perspectives
To successfully test detailed mechanistic hypotheses about differential con-
tributions of functional subcompartments in early visual areas, there are two
basic requirements. First, it would be beneficial to maximize the strength
of the illusion used to probe surface perception. This may be achieved by
improving stimulus design. Specifically, in the case of filling-in in the Trox-
ler paradigm, we faced the difficulty to obtain a large signal related to the
illusion, because of the contradictory requirements to maximize figure size
to compensate for limits in fMRI spatial resolution, and to minimize figure
size to promote the illusion of filling-in. This problem might be addressed by
increasing the strength of the illusion by artificially increasing the stabiliza-
tion of the image on the retina. In principle, this can be achieved by using
fixation errors for online correction of the figure’s position. This requires a
stimulus presentation system with a high refresh rate combined with a high
spatial and temporal resolution eye tracking system. If this form of artifi-
cial image stabilization can be achieved, it may become possible to fill in
figures of significant size in (para)foveal vision, which is expected to lead to
neural interpolation across large regions of cortex because of cortical mag-
nification. Although the implementation of artificial image stabilization in
an MR environment involves significant hardware challenges, the potential
experimental benefits warrant exploring that approach.
Second, it would be beneficial to enhance the spatial and temporal resolu-

tion at which functional data are collected. Remarkably, although address-
ing detailed spatial and temporal aspects of neural signals related to surface
perception is within the possibilities of currently available neurophysiologi-
cal techniques in animals (e.g., Schroeder et al., 1998; Yoon et al., 2000;
Rubehn et al., 2009), this possibility so far has been taken little advantage of
in studies of surface perception. However, with the advent of (ultra) high-
field imaging, and optimization of imaging at 3T, functional neuroimaging
suited for resolving anatomical layers, functional subdomains within cortical
areas, and columns may become feasible (Yacoub et al., 2008; Bissig and
Berkowitz, 2009; Koopmans et al., 2010). Thanks to these developments
in the field of fMRI, detailed experiments testing mechanistic hypotheses
about surface perception may soon be within reach in human experimental
subjects.
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Een groot deel van de is energie beschikbaar voor visuele verwerking in het brein wordt gewijd aan
de reconstructie van de grenzen tussen vlakken gebaseerd op fragmentarische invoer afkomstig uit de
retina. De processen onderliggend aan de reconstructie van deze grenzen zijn uitvoerig bestudeerd,
er heerst een consensus dat neurale interpolatie processen bijdragen aan het reconstructie proces.
Desalniettemin is het signaal afkomstig vanuit een homogeen vlak klein, en stellen computationele
modellen en empirische studies in vraag wat de relevantie van dit kleine signaal met betrekking tot de
subjectieve perceptie van vlakken is. De in deze thesis beschreven studies hebben als doel inzicht te
scheppen in het debat over het al dan niet bestaan van een signaal in de retinotopische representatie
van een vlak dat gelieerd is aan de perceptie van dat vlak. We hebben deze vraag onderzocht in
twee psychofysische paradigma’s waarin de perceptie van vlakken werd gemanipuleerd in afwezigheid
van fysische veranderingen. We gebruiken fMRI beeldvorming om in deze paradigma’s activiteit te
meten in de visuele cortex.
Een noodzaak om een antwoord op de hoofdvraagstelling te kunnen formuleren was de ontwikke-

