
 

 

 

Forecasting Mixed Frequency Time Series with ECM-
MIDAS Models
Citation for published version (APA):

Hecq, A. W., Götz, T. B., & Urbain, J. R. Y. J. (2012). Forecasting Mixed Frequency Time Series with
ECM-MIDAS Models. METEOR, Maastricht University School of Business and Economics. METEOR
Research Memorandum No. 012 https://doi.org/10.26481/umamet.2012012

Document status and date:
Published: 01/01/2012

DOI:
10.26481/umamet.2012012

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 02 Oct. 2022

https://doi.org/10.26481/umamet.2012012
https://doi.org/10.26481/umamet.2012012
https://cris.maastrichtuniversity.nl/en/publications/c650a290-4aaa-46b8-99cc-c735a7506245


 

Thomas B. Götz, Alain Hecq, Jean-
Pierre Urbain 

 
Forecasting Mixed Frequency 

Time Series with ECM-MIDAS 
Models 

 
RM/12/012 

  
 
 



Forecasting Mixed Frequency Time Series with

ECM-MIDAS Models
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Abstract

This paper proposes a mixed-frequency error-correction model in order to develop
a regression approach for non-stationary variables sampled at different frequencies
that are possibly cointegrated. We show that, at the model representation level, the
choice of the timing between the low-frequency dependent and the high-frequency
explanatory variables to be included in the long-run has an impact on the remaining
dynamics and on the forecasting properties. Then, we compare in a set of Monte
Carlo experiments the forecasting performances of the low-frequency aggregated
model and several mixed-frequency regressions. In particular, we look at both the
unrestricted mixed-frequency model and at a more parsimonious MIDAS regression.
Whilst the existing literature has only investigated the potential improvements of
the MIDAS framework for stationary time series, our study emphasizes the need to
include the relevant cointegrating vectors in the non-stationary case. Furthermore,
it is illustrated that the exact timing of the long-run relationship does not matter
as long as the short-run dynamics are adapted according to the composition of the
disequilibrium error. Finally, the unrestricted model is shown to suffer from pa-
rameter proliferation for small sample sizes whereas MIDAS forecasts are robust to
over-parameterization. Hence, the data-driven, low-dimensional and flexible weight-
ing structure makes MIDAS a robust and parsimonious method to follow when the
true underlying DGP is unknown while still exploiting information present in the
high-frequency. An empirical application illustrates the theoretical and the Monte
Carlo results.
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1 Introduction

In economics we are often concerned with the problem of dealing with variables that are avail-
able, and thus sampled, at different frequencies. One example is the task of forecasting or
nowcasting the quarterly gross domestic product using monthly variables such as the industrial
production index or daily indicators such as interest rates or stock prices. The classical way to
deal with such a situation is the temporal aggregation of the high-frequency variables, i.e. to
sample at the common low-frequency. However, this approach might lead to a loss of informa-
tion due to omitting the high-frequency observations (Andreou et al., 2010). Hence, forecasting
performances might improve by making use of these extra information.

In many cases, including all potential unrestricted high-frequency explanatory variables is
unfeasible with regard to the number of observations for the low-frequency dependent variable.
This has motivated the introduction of (Mi)xed (Da)ta (S)ampling (henceforth MIDAS) which
aims at transforming a high-frequency variable so that all information in the high-frequency can
be preserved (Ghysels et al., 2004). One of the virtues of the MIDAS approach is its parsimony,
meaning that by a clever choice of a restricted lag polynomial we can reduce the number of
parameters to estimate while still employing the information present in the high-frequency
variables and its lags (Ghysels and Valkanov, 2006).

In almost all the literature, MIDAS is applied to stationary time series or to transformations
of non-stationary variables like first differences. For instance, Clements and Galvao (2007) and
Clements and Galvao (2009) consider the growth rate of GDP or the term spread. Andreou and
Kourtellos (2010) forecast US economic activity employing a large cross-section of transformed
daily series.

Merely working with differenced variables might disregard a possible long-run relationship
between the variables. In this paper, we instead consider mixed-frequency time series yt and xt
that are I(1) and possibly cointegrated. We compare the forecasting performance of models for
∆yt when only the first difference terms of yt and of xt are included, omitting the presence of
a long-run relationship, with a mixed-frequency error correction model (ECM hereafter). We
also compare our mixed-frequency model with a model resulting from the temporal aggregation
of high-frequency variables. In the usual case, i.e. the common-frequency framework, Clements
and Hendry (1998) among others have compared models in terms of their ability to predict the
levels, the first differences and the long-run relationships. Concerning the first differences, the
gain of including the long-run relationship is apparent only for short horizons, say from one
until 5-step ahead in their simulations. In terms of forecasting and nowcasting business cycle
indicators such as inflation or the unemployment rate, however, this can be important.

Seong et al. (2007) also model cointegrated multivariate time series of mixed frequencies.
However, they regard the low-frequency observations as missing data and treat them with high-
frequency data by employing a state-space model. Instead, this paper aims at providing tools
for working in a mixed-frequency framework but without relying on a state-space form. It turns
out that most macroeconomic variables of interest to be forecasted (gross domestic product,
inflation, etc) are available at a lower frequency than explanatory indicators, and therefore
a regression approach makes sense. To the authors’ knowledge, the evaluation of a mixed-
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frequency error correction model without adopting a state-space model has not been done yet
and is one of the contributions of this paper.1

The rest of the paper is organized as follows. In Section 2 we introduce a mixed-frequency
ADL model and derive the short-run dynamics implied by alternative choices of the variables to
be included in a long-run component. Section 3 discusses an alternative mixed-frequency error-
correction model and proposes an analogous approach to the Engle-Granger two-step framework
(Engle and Granger, 1987) in which we first determine the cointegrating relationship before we
plug it in an ECM regression. A MIDAS framework is proposed to capture the high-frequency
short-run dynamics. The model is then compared with the unrestricted approach and classical
methods of temporal aggregation using Monte Carlo simulations in Section 4. The method in
Section 3 as well as some invariance tests are elaborated on and investigated as well. Section 5
illustrates the theoretical and the Monte Carlo results via an empirical illustration. Section 6
concludes.

2 The MF-ADL-model and ECM Representations

Let us first introduce a mixed-frequency autoregressive distributed lag model, denoted MF-
ADL(ph, pl, qh, ql), for two non-stationary I(1) time series yt and xt. This can be represented
by the following model:

yt = c+ α10yt,m−1 + . . .+ αph0yt,m−ph+
α01yt−1 + α11yt−1,m−1 + . . .+ αph1yt−1,m−ph+
...
α0plyt−pl + α1plyt−pl,m−1 + . . .+ αphplyt−pl,m−ph+
β00xt + β10xt,m−1 + . . .+ βqh0xt,m−qh+
β01xt−1 + β11xt−1,m−1 + . . .+ βqh1xt−1,m−qh+
...
β0qlxt−ql + β1qlxt−ql,m−1 + . . .+ βqhqlxt−ql,m−qh + εt,

(1)

or in terms of lag polynomials by

α0(Lm)yt = c+ α1(Lm)yt−1 + . . .+ αpl(Lm)yt−pl+
β0(Lm)xt + β1(Lm)xt−1 + . . .+ βql(Lm)xt−ql + εt,

(2)

where the subscript l denotes the low-frequency variables and h represents high-frequency ones.
The index t represents the low frequency and runs from 1 to T . The number of high-frequency

1Simultaneously and independent from this work, Miller introduced cointegrating MIDAS regressions and a
MIDAS test (Miller, 2011a). He shows that nonlinear least squares consistently estimate the minimum mean-
squared forecast error parameter vector and derives the asymptotic distribution of the difference between the
estimator and this minimum. These results are robust to errors that are correlated serially or with the regressors,
extending the results of Andreou et al. (2010). In yet another paper, he generalizes the work of Chambers (2003)
and Pons and Sansó (2005) on efficient estimation of the cointegrating vector. In particular, allowing for general
weighting schemes, conditional and unconditional efficiency bounds are derived and a canonical cointegrating
regression approach is proposed since it attains the aggregation-conditional bound asymptotically (Miller, 2011b).
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observations per t-period equals m (in a year/month example, m = 12). εt is assumed to be
a martingale difference sequence with respect to the past information and for simplicity, xt is
assumed to be strongly exogenous for the long run parameters.2 In the second representation,
αk(·) and βv(·) (for k = 1, . . . , pl and v = 1, . . . , ql) denote polynomials in Lm which stands for
the lag operator in the high frequency such that Ljmxt,m−i ≡ xt,m−i−j . Note that all the elements
of both sets of polynomials are of the orders ph and qh, respectively. This representation will
prove useful in the remainder of the paper. Note also that at this stage we abstract from
deterministic trends and higher order deterministic components.

