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Abstract

We introduce the concept of a transferable utility game with uncertainty (TUU-

game). In a TUU-game there is uncertainty regarding the payoffs of coalitions. One

out of a finite number of states of nature may materialize and conditional on the state,

the players are involved in a particular transferable utility game. We consider the

case without ex ante commitment possibilities and propose the Weak Sequential Core

as a solution concept. We characterize the Weak Sequential Core and show that it

is non-empty if all ex post TU-games are convex. We study bankruptcy games with

uncertainty and apply the Weak Sequential Core. We find that most of the best-

known allocation rules are unstable in this setting, except for the Constrained Equal

Awards rule.

Keywords: transferable utility games, uncertainty, weak sequential core, bankruptcy

games

JEL Classification: C71, C73

∗Department of Economics, Maastricht University , P.O. Box 616, 6200 MD, Maastricht, The Nether-

lands. E-mail: H.Habis@maastrichtuniversity.nl.
†Department of Economics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Nether-

lands. E-mail: P.Herings@maastrichtuniversity.nl. The author would like to thank the Netherlands Orga-

nization for Scientific Research (NWO) for financial support.

1



1 Introduction

The vast majority of cooperative game theory has focused on games with deterministic

payoffs. Nevertheless, uncertainty plays an inevitable role in in most decision making

problems. In this paper we introduce transferable utility games with uncertainty, called

TUU-games. A TUU-game consists of two time periods, 0 and 1. In period 1 one out of a

finite number of states of nature may materialize and conditional on the state, the players

are involved in a particular transferable utility game. An allocation therefore specifies a

payoff to each player conditional on each possible state of nature. A utility function is then

used to assign a utility level to each profile of state-contingent payoffs.

This new set-up provides a more general treatment of uncertainty than the approach

that has appeared in the literature so far. Granot (1977) introduced a cooperative game

where the values of the coalitions are random variables with given distribution functions,

and players are risk-neutral. This treatment is less complete since it specifies only the

marginal distribution of the worths of coalitions, whereas in our approach the complete

distribution is specified, implying that for instance correlation between the worths of several

coalitions can be incorporated. Suijs and Borm (1999) and Suijs, Borm, De Waegenaere,

and Tijs (1999) no longer assume risk neutrality, but keep the specification where only

marginal distributions of worths are given. Bossert, Derks, and Peters (2005) consider a

pair of TU-games, one of which will be the true game. They do not use utility functions

but perform a worst-case analysis. Closest to our set-up is Predtetchinski (2007), where

the non-transferable utility case is studied in an infinite horizon setting. His approach is

similar to ours in the sense that in both cases the game to be played is determined by the

particular realization of the state of nature.

The introduction of uncertainty into cooperative games raises many new and interest-

ing issues. When players can make state-contingent agreements before the resolution of

uncertainty, i.e. at period 0, the situation boils down to a non-transferable utility game,

and we can apply for instance the classical concept of the Core to determine allocations of

payoffs that are stable.

We, on the contrary, are interested in the case where no binding agreements are possible

before the state of nature is known. A typical case would be where the state of nature is not

verifiable by an outside court. A consequence of the absence of binding agreements is that

many ex ante desirable transfers of payoffs across states are not feasible. Indeed, in the
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absence of binding agreements in period 0, only allocations in the Core of the transferable

utility game that results after the state of nature is known, are enforceable.

We are interested in the appropriate definition of the Core in a TUU-game. In this

setting coalitions are allowed to form in both periods. Stability requires that a suggested

allocation cannot be blocked by any coalition at any period, i.e. both before and after

the resolution of uncertainty. We concentrate on agreements which are self-enforcing in

the sense that a coalition can only deviate from a given allocation if no sub-coalition ever

has a credible counter-deviation. Ray (1989) shows that in a static environment the set

of deviations coincides with the set of credible deviations. This is no longer true in our

setting, and leads to the solution concept of the Weak Sequential Core.

TheWeak Sequential Core was introduced in Kranich, Perea, and Peters (2005) for finite

deterministic sequences of TU-games, and it was defined for two-period exchange economies

with incomplete markets in Predtetchinski, Herings, and Perea (2006). In Kranich, Perea,

and Peters (2005) the Weak Sequential Core was defined as the set of feasible payoff

allocations for the grand coalition, from which no coalition ever has a credible deviation.

In Habis and Herings (2010) it is demonstrated that the original definition of credibility

has to be adapted in order to demonstrate that the Weak Sequential Core has a nice

characterization in terms of the cores of appropriately defined subgames. In Predtetchinski,

Herings, and Perea (2006) this characterization was used as the definition of the Weak

Sequential Core in a two-period exchange economy.

We extend the notion of credible deviation of Habis and Herings (2010) to TUU-games

and show that an allocation belongs to the Weak Sequential Core only if conditional on

the state of nature it belongs to the Core of the TU-game related to that state. This

result follows from the absence of credible deviations in period 1. The absence of credible

deviations in period 0 is then used to show that an allocation belongs to Weak Sequential

Core if moreover there is no coalition in period 0 that can propose state-contingent Core

elements of the game restricted to that coalition, which gives each of its members higher

expected utility. In this way we obtain a characterization of the Weak Sequential Core.

A problem of the Weak Sequential Core concept is that the existing literature has

failed to provide a general non-emptiness result, whereas moreover both Kranich, Perea,

and Peters (2005) and Predtetchinski, Herings, and Perea (2006) give examples where the

Weak Sequential Core is empty. We provide a general result on the non-emptiness of

the Weak Sequential Core of TUU-games. We show that if the TU-game that is played
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conditional on the state of nature is convex, then the Weak Sequential Core is non-empty.

This result does not impose any assumptions on the utility functions of the players beyond

continuity and state-separability.

