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To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed 
genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed 
high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association 
study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant 
(P < 5 × 10−8) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association 
study signal: P = 1.28 × 10−20), and it showed an age-dependent association with Bifidobacterium abundance. Other associa-
tions were suggestive (1.95 × 10−10 < P < 5 × 10−8) but enriched for taxa showing high heritability and for genes expressed in the 
intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait 
loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative 
colitis and rheumatoid arthritis.

Large-scale association analyses identify host 
factors influencing human gut microbiome 
composition

The gut microbiome is an integral part of the human holobi-
ont. In recent years, many studies have highlighted the link 
between its perturbations and immune, metabolic, neurologic 

and psychiatric traits, drug metabolism and cancer1. Environmental 
factors, like diet and medication, play a substantial role in shap-
ing the gut microbiome composition2–4, although twin, family and 
population-based studies have shown that the genetic component 
also plays a role in determining gut microbiota composition, and a 
proportion of bacterial taxa are heritable5,6.

Several studies7–9 have investigated the effect of genetics on 
microbiome composition through genome-wide association stud-
ies (GWAS) and identified dozens of associated loci. However, little 
replication across these studies has been observed so far10,11. This 
may be due to a number of factors. First, methodological differ-
ences in the collection, processing and annotation of stool micro-
biota are known to have strong effects on the microbiome profiles 
obtained12–14 and can generate heterogeneity and a lack of reproduc-
ibility across studies. Second, most association signals are rather 
weak, which suggests that existing studies of 1,000–2,000 samples7–9 
are underpowered. Finally, some of the GWAS signals related to 
microbiome compositions may be population specific, that is, they 
may represent bona fide population differences in genetic structure 
and/or environment.

To address these challenges and obtain valuable insights into the 
relationship between host genetics and microbiota composition, 
we set up the international consortium MiBioGen11. In this study, 
we coordinated 16S ribosomal RNA (rRNA) gene sequencing pro-
files and genotyping data from 18,340 participants from 24 cohorts 
from the United States, Canada, Israel, South Korea, Germany, 
Denmark, the Netherlands, Belgium, Sweden, Finland and the 
United Kingdom. We performed a large-scale, multiancestry, 
genome-wide meta-analysis of the associations between autosomal 
human genetic variants and the gut microbiome. We explored the 
variation of microbiome composition across different populations 
and investigated the effects of differences in methodology on the 
microbiome data. Through the implementation of a standardized 
pipeline, we then performed microbiome trait loci (mbTL) mapping 

to identify genetic loci that affect the relative abundance (microbi-
ome quantitative trait loci, or mbQTLs) or presence (microbiome 
binary trait loci, or mbBTLs) of microbial taxa. Finally, we focused 
on the biological interpretation of GWAS findings through gene-set 
enrichment analysis (GSEA), phenome-wide association studies 
(PheWAS) and Mendelian randomization (MR) approaches.

Results
Landscape of microbiome composition across cohorts. Our study 
included cohorts that were heterogeneous in terms of ancestry, age, 
male/female ratio and microbiome analysis methodology. Twenty 
cohorts included samples of single ancestry, namely European 
(16 cohorts; n = 13,266), Middle Eastern (1 cohort; n = 481), East 
Asian (1 cohort; n = 811), American Hispanic/Latin (1 cohort; 
n = 1,097) and African American (1 cohort; n = 114), whereas 
four cohorts included samples from multiple ancestries (n = 2,571; 
Supplementary Note and Supplementary Tables 1 and 2).

Twenty-two cohorts comprised adult or adolescent individuals 
(n = 16,632), and two cohorts consisted of children (n = 1,708). The 
microbial composition was profiled by targeting three distinct vari-
able regions of the 16S rRNA gene: V4 (10,413 samples; 13 cohorts), 
V3–V4 (4,211 samples; 6 cohorts) and V1–V2 (3,716 samples, 5 
cohorts; Fig. 1a). To account for differences in sequencing depth, 
all datasets were rarefied to 10,000 reads per sample. Next, we per-
formed taxonomic classification using direct taxonomic binning 
instead of operational taxonomic unit (OTU) clustering methods 
(Methods)11,15,16.

In general, cohorts varied in their microbiome structure at mul-
tiple taxonomic levels (Fig. 1b–g). This variation may largely be 
driven by the heterogeneity between populations and differences 
in technical protocols (Supplementary Tables 1–3). Combining all 
samples (n = 18,340) resulted in a total richness of 385 genus-level 
taxonomic groups that had a relative abundance higher than 0.1% 
in at least one cohort. This observed total richness appeared to 
be below the estimated saturation level (Fig. 1b), suggesting that 
a further increase in sample size and a higher sequencing depth 
are needed to capture the total gut microbial diversity (Fig. 1d). 
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across cohorts. The cohorts with the lowest richness (HCHS/SOL) 
and highest diversity (DanFund) used specific DNA extraction kits 
that were not used by other studies, possibly contributing to their 
outlying alpha diversities (Fig. 1f,g and Supplementary Table 3). 
Overall, the 16S rRNA domain sequence and the DNA extraction 
methods used, together with cohort ancestry, accounted for 32.74% 
of richness variance.

Given the high heterogeneity of microbial composition across 
cohorts, we applied both per-cohort and whole-study filters for taxa 
inclusion in GWAS (Methods).

Heritability of microbial taxa and alpha diversity. We performed 
estimation of heritability (H2) of gut microbiome composition based 
on the two twin cohorts included in our study (Supplementary Table 
5). The TwinsUK cohort, composed of 1,176 samples, including 169 
monozygotic (MZ) and 419 dizygotic (DZ) twin pairs, was used to 
estimate H2 using the ACE (additive genetic variance (A)/shared envi-
ronmental factors (C)/non-shared factors plus error (E)) model. The 
Netherlands Twin Registry (NTR) cohort (only MZ twins; n = 312, 156 
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Fig. 1 | Diversity of microbiome composition across the MiBioGen cohorts. a, Sample size, ancestry, genotyping array and 16S rRNA gene profiling 
method. The SHIP/SHIP-TREND and GEM_v12/GEM_v24/GEM_ICHIP subcohorts were combined in SHIP and GEM, respectively (Methods; see 
Supplementary Note for cohort abbreviations), resulting in a total of 21 cohorts. b, Total richness (number of genera with mean abundance over 0.1%, 
that is, 10 reads of 10,000 rarefied reads) by number of cohorts investigated. c, Number of core genera (genera present in >95% of samples from each 
cohort) by number of cohorts investigated. d, Pearson correlation of cohort sample size with total number of genera. Confidence bands represents the 
standard error (s.e.) of the regression line. e, Unweighted mean relative abundance of core genera across the entire MiBioGen dataset. f, Per-sample 
richness across the 21 cohorts. g, Diversity (Shannon index) across the 21 cohorts, with the DanFund and PNP cohorts presenting higher and lower 
diversity in relation to the other cohorts. In f and g, asterisks indicate cohorts that differed significantly from all the others (pairwise Wilcoxon rank-sum 
test; false discovery rate < 0.05). For all box plots (b, c and e), the central line, box and whiskers represent the median, interquartile range (IQR) and 1.5 
times the IQR, respectively.

As expected, the core microbiota (the number of bacterial taxa 
present in over 95% of individuals) decreased with the inclusion 
of additional cohorts (Fig. 1c and Methods). The core microbiota 
comprises nine genera, of which seven were previously identified 
as such3, and the genera Ruminococcus and Lachnoclostridium 
(Fig. 1e). Of these nine genera, the most abundant genus was 
Bacteroides (18.65% (standard deviation (SD): 8.65%)), followed by 
Faecalibacterium (6.19% (SD: 2.35%)), Blautia (3.36% (SD: 2.84%)) 
and Alistipes (3.05% (SD: 1.47%)). Among the European cohorts 
that compose the largest genetically and environmentally homoge-
neous cluster, the core microbiota also included Ruminiclostridium, 
Fusicatenibacter, Butyricicoccus and Eubacterium, genera that typi-
cally produce short-chain fatty acids17.