Using this notation, a variable has two indices, t and m− i (for 0 ≤ i ≤ m−1). If i = 0, the
m-index is suppressed such that xt,m ≡ xt meaning it is the end-of-period observation such as
the last day in a month for instance. xt,1 is the first day of the month in a month/day analysis
or the first month of the year in a year/month setting. Finally, xt,m−m ≡ xt−1. The following
table illustrates this notation by the help of the year/month example.

Notation t = 2011, m = 12

xt+1,m−(m−1) x2012,Jan
xt ≡ xt,m x2011,Dec
xt,m−1 x2011,Nov
xt,m−2 x2011,Oct

...
...

xt,m−(m−2) x2011,F eb
xt,m−(m−1) x2011,Jan

xt−1 ≡ xt,m−m ≡ xt−1,m x2010,Dec
xt−1,m−1 x2010,Nov

Note that throughout the paper, ∆ denotes the usual difference operator in the low-
frequency: ∆yt = yt − yt−1. The difference operator in the high frequency is denoted by a
subscript m: ∆myt,m−i = yt,m−i − yt,m−i−1.

Several models are nested in the above formulation (1) and (2). These are for instance:

• MF-ADL(0, pl, qh, ql) where the high frequency observations of y are not visible,

• MF-ADL(0, pl, 0, ql), i.e. the common low frequency case, where also the high frequency
observations of x are left out,

• MF-ADL(0, 0, qh, ql) stands for the mixed frequency distributed lag model,

• MF-ADL(0, 0, qh, 0) where in addition to the previous situation, no lagged low-frequency
observations on x are included.

For the subsequent analysis it is important to choose what the data generating process
(DGP) is. Indeed, if the DGP is the high frequency equation (1), there are some unobserved

2This assumption is made to simplify the presentation, extensions to the weakly exogenous case are direct.
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variables, e.g. the high frequency y when considering one of the restricted models above. In this
paper we first consider a mixed-frequency DGP such as the MF-ADL(0, pl, qh, ql). Note that
this ”observable” MF-ADL is often used as DGP in the MIDAS literature (see, for example,
Andreou et al., 2010). As an invariance test, we will consider a high-frequency DGP in Section
4.4 of the paper. Furthermore, the resulting low-frequency observations of yt are treated as
end-of-period observations which is reasonable given that they usually become available at the
end of the corresponding period.

Let us start for simplicity with

yt = c+ β0xt + β1xt,m−1 + · · ·+ βqxt,m−q + εt
= c+ β(Lm)xt + εt,

(3)

the restricted MF-ADL(0, 0, qh, 0) where no lagged observations on yt’s or st,m−i’s are included.
Note that this is a usual framework on which previous work on mixed-frequency data is applied
(e.g. Andreou et al. (2010)). For convenience, we (temporarily) denote qh by q, with q ≤ m−1.
As an example of the latter inequality, we can consider m = 20 days per month but only take
the more recent 15 days, including the current period (q = 14 then). We assume xt is I(1) and
that the series are cointegrated.

Given that we will rely on a simple two-step approach à la Engle and Granger (1987),
we first consider the long-run relationship between yt−1 and some observation of x. We may
consider three possible cases for the disequilibrium error zt−1:

(i) zt−1 = yt−1 − γxt−1: ’same-period’-case,

(ii) zt−1 = yt−1 − γxt,m−i with i < m: ’x-after-y’-case,

(iii) zt−1 = yt−1 − γxt−1,m−i with i < m: ’x-before-y’-case.

The first case corresponds to the standard framework in which the two series are sampled at
the same moment. In the mixed frequency modeling there are alternative intuitive possibilities,
however. For real-time data and given the release of the data by statistical offices, the ’x-
after-y case’ is appealing. For instance, imagine that in February 2012 we have the industrial
production index for January 2012. The ’x-after-y’-case allows us to use daily information
available in February 2012 (interest rate, stock prices,..) to test for cointegration.

By relying on the representation that employs lag polynomials, it will be illustrated that
for every case an ECM representation of the following form can be constructed:

∆yt = c− (yt−1 − β(1)Lφmxt) + β∗(Lm)(1− Lm)xt + εt,

with φ = {i,m,m + i} and 1 ≤ i ≤ m − 1 such that the respective xt,m−i-observation enters
zt−1. The respective transformation applied to the lag polynomial, β(Lm), is either similar or
identical to the Beveridge-Nelson decomposition (see, for instance, Davidson, 2000). As will
be shown in the sequel, the timing of the high-frequency observation appearing in the long-run
relationship impacts the derivation of the short-run dynamics β∗(Lm) that might be captured
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in a MIDAS framework. Although the timing will not affect the asymptotic properties of tests
statistics, the Monte Carlo section evaluates the impact of that choice for small samples.

Note that at this stage we know the underlying DGP such that we are able to determine,
at the model representation level, the structure of the short-run dynamics coherent with any
timing under consideration. In practice, the DGP as well as the correct timing and therefore
the according amount of short-run variables to include may be unknown. Using the Monte
Carlo results in Section 4 we will argue that over-parameterizing the short-run dynamics will
solve the above mentioned problem for a practitioner. However, the implications of different
timings in the long-run term on the short-run dynamics at the model representation level are
of importance for understanding the Monte Carlo study (and its results).

2.1 ’Same-period’

If zt−1 consists of yt- and xt,m−i-observations of the same period, the ECM-representation can
easily be derived by noting that the lag polynomial, β(Lm) = β0xt + β1xt,m−1 + · · ·+ βqxt,m−q
can be rewritten in the following way:

β(Lm) = (
∑q

j=0 βj)L
m
m +

[
β0 + (β0 + β1)Lm + . . .+ (

∑q
j=0 βj)L

q
m + . . .+ (

∑q
j=0 βj)L

m−1
m

]
(1− Lm)

= β(1)Lmm + β∗(Lm)(1− Lm),

such that β∗(Lm) is a lag polynomial of order m− 1. This implies that

yt = c+ β(Lm)xt + εt
⇔ ∆yt = c− (yt−1 − β(1)Lmmxt) + β∗(Lm)(1− Lm)xt + εt

= c− (yt−1 − β(1)xt−1) + β∗(Lm)∆mxt + εt.
(4)

Note that the error correction (EC) term consists of one yt- and one xt,m−i-variable only. The
short-run, however, are the high-frequency differences of all the xt,m−i-observations between t
and t− 1 leading to m high-frequency terms entering the short-run dynamics in total.

2.2 ’x-after-y’

If the deviation from the long-run is best represented by zt−1 = yt−1− γxt,m−i with i < m, the
ECM-representation takes the form

∆yt = c− (yt−1 − β(1)Limxt) + β∗(Lm)(1− Lm)xt + εt
= c− (yt−1 − β(1)xt,m−i) + β∗(Lm)∆mxt + εt,

(5)

where 1 ≤ i ≤ m− 1 and

β∗(Lm) =

{
β0 + . . .+ (

∑i−1
j=0 βj)L

i−1
m − (

∑q
j=i+1 βj)L

i
m − (

∑q
j=i+2 βj)L

i+1
m − . . .− (βq)L

q−1
m if q > i

β0 + (β0 + β1)Lm + . . .+ (
∑q

j=0 βj)L
q
m + . . .+ (

∑q
j=0 βj)L

i−1
m if q ≤ i.

Hence, in the ’x-after-y’-case, we have max(q, i) short-run dynamics terms (since β∗(Lm) is a
polynomial of order max(q − 1, i− 1)).
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2.3 ’x-before-y’

If zt−1 = yt−1 − γxt−1,m−i with i < m is the most suitable long-run relationship, we obtain the
following ECM-representation analogously to the previous cases:

∆yt = c− (yt−1 − β(1)Lm+i
m xt) + β∗(Lm)(1− Lm)xt + εt

= c− (yt−1 − β(1)xt−1,m−i) + β∗(Lm)∆mxt + εt,
(6)

where Lm+i
m xt = LimL

m
mxt = Limxt−1 = xt−1,m−i and

β∗(Lm) = β0 + (β0 + β1)Lm + (

q∑
j=0

βj)L
q
m + . . . (

q∑
j=0

βj)L
m
m + . . . (

q∑
j=0

βj)L
m+i−1
m .

Here, we deal with m+ i short-run dynamics terms.

2.4 Extending along ql

If we allow for more low-frequency periods of the xt,m−i-variable, e.g. ql > 0 in the MF-ADL-
model, we obtain an ECM representation that follows from the techniques in the subsections
above. Consider the MF-ADL(0, 0, qh, ql) model:

yt = c+ β0(Lm)xt + β1(Lm)xt−1 + . . .+ βql(Lm)xt−ql + εt.