ling van een methode voor het efficient uitlijnen van functionele beeldvormingsdata. Het doel van
deze methode is het signaalverlies ten gevolge van individuele verschillen te minimaliseren wanneer
proefpersoongegevens gecombineerd worden door middel van middeling. Deze methodologische on-
twikkeling is hoogstnodig in het licht van de hypothese dat de magnitude van het signaal afkomstig
van vlakken klein is. Het gebruik van de traditionele uitlijn methoden resulteert veelal in de im-
perfecte uitlijning van spatiële locaties, afkomstig van meerdere proefpersonen, waaruit de kleine
signalen ontstaan en leidt tot algeheel signaalverlies in gemiddelde activatieoverzichten. In sterk
contrast hiertoe staat dat de ontwikkelde patroon gebaseerde uitlijn methode (PGU) ertoe in staat
is om fijnschalige activiteitspatronen te ontdekken in gemiddelde proefpersoongegevens. In de em-
pirische studies hier gepresenteerd wordt het uitlijningsprobleem opgelost door het vervormen van de
bestudeerde regios in het brein naar een gemeenschappelijk referentie sjabloon. De PGU techniek
is algemeen toepasbaar wanneer de mogelijkheid bestaat om corresponderende referentiepunten of
andere oriëntatiepunten tussen hersenenregios in proefpersonen te definiëren om het uitlijnprocess
te begeleiden en om een gemeenschappelijk referentie sjabloon te vormen. PGU belooft zelfs meer
relevant te worden door de opkomst van ultra hoge veld fMRI. Ultra hoge veld fMRI is reeds in
staat om functionele activiteitsoverzichten op te leveren van een ongemeen hoge spatiële resolutie
die door middel van PGU uitgelijnd kan worden waardoor data overheen subjecten gemiddeld kan
worden zonder noemenswaardig signaalverlies.
Het eerste paradigma dat gebruikt werd om de correlaten van vlak perceptie te bestuderen was een

dynamische helderheids inductie paradigma. Met dit paradigma kon een illusoir helderheids effect
geïnduceerd worden in een statisch grijs vlak dat in tegenfase is met de luminantiemodulaties in twee
aangrenzende inducerende vlakken. Het grijze vlak en de inducerende vlakken werden retinotopisch
gelocalizeerd door onafhankelijke localisatie stimuli. De hieruit resulterende lokale activatiepieken
werden gebruikt als corresponderende referentiepunten ten behoeve van de PGU van activiteitspa-
tronen in V1 tot V3. Door middel van PGU werd een signaal geïdentificeerd dat zich in tegenfase
verhield in vergelijking met het signaal ten gevolge van de luminantiemodulaties in de inducerende
vlakken. Het tegenfase signaal is hoogstwaarschijnlijk een correlaat van helderheidsinductie want de
magnitude van het signaal covarieerde met de door proefpersonen ingeschatte sterkte van het illu-
soire helderheids effect doorheen een reeks van experimentele en controle experimenten. Het illusoire
helderheids effect was meest prominent aanwezig in V2, zwakker in V3 maar afwezig in V1.
Gebaseerd op de observatie van een correlaat van helderheidsinductie werd een biologisch geïn-

spireerd neuraal netwerk gebouwd. In dit netwerk werden de elementaire eenheden aan corticale
kolommen gelijkgesteld. Een matrix van kolommen werd zo geconstrueerd dat deze een deel van het
visuele veld vertegenwoordigde, deze kolommen werden onderling verbonden aan de hand van biolo-
gisch plausibele regels. Door het samenvoegen van netwerkeenheden en door het toepassen van een
hemodynamische filter op de signaal van de samengevoegde netwerkeenheden kon het netwerksig-
naal naar een fMRI signaal geconverteerd worden. Door het projecteren van de door het netwerk
gegenereerde data naar hetzelfde breingebaseerd gemeenschappelijk referentiekader als de empirische
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data kon op beide datasets een gelijke analysemethode gebruikt worden. Het netwerk model veron-
derstelt dat een signaal gerelateerd aan de luminantie van het statische vlak gemoduleerd wordt door
de dynamische veranderingen van het locale contrast aan de grenzen tussen het statische vlak en
de inducerende vlakken. Het neurale netwerk is gebouwd op principes ingegeven door de interpo-
latietheorie van vlakken, hoewel sommige van onze assumpties verschillen van de inzichten vervat in
klassieke interpolatie modellen. Ofschoon een goede overeenkomst tussen model data en empirische
data werd vastgesteld is het mogelijk om additionele of compleet nieuwe voorwaarden in het model
te bouwen die tot een verbeterde overeenkomst kunnen leiden. Dus de modelleeraanpak opent de
mogelijkheid om op een simpele manier directe vergelijkingen te maken tussen empirische data en
modeldata gebaseerd op verschillende assumpties. Hoe hoger de overeenkomst tussen modeldata en
empirische data, hoe hoger de plausibiliteit van het mechanisme vervat in het model. Desalniettemin
kan modeldata afkomstig van een relatief simpel neuraal netwerk model met daarin vervat grensrep-
resentaties die interacteren met vlakspreidingsmechanismen de empirische data dichtbij benaderen.
Het tweede paradigma dat gebruikt werd om de correlaten van vlak perceptie te bestuderen was