The DNA extraction method was the principal contributor to 
heterogeneity, with a nonredundant effect size of 29% on the micro-
biome variation (measured as average genus abundance per cohort; 
stepwise distance-based redundancy analysis adjusted R squared 
(R2adjDNAext) = 0.27, adjusted P value (Padj) = 7 × 10−4; Supplementary 
Table 4). Richness and Shannon diversity also differed significantly 

Nature Genetics | VOL 53 | February 2021 | 156–165 | www.nature.com/naturegenetics 157

http://www.nature.com/naturegenetics


Articles Nature Genetics

pairs) was used to replicate the MZ intraclass correlation coefficient 
(ICC). None of the alpha diversity metrics (Shannon, Simpson and 
inverse Simpson) showed evidence for heritability (A < 0.01, P = 1). 
Among the 159 bacterial taxa that were present in more than 10% of 
twin pairs, 19 taxa showed evidence for heritability (Pnominal < 0.05; Fig. 
2a). The ICC showed concordance between TwinsUK and NTR for 
these 19 bacterial taxa (R = 0.25, P = 0.0018; Fig. 2b).

The SNP-based heritability calculated from mbQTL sum-
mary statistics using linkage disequilibrium (LD) score regression 
showed two bacterial taxa, genus Ruminiclostridium 9 and fam-
ily Peptostreptococcaeae, passing the significance threshold given 
the number of 211 taxa tested (Z < 3.68; Supplementary Table 5). 
The results of the SNP-based heritability and twin-based heritabil-
ity showed significant correlation across the tested taxa (R = 0.244, 
P = 7.2 × 10−4).

Thirty-one loci associated with gut microorganisms through 
GWAS. First, we studied the genetic background of the alpha diver-
sity (Simpson, inverse Simpson and Shannon diversity indices). 
We identified no significant hits in the meta-analysis of GWAS 
(P > 5 × 10−8; Supplementary Table 6 and Supplementary Fig. 1), in 
line with the observed lack of heritability for these indices.

Next, we used two separate GWAS meta-analysis approaches18–20 
to explore the effect of host genetics on the abundance levels 
(mbQTL) or presence/absence (mbBTL) of bacterial taxa in the gut 
microbiota (Methods).

In total, 18,340 samples and 211 taxa were included in the mbQTL 
mapping analysis (Methods and Supplementary Table 3). We identi-
fied genetic variants that mapped to 20 distinct genetic loci associ-
ated with the abundance of 27 taxa (Fig. 3, Supplementary Figs. 2 
and 3 and Supplementary Tables 7 and 8). MbBTL mapping covered 
177 taxa, and 10 loci were found to be associated with presence/
absence of bacterial taxa (Fig. 3 and Supplementary Tables 7 and 9). 
For one taxon, family Peptococcaceae, two independent mbBTLs 
were detected (Fig. 3 and Supplementary Table 7). Two of 31 mbTLs 
showed heterogeneity in mbTL effect sizes (Supplementary Note).

In both the mbQTL and mbBTL mapping, only 1 of 31 loci (LCT 
locus: Bifidobacterium; P = 8.63 × 10−21) passed the strict correction 
for the number of taxa tested (P < 1.95 × 10−10 for 257 taxa included 
in the analysis). However, the remaining loci included functionally  

relevant variants (that is, the FUT2 gene suggested by earlier stud-
ies21) and, overall, showed concordance with the heritability of 
microbial taxa. Seven of the nine taxa that showed the strongest 
evidence for heritability in the TwinsUK cohort (P < 0.01) also 
have genome-wide significant mbTLs (Fig. 2b). For the taxa with 
genome-wide significant mbTLs, the number of independent loci 
associated with a relaxed threshold of 1 × 10−5 strongly correlated 
with heritability significance (R = 0.62, P = 1.9 × 10−4; Fig. 2c), sug-
gesting that more mbTLs would be identified for this group of bac-
teria using a larger sample size.

LCT mbQTL effect shows age and ancestry heterogeneity. The 
strongest association signal was seen for variants located in a large 
block of about 1.5 Mb at 2q21.3, which includes the LCT gene and 
12 other protein-coding genes. This locus has previously been asso-
ciated with the abundance of Bifidobacterium in Dutch7, UK6 and 
US22 cohorts. Previous studies have also shown a positive correla-
tion of Bifidobacterium abundance with the intake of milk prod-
ucts, but only in individuals homozygous for the low-function LCT 
haplotype, thereby indicating that gene–diet interaction regulates 
Bifidobacterium abundance7. In our study, the strongest association 
was seen for rs182549 (P = 1.28 × 10−20), which is a perfect proxy 
for the functional LCT variant rs4988235 (r2 = 0.996; D′ = 1 in 
European populations). This association showed evidence for het-
erogeneity across cohorts (I2 = 62.73%, Cochran’s Q P = 1.4 × 10−4). 
A leave-one-out strategy showed that the Copenhagen Prospective 
Studies on Asthma in Childhood (COPSAC2010) cohort, which 
includes children with an age range of 4–6 years, contributed the 
most to the detected heterogeneity (Fig. 4a,b and Supplementary 
Table 2). When this study was excluded from the meta-analysis, 
the heterogeneity was reduced (I2 = 51.9%, Cochran’s Q P = 0.004). 
A meta-regression analysis showed that linear effects of age and 
ancestry accounted for 11.84% of this heterogeneity. Including qua-
dratic and cubic terms of age in the model explained 39.22% of the 
heterogeneity, and the residual heterogeneity was low (Cochran’s Q 
P = 0.01; Fig. 4c).

Following these observations, we decided to investigate the effect 
of age and ancestry in the multiancestry GEM cohort, compris-
ing 1,243 individuals with an age range between 6 and 35 years, of 
which nearly half of the participants are 16 years or younger. Our 
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analysis showed a significant SNP–age interaction on the level of 
Bifidobacterium abundance (P < 0.05; Methods). Individuals homo-
zygous for the NC_000002.11:g.136616754CC (rs182549) genotype 
showed a higher abundance of the genus Bifidobacterium in the 
adult group, but not in the younger group (Fig. 4d). The age–geno-
type interaction was significant in the GEM_v12 and GEM_ICHIP 
subcohorts, both comprising mostly individuals of European ances-
try, while the GEM_v24 cohort is mainly composed of individuals of 
different Israeli subancestries (Methods) who live in Israel, showed 
neither an mbQTL effect (beta = −0.002 (95% confidence interval 
(CI): −0.21, 0.21)) nor an interaction with age (P > 0.1). The lack of 
an LCT mbQTL effect in adults was also observed in another Israeli 
cohort in the study (Personalized Nutrition Project (PNP): 481 
adults, beta = −0.20 (95% CI: −0.61, 0.20)). Altogether, the cohorts 
that reported the lowest LCT effect sizes were the two cohorts of 
Israeli ancestry volunteered in Israel (GEM_v24 and PNP) and a 
child cohort (COPSAC: beta = −0.18 (95% CI: −0.36, −0.01)).

mbTLs are enriched for genes related to metabolism. Several loci 
detected at genome-wide significance level were enriched for genes 
related to metabolism.

In the mbQTL analysis, the FUT2-FUT1 locus was associated 
with the abundance of the Ruminococcus torques genus group, 
a genus from the Lachnospiraceae family. The leading SNP 
(rs35866622 for R. torques group; P = 2.21 × 10−8) is a proxy for the 