An important application of convex games is the bankruptcy problem. We study

bankruptcy problems with uncertainty, i.e. both the estates and the claims are allowed to

be state-dependent. Solutions to bankruptcy problems with uncertainty can be obtained by

allocating the payoff in each state according to one of the rules proposed in the literature,

like the Proportional rule, the Adjusted Proportional rule, the Constrained Equal Awards

rule, the Constrained Equal Losses rule, or the Talmud rule. We refer to Thomson (2003)

for an excellent overview of the literature on the bankruptcy problem. The question we ask

is which one of these solutions belongs to the Weak Sequential Core of the game, implying

that such a solution is stable both in an ex ante and an ex post sense. We demonstrate

that the Constrained Equal Awards rule is the only one leading to allocations in the Weak

Sequential Core.

The outline of the paper is as follows. We specify the model in Section 2 and give the

formal definition of the Weak Sequential Core in Section 3, followed by its characterization

in Section 4. We show the non-emptiness result in Section 5. The bankruptcy problem is

analyzed in Section 6 and Section 7 concludes.

2 Preliminaries

Consider a game with two time periods, t ∈ T = {0, 1}. In period 1 one state s out of a

finite set of states of nature {1, . . . , S} occurs. Since no confusion can arise, we also denote
this set by S. We define the state of nature for period 0 as state 0, so the set of all states is

S ′ = {0} ∪ S. In period 1 the players are involved in a cooperative game with transferable

utility, or briefly TU-game, where the game itself is allowed to be state-dependent. Period 0

serves as a point in time prior to the resolution of uncertainty.

The TU-game Γs played in state s ∈ S is a pair (N, vs), where N = {1, 2, . . . , n}
is the set of players and vs : 2

N → R is a characteristic function which assigns to each

coalition C ⊆ N its worth vs(C), with the convention that vs(∅) = 0. Player i ∈ N

evaluates his payoffs by a utility function ui : RS → R, which assigns to every profile

of payoffs xi = (xi
1, . . . , x

i
S) ∈ RS a utility level ui(xi) and is assumed to be continuous

and state-separable, i.e. ui(xi) =
∑

s∈S ui
s(x

i
s), where ui

s(x
i
s) is monotonically increasing.
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Von Neumann-Morgenstern utility functions are a prominent example of utility functions

satisfying these assumptions.

A TU-game with uncertainty is defined as follows.

Definition 2.1. A TU-game with uncertainty (TUU-game) Γ is a tuple (N, S, v, u) where

v = (v1, . . . , vS) and u = (u1, . . . , un).

Note that there are no payoffs in state 0. State 0 is merely introduced as a point in time

when the players face the uncertainty in the future and may decide to cooperate. Payoffs

in state 0 could be incorporated into our model but our main interest is to get insight into

the effect of future uncertainty on the stability of payoff allocations.

Another observation is that when the cardinality of S is one, the concept of a TUU-

game collapses with the one of a TU-game. In the absence of uncertainty, all monotonic

transformations of utility functions are equivalent, and it is without loss of generality to

take ui(xi) = xi. Our interest is obviously in the cases with non-degenerate uncertainty.

The central question in a TUU-game is how the worth vs(N) of the grand coalition is

distributed among its members in every state s ∈ S. A distribution of worth, represented

by a matrix x = (x1, . . . , xn) ∈ RS×N , is called an allocation. The state-s component

xs = (x1
s, . . . , x

n
s ) ∈ RN of an allocation is referred to as the allocation in state s ∈ S.

The total worth obtained by coalition C in state s is xs(C) =
∑

i∈C xi
s. An allocation for

a coalition C is a matrix xC = (xi)i∈C ∈ RS×C , with a state-s component xC
s ∈ RC . The

restriction of a TUU-game Γ to coalition C is a TUU-game itself and is denoted by (Γ, C).

3 The Weak Sequential Core

We study which allocations in the game Γ are stable. In general, x̄ is stable if there is no

state s′ ∈ S ′ and no coalition C ⊆ N which has a profitable deviation from x̄ at state s′.

There are various ways in which the notion of profitable deviation might be formulated.

Here we concentrate on the Weak Sequential Core, introduced in Kranich, Perea, and Peters

(2005) for finite deterministic sequences of TU-games and in Predtetchinski, Herings, and

Perea (2006) for two-period exchange economies with incomplete markets. We define the

Weak Sequential Core for TUU-games.

When the classical definition of the Core (Gillies, 1959) is adapted to situations with

time and uncertainty, it is typically assumed that agents can fully commit to any state-
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contingent allocation. In this case one would define the set of utilities for a coalition C ⊂ N

as

V (C) = {(ui(xi))i∈C ∈ RC | ∃xC ∈ RS×C such that ∀s ∈ S, xC
s (C) ≤ vs(C)},

thereby obtaining an NTU-game. Full commitment may be a strong and unrealistic as-

sumption in the presence of time and uncertainty. Once the state of nature is known, there

are typically players which have no incentives to stick to the previously arranged allocation

of payoffs. One problem with full commitment is that the state of nature may not be verifi-

able by an outside court, implying that previously made arrangements cannot be enforced.

Here we analyze the case with the absence of commitments and look for agreements which

are self-enforcing.

First we define what allocations and thereby deviations are feasible for coalitions at

different states, then we formalize the notion of credible deviations and finally we define

the Weak Sequential Core of a TUU-game. We start with feasibility at future states.

Definition 3.1. Let some allocation x̄ be given. The allocation xC is feasible for a coalition

C at state s ∈ S if

xC
−s = x̄C

−s,

xs(C) ≤ vs(C).

The first condition requires that the members of a coalition take allocations outside

state s as given. Since utility functions are assumed to be state-separable, this assumption

is harmless. According to the second condition, in state s the members of a coalition can

redistribute at most their worth.

We turn next to feasibility as state 0.