Recalling that each of the ql lag polynomials is of the same order (qh), straightforward appli-
cation of the techniques employed before leads to the following ECM representation:

∆yt = c−

yt−1 − (

ql∑
j=0

βj(1))Lφmxt

 + β∗(Lm)(1− Lm)xt + εt, (7)

where β∗(Lm) represents an ’aggregate’ lag polynomial of order (mql + qh − 1)3 whose struc-
ture depends on which xt,m−i-variable appears in the long-run relationship which is, in turn,
determined by φ as before.

2.5 Inclusion of an AR-term

Now, let us add an autoregressive term in the MF-ADL model. We will focus on the case with
ql = 0 for illustrative purposes (the case with ql > 0 is trivial given the previous subsection).
Hence, we consider the following MF-ADL(0, p, q, 0) model:

yt = c+ α1yt−1 + . . .+ αpyt−p + β(Lm)xt + εt
⇔ α(L)yt = c+ β(Lm)xt + εt,

3Except in the ’x-before-y’-case with ql = 1 where the order equals (max(qh, i) +m− 1). Note that the cases
when ql = 0 were discussed in the sections before.
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where α(L) = 1− α1L− . . .− αpLp is a lag polynomial in the low frequency. Straightforward
application of the methods employed before gives:

α(L)yt = c+ β(Lm)xt + εt
⇔ α(1)yt−1 + α∗(L)∆yt = c+ β(1)xt,m−φ + β∗(Lm)∆mxt + εt

⇔ α∗(L)∆yt = c− α(1)
[
yt−1 − β(1)

α(1)xt,m−φ

]
+ β∗(Lm)∆mxt + εt,

(8)

where α∗(L) is a lag polynomial of order p−1 (due to the application of the ’classical’ Beveridge-
Nelson decomposition) such that terms involving the dependent and independent variables enter
the short-run dynamics.

3 The Choice of the Error-Correction Term for Cointegrating Analysis

Note that the short-run dynamics terms are high-frequency differences which can be estimated
by a MIDAS regression, for example. However, the disequilibrium error consists of one particular
xt,m−i and yt−1. If we want to allow for more observations of xt,m−i appearing in the long-
run relationship, we obtain low-frequency differences in the short-run dynamics (note that the
respective difference operators do not have an m-subscript anymore):

yt = c+ β0xt + β1xt,m−1 + · · ·+ βqxt,m−q + ut = c+ β(Lm)xt + εt
⇔ ∆yt = c− (yt−1 − β0xt−1 − β1xt−1,m−1 − . . .− βqxt−1,m−q)+

β0∆xt + β1∆xt,m−1 + . . .+ βq∆xt,m−q + εt
= c− (yt−1 − β(Lm)xt−1) + β(Lm)∆xt + εt.

(9)

Focusing on this representation, one could estimate the (mixed-frequency) error-correction term
in (9) via MIDAS by imposing

yt = β(Lm)xt = β

q∑
i=0

wi(θ)xt,m−i, (10)

where wi(θ) are weights that sum up to one in order to identify the scale coefficient, β, and
treat the short-run terms as common frequency variables with respect to the dependent variable.
However, our approach of using only one particular observation of xt,m−i in the error-correcting
term along with high-frequency short-run dynamics has several advantages over the above men-
tioned option. Indeed, testing for a MIDAS-type cointegrating relationship is computationally
difficult (see Götz, 2010 for details).

Focusing on our ECM-MIDAS models, the question remains how to determine the timing
of the long-run relationship, i.e. which xt,m−i-term enters the EC-term. Analogously to the
Engle-Granger two-step framework (1987), first a certain regressor variable is determined to
enter the long-run term. Second, the cointegrating relationship is estimated via fully modified
least squares. In order to choose one of the xt,m−i-terms or a combination of them, we consider
the set xt+j,m−i, with j ∈ {0, 1} and i ∈ [0,m − 1] excluding the combination {j = 1, i = 0}
as candidates. Hence, we screen through the possible cases described in the previous sections:
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Same-period (j = 0, i = 0), ’x-after-y’ (j = 1, 0 < i ≤ m − 1) and ’x-before-y’ (j = 0, 0 < i ≤
m− 1). It should be clear that there are m− 1 ’x-before-y’- and ’x-after-y’-cases giving, with
the ’same-period’-case, a total of 2m − 1 candidates. The table below illustrates this set of
xt,m−i-terms for a year/month example.

Notation t = 2010, m = 12 Case

xt,11 x2011,Nov ’x-after-y’
...

...
xt,2 x2011,F eb ’x-after-y’
xt,1 x2011,Jan ’x-after-y’

xt−1(,12) x2010,Dec ’same-period’

xt−1,11 x2010,Nov ’x-before-y’
...

...
xt,2 x2010,F eb ’x-before-y’
xt,1 x2010,Jan ’x-before-y’

The question whether a certain xt,m−i-term (and if yes, which one) or a combination of all
of them (and if yes, how to combine) should enter the EC-term will be answered in the next
section.

After the long-run relationship is determined and estimated as described above, we are able
to estimate all remaining parameters in the corresponding ECM representation exploiting the
superconsistency results of the least squares estimator of cointegrating vectors (Miller, 2011a).
Due to the fact that the short-run dynamics are high-frequency variables, different candidate
estimation methods are available. Their forecasting performances with or without the inclusion
of the disequilibrium error term are investigated in a Monte Carlo study in the next section.

4 Monte Carlo Simulations

4.1 Data Generation Process

As already mentioned in Section 2, we first assume that the DGP is the ”observable” MF-
ADL(0, pl, qh, ql) that is often employed in the MIDAS-literature (see, e.g., Andreou et al.,
2010). In particular, we assume that xt,m−i is generated as a simple random walk in the high
frequency:

xt,m = xt,m−1 + εt,m,

where xt,1 = xt−1,m + εt,1, x0 = u1 with εt,m ∼ i.i.d.N(0, 1) and u1 ∼ N(0, 1).
Before generating ∆yt using one of the ECM representations from the previous section, we

have to make several assumptions. Firstly, let us assume the ”best” long-run relationship is the
’same-period’ case, e.g. zt−1 = yt−1 − γxt−1,m. Furthermore, we assume that the cointegrating
relationship is known exactly, e.g. γ is known. Without loss of generality we set γ = 1. This is,
of course, a strong assumption which should be relaxed in further research. For now, however,
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we want to focus on the forecasting performance of our mixed-frequency ECMs employing
different methods to estimate the short-run dynamics. Note, however, that we could also use
any consistent estimator of the long-run relationship such as fully modified OLS. Finally, assume
m = 12 (think of months in a year or weeks in a quarter), qh = m− 1 and ql = 0 in the DGP.

We fix y0 ∼ N(0, 1) to compute z0 = y0 − x0,m. Finally, yt is generated as

∆y1 = c+ δz0 + αy0 +

m−1∑
i=0

βi∆mx1,m−i + υ1,

(from which y1 = y0 + ∆y1 to generate)

∆yt = c+ δzt−1 + α∆yt−1 +

m−1∑
i=0

βi∆mxt,m−i + υt,

with vt ∼ i.i.d.N(0, 1) and yt = y0 +
∑t

i=1 ∆yi for t > 1. This ensures that we obtain I(1)
variables yt and xt,m−i where the former is a low frequency and the latter is a high-frequency
variable. Furthermore, yt and the mth observation of xt,m−i are cointegrated of order CI(1, 1).

Throughout the simulations we fix c = 0.1, α = 0.5 and consider four different values for the
error correction coefficient δ ∈ {−0.75,−0.25,−0.1, 0}. The coefficients of the high-frequency
differences in xt,m−i are the cumulative ones of the respective xt,m−i-observations in levels. In
particular, Section 2.1 illustrates that the coefficient on ∆mxt,m−i is the sum of the coefficients
on the first i observations of xt,m−i in the underlying MF-ADL model. We assume that more
recent observations of xt,m−i should have a larger impact on yt implying that the β-coefficients
above should be increasing, but with a decreasing ”step size”.4

4.2 Forecasting: Approaches and Robustness Tests

We compare eight different approaches in terms of their forecasting performances. These are:

(1) Unrestricted short-run with cointegration,

(2) Unrestricted short-run; long-run relationship excluded,

(3) Restricted short-run (MIDAS) with cointegration,

(4) Restricted short-run (MIDAS); long-run relationship excluded,

(5) Point-in-Time sampling with cointegration,

(6) Point-in-Time sampling; long-run relationship excluded,

(7) Average Sampling with cointegration,

4If the coefficients are represented by a continuous function, it would be increasing and concave.
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(8) Average Sampling; long-run relationship excluded.