functional variant rs601338 (r2 = 0.8; D′ = 0.9 in European popu-
lations) that introduces a stop codon in FUT2 (ref. 23). Another 
proxy of the functional FUT2 SNP, rs281377, showed an asso-
ciation with the Ruminococcus gnavus genus group in the binary 
analysis; however, this signal was just above the genome-wide 
significance threshold (P = 5.79 × 10−8; Supplementary Table 9). 
FUT2 encodes the enzyme alpha-1,2-fucosyltransferase, which 
is responsible for the secretion of fucosylated mucus glycans in 
the gastrointestinal mucosa24. Individuals homozygous for the 
stop codon (rs601338*A/A, non-secretors) do not express ABO 
antigens on the intestinal mucosa. We observed that the tagging 
NC_000019.9:g.49218060C > T (rs35866622 non-secretor) allele 
was associated with a reduced abundance of the R. torques group 
and a decreased presence of the R. gnavus group. Ruminococcus 
sp. are specialized in the degradation of complex carbohydrates25, 
thereby supporting a link between genetic variation in the FUT2 
gene, levels of mucus glycans and the abundance of this taxa. 
When assessing the link between this variant and phenotypes in 
the LifeLines-DEEP (LLD; n = 875) and Flemish Gut Flora Project 
(FGFP; n = 2,259) cohorts (Methods), the strongest correlation for 
the R. torques group was seen with fruit intake (LLD: Spearman R 
(RSp) = −0.19, Padj = 3.1 × 10−5; FGFP: RSp = −0.10, Padj = 1.4 × 10−4; 
Supplementary Tables 10 and 11), in line with the association 
of FUT2 with food preferences, as discussed in the results of the 
PheWAS (see below).
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Several other suggestive mbQTLs can be linked to genes poten-
tially involved in host–microbiome cross-talk. One of them includes 
three SNPs in 9q21 (top SNP rs602075, P = 3.57 × 10−8) associated 
with abundance of Allisonella. The 9q21 locus includes the genes 
PCSK5, RFK and GCNT1, of which RFK encodes the enzyme 
that catalyzes the phosphorylation of riboflavin (vitamin B2) and 
GCNT1 encodes a glycosyltransferase involved in biosynthesis of 
mucin. These products play major roles in the host–microbiota 
interactions within the intestine, where they are used by bacteria 
for their metabolism and involved in the regulation of the host 
immune defense26. Another association signal, 10p13 (rs61841503, 
P = 9.8 × 10−9), which affects the abundance of the heritable family 
Peptostreptococcaceae, is located in the CUBN gene, the receptor 
for the complexes of cobalamin (vitamin B12) with gastric intrinsic 
factor (the complex required for absorption of cobalamin). CUBN 
is expressed in the kidneys and the intestinal epithelium and is asso-
ciated with B12-deficient anemia and albuminuria27. Cobalamin is 
required for host–microbial interactions28, and supplementation 
with cobalamin induced a substantial shift in the microbiota com-
position of an in vitro colon model29. These associations suggest that 
some members of the gut microbiome community might be affected 
by genetic variants that regulate the absorption and metabolism of 
vitamins B2 and B12.

Among mbBTLs, the strongest evidence for association was seen 
for a block of 10 SNPs (rs7574352, P = 1.42 × 10−9) associated with the 
family Peptococcaceae, a taxon negatively associated with stool levels 
of the gut inflammation markers chromogranin A (LLD: RSp = −0.31, 
Padj = 4.4 × 10−18; Supplementary Table 10) and calprotectin (LLD: 
RSp = −0.11, Padj = 0.058) and with ulcerative colitis (FGFP: RSp = −0.06, 
Padj = 0.09; Supplementary Table 11). The association block is located 
in the intergenic region in the proximity (220 kb apart) of IRF1, which 
is involved in insulin resistance and susceptibility to type 2 diabetes30.

Other highlights of identified mbTLs are available in the 
Supplementary Note.

GSEA, FUMA and PheWAS analysis. To explore the potential func-
tions of the identified mbTLs, we performed functional mapping 
and annotation of genetic associations with the FUMA platform 
(Methods)31, GSEA and PheWAS, followed by Bayesian colocaliza-
tion analysis and genetic correlation of Bifidobacterium abundance 
to its PheWAS-related traits. FUMA of 20 mbQTLs returned 139 
positional and eQTL genes. GSEA on these genes suggested an 
enrichment for genes expressed in the small intestine (terminal 
ileum) and brain (substantia nigra and putamen basal ganglia; 
Supplementary Fig. 4). The positional candidates for mbBTLs did 
not show any enrichment in GSEA analysis.
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To systematically assess the biological outcomes of the mbTLs, 
we examined the 31 mbTLs in the summary statistics for 4,155 com-
plex traits and diseases using the GWASATLAS32. Five of 31 leading 
SNPs were associated with one or more phenotypes at P < 5 × 10−8 
(Supplementary Table 12): rs182549 (LCT) and rs35866622 (FUT1/ 
FUT2), followed by rs4428215 (FNDC3B), rs11647069 (PMFBP1) 
and rs9474033 (PKHD1).

The variant showing the highest pleiotropy, rs182549 (LCT, 
Bifidobacterium), was associated with multiple dietary and 
metabolic phenotypes, and the causal involvement of the SNP 
across pairs of traits was confirmed by colocalization testing (PP.
H4.abf > 0.9) for 49 of 51 tested phenotypes. The NC_000002.11:
g.136616754 = (rs182549) allele, which predisposes individuals to 
lactose intolerance, was negatively associated with obesity33 and 
positively associated with type 2 diabetes mellitus diagnosis (odds 
ratio (OR) = 1.057 (95% CI: 1.031, 1.085), P = 1.74 × 10−5), fam-
ily history of type 2 diabetes mellitus (paternal: OR = 1.054 (95% 
CI: 1.035, 1.073), P = 1.41 × 10−8; maternal: OR = 1.035 (95% CI: 
1.016, 1.053), P = 0.0002; siblings: OR = 1.03 (95% CI: 1.009, 1.052)) 

and several nutritional phenotypes in the UK Biobank cohort32. 
Moreover, the functional LCT SNP rs4988235 variant is associated 
with 1,5-anhydroglucitol (P = 4.23 × 10−28)34, an indicator of glyce-
mic variability35. There was a nominally significant genetic corre-
lation (rg) of Bifidobacterium with raw vegetable intake (rg = 0.36, 
P = 0.0016), but this correlation was not statistically significant after 
correction for multiple testing.

NC_000019.9:g.49218060 = (rs35866622, FUT1/FUT2 locus) 
was positively associated with fish intake and height. The secre-
tor allele was negatively associated with the risks of cholelithiasis 
and Crohn’s disease, alcohol intake frequency, high cholesterol and 
waist-to-hip ratio (adjusted for body mass index (BMI), with PP.H4.
abf > 0.9).

Consistent with the single SNP analysis, gene-based PheWAS 
also showed a strong link between the LCT locus and metabolic 
traits (for example, P = 5.7 × 10−9 for BMI), whereas several fac-
tors including nutritional (for example, P = 1.26 × 10−20 for oily fish 
intake), immune-related (for example, P = 1.73 × 10−12 for mean 
platelet volume), gastrointestinal (for example, P = 8.77 × 10−14 for 

rs75754569 genus Peptococcus ID 2037

rs4428215 family Oxalobacteraceae ID 2966

rs9864379 family unknownfamily ID 1000001214

rs11098863 genus Enterorhabdus ID 820

rs17159861 genus Eubacteriumcoprostanoligenesgroup ID 11375

rs602075 genus Allisonella ID 2174

rs61841503 family Peptostreptococcaceae ID 2042

rs12781711 genus RuminococcaceaeUCG013 ID 11370

rs10769159 genus Ruminococcus1 ID 11373

rs8009993 genus RuminococcaceaeUCG009 ID 11366

rs12320842 genus Faecalibacterium ID 2057

rs7211274 genus Erysipelatoclostridium ID 11381

rs67476743 genus Tyzzerella3 ID 11335

rs11110281 genus Streptococcus ID 1853

rs830151 genus CandidatusSoleaferrea ID 11350

rs35866622 genus Ruminococcustorquesgroup ID 14377

rs182549 genus Bifidobacterium ID 436

rs7322849 genus Bifidobacterium ID 436

rs10805326 genus Intestinibacter ID 11345

rs736744 genus Oxalobacter ID 2978

rs57440956 genus Ruminiclostridium6 ID 11356 binary

rs56081657 genus Odoribacter ID 952 binary

rs9474033 family Pseudomonadaceae ID 3718 binary

rs17319026 genus Anaerostipes ID 1991 binary

rs11647069 family BacteroidalesS24.7group ID 11173 binary

rs555115 genus Turicibacter ID 2162 binary

rs7574352 family Peptococcaceae ID 2024 binary

rs17066404 family Peptococcaceae ID 2024 binary

rs62373497 genus Coprococcus1 ID 11301 binary

rs437867 genus LachnospiraceaeUCG 010 ID 11330 binary

rs207281 genus Enterorhabdus ID 820 binary

0 1 2 3 4 5 >6

P < 0.05
P < 8.06 × 10–5

P < 5 × 10–8

Fold enrichment

m
bQ

T
Ls

m
bB

T
Ls

Psy
ch

iat
ric

Im
mun

olo
gic

al

Neu
ro

log
ica

l

Cog
nit

ive

Env
iro

nm
en

t

Acti
vit

ies

Rep
ro

du
cti

on

End
oc

rin
e

Gas
tro

int
es

tin
al

Meta
bo

lic

Oph
tha

lm
olo

gic
al

Ske
let

al

Res
pir

ato
ry

Car
dio

va
sc

ula
r

Neo
pla

sm
s

Mor
tal

ity

Cell Nutr
itio

na
l

Fig. 5 | Phenome-wide association study domain enrichment analysis. The analysis covered top SNPs from 30 mbTLs and 20 phenotype domains. Three 
thresholds for multiple testing were used: 0.05, 8.06 × 10−5 (Bonferroni adjustment for number of phenotypes and genotypes studied) and 5 × 10−8 (an 
arbitrary genome-wide significance threshold). Only categories with at least one significant enrichment signal are shown.