Definition 3.2. The allocation xC is feasible for a coalition C at state 0 if

x(C) ≤ v(C).

Note that feasibility at state 0 requires that the allocation must be feasible for coalition

C in every state; it requires
∑

i∈C xi
s ≤ vs(C) to hold for all states in period 1.

We continue by defining deviations as feasible allocations that improve the utility of

every coalition member.
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Definition 3.3. Let some allocation x̄ be given. A coalition C can deviate from x̄ at state

s′ ∈ S ′ if there exists a feasible allocation xC for C at s′ such that

ui(xi) > ui(x̄i), for all i ∈ C.

The allocation xC in Definition 3.3 is referred to as a deviation. Definition 3.3 can be

extended in an obvious way to define deviations from an allocation xC by a sub-coalition

D of C.

We show in the following example that deviations are not necessarily self-enforcing.

Example 3.4. Consider a TUU-game with two players and with two states in period 1

with equal probability of occurrence. The players are assumed to be strictly risk-averse ex-

pected utility maximizers. Let the state-dependent characteristic function be the following:

v1({1, 2}) = v2({1, 2}) = 1, v1({1}) = v2({2}) = 1, v1({2}) = v2({1}) = 0.

Let the allocation

x̄ = (x̄1, x̄2) =

(
1 0

0 1

)

be given. Now consider the allocation

x = (x1, x2) =

(
1
2

1
2

1
2

1
2

)
,

which is feasible for the grand coalition in state 0. Since both players are risk-averse, x is

a deviation from x̄ at state 0 by coalition {1, 2}.
The allocation x is not self-enforcing though, since after the resolution of uncertainty

it will always be blocked by a singleton coalition; at state 1 player 1 can block x1
1 =

1
2
by

x̂1
1 = v1({1}) = 1 and at state 2 player 2 can block x2

2 =
1
2
by x̂2

2 = v2({2}) = 1.

Since deviations should be self-enforcing, we introduce the notion of credible deviations.

In defining credibility, we follow the approach developed in Ray (1989) for the static case.

Ray (1989) shows that in a static environment the set of deviations coincides with the set

of credible deviations. This is no longer true in our setting.

Credible deviations are defined recursively and by backwards induction. At any future

state, any deviation by a singleton coalition is credible. A 2-player coalition has a credible

deviation at a future state if there is no singleton sub-coalition with a credible counter-

deviation at that state. A credible deviation at a future state for an arbitrary coalition is
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then defined by recursion. More formally, a recursive definition of a credible deviation at

state s ∈ S by a coalition C is as follows.

Definition 3.5. Let some allocation x̄ be given. Any deviation xC from x̄ at state s ∈ S

by a singleton coalition is credible. A deviation xC from x̄ at state s by coalition C is

credible if there is no sub-coalition D � C such that D has a credible deviation from xC

at state s.

At state 0, again, any deviation by a singleton coalition is credible. A 2-player coalition

has a credible deviation at state 0 if there is no singleton sub-coalition with a credible

counter-deviation at any state, current or future. A credible deviation at state 0 by an

arbitrary coalition is then defined by recursion. More formally, we have the following

definition.

Definition 3.6. Let some allocation x̄ be given. Any deviation xC from x̄ at state 0 by a

singleton coalition is credible. A deviation xC from x̄ at state 0 by coalition C is credible

if there is no sub-coalition D � C and state s′ ∈ S ′ such that D has a credible deviation

from xC at s′.

Definition 3.7. The Weak Sequential Core WSC(Γ) of the game Γ is the set of feasible

allocations x̄ for the grand coalition from which no coalition ever has a credible deviation.

Our definition of the Weak Sequential Core is different from the one in Kranich, Perea,

and Peters (2005) and the one in Predtetchinski, Herings, and Perea (2006). Kranich,

Perea, and Peters (2005) do not require the counter-deviation by a sub-coalition to be

credible, which leads to problems as demonstrated in Habis and Herings (2010). We adapt

the definition in Habis and Herings (2010) to TUU-games. The definition of the Weak

Sequential Core in Predtetchinski, Herings, and Perea (2006) for an incomplete markets

exchange economy is based directly on the characterization we present in Theorem 4.4.

Example 3.4 (continued). We show that x̄ is the only allocation which belongs to the

Weak Sequential Core of the game. For an allocation x to belong to the Weak Sequential

Core, it must hold that x1
1 ≥ 1, since otherwise player 1 could credibly block x in state 1

by x̂1
1 = v1({1}) = 1. An analogous reasoning implies that x2

1 ≥ 0. Similarly, x2
2 ≥ 1 must

hold, since otherwise player 2 could credibly block x in state 2 by x̂2
2 = v2({2}) = 1, and by
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analogous reasons we have x1
2 ≥ 0. Now it follows from feasibility for the grand coalition

that x̄ is the only candidate element of WSC(Γ).

Clearly, singleton coalitions cannot deviate from x̄ at any state. The same is obviously

true for the grand coalition at any future state. The arguments already used to derive that

x̄ is the only candidate as a Weak Sequential Core element, imply that the grand coalition

does not have a credible deviation at state 0.

4 Characterization

In this section we provide a useful characterization for the Weak Sequential Core. Consider

a particular credible deviation at state 0 by some coalition. We show that the set consisting

of all credible deviations which improve the utility of all coalition members by the same

amount or more is a compact set.

Lemma 4.1. Let x̄ be a feasible allocation and let x̂C be a credible deviation from x̄ at

state 0 by coalition C. Let X be the set of credible deviations xC from x̄ at state 0 by

coalition C such that ui(xi) ≥ ui(x̂i) for all i ∈ C. Then the set X is compact.