’Unrestricted short-run’ simply indicates that the high-frequency variables are not tempo-
rally aggregated nor are their coefficients estimated via a MIDAS regression; they are estimated
via ordinary least squares. These two cases can be seen as cases where no restrictions are im-
posed on the coefficients of the ∆mx-terms. Comparing (1) and (2) is essentially what Clements
and Hendry (1998) or Engle and Yoo (1987) investigate in the standard framework.

As mentioned in the introduction, MIDAS aims at preserving information present in the
high-frequency variables and estimating parameters in a parsimonious way. If we consider the
different ECM representations given in Section 2, we see that estimating such models without
any restrictions might be unappealing due to parameter proliferation (Andreou and Kourtellos,
2010). If yt is a measured at a quarterly and xt,m−i at a daily frequency, we might have over 50
parameters to estimate. In a MIDAS model we hyper-parameterize the polynomial lag structure
yielding

α∗(L)∆yt = c+ δzt−1 + β
∑ql+1

j=0

∑m−1
i=0 wi+j∗m+1(θ)∆mxt−j,m−i + ut,

where wj(θ) are weights that sum up to one in order to identify the scale coefficient β.5 The
weights are based on an underlying weight function for which different possible specifications are
proposed in the literature (see, for instance, Ghysels et al., 2007). In this paper, we employ the
exponential Almon Lag polynomial having its roots in the work of Almon (1965) on polynomial
interpolation in distributed lag equations. The weights are given by

wj(θ) = wj(θ1, θ2) =
exp(θ1j + θ2j

2)∑k
j=1 exp(θ1j + θ2j2)

.

As discussed in Ghysels et al. (2007), this low-dimensional lag polynomial specification is ex-
tremely flexible as it allows for the weight-determination to be completely data-driven, and
it allows for various possible shapes of the weight function. Often, decaying weights are de-
tected due to more recent observations being more important. Such a declining structure can
be imposed by restricting θ2 ≤ 0. According to Ghysels and Valkanov (2006), forecasts based
on the exponential Almon lag polynomial dominate the ones based on other lag polynomial
specifications.

Note that in the equation above, a single weight function is specified for the whole set of
short-run variables (in line with Andreou and Kourtellos, 2010). Two comments have to be made
here: First, the purely data-driven determination of the weight function allows us to include
more short-run variables than theoretically necessary according to the ECM representations in
Section 2 since the redundant ones will be assigned a zero weight. Assume, for example, that
the long-run relationship is the same-period-case and ql = 0. Suppose further that we include
2qh variables in the MIDAS-regression although, according to Section 2.4, only qh short-run

5Note that the index j runs until ql + 1 in order to include enough short-term variables irrespective of the
exact timing of the variables appearing in the disequilibrium term.
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variables would be suffice. Nevertheless, the flexibility of MIDAS will result in zero weights for
the redundant qh variables. Second, it is also possible to assign one weight function to every
low-frequency period of the short-run variables. Ghysels et al. (2007) present a generalization
of MIDAS models nesting such an approach. Such an extension might be interesting to apply
in our case since it allows the weights to change more abruptly. Note that the ”joint” weight
function will simply act like a smoothing curve of all the successive ”single” weight functions.
If the first m variables are assumed to be significant for forecasting whereas the next m are not,
two separate weight functions (coming along with two scale parameters β above) will be more
convenient to capture that difference.

The approaches (5)-(7) are standard methods used to temporally aggregate high-frequency
data according to Silvestrini and Veredas (2008) or Marcellino (1999). Point-in-Time sampling
selects one particular high-frequency-observation of a low-frequency-period (often the last one,
e.g. December or the last trading day) as the corresponding low-frequency-observation xt =
xt,m−i. In our case, it means that the ∆mx-terms are replaced by ∆xt. As a benchmark, we will
apply Point-in-Time sampling to the last observation (i = 0 above) in our simulations. Average
sampling simply selects the average per low-frequency period as the respective low-frequency
observation xt = 1

m

∑m−1
i=0 xt,m−i.

To summarize the different ECM representations, the four different approaches correspond
to the following forecasting models:

∆̂yt = ĉ+ δ̂zt−1 + α̂∆yt−1 +
∑m−1

i=0 β̂i∆mxt,m−i (Unrestricted)

∆̂yt = ĉ+ δ̂zt−1 + α̂∆yt−1 + β̂
∑m−1

i=0 wi(θ̂1, θ̂2)∆mxt,m−i (MIDAS)

∆̂yt = ĉ+ δ̂zt−1 + α̂∆yt−1 + β̂∆xt,m (Point-in-Time)

∆̂yt = ĉ+ δ̂zt−1 + α̂∆yt−1 + β̂∆ 1
m

∑m−1
i=0 xt,m−i (Averaging)

The forecasting performance of the various approaches is assessed for T = 50, 100, 250 and
500 low frequency observations. The estimated parameters are then used to compute 36 one-
step-ahead forecasts of ∆y employing the respective ECM representation. These forecasts are
compared with the actual values and the Root Mean Squared Error (RMSE) is computed for
every approach in each iteration. Finally, for each method, the mean of the RMSEs is obtained.
Note that when the long-run component of the model is excluded, the second term in the models
above is obviously dropped. In order to see whether there are RMSE differences between two
models, i.e. whether the forecast accuracy of two competing models differs, two statistical tests
are considered depending on whether the models are nested or non-nested. In the latter case,
the classical Diebold-Mariano test (Diebold and Mariano, 1995) is employed whereas in the
former case the modified Diebold-Mariano test proposed by Harvey et al. (1998) is conducted
(see also Clark and McCracken (1999)). Note that parameter uncertainty is not taken into
account.

At this stage, we have not been specific about which long-run relationship to employ in
cases (1) and (3). For both approaches the ”optimal” scenario is analyzed meaning that the
correct, ’same-period’, long-run is considered. However, to investigate the impact of choosing an
erroneously dated error-correction term, we compute the RMSEs corresponding to one long-run
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relationship of the ’x-before-y’- and one of the ’x-after-y’-type.6 In particular, taking the mid-
period observations (middle of the year since m = 12), the ’x-before-y’- and ’x-after-y’-cases are

represented by zx−before−yt−1 = yt−1−xt−1,m−6 and zx−after−yt−1 = yt−1−xt,m−6, respectively. Note
that in the estimated models the number of terms entering the short-run dynamics employed
must be adapted consistently with the specifications in Sections 2.2 and 2.3.

Finally, in order to assess the sensitivity of the unrestricted and the MIDAS approach to
the number of short-run dynamics terms included, two further invariance tests will be applied.
In particular, the RMSEs for cases (1)-(4) are computed employing first less variables than
theoretically necessary, and second more than theoretically necessary (see Section 2) in the
respective models. In particular, only the first 1

2m or as many as 3m (as opposed to m) short-
run variables are included to investigate whether the inclusion of too few or too many variables
distorts our forecasts. Here, only the models with correct long-run relationship are considered.

All computations are done using GAUSS10 with 1, 000 replications.

4.3 Results

Tables 1 to 4 below show the outcomes for the 8 models. For cases (1) and (3) the results
for erroneously dated error-correction terms are given. To be more specific, the figures are the
(means of the) RMSEs of the respective method relative to the benchmark which is the ’same-
period’-case with error-correction term. Hence, a value larger than 1 indicates the benchmark
to be superior while a value smaller than 1 leads to the opposite conclusion. Furthermore,
in order to investigate whether a certain method significantly outperforms the benchmark,
the percentages in brackets below the ratios of RMSEs report the frequency with which the
(modified) Diebold-Mariano tests reject the null of equal accuracy at the 5% significance level.
Hence, the closer the percentage to 100% (0%), the more (less) important is the difference in
the forecasting performance of the model at hand with respect to the benchmark case.

Let us first focus on the cases with a correctly chosen long-run relationship (labeled ’same-
period’ in the tables). Firstly, in the presence of cointegration, δ 6= 0, excluding the disequi-
librium error has a significant impact on the forecasting performance for all cases considered,
MIDAS, unrestricted, Point-in-Time and Average sampling. Of course, this effect decreases the
smaller the δ, i.e. the slower the speed of adjustment to the disequilibrium. The rejection fre-
quency for the tests of equal forecast accuracy support the superiority of the models including a
long-run term, for both the unrestricted cases as well as for the standard aggregation methods.
This observation is in line with Clements and Hendry (1998).