Nature Genetics | VOL 53 | February 2021 | 156–165 | www.nature.com/naturegenetics 161

http://www.nature.com/naturegenetics


Articles Nature Genetics

cholelithiasis) and metabolic signals (for example, P = 1.13 × 10−13 
for high cholesterol) mapped to the FUT1/FUT2 locus (Fig. 5 and 
Supplementary Table 13).

Finally, we performed a phenotype domain enrichment analysis 
(Methods). We observed that top loci were enriched with signals 
associated with the metabolic domain supported by four mbTLs, 
followed by nutritional, cellular, immunological, psychiatric, oph-
thalmological, respiratory and reproductive traits and the activities 
domain (Fig. 5 and Supplementary Table 14).

Mendelian randomization analysis. To identify the potential causal 
links between gut microbial taxa and phenotypes, we performed 
bidirectional two-sample MR analyses using the TwoSampleMR 
package36. We focused on two groups of phenotypes: diseases (auto-
immune, cardiovascular, metabolic and psychiatric) and nutritional 
phenotypes37–42. The complexity of the mechanisms by which host 
genetics affect microbiome composition, and the limited impact 
of genetic variants on microbial taxa variability, require caution 
when performing and interpreting causality estimation using MR 
analysis43. We therefore performed several sensitivity analyses and 
excluded any results that showed evidence of being confounded by 
pleiotropy (Methods). Only pairs supported by three or more SNPs 
were considered. With these strict cutoffs, no evidence for causal 
relationships between microbiome taxa and dietary preferences 
was identified (Supplementary Tables 15 and 16). However, our 
results suggest that a higher abundance of the class Actinobacteria 
and its genus Bifidobacterium may have a protective effect on ulcer-
ative colitis (Actinobacteria: OR = 0.56 (95% CI: 0.44–0.71) for 
each SD increase in bacterial abundance, Benjamini–Hochberg 
(BH)-adjusted P value for multiple testing PBHadj = 8.8 × 10−4; 
Bifidobacterium: OR = 0.51 (95% CI: 0.39–0.71), PBHadj = 9.8 × 10−5; 
Fig. 6a,b). We also observed that higher abundance of the family 
Oxalobacteraceae had a protective effect on rheumatoid arthritis 
(OR = 0.82 (95% CI: 0.74–0.91), PBHadj = 0.028, Fig. 6c).

Discussion
We report here on the relationship between host genetics and 
gut microbiome composition in 18,340 individuals from 24 
population-based cohorts of European, Hispanic, Middle Eastern, 
Asian and African ancestries. We have estimated the heritability of 
the human gut microbiome and the effect of host genetics on the 
presence and abundance of individual microbial taxa. We stud-
ied the heterogeneity of the mbTL signals and characterized the 
impact of technical and biological factors on their effect magnitude. 
In addition, we explored the relevance of the identified mbTLs to 
health-related traits using GSEA, PheWAS and MR approaches.

Our large, multiancestry study allowed for an informative inves-
tigation of the human gut microbiome. However, there was large 
heterogeneity in the data, which reflects biological differences 
across the cohorts and methodological differences in the processing 
of samples. Overall, seven different methods of fecal DNA extrac-
tion and three different 16S rRNA regions were used12,44. In addi-
tion, differences in the ancestries, ages and BMIs of the participants 
led to a remarkable variation in microbiome richness, diversity and 
composition across cohorts. Diet, medication and lifestyle, among 
other factors2,3, are known to influence the microbiome but were not 
included in our analysis because these data were not available for all 
cohorts. Large variation in the microbiome composition may have 
reduced the power of our mbTL analysis (Supplementary Note).

We did not detect a host genetic effect on bacterial diver-
sity, in line with a lack of its detectable heritability. Thirty-one 
taxon-specific mbTLs (20 mbQTLs and 11 mbBTLs) were iden-
tified at a P value < 5 × 10−8. Even with our large sample size, the 
number of mbTLs identified is rather modest. Only the association 
of the LCT locus with Bifidobacterium (P = 1.28 × 10−20) passed the 
conservative study-wide significance threshold of P > 1.95 × 10−10. 
However, we observed that heritable taxa tended to have more 
genome-wide significant loci and suggestively associated loci, and 
twin-based heritability was significantly correlated with SNP-based 
heritability. Our results confirm that only a subset of gut bacteria is 
heritable, and that the genetic architecture affecting the abundance 
of heritable taxa is complex and polygenic.

The association between the LCT locus and the Bifidobacterium 
genus was the strongest in our study. It has been shown that the 
functional SNP in the LCT locus rs4988235 determines not only the 
abundance of the Bifidobacterium genus but also the strength of the 
association between this genus and milk/dairy consumption7. Here, 
we showed the ancestry heterogeneity and age-dependent nature of 
the LCT and Bifidobacterium association—the effect is weaker in 
children and adolescents—consistent with existing knowledge on 
lactose intolerance45,46. The strongest mbQTL effect was observed 
in the Hispanic Community Health Study/Study of Latinos (HCHS/
SOL) cohort that comprises individuals of Hispanic/Latin American 
ancestry and shows the highest prevalence of the lactose intolerant 
NC_000002.11:g.136616754CC (rs182549) genotype (683 of 1,097 
individuals).

To explore the potential functional effects of mbTLs on 
health-related traits, we used GSEA, PheWAS and MR approaches. 
The GSEA indicated enrichment of mbQTLs for genes expressed 
in the small intestine and brain. These results support the existence 
of the gut–brain axis mediated by the microbiome and likely influ-
encing gastrointestinal, brain and mood disorders47–49. In addition, 
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the PheWAS analysis identified a significant overlap between the 
genetic variants affecting gut microorganisms and a broad range of 
host characteristics, including psychiatric, metabolic and immuno-
logical traits, and nutritional preferences, among other phenotype 
groups (Supplementary Table 14). Moreover, genetic determinants 
of bacterial abundance are involved in regulating host metabolism, 
particularly obesity-related traits. Among the interesting bacteria, 
earlier studies have linked the relative abundances of Ruminococcus50, 
Lachnospiraceae51 and Ruminococcaceae52 to obesity. PheWAS analy-
sis also indicated that SNPs from the LCT and FUT2 loci that associ-
ated with bacterial taxa are also associated with dietary preference 
factors, including fish, cereal, bread, alcohol, vegetable and ground 
coffee intake, along with other dietary phenotypes. Interestingly, 
other genes found to be associated with mbTLs also included olfac-
tory receptors (OR1F1) and genes involved in the absorption and 
metabolism of vitamins B2 and B12 (RFK and CUBN).

Genetic anchors to microbiome variation also allow for estima-
tion of causal links with complex traits through MR approaches53–55. 
MR results indicate that Actinobacteria and Bifidobacterium might 
have a protective effect in ulcerative colitis. Cross-sectional studies 
have reported an increased abundance of Actinobacteria in healthy 
individuals as compared to patients with inflammatory bowel dis-
ease56,57, although these results have not always been consistent58,59. 
Bifidobacterium was also previously shown to have a beneficial 
effect on ulcerative colitis in a clinical trial58,60. We also revealed 
that abundance of the family Oxalobacteraceae in the gut microbi-
ome might be protective for rheumatoid arthritis; the abundance of 
this family in lung showed a negative association with rheumatoid 
arthritis previously61. Protective effects of the bacterial taxa on these 
diseases support the potential of microbiome-based therapy.

To our knowledge, we report the largest study to date investigat-
ing the genetics of the human microbiome across multiple ances-
tries. Microbiome heterogeneity and high interindividual variability 
substantially reduces the statistical power of microbiome-wide 
analyses: similar to earlier microbiome GWAS studies, we report a 
limited number of associated loci. Nevertheless, our results point 
to causal relationships between specific loci, bacterial taxa and 
health-related traits. Heritability estimates suggest that these associ-
ations are likely part of a larger spectrum that is undetectable in the 
current study sample size. This warrants future research that should 
take advantage of larger sample sizes, harmonized protocols and 
more advanced microbiome analysis methods, including metage-
nomics sequencing instead of 16S profiling and quantification of 
bacterial cell counts. Given the essential role of the gut microbiome 
in the metabolism of food and drugs, our results contribute to the 
development of personalized nutrition and medication strategies 
based on both host genomics and microbiome data.
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Methods
Data collection. A total of 24 cohorts, comprising 18,340 participants of 
different ancestries and ages, participated in the microbiome GWAS analysis 
(Supplementary Tables 1 and 2). The Supplementary Note provides detailed 
descriptions of data collection for each cohort.