Proof. First we show that X is closed. Consider a sequence (xC
n )n∈N with xC

n ∈ X

converging to x̃C . We need to show that x̃C ∈ X, so

(i) x̃C is a credible deviation from x̄ at state 0 by C,

(ii) ui(x̃i) ≥ ui(x̂i) for all i ∈ C.

The continuity of ui implies ui(x̃i) ≥ ui(x̂i) for all i ∈ C, thus (ii) holds.

Clearly, x̃C is a deviation from x̄ at state 0 by C, so if x̃C is not a credible deviation

then there is a credible deviation yD from x̃C at s′ ∈ S ′ by a sub-coalition D � C. Since

ui(x̃i) < ui(yi) for all i ∈ D there must be an n̂ such that if n > n̂ then for all i ∈ D,

ui(xi
n) < ui(yi). This makes yD a credible deviation from xC

n at state s′ by coalition D, a

contradiction, so (i) holds. Hence, X is closed.

Now we show that X is bounded. For all xC ∈ X it holds that

xi ≥ v({i}), i ∈ C,
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since xi
s = vs({i}) for all s ∈ S if C = {i}, and no player in C should have a credible

deviation from xC at any s ∈ S if C is not a singleton. Therefore X is bounded from

below. Since xC(C) = v(C), it follows that X is also bounded from above.

�

Note that Lemma 4.1 is not true for the set of deviations rather then the set of credible

deviations, since in the case of deviations it might be possible to compensate arbitrarily

negative payoffs in one state by sufficiently high positive payoffs in other states.

Our characterization makes use of the classical notion of the Core of a TU-game.

Definition 4.2. A coalition C can improve upon an allocation x̄ in a TU-game (N, v) if

x̄(C) < v(C).

Definition 4.3. The Core C(N, v) of a TU-game (N, v) is the collection of allocations x̄

such that x̄(N) = v(N) and there is no coalition C that can improve upon x̄.

The Weak Sequential Core can be characterized by means of the Core of suitably chosen

subgames.

Theorem 4.4. The following two statements are equivalent:

(a) x̄ ∈ WSC(Γ),

(b) x̄ is such that x̄s ∈ C(Γs) for all s ∈ S, and there is no C ⊂ N and allocation xC

such that xC
s ∈ C(Γs, C) for all s ∈ S, and ui(xi) > ui(x̄i) for all i ∈ C.

Proof.

(a) ⇒ (b). Consider some state s ∈ S and suppose there is a coalition C ⊂ N that can

improve upon x̄s by xC
s . We define xC

−s = x̄−s. Either xC is a credible deviation from x̄

at state s by coalition C or there is a sub-coalition D � C such that D has a credible

deviation yD from xC at s. In the latter case yD is also a credible deviation from x̄ at state

s by coalition D. We have a contradiction with x̄ ∈WSC(Γ). It follows that x̄s ∈ C(Γs).

Suppose there is C ⊂ N and xC such that xC
s ∈ C(Γs, C) for all s ∈ S, and ui(xi) >

ui(x̄i) for all i ∈ C. We show that if such a deviation exists then there also exists a credible

deviation, thereby contradicting (a). If xC is a credible deviation from x̄ at 0 by C, then

we are done, so suppose this is not the case. Since xC
s ∈ C(Γs, C) holds for all s ∈ S, there

cannot be a credible deviation from xC at s ∈ S by some coalition D � C, so there must
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be a credible deviation yD from xC at state 0 by some coalition D � C. But then yD is

also a a credible deviation from x̄ at state 0 by D since ui(yi) > ui(xi) > ui(x̄i) for all i ∈ D.

(b)⇒ (a). Suppose (a) does not hold. Since x̄s ∈ C(Γs) for all s ∈ S, no coalition has a

credible deviation from x̄ at s ∈ S and so there must be a credible deviation x̂C from x̄ at

state 0 by a coalition C. We will show that then there also exists a credible deviation x̃C

from x̄ at state 0 by coalition C such that x̃C
s ∈ C(Γs, C) for all s ∈ S, thereby violating

(b).

Let X be the set of credible deviations xC from x̄ at state 0 by C with the property

that ui(xi) ≥ ui(x̂i) for all i ∈ C. Let x̃C be a solution of the problem

max
xC∈X

∑
i∈C

ui(xi). (1)

Since the allocation x̂C belongs to X, X is non-empty. We know from Lemma 4.1 that X

is compact. Therefore the set of maximizers in (1) is non-empty.

We show that x̃C
s belongs to C(Γs, C) for all s ∈ S. Suppose there exists a state s ∈ S

for which x̃C
s /∈ C(Γs, C). Then there is a coalition D ⊂ C that can improve upon x̃C

s by

means of yD
s . Since x̃C is a credible deviation from x̄, it is not possible that D � C, so

D = C.

We define the allocation ỹC by ỹC
s = yC

s and ỹC
−s = x̃C

−s, and show that ỹC belongs to

X. By the separability of the utility function it holds that ui(ỹi) > ui(x̃i) ≥ ui(x̂i) for all

i ∈ C.

It also holds that ỹC is a credible deviation from x̄ at state 0 by C. Suppose not. Since

ui(ỹi) > ui(x̃i) ≥ ui(x̂i) for all i ∈ C, for ỹC not to be a credible deviation from x̄, there

should be a sub-coalition D � C with a credible deviation zD from ỹC at s′ ∈ S ′. This leads

to a contradiction when s′ = s since yC
s is credible. When s′ �= s we get a contradiction

since x̃C is credible. We have shown that ỹC ∈ X.

It follows that
∑

i∈C ui(ỹi) >
∑

i∈C ui(x̃i), which contradicts that x̃C is a maximizer.

We have shown that x̃C
s ∈ C(Γs, C) for all s ∈ S. �

For an allocation to belong to the Weak Sequential Core of the TUU-game Γ, the

allocation should belong to the Core of the TU-game Γs in every state s ∈ S. Moreover,

no coalition should be able to pick an element of the Core of the game restricted to C in

every state, and in doing so improve utility in an ex ante sense.