Hence, for all four approaches, neglecting the EC-term if the variables are cointegrated has
a significant negative impact on the forecast accuracy. As mentioned before, in the MIDAS
literature, empirical analyzes often only consider I(0)-variables that are first differenced trans-
formed I(1)-variables (see, for example, Andreou and Kourtellos, 2010). In the presence of
cointegration, the inclusion of the respective relationship might yield considerable forecasting

6Note that for Point-in-Time and Average sampling the regressor observations entering the long-run term are
always the corresponding temporally aggregated variables, i.e. xt−1,m and 1

m

∑m−1
i=0 xt−1,m−i, respectively.
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MIDAS δ = −0.75

Timing / T 50 100 250 500

With ’x-before-y’ 1.1283
(32.2%)

1.1326
(37.6%)

1.1309
(34.9%)

1.1248
(34.5%)

Long-Run ’x-after-y’ 1.4598
(75.8%)

1.4825
(82.3%)

1.5003
(84%)

1.4961
(84.1%)

Without Long-Run ’same-period’ 2.7322
(100%)

2.7779
(100%)

2.8193
(100%)

2.8168
(100%)

δ = −0.25

With ’x-before-y’ 1.0019
(15.9%)

1.0011
(9.2%)

1.0022
(8.1%)

1.0018
(6.5%)

Long-Run ’x-after-y’ 1.0028
(11.7%)

1.0097
(9.5%)

1.0116
(9.4%)

1.0112
(10.4%)

Without Long-Run ’same-period’ 1.3254
(99.7%)

1.3402
(99.5%)

1.3559
(99.7%)

1.3522
(100%)

δ = −0.1

With ’x-before-y’ 1.0100
(14.9%)

1.0036
(9.7%)

1.0030
(6.8%)

1.0031
(7.5%)

Long-Run ’x-after-y’ 1.0054
(17.7%)

1.0059
(12.1%)

1.0063
(10.6%)

1.0051
(9.9%)

Without Long-Run ’same-period’ 1.0773
(75%)

1.0912
(79.4%)

1.1026
(81.9%)

1.1010
(81.1%)

δ = 0

With ’x-before-y’ 1.0223
(23.6%)

1.0150
(14%)

1.0111
(9.7%)

1.0139
(11.7%)

Long-Run ’x-after-y’ 1.0019
(31.8%)

1.0016
(22.1%)

0.9996
(14.3%)

1.0008
(11%)

Without Long-Run ’same-period’ 0.9041
(14.5%)

0.9634
(0.134)

0.9873
(7.5%)

0.9914
(8.7%)

Table 1: RMSEs relative to the ’same-period’-case with long run, the benchmark, and percent-
age number of rejection of tests of equal forecast accuracy at the 5% level compared to the
benchmark, short-run dynamics modeled by MIDAS, correct number of variables

improvements. If the variables are not cointegrated, neglecting the long-run term results in the
lowest RMSEs.

Consider now the impact of erroneously choosing the timing for the xt,m−i-observation
entering the error-correction term. Firstly, employing the correct long-run relationship yields
the lowest RMSE for both, MIDAS and the unrestricted approach. Secondly, as expected,
choosing an erroneously dated timing for the EC-term is far less severe than not including
an error-correction term at all. Note that the difference between the RMSEs of the ’same-
period’-cases and the ’x-after-y- or ’x-before-y’-cases is less than the difference between the
RMSEs of the ’same-period’-cases and the ’Without Long-Run’-cases. Actually, the rejection
frequency for the tests of equal forecast accuracy shows that the models with an erroneously
dated timing often do not perform significantly worse than the benchmark case.7 The reason is
that by transforming the short-run dynamics according to Section 2, the models resulting from
an erroneous timing are not misspecified, but merely represent another representation.

We may summarize these simulation results as follows. If cointegration is present, it seems
not to matter which error-correction term is included (unless δ = −0.75) as long as we do

7The only case where the forecasting performance of the benchmark case is significantly better than when an
erroneous timing is considered is that of employing MIDAS and considering the ’x-after-y’-case and δ = −0.75.
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Unrestricted δ = −0.75

Timing / T 50 100 250 500

With ’x-before-y’ 1.104
(30%)

1.0369
(16.1%)

1.0139
(10.2%)

1.0052
(8.8%)

Long-Run ’x-after-y’ 1.0043
(19%)

1.0007
(12.8%)

1.0003
(9.8%)

1.0001
(7.3%)

Without Long-Run ’same-period’ 2.7591
(100%)

2.7869
(100%)

2.8231
(100%)

2.8214
(100%)

δ = −0.25

With ’x-before-y’ 1.1048
(30.8%)

1.0378
(16.5%)

1.0137
(9.5%)

1.0052
(7.8%)

Long-Run ’x-after-y’ 1.0051
(20.4%)

1.0006
(12.3%)

1.0002
(9.7%)

1.0001
(8.2%)

Without Long-Run ’same-period’ 1.3314
(99.3%)

1.3413
(99.3%)

1.3567
(99.7%)

1.353
(100%)

δ = −0.1

With ’x-before-y’ 1.1043
(31.3%)

1.038
(17%)

1.0137
(10%)

1.0052
(7.7%)

Long-Run ’x-after-y’ 1.0057
(20.4%)

1.0007
(13.9%)

1.0002
(8.8%)

1.0001
(7.9%)

Without Long-Run ’same-period’ 1.0794
(73.5%)

1.092
(77.3%)

1.1028
(81.1%)

1.1011
(80%)

δ = 0

With ’x-before-y’ 1.1021
(34.1%)

1.0376
(19.5%)

1.0134
(11.8%)

1.0052
(8%)

Long-Run ’x-after-y’ 1.0053
(29.4%)

1.0016
(19%)

1.003
(13%)

1.0001
(8.3%)

Without Long-Run ’same-period’ 0.9123
(14.5%)

0.9644
(15.1%)

0.9891
(7.9%)

0.9959
(7.1%)

Table 2: RMSEs relative to the ’same-period’-case with long run, the benchmark, and percent-
age number of rejection of tests of equal forecast accuracy at the 5% level compared to the
benchmark, short-run dynamics unrestricted, correct number of variables

Point-in-Time δ = −0.75

Timing / T 50 100 250 500

Without Long-Run ’same-period’ 2.7453
(100%)

2.7628
(100%)

2.8055
(100%)

2.8065
(100%)

δ = −0.25

Without Long-Run ’same-period’ 1.3267
(99.7%)

1.3371
(99.3%)

1.3527
(99.7%)

1.3491
(100%)

δ = −0.1

Without Long-Run ’same-period’ 1.0762
(75.6%)

1.0902
(79%)

1.1024
(81%)

1.0999
(80.7%)

δ = 0

Without Long-Run ’same-period’ 0.9024
(13.6%)

0.9625
(13.7%)

0.9887
(7.6%)

0.9960
(7.8%)

Table 3: RMSEs relative to the ’same-period’-case with long run, the benchmark, and percent-
age number of rejection of tests of equal forecast accuracy at the 5% level compared to the
benchmark, Point-in-Time sampling on xt,m−i, correct number of variables

include one and adapt the short-run to the timing accordingly as explained in Section 2. Indeed,
although not displayed here for convenience, if we chose an erroneous timing such as the ’x-
before-y’-case and include only the first m instead of m + 6 (which would be consistent with
Section 2) short-run variables, the forecasting performance significantly deteriorates (the means
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Averaging δ = −0.75

Timing / T 50 100 250 500

Without Long-Run ’same-period’ 1.9183
(100%)

1.9231
(100%)

1.9579
(100%)

1.9584
(100%)

δ = −0.25

Without Long-Run ’same-period’ 1.2155
(98%)

1.2233
(98.7%)

1.2391
(98.6%)

1.2361
(100%)

δ = −0.1

Without Long-Run ’same-period’ 1.0605
(68%)

1.0709
(69.2%)

1.0818
(70.7%)

1.0801
(68.6%)

δ = 0

Without Long-Run ’same-period’ 0.9074
(15.2%)

0.9662
(14.5%)

0.9889
(10.3%)

0.9962
(9.2%)

Table 4: RMSEs relative to the ’same-period’-case with long run, the benchmark, and percent-
age number of rejection of tests of equal forecast accuracy at the 5% level compared to the
benchmark, Average sampling on xt,m−i, correct number of variables

of the RMSEs almost double for some δ). The effect is similar to that of including too few
short-run terms with the correct timing, as we will see later in this section. In the absence of
cointegration, ignoring the EC term yields the best forecasting performance.

Let us now compare MIDAS to the other methods. Tables 5 to 7 report the RMSEs of
the three methods, unrestricted short-run, Point-in-Time and Average sampling, relative to the
RMSEs of MIDAS for the correct model, i.e. the ’same-period’-case with long-run term for
δ 6= 0 and without EC term for δ = 0.