16S microbiome data processing. The rationale behind the selection of  
the 16S rRNA processing pipeline was described previously11. In short, the 
divergence in the 16S rRNA gene domains between cohorts makes  
OTU-level analysis impossible, while the use of a direct taxonomic classification 
of the reads and an up-to-date reference database allowed us to achieve good 
between-domain concordance of taxonomic composition and a higher  
mapping rate.

The participating cohorts varied in their sample collection protocol, selection 
of DNA purification kits used to extract DNA from fecal samples, the 16S domain 
selected for PCR (Supplementary Table 1), read length and depth, post-sequencing 
quality control (QC) and the software used to merge tags of paired-end sequencing. 
After processing the QC-filtered merged reads, all cohorts implemented the 
standardized 16S processing pipeline (https://github.com/alexa-kur/miQTL_
cookbook/) that uses SILVA (release 128)15 as a reference database, with truncation 
of the taxonomic resolution of the database to genus level.

Briefly, the procedure was as follows. First, all samples were rarefied to 10,000 
reads using a predefined random seed to allow for rarefaction reproducibility. 
Samples with fewer than 10,000 reads were discarded. Second, RDP classifier 
(v.2.12)16 was used to bin the reads to a reference database. For each taxonomic 
level, the posterior probability of 0.8 was used as a cutoff to bin each read to 
the corresponding taxon. The posterior cutoff probability was traced for each 
taxonomic level separately. For example, if the posterior probability passed the 
cutoff on family level but not on genus level, the read was binned to taxonomy 
on the family level (all corresponding upper taxonomic levels) and discarded on 
the genus level. It was also assigned to a special ‘NOTAX_genus’ pseudo-taxon to 
maintain data compositionality.

To characterize the contribution of cohort-wise metadata (16S domain, DNA 
extraction method, cohort ancestry, lysis temperature and type of lysis buffer) 
to the microbiome composition, we used a distance-based redundancy analysis 
test in which each cohort represented a sample and variables represented mean 
abundances of genera in the corresponding cohort (taxa with prevalence below 
20% were discarded). The association of metadata with richness was performed by 
multivariate linear regression analysis.

The alpha diversity indices, including Shannon, Simpson and inverse Simpson 
indices, were calculated on genus level with non-adjusted, non-transformed taxa 
counts. For all other analyses, the taxonomic counts of non-zero samples were 
natural log transformed and adjusted for potential covariate effects using linear 
regression. The list of covariates used in the regression models varied between 
cohorts, but always included sex, age, genetic principal components (PCs) 
calculated on non-imputed genetic data (3 PCs for monoancesty cohorts, 10 PCs 
for multiancestry cohorts and 5 PCs for the HCHS/SOL cohort as a multiancestry 
population of different, but closely related ancestries; see Supplementary Note for 
cohort descriptions) and cohort-specific potential microbiome batch effects, if 
applicable. Variables such as the length of time in non-frozen storage and the 16S 
sequencing batch were also included. The residuals of the adjustment were then 
scaled and centered (mean = 0 and SD = 1).

In the analysis of microbiome composition heterogeneity, the cohorts SHIP/
SHIP-TREND and GEM_HCE_v12/GEM_HCE_v24/GEM_HCE_ICHIP were 
merged to SHIP and GEM, respectively, because they were analyzed with exactly 
the same protocols in the same laboratories. In the microbiome–genetics analysis, 
these five cohorts were included individually as they differed in the genotyping 
arrays and/or general populations they represented.

For each cohort, only the taxa present in more than 10% of the samples were 
included in the mbQTL mapping, whereas taxa present in more than 10% but less 
than 90% of the samples were included in the mbBTL mapping (Supplementary 
Table 3). Study-wide cutoffs for mbQTL mapping included an effective sample 
size of at least 3,000 samples and presence in at least three cohorts. For mbBTLs, a 
mean abundance higher than 1% in the taxon-positive samples was required. This 
resulted in 211 taxa (131 genera, 35 families, 20 orders, 16 classes and 9 phyla) that 
passed taxon inclusion cutoffs for mbQTL analysis and 177 taxa (108 genera, 34 
families, 16 orders, 12 classes and 7 phyla) for mbBTL analysis.

Genetic data processing. Despite the difference in genotyping array platforms, 
most cohorts used similar procedures for imputation and post-imputation filtering 
steps. Twenty-three of 24 cohorts used the Michigan Imputation Server (https://
imputationserver.sph.umich.edu/index.html) for imputation, using the HRC 1.0 
or 1.1 reference panel62. Due to restrictions in manipulating data, the PNP study 
employed an in-house pipeline for imputation instead, using IMPUTE2 software 
(v.2.3.2)63,64 and the 1000G reference panel with addition of population-matched 
genotypes of Jewish individuals65. The post-imputation cutoffs were the same for 
PNP and the other cohorts.

Post-imputation VCFs were transformed into TriTyper format and filtered 
using GenotypeHarmonizer software (v.1.4.20)66. The following cutoffs were 

1,009 GWAS performed before the UK Biobank effort, all categorized under 27 
phenotype domains. Next, we tested if any of these 27 domains were enriched by 
the phenotypes associated with one of the SNPs of interest (using a liberal P-value 
threshold of 0.05 for the SNP–phenotype association) as compared to the expected 
distributions under the null hypothesis. To obtain the distributions under the 
null hypothesis, we selected the best matching 1,000 SNPs for each top SNP using 
SNPSNAP72, matched by allele frequency, gene density, number of LD pairs and 
distance from the closest gene.

We then extracted corresponding results from the GWASATLAS for the 
matched 30,000 SNPs (1,000 matching SNPs for each top mbTL SNP). The 
enrichment of each domain was tested by comparing the proportions of observed 
and expected significant results for the SNPs of interest using the ‘prop.test’ 
function in R. This resulted in one-sided P values and ORs. Seven domains (aging; 
body structures; connective tissue; ear, nose and throat; infection; muscular; 
and social interactions) that included fewer than 20 GWAS tables were excluded 
from the enrichment tests, resulting in 20 domains. We used a conservative 
Bonferroni-based P-value threshold of 8.06 × 10−5 for the enrichment testing, 
accounting for 20 domains and a total of 31 mbTL top SNPs derived from both the 
mbQTL and mbBTL mapping. In addition, we performed gene-based PheWAS 
lookups in the GWASATLAS for candidate genes of interest within 250 kb around 
the association peaks, as defined by the FUMA algorithms.

The genetic correlation between Bifidobacterium and its PheWAS-related 
traits (Supplementary Table 12) was estimated following an LD-score regression 
approach67 using the ‘ldsc’ tool. For testing colocalization of the PheWAS signals, 
we used the approximate Bayes factor approach as implemented by the ‘coloc.
abf ’ function from the ‘coloc’ library in R73, using genetic variants within ±250 kb 
around the top signals.

Mendelian randomization analysis. MR analyses were performed in R using 
TwoSampleMR package (v.0.5.5)36. Causality direction was tested between the 
microbiome and two data types: (1) autoimmune, cardiovascular, metabolic 
(including weight-related phenotypes) and psychological diseases (GWAS 
summary statistics from MRBase36) known to be associated with microbiome 
composition2,3,37–42,47 and (2) 42 nutritional phenotypes and alcohol intake 
frequency from the UK Biobank round 2 (http://www.nealelab.is/uk-biobank/).

For MR analyses, the combined meta-analysis effects and s.e. values from 
inverse-variance meta-analysis were used.