11



It follows immediately from Theorem 4.4 that the Weak Sequential Core of a TUU-game

with one state coincides with the Core of that game.

In a TUU-game one can distinguish ex ante and ex post efficiency.

Definition 4.5. An allocation x̄ is ex ante efficient in the game Γ if:

(i) x̄(N) ≤ v(N).

(ii) There does not exist an allocation x with x(N) ≤ v(N) such that ui(xi) > ui(x̄i) for

all i ∈ N .

Definition 4.6. An allocation x̄ is ex post efficient in the game Γ if x̄(N) = v(N).

Note, that the concept of ex post efficiency says more than the usual feasibility con-

ditions in TU-games, since it requires
∑

i∈N x̄i
s = vs(N) to hold at all states s ∈ S, but

contrary to ex ante efficiency it does not imply Pareto-efficiency, since it does not consider

reallocation possibilities across states.

Corollary 4.7. If x̄ ∈WSC(Γ), then x̄ is ex post efficient.

Observe that Example 3.4 demonstrates that an allocation in the Weak Sequential Core

might not be ex ante efficient.

5 Non-emptiness

Kranich, Perea, and Peters (2005) show that the Weak Sequential Core of a finite determin-

istic sequence of TU-games is non-empty if all utility functions are linear. Predtetchinski,

Herings, and Perea (2006) give sufficient conditions for non-emptiness for the case of an

exchange economy with two agents. These are the only results in the literature so far re-

garding non-emptiness of the Weak Sequential Core. Both papers present examples where

the Weak Sequential Core is empty.

The Weak Sequential Core can also be empty in a TUU-game, as shown in the following

example.

Example 5.1. Consider a TUU-game Γ with three players and two future states. The

characteristic function v is presented in Table 2.
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Table 1: Characteristic function
v ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v1 0 5 50 5 140 20 140 150

v2 0 50 5 5 140 140 20 150

Players have the utility function

ui(xi) = 1/2(1− e−0.1xi
1) + 1/2(1− e−0.1xi

2), i = 1, 2, 3.

By Theorem 4.4 only allocations in the Core of Γ1 and Γ2 can be stable. The Core of

each of these TU-games consists of exactly one vector:

C(Γ1) = {(10, 130, 10)},
C(Γ2) = {(130, 10, 10)}.

The resulting allocation

x̄ = (x̄1, x̄2, x̄3) =

(
10 130 10

130 10 10

)

leads to high uncertainty for players 1 and 2, which could be completely eliminated if they

cooperated. Coalition {1, 2} can credibly deviate from x̄ by perfect pooling at state 0,

using

x{1,2} = (x1, x2) =

(
70 70

70 70

)
,

and so achieving a higher utility:

u1(10, 130) = u2(130, 10) ≈ 0.8161� u1(70, 70) = u2(70, 70) ≈ 0.9991.

We have shown that WSC(Γ) = ∅.

We will show next that if Γs is convex for all s ∈ S, then the Weak Sequential Core is

non-empty.

Definition 5.2. A TU-game (N, v) is convex if for any C ⊂ N and for all S � T ⊂ N\C
it holds that v(S ∪ C)− v(S) ≤ v(T ∪ C)− v(T ).
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Theorem 5.3. Let Γs be convex for all s ∈ S. Then WSC(Γ) �= ∅.
Proof. Let π : N → N be a permutation, assigning rank number π(i) to any player

i ∈ N. For a player i ∈ N, we define πi = {j ∈ N | π(j) ≤ π(i)} as the set of predecessors
of player i. For every s ∈ S, the marginal vector mπ(Γs) ∈ RN is given by

mπ,i(Γs) = vs(π
i)− vs(π

i\{i}), i ∈ N,

and thus assigns to player i his marginal contribution to the worth of the coalition consisting

of all his predecessors in π. We show that x̄ defined by x̄s = mπ(Γs), s ∈ S, belongs to

WSC(Γ).

Since Γs is convex, it holds that x̄s ∈ C(Γs) for all s ∈ S (Shapley, 1971). Using

Theorem 4.4, it remains to be shown that there is no C ⊂ N and allocation xC such that

xC
s ∈ C(Γs, C) for all s ∈ S, and ui(xi) > ui(x̄i) for all i ∈ C.

Consider C ⊂ N and xC with xC
s ∈ C(Γs, C) for all s ∈ S. Let i be the player in C

with the highest π(i). It holds that

xi
s ≤ vs(C)− vs(C \ {i}) ≤ vs(π

i)− vs(π
i \ {i}) = x̄i

s,

where the first inequality follows since xC
s ∈ C(Γs, C) and the second inequality since by the

choice of i as the highest ranked player in C according to π it holds that C \ {i} ⊂ πi \ {i}
and Γs is convex. By monotonicity of ui we have that ui(xi) ≤ ui(x̄i), which completes the

proof. �

An interesting feature of Theorem 5.3 is that we do not need to make additional as-

sumptions on the utility functions of the players. Within the framework of expected utility,

we allow for both risk-averse and risk-loving players. Also many theories of non-expected

utility maximization are covered by our result. This is in contrast to the classical definition

of the Core, which might be empty-valued under the same assumptions. Considering the

lack of results on non-emptiness of the Weak Sequential Core in the literature so far, this

comes as a surprise.

6 Bankruptcy games

The class of convex TU-games admits a wide range of interesting applications. Examples

are airport games (Littlechild and Owen, 1973), bankruptcy games (Aumann and Maschler,
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1985), sequencing games (Curiel, Pederzoli, and Tijs, 1989) and standard tree games (Gra-

not, Maschler, Owen, and Zhu, 1996). In this section we analyze the application of the

Weak Sequential Core to bankruptcy games.