MIDAS vs Unrestricted δ = −0.75

Timing / T 50 100 250 500

With Long-Run ’same-period’ 1.1147 1.0515 1.0170 1.0075

δ = −0.25

With Long-Run ’same-period’ 1.1163 1.0522 1.0170 1.0076

δ = −0.1

With Long-Run ’same-period’ 1.1169 1.0522 1.0172 1.0075

δ = 0

Without Long-Run ’same-period’ 1.1160 1.0515 1.0170 1.0075

Table 5: RMSEs, Unrestricted relative to MIDAS, correct number of variables

It appears that MIDAS always performs better than leaving the short-run unrestricted or
than using Average sampling. This is particularly true for small T . This illustrates the param-
eter proliferation problem of the unrestricted short-run method (see Andreou and Kourtellos,
2010) noting that one has to estimate 9 extra parameters compared to the case when MIDAS
is used (the effect increases with m, of course). The difference is very small, however, for
T = 500 such that the methods almost coincide asymptotically. Average sampling yields the
worst results for large sample sizes. However, note that the xt,m−i-observation entering the
long-run term is always a particular high-frequency observation as opposed to the average of
all high-frequency observations per low-frequency period. Furthermore, the short-run terms in
the DGP are generated with non-flat weights. Given these two points, the disappointing results
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MIDAS vs Point-in-Time δ = −0.75

Timing / T 50 100 250 500

With Long-Run ’same-period’ 0.9739 0.9914 1.0014 1.0024

δ = −0.25

With Long-Run ’same-period’ 0.9746 0.9918 1.0014 1.0025

δ = −0.1

With Long-Run ’same-period’ 0.9768 0.9921 1.0013 1.0025

δ = 0

Without Long-Run ’same-period’ 0.9781 0.9924 1.0014 1.0024

Table 6: RMSEs, Point-in-Time Sampling relative to MIDAS, correct number of variables

MIDAS vs Averaging δ = −0.75

Timing / T 50 100 250 500

With Long-Run ’same-period’ 1.1762 1.2008 1.2089 1.2109

δ = −0.25

With Long-Run ’same-period’ 1.0006 1.0200 1.0265 1.0270

δ = −0.1

With Long-Run ’same-period’ 1.0291 1.0469 1.0552 1.0550

δ = 0

Without Long-Run ’same-period’ 1.0701 1.0856 1.0933 1.0933

Table 7: RMSEs, Average Sampling relative to MIDAS, correct number of variables

for average sampled regressors are not surprising.
Furthermore, MIDAS yields superior forecasts compared to the Point-in-Time sampling for

large sample sizes. For small T , however, Point-in-Time sampling results in lower RMSEs.
Note that Point-in-Time sampling takes the correct mth high-frequency observation as the
corresponding low-frequency one. Therefore, it also includes the short-run variable having
most impact in our DGP since the latter implies that more recent observations have higher
impact.

Note also that, although not reported, the forecast accuracy of all approaches is most of the
times not significantly different from that of MIDAS, exception made of Average sampling for
δ = −0.75,−0.25. Based on this, one might hence question the usefulness of MIDAS. However,
we should emphasize the fact that until now, we have always assumed correctly adapted short-
run dynamics, i.e. the chosen number of short-run variables is consistent with the methodology
of Section 2.

Consequently, as a further analysis of the effect of possible short run misspecification, we
study the sensitivity of the forecasting performance of MIDAS and the unrestricted approaches
to an incorrect number of terms entering the short-run dynamics. In particular, as explained
in the previous section, we investigate the situation where only 1

2m and as many as 3m short-
run variables are included in the models (as opposed to the theoretically correct number of m
variables). Note that the timing is fixed at the correct ’same-period’-case for this exercise and
we only display the results for δ = −0.75. Table 8 illustrates the outcomes for the case with
too few variables whereas Table 9 gives the results for the case including too many. Again, the
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figures represent the (means of the) RMSEs of the respective method relative to the benchmark
case, namely MIDAS with the EC term and the correct number of short-run variables, m.

Too few short-run variables δ = −0.75

Method / T 50 100 250 500

MIDAS with Long-Run 1.096
(68.2%)

1.111
(76.3%)

1.1121
(77.6%)

1.1111
(75%)

MIDAS without Long-Run 2.7667
(100%)

2 .7975
(100%)

2.8589
(100%)

2.851
(100%)

Unrestricted with Long-Run 1.1431
(80.5%)

1.1284
(80.7%)

1.1202
(79.3%)

1.1127
(75.4%)

Unrestricted without Long-Run 2.8747
(100%)

2.8715
(100%)

2.88
(99.9%)

2.8667
(99.8%)

Table 8: RMSEs of MIDAS and Unrestricted Short-Run with too few variables relative to
MIDAS with Long-Run and the correct number of variables

Too many short-run variables δ = −0.75

Method / T 50 100 250 500

MIDAS with Long-Run 1.0578
(8.5%)

1.0324
(6.6%)

1.0117
(4.1%)

1.0033
(6.1%)

MIDAS without Long-Run 2.5133
(99.6%)

2.4991
(99.6%)

2.5145
(99.9%)

2.4979
(94.7%)

Unrestricted with Long-Run 2.2043
(84.2%)

1.2423
(33.1%)

1.0777
(8.6%)

1.0322
(6.5%)

Unrestricted without Long-Run 3.4667
(99.6%)

2.0603
(99.6%)

1.8039
(99.8%)

1.7142
(99.8%)

Table 9: RMSEs of MIDAS and Unrestricted Short-Run with too many variables relative to
MIDAS with Long-Run and the correct number of variables

As becomes clear from Table 8, including too few short-run terms leads to a serious dynamic
misspecification (serial correlation) of the model and, therefore, worsens the forecasting perfor-
mances of both, MIDAS and unrestricted approach. Nevertheless, as shown by Miller (2011a),
nonlinear least squares is consistent and minimizes the mean-squared forecast error even in the
presence of serial correlation. The RMSEs of the dynamically misspecified models in Table 8
increase simply because the minimum mean-squared forecast errors increase in the presence of
serial correlation. Furthermore, the figures in Table 9 reveal that including too many variables
has significant negative consequences for the unrestricted method when T is small. This reflects
the fact that the parameter proliferation is exacerbated since, now, 36 short-run variables need
to be estimated (as opposed to 9 in the case of MIDAS). Again, this effect decreases as T
increases. Note that the penalty for omitting the error-correction term when δ 6= 0 is greater
than the penalty for including superfluous short-run terms.

Note that for the MIDAS regressions, three separate weight functions are calculated, one for
each set of m short-run variables. Since the last 2m variables entering the short-run dynamics
are (according to Section 2) redundant, the three single weight functions capture this ”kink”
better than a single (smoother) weight function. Figure 1 shows the three separate weight
functions for T = 100 when too many variables are included.

Tables 8 and 9 as well as Figure 1 show that the dynamic misspecification implied by
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Figure 1: Weight functions, too many parameters, T = 100, Long-Run included

few terms in the short-run dynamics has a significant negative impact on the forecasting per-
formance, irrespective of the approach employed. However, when the too many variables are
included, MIDAS seems flexible enough to assign zero weight to the redundant variables whereas
the unrestricted approach may suffer from parameter proliferation, the severity of which de-
pending on the sample size. Hence, MIDAS’ invariance to over-parameterization of the short
run dynamics provides the user with a method that allows him to include enough short-run vari-
ables as necessary without knowing the true timing in the EC-term. The preserved parsimony
of the model adds to this advantage of the MIDAS approach.

The previous analysis has an implication for (i) the selection of the timing prior to fixing
the long-run relationship in the ECM and (ii) the methods to estimate the parameters. If one
suspects a cointegrating relationship that is not ”too strong” (e.g. with an expected small error
correction coefficient), any of the candidate xt,m−i-terms may be used in the EC-term. It must
be stressed that the number of short-run terms included in the ECM needs to be adapted to the
respective timing chosen, unless one exploits the advantage of MIDAS in the presence of over-
parameterized short run dynamics. Hence, the user may choose one of the candidate timings
freely (’same period’ for simplicity or ’x-after-y’ due to data availability issues) as long as he
adapts the short-run consistent with Section 2. Note that Miller (2011a) implicitly generates
his cointegrating MIDAS regressions employing the ’same-period’ case such that choosing this
option would be in accordance with his work. MIDAS and its flexible data-driven weight
functions provide an elegant way to ensure parsimony. If one suspects a ”strong” cointegrating
relationship, however, it appears that that the timing may matter8 in which case we recommend
applying a forecast combination method to determine weights for the candidate xt,m−i-terms.
In particular, we advise to employ the approach proposed by Bates and Granger (1969) for its
simplicity and consistency in putting most weight on the correct timing.9 As before, sufficient
short-run dynamic terms need to be included in the ECM in order not to incur worsened

8See the case of ’x-after-y with δ = −0.75 when MIDAS is employed.
9The results of a corresponding simulation exercise may be provided on demand.

19



forecasting performances from including too few terms. Also in this situation, MIDAS provides
a parsimonious choice that is invariant to the conservative approach of over-parameterization
by including too many short-run variables.