To test if a complex trait affected microbiome composition, we selected 
independent genetic variants associated with complex traits at the genome-wide 
significant level (P < 5 × 10−8) and used these as instruments in our MR analyses. 
For complex diseases, we transformed ORs and CIs to effect sizes and s.e. values 
using the built-in function of the TwoSampleMR package. To test if microbiome 
changes were causally linked to complex traits, we first confined ourselves to 
bacteria with genome-wide significant QTLs. For these, we selected all SNPs with a 
less stringent cutoff of P < 1 × 10−5 in our MR analyses as instruments. This strategy 
was used to increase the number of SNPs available to perform sensitivity analyses, 
as shown previously53. Independent SNPs were selected as instrumental variables 
based on r2 < 0.001 in 1000 G European data, within the TwoSampleMR package. 
When no shared SNPs were available between exposure and outcome, proxies  
from the 1000G European data (r2 > 0.8) were added. We kept only the results 
based on at least three shared SNPs. MR causality tests were performed using the 
Wald ratio, and Wald ratios were meta-analyzed using the IVW method74. We also 
estimated the causality using additional methods: the weighted mode method75, 
which provides an alternative approach to IVW; MR-Egger76, which estimates the 
degree of horizontal pleiotropy in the data; and MR PRESSO77, which estimates  
the pleiotropy and corrects for it by removing outliers from the IVW model.  
We also assessed the heterogeneity of the results using Cochran’s Q statistic74 
and using leave-one-out analyses36. We estimated instrument variable strengths 
using F statistics: the amount of variance explained by instrument variables was 
calculated for each exposure using the TwoSampleMR package (get_r_from_lor 
function) for binary traits and phenotypic variation (PVE) as defined by Shim 
et al.78 for quantitative traits. F statistics were then calculated as r

2 ´ N�1�kð Þ
1�r2ð Þ ´ k
I

, where 
r2 is the variance explained, N is the sample size and k is the number of instrument 
variables. We retained the results for the conventional threshold of F statistics  
> 10 (ref. 79).

After performing the MR tests, we excluded duplicated GWAS traits, as the 
same phenotype is often studied in multiple GWAS. To remove the duplicates, we 
kept the study with the largest sample size among all the tested GWAS studies for 
each trait.

After excluding duplicates and tests performed with weak instruments (F 
statistics < 10), we applied a BH correction for multiple testing to the results 
obtained from the IVW MR test, and subsequently used a stringent filtering 
procedure on the significant results to avoid false positives. Specifically, we 
removed the MR results that were based on fewer than three SNPs and thus 
could not be further investigated with sensitivity analyses. We also removed the 
MR results that were not supported by other MR tests (weighted mode method 
P > 0.05, MR PRESSO P > 0.05) and those that showed substantial pleiotropy or 
heterogeneity as estimated by MR-Egger (MR-Egger intercept P < 0.05) or MR 
PRESSO outliers-adjusted test (P > 0.05), as well as those where leave-one-out 
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applied for inclusion: minor allele frequency > 0.05, pointwise imputation QC > 0.4 
and SNP-wise call rate filtering > 0.95.

Heritability analysis. Heritability was calculated using data collected on 169 MZ 
and 419 DZ pairs of twins from the TwinsUK cohort (total of 1,176 individuals). 
Twin-based heritability was calculated by fitting an ACE model using the OpenMx 
package (v.2.8.3), as previously described5. Before heritability estimation, the 
taxonomic abundance was normalized using inverse rank-sum transformation. 
Since the NTR cohort comprised only MZ twins, the between-cohort heritability 
concordance was calculated as the correlation of ICC for MZ twins. The Pearson 
correlation of ICC between the TwinsUK and NTR cohorts was used to estimate 
the concordance. For mbQTLs, SNP-based heritability was calculated by LD score 
regression using the ‘LDSC’ tool67.

Microbiome GWAS analysis. The modified version of the eQTL mapping pipeline 
(https://github.com/molgenis/systemsgenetics/tree/master/eqtl-mapping-pipeline/) 
was used to perform mbQTL mapping18.

The microbiome GWAS was performed in three ways. First, we performed 
GWAS on three microbiome alpha diversity metrics (Shannon, Simpson and 
Inverse Simpson), using the Spearman correlation between SNP dosages and alpha 
diversity metrics after adjustment for age, sex, technical covariates and genetic PCs.

Second, we used the Spearman correlation to identify loci that affected the 
covariate-adjusted abundance of bacterial taxa, excluding samples with zero 
abundance (mbQTLs).

Third, we identified the loci associated with probability of presence versus 
absence of the bacterial taxon (mbBTLs). To perform mbBTL analysis, we 
used a two-stage approach composed of fast correlation screening followed by 
logistic regression analysis as a robust method for binary traits GWAS19. First, we 
calculated the Pearson correlation between SNP dosage and bacterial presence 
encoded as 0/1, without adjusting for any covariate effect and using the previously 
mentioned eQTL mapping pipeline, and used weighted z-score meta-analysis to 
calculate noncentrality for SNP–taxon association. Finally, all SNP–taxon pairs 
with a P value <1 × 10−4 in the first-stage meta-analysis were recalculated using 
multiple logistic regression (R base package, versions from 3.2.0 to 3.5.1 depending 
on the group) with bacterial presence as an outcome and using SNP dosage 
along with the list of covariates as predictors. All the mbBTLs that reached the 
nominal genome-wide significance threshold (P < 5 × 10−8) in logistic regression 
had a Pearson correlation P value (at first stage) more significant than P < 10−6, 
presuming the completeness of the two-stage procedure in revealing genome-wide 
significant mbBTL using a cutoff of P < 10−4 at the first stage of analysis.

mbTL meta-analysis. Meta-analysis was performed using a weighted z-score 
method implemented in BinaryMetaAnalyzer (v.1.0.13B available on MiBioGen 
Cookbook), a part of the eQTL mapping pipeline that was used in large-scale 
eQTL meta-analyses18,20. For each cohort, z-scores were calculated from Spearman 
correlation P values using inverse normal transformation, transforming two-tailed 
P values to one-tailed P values and tracing the effect directions using the following 
formula:

signðRSpÞ´ qnormð1� P=2Þ

where signðRSpÞ
I

 denotes the sign of Spearman correlation, ‘qnorm’ denotes the 
quantile function for the normal distribution and P denotes the two-tailed P 
value of the Spearman correlation. For mbQTLs, the cohorts were weighted by 
the square root of the effective sample size (the number of samples having the 
bacterial taxon). For mbQTLs, the square root of the reported cohort size was 
used as a weighting for each study. The summary statistics generated for mbQTLs 
also include meta-analysis effect sizes and s.e. values. These were generated using 
the inverse-variance weighted (IVW) meta-analysis method performed on the 
per-cohort effect sizes and standard errors, backtracked from association z-scores 
and minor allele frequencies using the strategy proposed and implemented by Zhu 
et al.68, who also provide a detailed derivation of the following equations:

b̂ ¼ zS

S ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p 1� pð Þ nþ z2ð Þ

p

where b is the estimated effect size, S is the estimated s.e., p is the allele frequency 
and n is the sample size.

Heterogeneity exploration analysis. Cross-study heterogeneity of the effects of 
genetic variants in the relative abundance of taxonomical units was assessed using 
Cochran’s Q test for heterogeneity69, as implemented in METAL (v2018-08-28)70, 
for all genome-wide significant variants (P < 5 × 10−8) found in our main analysis. 
To avoid reporting false-positive associations due to different study designs or 
data collection methods, we used a stringent threshold of P < 0.05 to reject the null 
hypothesis of no heterogeneity. This threshold is conservative considering that 
several variants were tested simultaneously, and no correction for multiple testing 

was applied. When there was evidence of heterogeneity, a random-effects model 
was also implemented at the meta-analysis level to confirm the association results, 
using the metaphor R package (v.2.0-0; https://cran.r-project.org/web/packages/
metafor/metafor.pdf).

Additionally, when there was evidence for heterogeneity of a SNP effect across 
cohorts, we implemented a meta-regression approach using the same package to 
assess whether variables such as age, ancestry or sequenced region could explain 
the observed effect-size heterogeneity.

Analysis of SNP–age interaction analysis in the LCT locus. To discover whether 
the association of functional SNPs in the LCT locus to the abundance of the 
Bifidobacterium genus varied between groups of adults and infants, we performed 
age–SNP interaction analysis in the GEM cohort, which comprises three 
subcohorts that each have a comparable number of individuals above and below 
pubertal age. The age of 17 years was selected to split the cohort into two groups: 
adolescents or adults. Since the GEM cohort was composed of three subcohorts of 
different ancestry composition, we evaluated the interaction in both joint analysis 
and in each subcohort separately, using the following formula:

Bac ¼ sexþ PCð1� 3Þ þ agegroup þ cohortþ SNPdos þ SNPHZ

þSNPGT : agegroup

where ‘bac’ is the log-transformed count of genus Bifidobacterium, ‘PC(1–3)’ 
are three floats with the first three genetic PCs, ‘cohort’ is a batch variable that 
determines the cohort to which the sample belongs, ‘SNPdos’ is a float-encoded 
dosage of alternative allele, ‘SNPHZ’ is a Boolean variable describing heterozygosity, 
‘SNPGT’ is a genotype encoded as an unordered factor and ‘agegroup’ is a two-level 
factor (above or below split level). The inclusion of a numeric dosage variable and 
a Boolean SNPHZ variable allowed us to properly adjust for the recessive effect 
of the SNP on Bifidobacterium abundance without neglecting SNP imputation 
uncertainty as embedded in SNP dosage.