Bankruptcy games originate in a fundamental paper by O’Neill (1982). The problem

is based on a Talmudic example, where a man dies, leaving behind an estate, E, which is

worth less than the sum of his debts. The question is how the estate should be divided

among the creditors.

A bankruptcy problem is defined as a pair (E, d), where d = (d1, . . . , dn) is the vector

of individual debts, and
∑

i∈N di ≥ E ≥ 0. Following Aumann and Maschler (1985), the

problem can be transformed into a cooperative game. The characteristic function vE,d is

defined to be

vE,d(C) = max{E −
∑

i∈N\C
di, 0}, C ⊂ N (2)

so the worth of a coalition C in the game vE,d is that amount of the estate which is not

claimed by the complement of C. It has been shown by Curiel, Maschler, and Tijs (1987)

that vE,d is convex.

A rule is a function that associates with each (E, d) an allocation x ∈ RN such that∑
i∈N xi = E and 0 ≤ x ≤ d. A thorough inventory of the rules can be found in Thomson

(2003). The best-known rule is the Proportional rule (P) which allocates the estate propor-

tional to the claims. The Adjusted Proportional rule (AP) selects the allocation at which

each claimant i receives his minimal right max{E−∑j �=i d
j, 0}, then each claim is revised

down accordingly, and finally, the remainder of the estate is divided proportionally to the

revised claims. The Constrained Equal Awards rule (CEA) is in the spirit of equality; it

assigns equal amounts to all claimants subject to no one receiving more than his claim.

More formally, we have the following.

Definition 6.1 (Constrained Equal Awards rule). For each bankruptcy problem (E, d),

CEAi(E, d) = min{di, α}, i ∈ N, where α ≤ maxi∈N di is chosen so that
∑

i∈N min{di, α} =
E.

The Constrained Equal Losses rule (CEL), as opposed to the CEA rule, is focusing

on losses claimants incur, and makes these losses equal, with no one receiving a negative

amount. The recommendation of the Talmud, later formalized in Aumann and Maschler

(1985) as the Talmud rule (TR) is a combination of the CEA rule and the CEL rule,
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depending on the relation of the half-claims and the value of the estate. The Piniles’ rule

(Piniles, 1861) is an application of the CEA rule to the half-claims in two different ways,

again depending on the relation of the half-claims and the value of the estate. In our set-up

it coincides with the Talmud rule. The Constrained Egalitarian rule (Chun, Schummer,

and Thomson, 2001) also gives a central role to the half-claims, and guarantees that the

awards are ordered as the claims are. In our case it also coincides with the Talmud rule.

The Random Arrival rule (RA) takes all the possible orders of claimants arriving one at a

time, compensates them fully until money runs out, and takes the arithmetic average over

all orders of arrival.

The claims-truncated version of the rules are also considered in the literature. Trun-

cating the claims at the value of the estate does not change the result of the CEA, TR and

RA rules. The truncated-CEL and truncated-P can be blocked in the stochastic game.

Many rules are related to the solutions of bankruptcy games. The AP rule corresponds

to the τ -value (Curiel, Maschler, and Tijs, 1987), the CEA rule to the Dutta-Ray solution

(Dutta and Ray, 1989), the TR rule to the prenucleolus (Aumann and Maschler, 1985),

and the RA rule to the Shapley value (O’Neill, 1982).

Any rule belongs to the Core of the bankruptcy game. Let x̄ be the allocation that

the rule associates to the bankruptcy problem (E, d). It holds that x̄(N) = v(N) = E.

Moreover, we have

v(C) = max{0, E −
∑

i∈N\C
di} ≤ max{0, E −

∑
i∈N\C

x̄i} = max{0,
∑
i∈C

x̄i} = x̄(C),

so no coalition can improve upon x̄.

In the original estate division problem of the Talmud a man has 3 wives whose marriage

contracts specify that upon his death they should receive 100, 200 and 300 respectively.

When the man dies, his estate is found to be worth 100, 200 or 300 in three different

scenarios.

The characteristic function of the resulting TU-games, with d =100, 200 and 300, is

shown in Table 2.

Table 3 summarizes the outcomes of a number of rules applied to the estate division

problem.

We are interested in the question to what extent the rules lead to allocations that are

self-enforcing in the presence of uncertainty regarding the value of the estate and the size

of the debts. A stochastic bankruptcy problem is defined as a tuple (S,E, d, u), where S is
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Table 2: Characteristic function of estate division
vE,d ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}
v100,d 0 0 0 0 0 0 0 100

v200,d 0 0 0 0 0 0 100 200

v300,d 0 0 0 0 0 100 200 300

Table 3: Estate allocation
Player Estate TR P AP CEA CEL RA

d1 = 100

100 33 1/3 16 2/3 33 1/3 33 1/3 0 33 1/3

200 50 33 1/3 40 66 2/3 0 33 1/3

300 50 50 50 100 0 50

d2 = 200

100 33 1/3 33 1/3 33 1/3 33 1/3 0 33 1/3

200 75 66 2/3 80 66 2/3 50 83 1/3

300 100 100 100 100 100 100

d3 = 300

100 33 1/3 50 33 1/3 33 1/3 100 33 1/3

200 75 100 80 66 2/3 150 83 1/3

300 150 150 150 100 200 150

a finite set of states of nature, E = (Es)s∈S is the value of the estate in state s, d = (ds)s∈S

is the state-dependent vector of debts, and u = (ui)i∈N are the utility functions of the

claimants, where ui : RS → R. Extending the approach of Aumann and Maschler (1985)

to the stochastic case, we can transform a stochastic bankruptcy problem into a stochastic

bankruptcy game Γ = (N, S, v, u), the TUU-game where we set

vs(C) = max{Es −
∑

i∈N\C
di

s, 0}, s ∈ S, C ⊂ N.