4.4 High-Frequency DGP

So far, all simulations were done under the assumption that the DGP is of a mixed-frequency
type. In order to investigate whether our results are invariant to another form of DGP, we con-
sider a Gaussian VAR(ph) zht =

∑pl
i=1 Φiz

h
t−i + εht for the vector time series {zht = (yht : xht )′, t =

1, . . . ,m, . . . ,mT}. The error term εht , is an iid bivariate Gaussian vector with nonsingular
covariance matrix Ω. Let us denote Φ(L) = I −

∑pl
i=1 ΦiL

i. Further assume that exactly one
unit root is present so that rank(Φ(1)) = 1 such that Φ(1) can be expressed as Φ(1) = −αβ′
with α and β being (2 × 1) vectors of rank 1, where β is the cointegrating vector and α the
error correction term. This can be rewritten in the desired error correction format:

∆zht = αβ′zht−1 +

pl−1∑
j=1

Φ∗j∆z
h
t−j + εht , (11)

with Φ∗0 = I and Φ∗j = −
∑pl

k=j+1 Φk(j = 1, . . . , pl − 1).

After yht and xht have been generated from this high-frequency VECM, Point-in-Time sam-
pling on the last (end-of-period) observation or Average sampling is applied to yht in order to
convert it to low-frequency. In the sequel, the analysis follows the previous section. To this
end the elements of the bottom rows of the matrices Φ∗j in (11) are set to 0 to generate xht as

a random walk. The entries of the top row, i.e. the coefficients of the lagged terms of yht and
xht in the equation for yht are chosen to behave similarly to those in the previous section. In
other words, the coefficients are increasing, but with decreasing step size such that more recent
observations have a stronger impact than more distant ones.

As discussed in Miller (2011b), with white noise errors, a low-frequency model is consistent
with the high-frequency model at hand only if the same aggregation scheme is chosen for
both, the dependent and independent variables. Hence, Point-in-Time or Average sampling
the dependent variable and choosing a different aggregation scheme for the regressors may
introduce an estimation error (φ in Miller (2011b)) that enters the error term. On the contrary,
the mixed-frequency DGP considered before assumed that sampling of the regressand does not
affect the error term.

Table 10 presents the outcomes for a Point-in-Time sampled regressand where the short-
run variables are modeled by MIDAS. The remaining results are similar to the outcomes of the
previous section such that they are not reported for space reasons.10

In summary, as far as the individual forecasting methods are concerned, the main conclu-
sions do not differ from those reached in the previous analysis. In other words, in the presence
of cointegration, the inclusion of the error correction term improves the forecasting perfor-
mances. Also, the forecasting performance of models with an erroneously chosen timing (but

10They are, however, available on request.
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MIDAS δ = −0.75

Timing / T 50 100 250 500

With ’x-before-y’ 1.0022
(11.1%)

1.0026
(8.9%)

1.0021
(8.2%)

1.0016
(6.7%)

Long-Run x-after-y’ 1.0984
(29)

1.0943
(28.3%)

1.0988
(29.6%)

1.0966
(28.3%)

Without Long-Run ’same-period’ 1.3255
(99.6%)

1.3370
(99.8%)

1.3426
(99.6%)

1.3372
(99.6%)

δ = −0.25

With ’x-before-y’ 0.9657
(16.7%)

0.9654
(14.7%)

0.9690
(13%)

0.9665
(14.6%)

Long-Run x-after-y’ 1.0733
(23.8%)

1.0638
(21.7%)

1.0637
(20.7%)

1.0709
(25%)

Without Long-Run ’same-period’ 1.2993
(99.7%)

1.3239
(99.8%)

1.3328
(100%)

1.3171
(100%)

δ = −0.1

With ’x-before-y’ 0.9355
(23.8%)

0.9324
(22.5%)

0.9348
(18.7%)

0.9333
(20.7%)

Long-Run x-after-y’ 1.0628
(23.3%)

1.0453
(17.4%)

1.0265
(12.9%)

1.0224
(12.7%)

Without Long-Run ’same-period’ 1.2980
(99.8%)

1.3356
(99.9%)

1.3661
(100%)

1.3716
(99.9%)

δ = 0

With ’x-before-y’ 0.9717
(37.2%)

0.9997
(32.6%)

1.0571
(36.9%)

1.1408
(45.9%)

Long-Run x-after-y’ 1.0047
(40.1%)

1.0003
(25.9%)

1.0002
(15.7%)

1.0008
(11.8%)

Without Long-Run ’same-period’ 0.9282
(28.4%)

0.9684
(17.1%)

0.9813
(8.2%)

0.9839
(5.2%)

Table 10: RMSEs relative to the ’same-period’-case with long run, the benchmark, and per-
centage number of rejection of tests of equal forecast accuracy at the 5% level compared to
the benchmark, y by Point-in-Time sampling, short-run dynamics modeled by MIDAS, High-
Frequency-DGP

with adequately adapted short-run dynamics) hardly differ from the benchmark case. Finally,
in the absence of cointegration, correctly neglecting the EC term always results in the best
outcome. Hence, the results of the previous section remain valid when the data are generated
by a high-frequency DGP.

Similarly, the comparison of MIDAS with other approaches hardly changes. When the re-
gressand is obtained by applying Point-in-Time sampling on yht , MIDAS generally outperforms
both the cases where the the short-run is unrestricted and the case of Average sampling which
performs the worst. Point-in-Time sampling performs as well as MIDAS which is not surpris-
ing since the dependent variable itself is Point-in-Time sampled. Indeed, Miller (2011b) and
Chambers (2003) argue that, with white noise errors, the cointegrating vector is most efficiently
estimated if the regressand aggregation scheme is matched by the one applied to the regressors.
Note that Average sampling performs worst because it is not matching the regressand aggrega-
tion scheme. MIDAS is still able to adapt to the Point-in-Time sampled dependent variable due
to its flexible data-driven weight determination whereas Average sampling imposes an erroneous
flat weighting scheme.

If yht is temporally aggregated by Average sampling, the results are again essentially similar,
with the obvious exception that the roles of Point-in-Time and Average sampled regressors are
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interchanged. Hence, if the aggregation scheme underlying the dependent variable is known,
it seems best to apply the same aggregation method to the regressors. Nevertheless, apply-
ing MIDAS yields equally good forecasts. If, however, the regressand aggregation scheme is
unknown, applying an erroneous classical aggregation method may deteriorate the forecasting
performance immensely whereas MIDAS is able to mimic the respective aggregation scheme
quite well and therefore provides a robust, yet parsimonious solution to the problem.

5 Applications

As an illustration, we consider a small model to forecast US inflation. All the variables have been
downloaded from the Federal Reserve Bank of St. Louis at http://research.stlouisfed.org/fred2/
and cover the period 1980 − 2010. The dependent variable denoted CPIt is the seasonally
adjusted US monthly consumer price index for all urban consumers (all items). We have
collected weekly indicators but only report the results for the model with the best fit. The
explanatory variables are (i) the US regular all formulations gasoline price (GASt) and (ii) the
S&P500 index (denoted SPt). Interest rates of different maturities, the weighted exchange index
over major currencies as well as the stock of money M2 did not improve over the regression
presented here. We estimate the model on the period ranging from January 2000 to November
2010, amounting to 131 observations. We have focused on that period in order to have a price
index series that is well described as I(1) and, hence, to avoid the discussion about the potential
I(2)-ness of that series over a longer span.

In contrast to the previous section, the cointegrating vector is assumed unknown and hence
estimated. Also, note that Miller (2011a)’s asymptotic results are of importance here. It is likely
that serial correlation is an issue in this application, yet the consistency of the nonlinear least
squares estimator to the minimum mean-squared forecast error parameter vector remains valid
as well as the asymptotic distribution of the difference between the two. In other words, even
if serial correlation is present here, nonlinear least squares consistently estimate the minimum
mean-squared forecast error parameter vector (Miller, 2011a).