The analysis was then repeated for each GEM subcohort separately, using the 
same model.

Association of mbTL-associated taxa with host phenotypes. Bacterial taxa 
found to be significantly associated with genetic determinants were correlated 
with 207 host phenotypes, including the intrinsic host properties, diet, disease and 
medication information, in the LLD and FGFP cohorts. We used the Spearman 
correlation with BH adjustment for multiple testing to assess the correlation 
between phenotypes and bacteria that had mbQTLs. For the taxa with mbQTLs, 
samples with zero abundance were truncated. For the taxa with mbBTLs, the 
abundance was transformed to a binary trait encoding presence/absence.

FUMA analyses of meta-analysis results. Functional mapping and annotation 
of 31 meta-analysis results were performed with FUMA (v1.3.5), an integrated 
web-based platform31. Summary statistics from the mbQTL analyses for each of 
the 20 independent association signals were used in the analysis. Genome-wide 
significant loci and their boundaries were defined as nonoverlapping genomic 
regions that extend across an LD window of r2 ≥ 0.4 (based on the 1000G European 
reference panel)71 from the association signals with P < 5.0 × 10–8. Independent 
(r2 < 0.1) lead SNPs from each locus were defined as those most strongly associated 
with a microbial trait (that is, with the lowest P value) at the specific region. 
Multiple risk loci were merged into a single genomic locus if the distance between 
their LD blocks was <250 kb.

Functional annotation of all candidate risk SNPs was obtained from  
different repositories integrated in FUMA. Furthermore, these functionally 
annotated SNPs were mapped to protein-coding genes using the following 
two strategies: (1) positional mapping, with the maximum distance of 10 kb 
to protein-coding genes and (2) eQTL mapping, using information from data 
repositories such as GTEx v7 and Blood eQTL browser (http://genenetwork.nl/
bloodeqtlbrowser/)20.

As the mbBTL mapping procedure provided accurate statistics for only a subset 
of SNPs (‘Microbiome GWAS analysis’), and we thus lacked full summary statistics, 
we only performed positional mapping for mbBTLs, taking in the protein-coding 
genes within a 10-kb distance of the ten leading SNPs for each trait.

All mapped protein-coding genes were combined into one list for either 
mbQTL or mbBTL analysis before performing GSEA integrated in FUMA. In 
further investigations, hypergeometric tests of enrichment of all mapped genes 
were performed not only in tissue-specific (differentially expressed) gene sets, but 
also in gene sets curated from various sources, for example, MsigDB. We reported 
all enriched gene sets (≥2) with a false discovery rate -adjusted P value < 0.05.

PheWAS, genetic correlation and colocalization analysis. We performed the 
PheWAS lookups in the summary statistics results of 4,155 traits collected by 
the GWASATLAS32 (http://atlas.ctglab.nl/, accessed on 25 September 2019) 
database for the top SNPs for each mbQTL locus that were revealed by either 
mbQTL or mbBTL mapping. GWASATLAS includes 600 traits from the UK 
Biobank and is enriched with extensive phenotypes on proteomics (n = 1,124 
proteins), hematology (n = 36), metabolomics (n = 1,145 metabolic features) and 
immune markers (n = 241), studied across variable sample sizes. It also contains 
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analysis identified one SNP driving the signal (all but one leave-one-out 
configurations had P < 0.05). Of note, the MR-Egger slope, which represents the 
causal estimate, was not used as a filtering step given the reduced power to detect 
causal effects. Furthermore, for all but one of the reported MR results that passed 
all the filters above, the MR-Egger slope P value was greater than 0.05; therefore, an 
MR-Egger intercept P < 0.05 cannot be used to exclude the presence of pleiotropy. 
Even though many of our MR-Egger intercept results provided little evidence of 
directional pleiotropy, it is worth noting that a P < 0.05 cannot exclude the presence 
of pleiotropy and requires further understanding of the biological mechanisms 
underpinning the relationship between genetic variation, the gut microbiome and 
health outcomes. To exclude more complex causality scenarios, we also removed 
those results for which the reverse MR P value was below 0.05. Of note, the 
causal relationship identified for the microbiome feature class Actinobacteria (as 
exposure) and ulcerative colitis (outcome) showed a consistent effect direction 
when just using the only genome-wide significant SNP, but with wider CIs 
(OR = 0.40 (95% CI: 0.22–0.71), Pnominal = 0.002).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Full GWAS summary statistics for mbQTLs are available at www.mibiogen.org, 
built using the MOLGENIS framework80.
16S data availability:
BSPSPC and FOCUS data is available from the Sequence Read Archive (SRA) 
under accession PRJNA673102.
All CARDIA data, including 16S rRNA sequencing, cannot be made publicly 
available due to the confidentiality restrictions. The data can be requested from 
CARDIA Study Data Coordinating Center at the University of Alabama at 
Birmingham, following CARDIA Confidentiality Certification rules. The process 
for obtaining data through CARDIA is outlined at https://www.cardia.dopm.uab.
edu/publications-2/publications-documents.
COPSAC data are available on SRA (PRJNA683912).
DanFunD data are not deposited on the public databases due to legal and ethical 
restrictions. Access to the data and biological material can be granted by the 
DanFunD steering committee (https://www.frederiksberghospital.dk/ckff/
sektioner/SBE/danfund/Sider/How-to-collaborate.aspx).
FGFP data are available on the European Genome-Phenome Archive (EGA) under 
accession EGAS00001004420.
GEM data are available on the SRA (PRJEB14839).
Generation R and Rotterdam Study data cannot be made publicly available due 
to ethical and legal restrictions; these data are available upon request to the data 
manager of the Rotterdam Study (f.vanrooij@erasmusmc.nl) or of the Generation 
R Study (c.kruithof@erasmusmc.nl), subject to local rules and regulations.
HCHS/SOL data are available from the European Nucleotide Archive (ENA) under 
accession ERP117287.
KSCS data are available at the public repository, Clinical and Omics data archives 
in the Korea National Institute of Health under accession R000635.
LLD and MIBS data are available from EGA (EGAS00001001704 and 
EGAS0000100924).
METSIM data are available on the SRA (SRP097785).
NGRC data are available on the ENA (ERP016332).
The NTR has a data access committee that reviews data requests and will make data 
available to interested researchers. The data come from extended twin families and 
pedigree structures with twins, which create privacy concerns and thus cannot be 
shared on publicly available databases. Researchers may contact eco.de.geus@vu.nl 
for data requests.
PNP is available on the ENA (PRJEB11532).
POPCOL is available on the EGA (EGAS00001004869).
SHIP and SHIP-TREND data can be obtained from the SHIP data management 
unit via an online data access application form (https://www.fvcm.med.
uni-greifswald.de/dd_service/data_use_intro.php).
TwinsUK data are available on the ENA under accession ERP015317.