We have already argued that a rule leads to an allocation in the Core of the bankruptcy

game. This implies that for a stochastic bankruptcy game, blocking is not possible after

the resolution of uncertainty. However, it might be possible to block ex ante.

As an example, consider the estate division problem of the Talmud, where the claims

of the three wives are fixed to 100, 200, and 300, respectively, but the exact value of the

estate is uncertain, and the possible values 100, 200, and 300 are equally likely. After the

uncertainty regarding the estate’s value is resolved in period 1, one of the three TU-games

is played, arising from the original three scenarios of the problem. Suppose the wives
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evaluate the payoffs with the utility function

ui(xi) =
∑
s∈S

1

3
(1000xi

s − (xi
s)

2),

whenever 0 ≤ xi
s ≤ 300 for s ∈ S.1

We demonstrate that the grand coalition has a credible deviation from the allocation

specified by all the rules mentioned before at state 0, with the exception of the Constrained

Equal Awards rule. Table 4 lists the credible deviations, denoted by x, and Table 5 the

implied utilities, as well as the utilities of the allocations x̄ implied by the various rules.

Table 4: Credible deviations
Player E TR P AP CEL RA

d1 = 100

100 25 0 25 0 29

200 40 33 35 0 29

300 70 70 65 0.01 60

d2 = 200

100 25 30 25 0 34

200 75 63 80 49 83

300 110 108 110 101.13 100

d3 = 300

100 50 70 50 100 37

200 85 104 85 151 88

300 120 122 125 198.86 140

Table 5: Utilities
Player u TR P AP CEL RA

d1 = 100
u1(x̄1) 42407.41 32037.04 39374.07 0.00 37314.81

u1(x1) 42625.00 32337.00 39641.67 3.33 37572.67

d2 = 200
u2(x̄2) 63865.74 61481.48 65274.07 45833.33 66203.70

u2(x2) 63883.33 61489.00 65291.67 45833.91 66318.33

d3 = 300
u3(x̄3) 76365.74 88333.33 77774.07 125833.33 78703.70

u3(x3) 76958.33 88466.67 78216.67 125837.90 78762.33

We show next that the Constrained Equal Awards rule belongs to the Weak Sequential

Core of the stochastic bankruptcy game under rather general circumstances.

1Outside this domain the utility function can be anything, as long as it is continuous, state-separable

and monotonically increasing.
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Theorem 6.2. For i ∈ N , let the utility function be given by ui(xi) =
∑

s∈S ρsw(x
i
s),

where ρs is the objective probability of state s and w is a strictly concave function. Then

the allocation implied by the Constrained Equal Awards rule belongs to the Weak Sequential

Core of the stochastic bankruptcy game.

Proof. Let x̄ be the allocation implied by the Constrained Equal Awards rule. We

have already argued that x̄s ∈ C(Γs) holds for all s ∈ S. By Theorem 4.4 it remains to be

shown that there is no xC such that xC
s ∈ C(Γs, C) for all s ∈ S, and ui(xi) > ui(x̄i) for

all i ∈ C

Consider a stochastic bankruptcy problem with set of players C ⊂ N , estate in state s

equal to max{Es −
∑

i∈N\C di
s, 0} and claims equal to di

s for i ∈ C. The corresponding

stochastic bankruptcy game is denoted by (C, S, vC , (ui)i∈C). Let ȳC be the allocation

resulting from the CEA rule.

Note that for D ⊂ C, the worth of coalition D in game vC
s coincides with its worth in

the original game, since

vC
s (D) = max{vC

s (C)−
∑

i∈C\D
di

s, 0}

= max{max{Es −
∑

i∈N\C
di

s, 0} −
∑

i∈C\D
di

s, 0},

where either (a) Es −
∑

i∈N\C di
s > 0, and so vC

s (D) = max{Es −
∑

i∈N\D di
s, 0} = vs(D),

or (b) Es −
∑

i∈N\C di
s ≤ 0, and so vC

s (D) = 0 = vs(D).

We have that ȳC
s ∈ C(Γs, C) for all s ∈ S. We show next that ȳC maximizes the sum

of the players utilities over allocations xC with xC
s ∈ C(Γs, C) for all s ∈ S.

Consider the following constrained maximization problem,

max
xC

∑
i∈C

ui(xi)

s.t.
∑
i∈C

xi
s = vs(C), s ∈ S, (3)

∑
i∈D

xi
s ≥ vs(D), s ∈ S, ∅ �= D � C, (4)

where condition (3) is required for ex post efficiency and inequality (4) is a no-blocking

condition. A solution to the maximization problem maximizes the sum of the players’

utilities among those allocations that belong to C(Γs, C) for all s ∈ S.

19



We form the Lagrangian,

L(x, λ, μ) =
∑
i∈C

∑
s∈S

ρsw(x
i
s)−

∑
s∈S

μs(
∑
i∈C

xi
s − vs(C))−

∑
s∈S

∑
D�C

λD
s (
∑
i∈D

xi
s − vs(D)).

The first-order conditions, which are necessary and sufficient for a maximum, are given by

ρsw
′(xi

s)− μs −
∑

D�C|D�i

λD
s = 0, s ∈ S, i ∈ C, (5)

∑
i∈C

xi
s − vs(C) = 0, s ∈ S, (6)

λD
s (
∑
i∈D

xi
s − vs(D)) = 0, s ∈ S, ∅ �= D � C, (7)

∑
i∈D

xi
s − vs(D) ≥ 0, s ∈ S, ∅ �= D � C, (8)

λD
s ≤ 0, s ∈ S, ∅ �= D � C. (9)

We will show that together with an appropriate choice of λ and μ, ȳC satisfies these first-

order conditions. Conditions (6) and (8) hold since ȳC
s ∈ C(Γs, C) for all s ∈ S. To show

that the remaining conditions hold as well, we introduce two subsets of players for each

state, and distinguish two cases. For s ∈ S, let Is = {i ∈ C|ȳi
s = di

s} be the set of those
agents whose claim is fully paid in state s.