As far as the presence of a long-run relationship between ln(CPIt) and the two regressors
in a multivariate static regression is concerned, we consider a window of three weeks before and
after the contemporaneous relationship. We thus estimate static cointegrating regressions on
xt,m−i with i ∈ [−3, 3] because m = 4 in a month/week setting. We further assume that the
explanatory variables enter the regression with the same time shift. This restriction may easily
be relaxed but it is imposed here to save on computation burden. The results of the ADF and
Johansen’s Trace tests (Johansen, 1991) are reported in Table 11 below.11

The ADF and Johansen’s trace tests reject the null of no-cointegration for all candidate
timings. This should come as no surprise given that cointegration is a long-run property that is
invariant to temporal aggregation Marcellino (1999). In other words, if cointegration exists for

11Johansen’s Trace Test is computed while allowing for a linear deterministic trend in the data and an intercept,
but no trend in the cointegrating equation(s). Furthermore, the optimal lag length in a VAR is 2 based on SIC
such that 1 lag of differences is chosen for a VECM.
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Error-Correction term Timing ADF (1) Johansen’s Trace Test Johansen’s Trace Test
for no CE(s) for at most 1 CE

p-value p-value

yt−1 − βxt,3 −4.5917 0.0179 0.4967
yt−1 − βxt,2 ’x-after-y’ −4.674 0.0083 0.3874
yt−1 − βxt,1 −4.7754 0.0039 0.4010

yt−1 − βxt−1,4 ’Same Period’ −4.6107 0.0101 0.4755

yt−1 − βxt−1,3 −4.4277 0.0199 0.5114
yt−1 − βxt−1,2 ’x-before-y’ −4.7 0.0047 0.5323
yt−1 − βxt−1,1 −4.8408 0.004 0.6115

Table 11: ADF test statistics and Johansen’s Trace test for the application

one combination of yt and xt,m−i, it should do so for the other timings of the regressors as well.
With respect to the regressor variable entering the long-run we choose the ’same-period’-case
due to its simplicity and accordance with Miller (2011a). Estimating the long-run term by fully
modified least squares yields (where lower case letters represent logarithms of the respective
variables)

ẑt−1 = êcmt−1 = cpit−1 − 6.274969
(0.201685)

+ 0.170431
(0.029048)

spt−1 − 0.275665
(0.015342)

gast−1.

Every coefficient is individually significantly different from zero at any sensible significance
level (FMOLS standard errors in brackets). Plugging this into an error-correction model we
can compare the forecasts of different modelings for the last 23 months in Table 12. Note that
pl = 2 and ql = 1 such that there is one lagged difference of cpit as well as 8 short-run terms
per regressor in the ECM. Note that several weight functions per low-frequency period were
estimated for the MIDAS regressions, i.e. for every regressor one weight function was estimated
per low-frequency period considered (4 weight functions in total).

Regressor Aggregation Scheme RMSE

Point-in-Time sampling with Long-Run 0.00968
Point-in-Time sampling without Long-Run 0.01065

Average sampling with Long-Run 0.00837
Average sampling without Long-Run 0.00954

Unrestricted with Long-Run 0.00921
Unrestricted without Long-Run 0.01071

MIDAS with Long-Run 0.0088
MIDAS without Long-Run 0.01012

Table 12: RMSEs for different methods to forecast monthly US inflation using weekly indicators

As expected, the RMSEs of the models with an EC term are lower than those without.
However, the differences are quite small. Closer investigation of the respective estimates of
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error correction coefficients (δ̂) reveals that the speed of adjustment is very slow relative to
the simulations conducted before. Furthermore, in the simulations, the coefficients as well as
the values of x and y themselves were much larger than in the application which yielded larger
RMSEs and, thereby, larger differences between them. To formally test whether the RMSEs
of including and excluding an ECM term differ from each other, the modified Diebold-Mariano
test of Harvey et al. (1998) is conducted for each method. The statistics for Point-in-Time
and Average sampling, the unrestricted approach and MIDAS are 3.186, 3.32, 4.544 and 2.851,
respectively. Hence, for all methods under consideration, including a long-run term leads to
significantly lower RMSEs and, thereby, better forecasting performances.

Referring again to Table 12, Average sampling performs best among the four methods
applied here. Relying on (modified) Diebold-Mariano tests reveals that, when including an
ECM term, the forecast accuracies of the four methods are not significantly different from
each other, with the exception being Point-in-Time sampling which yields a significantly larger
RMSE. Foroni et al. (2011) investigate the difference between so-called unrestricted MIDAS
(U-MIDAS) and traditional MIDAS models. For different frequency combinations, i.e. differ-
ent m in our notation, they compare the forecasting (or nowcasting) accuracy of a model where
the high-frequency variables are estimated by least squares (unrestrictedly) with a model where
a nonlinear MIDAS structure is imposed and the variables are estimated by nonlinear least
squares. They find that for smaller m, e.g. m = 3, the unrestricted method dominates tradi-
tional MIDAS models whereas for larger m, e.g. m = 12 or especially m = 60, MIDAS clearly
outperforms the unrestricted approach. This could explain why MIDAS does not significantly
outperform the unrestricted method here.

Note finally that the estimation period still consists of 109 observations which seems still
too much for the unrestricted approach to run into parameter proliferation issues. Although
MIDAS is not significantly outperforming the other methods, it easily enables us to extend
the above analysis. Adding more high-frequency regressors and/or more lags comes at no
cost in terms of parsimony whereas the unrestricted method would quickly suffer from the
aforementioned problem of parameter proliferation while Average sampling would ignore high-
frequency-information present in the new variables. Hence, MIDAS remains a robust and
parsimonious approach in such real-life situations.

6 Conclusion

In this paper, a mixed frequency ECM is proposed in order to model non-stationary variables
that are possibly cointegrated. It is shown that, in terms of timing, the choice of variables enter-
ing the error-correction term has an impact on the short-run dynamics of the mixed-frequency
ECM at the model representation level. In particular, three cases have been distinguished, the
’same-period’-, the ’x-before-y’- and the ’x-after-y’-case and the corresponding error correction
specifications have been developed.

We propose to use a simple approach inspired by the Engle-Granger two-step framework
(Engle and Granger, 1987) in order to decide on the composition of the long-run relationship.
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In particular, one may either choose one of the regressor variables freely or apply a forecast
combination method depending on the application at hand. An alternative mixed-frequency
approach is discussed as well and its disadvantages to the previous MF-ECM approach are
elaborated on.

The forecasting performances of four approaches (unrestricted short-run, MIDAS regression,
Point-in-Time and Average sampling) with and without the inclusion of an long-run term are
assessed in Monte Carlo simulations. We also consider various possible problems such as using a
”mis-timed” long-run relationship as well as over- and under-parameterization of the short-run
dynamics. To assess the results of considering an erroneous timing in the EC term, including
xt−1,m−6 (’x-before-y’) and xt,m−6 (’x-after-y’) instead of xt−1,m (’same-period’) into the long-
run term is considered. For the latter problem we consider both the cases where too few and
too many short-run variables are included in the models.

Several important conclusions were drawn on the basis of these simulations. Firstly, ignoring
the EC term significantly lowers the forecasting performance if the variables are cointegrated.
Thus, if a practitioner deals with non-stationary variables, it should be checked whether the
variables are cointegrated prior to transforming them into stationary variables. This is in line
with the results of Clements and Hendry (1998). If they are cointegrated, the inclusion of an
EC term will significantly improve his forecasts. Secondly, in almost all cases, a ”mis-timed”
cointegrating relationship, though leading to a slightly larger RMSEs, does not result in a
significantly lower forecast accuracy than the correct model provided the short-run dynamics
are adapted accordingly. Hence, an erroneous timing does not introduce a misspecification to
the model, but rather introduces an alternative representation. As a consequence, the regressor
variable entering the EC-term may be chosen freely and we advise the ’same-period’-case due
its simplicity and agreement with Miller (2011a).

Thirdly, under-parameterization of the short-run dynamics on the one hand leads to a
misspecification of the model resulting in negative impacts on the performance of all approaches.
Over-parameterization on the other hand does not lead to worsened forecasting performances
although the increased number of coefficients to estimate may deteriorate the outcomes of the
unrestricted approach for small sample sizes. MIDAS does not suffer from this problem due to
its ability to include many high-frequency variables in a parsimonious way. It therefore provides
a robust alternative to include as many short-run variables as necessary given the underlying
DGP and yet retain a parsimonious model.

Finally, MIDAS outperforms the unrestricted approach for small sample sizes emphasizing
its advantage in terms of parameter proliferation. The forecast accuracy of MIDAS and the two
classical aggregation methods as well as the unrestricted method for large sample sizes do not
differ significantly from each other. The main findings just described seem to be invariant to an
alternative DGP where both, regressand and regressor, are generated at the high frequency.

A small empirical application is used to illustrate the discussion of Section 2 as well as
the Monte Carlo results. In particular, US monthly inflation is forecasted employing several
weekly variables. It is found that including the disequilibrium error, i.e. the EC term, signifi-
cantly enhances the forecasting performance. Furthermore, Average sampling yields the lowest
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RMSE suggesting a flat underlying regressand aggregation scheme which would explain why
Point-in-Time sampling generates the largest RMSE. MIDAS, Average sampling and modeling
the short-run unrestrictedly yield no significantly different forecast accuracies from each other
although MIDAS allows to straightforwardly extend the analysis if desired whereas the other
two methods would either suffer from the curse of dimensionality (unrestricted method) or dis-
regard information present in eventually added high-frequency regressors (Average sampling).
Overall, MIDAS proves to be a robust choice in case the true regressand aggregation scheme is
unknown or in case the sample size is not large enough.
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