een Troxlervervagings paradigma. In dit paradigma wordt een stimulus gebruikt die is opgebouwd uit
een figuur dat omringd is door dynamische textuur. Doordat een persoon zijn blik fixeert op een punt,
wordt een perifere figuur gestabilizeerd op de retina wat ertoe leidt dat de figuur uit het bewustzijn
van de persoon verdwijnt en dat de figuur ingevuld wordt door de dynamische textuur. Deze illusie
die perceptuele invulling genoemd wordt werd gebruikt om de mechanismen onderliggend aan de
representatie van textuurvlakken ten gronde te onderzoeken. Meer bepaald was de vraagstelling of
de activiteit tijdens invulling van een grijze figuur zou overeenkomen met de activatie door textuur
in de retinotopische representatie van deze figuur. Deelnemers in dit experiment ondergingen fMRI
beeldvorming. Hun instructie was om hun blik op een centraal gepresenteerd fixatiepunt te fixeren
terwijl een stimulus die perceptuele invulling toelaat aan hen werd gepresenteerd. In een controle-
experiment werd hen gevraagd te fixeren terwijl een stimulus die perceptuele invulling tegenging
gepresenteerd werd. Om een retinotopisch correlaat van het perceptuele invullings percept vast te
stellen werd een vergelijking gemaakt van de activiteit in de figuur regio in het brein tussen de con-
ditie die filling-in toeliet en de conditie die filling-in tegenging. PGU werd toegepast op deze data
zodat acitiveits profielen van V1 en V2 geaggregeerd konden worden over hersenhemisferen en proef-
personen. Door de vergelijking van de signalen in de conditie die filling-in faciliteerde en de conditie
die filling-in tegenging vonden wij een signaal in het centrum van de cortical figuurrepresentatie in
V2 dat aan perceptuele invulling geattribueerd kan worden. Van deze plaatsspecifieke activiteitssti-
jging in reactie op de textuur filling-in conditie wordt aangenomen dat deze een gevolg is van het
textuurpercept in de figuur regio zonder dat er daar fysieke textuur aanwezig is. Het signaal in V2
was sterk gecorreleerd met de sterkte van het illusoire percept als aangegeven door de proefpersonen
tijdens de fMRI beeldvorming. Dit signaal was niet aanwezig in V1.
Samenvattend wordt gesuggereerd dat ingegeven door bewijslast afkomstig van fMRI in twee ver-

schillende paradigmas, een signaal afkomstig uit V2 gerelateerd is aan de subjectieve waarneming
van vlakken. Het hier verzamelde bewijsmateriaal komt sterk overeen met bevindingen afkomstig
van cel afleidingen en optische beeldvormingsexperimenten uitgevoerd in katten en primaten. De
gepresenteerde fMRI experimenten verschillen van eerder gepubliceerde fMRI studies wat betreft de
gebruikte stimuli, het experimentele ontwerp en door de PGU techniek. Enkele, of al deze verschilpun-
ten kunnen de positieve bevindingen die gerapporteerd worden in deze thesis verklaren wanneer een
vergelijking gemaakt wordt met de tegengestelde en nul-bevindingen in andere experimenten. Dus
deze leveren sterke ondersteuning aan de theorie dat zowel vlakhelderheid en vlaktextuur expliciet
geëncodeerd worden in V2. Interessant is dat deze bevinding niet opgaat voor V1, dit suggereert een
hiërarchische verwerkingsproces waarin V2 verantwoordelijk is voor computaties met betrekking tot
de perceptuele aspecten van vlakken die de rol van V1 overstijgen. Op grond van deze data kunnen
‘symbolische’ modellen die een expliciete topografische codering verwerpen afgewezen worden, de
gevonden data zijn echter wel compatibel met vlak interpolatie modellen en eender welke klasse
van modellen die poneert dat het perceptuele aspect van vlakken expliciet gecodeerd wordt. Om te
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discrimineren tussen de resterende computationele modellen is verder onderzoek noodzakelijk.
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