1. Is = ∅
For all ∅ �= D � C we set λD

s = 0, thereby satisfying conditions (7) and (9). Since

Is = ∅, it holds for all i ∈ C that ȳi
s > di

s. By the definition of the CEA rule, ȳi
s is

independent of i. It follows that ρsw
′(ȳi

s) is also independent of i, thus we can define

μs = ρsw
′(ȳi

s) for all i ∈ C to satisfy condition (5).

2. Is �= ∅
Let C = {i1s, i2s, . . . , ics}, where di1

s ≤ di2

s ≤ . . . ≤ dic

s and c denotes the cardinality of

C. Then, using the definition of the CEA rule, for some k ≥ 1, Is = {i1s, . . . , iks}. For
1 < j ≤ k + 1 we define Dj

s = {ijs, . . . , ics}, so C \ Dj
s ⊂ Is and C \ Dk+1

s = Is. We

define μs = ρsw
′(ȳi1

s ), i.e. the marginal utility of the player with the lowest claim in

state s. For 1 < j ≤ k + 1 we define λDj
s

s = ρsw
′(ȳij

s )− ρsw
′(ȳij−1

s ). By the definition

of the CEA rule it holds that ȳij

s ≥ ȳij−1

s , so λDj
s

s ≤ 0. For other coalitions D we set

λD
s = 0. It follows that condition (9) is satisfied. The definition of the CEA rule and
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equation (2) imply that∑
i∈Dj

s

ȳi
s = vs(C)−

∑
i∈C\Dj

s

ȳi
s = max{Es −

∑
i∈N\C

di
s, 0} −

∑
i∈C\Dj

s

di
s. (10)

Since
∑

i∈Dj
s
ȳi

s ≥ 0,

max{Es −
∑

i∈N\C
di

s, 0} −
∑

i∈C\Dj
s

di
s = max{Es −

∑
i∈N\Dj

di
s, 0} = vs(D

j
s). (11)

It follows from equation (10) and (11) that
∑

i∈Dj
s
ȳi

s − vs(D
j
s) = 0, so condition (7)

is satisfied.

It only remains to show that condition (5) is satisfied as well. All coalitions D that

contain player i1 have λD
s = 0, so for player i1 this is immediate. Consider player ij

′

for 1 < j′ ≤ k. The only coalitions D such that ij
′ ∈ D and λD

s �= 0 are of the form

{ij, . . . , ic}, for 1 < j ≤ j′. Equation (5) reduces to

ρsw
′(ȳij

′

s )− ρsw
′(ȳi1

s )−
j′∑

j=2

(ρsw
′(ȳij

s )− ρsw
′(ȳij−1

s )) = 0.

Finally, consider i ∈ C\Is. Note that all such players receive the same payoff in

state s, equal to ȳik+1
. Since player i is part of all the coalitions Dj

s, we have that

equation (5) reduces to

ρsw
′(ȳik+1

s )− ρsw
′(ȳi1

s )−
k+1∑
j=2

(ρsw
′(ȳij

s )− ρsw
′(ȳij−1

s )) = 0.

Thus ȳC satisfies all the first-order conditions. It follows that there is no xC such that

xC
s ∈ C(Γs, C) for all s ∈ S, and ui(xi) > ui(ȳi) for all i ∈ C.

We show next that ui(x̄i) ≥ ui(ȳi) for all i ∈ C. For all s ∈ S, it follows from the

definition of a rule that
∑

i∈C ȳi
s = vs(C) and vs(C) ≤

∑
i∈C x̄i

s. Using the definition of the

CEA rule it follows that for all s ∈ S and i ∈ C, ȳi
s ≤ x̄i

s. Since the utility function is

monotonically increasing, we have that ui(x̄i) ≥ ui(ȳi) for all i ∈ C. Therefore, there is

no xC such that xC
s ∈ C(Γs, C) for all s ∈ S, and ui(xi) > ui(x̄i) for all i ∈ C, thereby

showing part (b) of Theorem 4.4.

�
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The introduction of uncertainty into the bankruptcy problem leads to additional in-

sights into the nature of the division rules. While in the original static game, all the

proposed solutions are stable against deviations, it is only the Constrained Equal Awards

rule for which this crucial property carries over to the stochastic setting.

7 Conclusion

In this paper we have introduced uncertainty into transferable utility games. Since in reality

most decisions are made under uncertainty, this is a natural and important extension. It is

not straightforward though, how to define an appropriate Core concept for this stochastic

setting. In this paper we consider allocations that are stable in the absence of commitment

possibilities. These requirements lead to the notion of credibility. A credible deviation is

self-enforcing in the sense that a coalition can credibly deviate from a given allocation if

no sub-coalition ever has a credible counter-deviation. These considerations lead to the

definition of the Weak Sequential Core.

This notion of stability leads to a characterization of the Weak Sequential Core; all

allocations in the Weak Sequential Core belong to the Core of the transferable utility game

played after the resolution of uncertainty. Moreover, no coalition can block an allocation

in the Weak Sequential Core ex ante by means of an allocation that belongs to the Core

of all the ex post games reduced to the coalition. This property facilitates the application

of the concept and the proof of its non-emptiness. We show that convexity of the ex post

games is sufficient for the non-emptiness of the Weak Sequential Core.

A famous application which leads to convex games is the bankruptcy problem. We

introduce the stochastic bankruptcy problem and transform it into a TUU-game. We show

that most of the best-known allocation rules are unstable for stochastic bankruptcy games.

The Constrained Equal Awards rule is the only exception, and its application leads to

allocations in the Weak Sequential Core.
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