Code availability
All code used in the study is available on the Consortium GitHub (https://github.
com/alexa-kur/miQTL_cookbook) or on the websites of corresponding software 
packages.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Full GWAS summary statistics for mbQTLs are available at www.mibiogen.org website built using the MOLGENIS framework.  
16S data availability: 
BSPSPC and FOCUS data is available from Sequence Read Archive (SRA), PRJNA673102 
All CARDIA data, including 16S rRNA sequencing, cannot be made available on publicly available databases due to the confidentiality restrictions. The data can be 
requested from CARDIA Study Data Coordinating Center at the University of Alabama at Birmingham, following CARDIA Confidentiality Certification rules. The 
process for obtaining data through CARDIA is outlined at: https://www.cardia.dopm.uab.edu/publications-2/publications-documents. 
COPSAC data is available on SRA (PRJNA683912). 
DanFunD is not deposited on the public databases due to the legal and ethical restrictions. Access to the data and biological material can be granted by the 
DanFunD steering committee (https://www.frederiksberghospital.dk/ckff/sektioner/SBE/danfund/Sider/How-to-collaborate.aspx). 
FGFP data is available on European Genome-Phenome Archive (EGA), EGAS00001004420 
GEM data is available on SRA (PRJEB14839). 
Generation R and Rotterdam Study data cannot be made publicly available due to ethical and legal restrictions; these data are available upon request to the data 
manager of the Rotterdam Study Frank van Rooij (f.vanrooij@erasmusmc.nl) or of the Generation R Study Claudia Kruithof (c.kruithof@erasmusmc.nl) and subject 
to local rules and regulations. 
HCHS/SOL data is available from ENA (European Nucleotide Archive), ERP117287. 
KSCS data is available at the public repository, Clinical and Omics data archives (CODA) in the Korea National Institute of Health by accession number R000635 
(http://coda.nih.go.kr/coda/coda/search/omics/genome/selectSearchOmicsGenomePop/R000635.do). 
LLD and MIBS data are available from EGA, EGAS00001001704, EGAS0000100924). 
METSIM data is available on SRA (SRP097785). 
NGRC data is available on ENA (ERP016332). 
NTR has a data access committee that reviews data requests and will make data available to interested researchers. The data come from extended twin families and 
pedigree structures with twins, which create privacy concerns and thus cannot be shared on publicly available databases. Researchers may contact prof Eco de Geus 
(eco.de.geus@vu.nl) for data request.. 
PNP is available on ENA (PRJEB11532). 
POPCOL is available on EGA (EGAS00001004869). 
SHIP and SHIP-TREND data can be obtained from the SHIP data management unit and can be applied for online through a data access application form (https://
www.fvcm.med.uni-greifswald.de/dd_service/data_use_intro.php) 
TwinsUK data is available on the European Nucleotide Archive (ENA, accession ERP015317).  
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Sample size The sample size of 18,473 samples used is a total sample size from participaing cohorts, after data exclusion criteria. No prior sample size 
calculations were performed, thus it was determined by the data availability at the moment of the study initiation

Data exclusions The genetics exclusion criteria for the study is the following: (a) ethnic outliers in monoethnic cohorts to avoid false positives driven by 
outliers; (b) random selection of one individual 
from the related group (i.e. MZ or DZ twins), if applicable, to make possible the use of GWAS method similar across cohorts, which doesn't 
allow to stratify for family structure. For microbiome data, individuals with lower than 10,000 16S reads were excluded; this cutoff is assumed 
to provide an accuracy in estimating 16S taxonomic profiles, up to genus level resolution.  

Replication Due to the limited power of analysis, no split to discovery/replication group was applied

Randomization Given the population-based study design, there was no separation to groups in the study

Blinding there was no blinding during the sample collection from the cohorts, since the majority of cohorts utilize population-representative design
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Population characteristics BSPSPC (PopGen) 
The PopGen cohort (mean age 61.5 (16.6), 55% male) is a population-based cohort from the area around Kiel, Schleswig-
Holstein, Germany.  
CARDIA (Coronary Artery Risk Development in Young Adults Study) 
Coronary Artery Risk Development in Young Adults Study (CARDIA) is a population-based prospective study of the evolution 
of cardiometabolic disease. African American and European American adults were recruited from four U.S. urban areas 
(Birmingham, AL; Chicago, IL; Minneapolis, MN; Oakland, CA in 1985-1986) (n=5,115, aged 18-30). They have subsequently 
been examined nine times. A microbiome study was initiated at the Year 30 follow-up examination (2015-2016) in a subset of 
participants (n=615) who had not taken antibiotics in the past month. Fecal DNA was extracted with the MoBio PowerSoil kit, 
and the V3-V4 region of the 16S rRNA gene was sequenced with Illumina MiSeq (2x300bp) at HudsonAlpha Institute for 
Biotechnology (Huntsville, AL, USA). A subset of cohort participants has been genotyped with the Affymetrix Genome-Wide 
Human SNP Array 6.0. After quality control and removal of participants with non-overlapping data on microbiome and host 
genetics, data from 114 African Americans and 257 European Americans (total n=371) were available for analysis.  
NeuroIMAGE+COMPULS 
NeuroIMAGE+COMPULS is a cohort consisting of two studies, NeuroIMAGEII and COMPULS, and includes participants of 
Dutch ethnicity. The cohort represents a combination of adults/adolescents/children diagnosed with ADHD and healthy 
controls. The overlap between samples with genotyping and microbial 16S sequencing data yielded 133 samples (57 females, 
76 males, 17(5) years old) for use in the microbiome GWAS analysis.  
COPSAC2010 
The Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC2010) cohort is a prospective mother-child 
cohort of 700 children and their families, recruited during week 24 of pregnancy, with written informed consent obtained 
from all mothers. The participants reside in and around Copenhagen, Denmark. The design builds upon the previous 
COPSAC2000 cohort and is based on detailed longitudinal clinical assessments of asthma, allergy, eczema and other 
outcomes. At the latest timepoint, we had both genotype and microbiome data for 380 children to include in this study, 73 of 
whom had taken antibiotics in the six months before the fecal sample date.  
DanFunD (The Danish study of Functional Disorders) 
DanFunD is a population-based cohort initiated to outline the epidemiology of functional somatic syndromes. The study 
population comprises a random sample of 9,656 men and women aged 18-76 years from the general population who were 
examined from 2011 to 2015. Genotyping using the Human OmniExpress Bead Array (Illumina Inc., San Diego, CA, USA) was 
conducted on human leukocyte DNA for the entire cohort. A subset of 2,464 participants volunteered to provide a fecal 
sample collected under standardized conditions. In total, 2,396 samples passed the QC for genotyping and 16S sequencing 
and were included in the GWAS. 
FGFP (Flemish Gut Flora Project) 
The FGFP is a population-based study cohort of 2,482 individuals from the Flanders region of Belgium. Blood and stool 
samples of volunteers were collected between June 2013 and April 2016After quality control, 2,259 samples had genotype 
and 16S data (1,328 females, 896 males, mean age 52.3 yrs).  
FOCUS 
The FoCus cohort (mean age 51.4(14.6) yrs, 42% male) is a population-based cohort from the area around Kiel, Schleswig-
Holstein, Germany, and part of the competence network Food Chain Plus (FoCus, http://www.focus.uni-kiel.de/component/
content/article/88.html).  
GEM (The CCC GEM project) 
The CCC GEM project is a prospective international research study that is designed to identify the potential triggers that 
contribute to the onset of Crohn’s Disease. Since 2008, the GEM project has recruited over 5,000 healthy first-degree 
relatives of 
Crohn’s Disease patients with an age range of 6-35 years. We used data from participants recruited in Canada (n=1,115), 
United 
States (n=17) and Israel (n=111). Stool DNA was extracted using the QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany). 
The 
V4 hypervariable region of bacterial 16S ribosomal RNA (16S rRNA) was sequenced using a MiSeq platform (Illumina Inc. San 
Diego, CA, USA) and primers 515F/806R90. The genotyping of the cohort was performed using the 
HumanCoreEXOME-12v1.1 
chip (n=379), HumanCoreEXOME-24v1.0 chip (n=203) and both ImmunoChip and HumanCoreEXOME-12v1.1 chip (n=662) 
(Illumina, Inc. San Diego, CA, USA). Thus in mbQTL mapping the cohort was split into subcohorts GEM_v12, GEM_v24 and 
GEM_ICHIP respectively. Among subcohorts, GEM_v24 mostly coprises individuals of Israel ethnicity (70%), while other two 
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subcohorts are of a European ancestry. Only the sample from one member from each family enrolled in the project was 
included 
in the current microbiome GWAS study. The overlap between samples with genotyping and microbial 16S sequencing data 
yielded 1,243 samples (676 females, 567 males, median age = 19.0(8.03) yrs) for use in the microbiome GWAS analysis. None 
had used antibiotic in the three months before fecal collection. 
The Generation R Study 
The Generation R Study (GenR) is a population-based, prospective, multi-ethnic pregnancy cohort study from fetal life until 
young adulthood. It is conducted in the city of Rotterdam, the Netherlands91. After stringent quality control, the overlap 
between samples with genotyping and microbial 16S sequencing data yielded 1,328 samples (656 females, 672 males, mean 
age 
9.8(0.3) years) for use in the microbiome GWAS analysis. None had used antibiotics in the six months before fecal collection. 
KSCS (Kangbuk Samsung Cohort Study) 
The Kangbuk Samsung Cohort Study (KSCS) is a prospective cohort study to evaluate the natural history, prognosis, and 
genetic 
and environmental determinants of a wide range of health traits and diseases among Korean adults. After quality control, 811 
samples (319 females, 492 males, mean age 44.1 yrs) with overlapping genotype and 16S data were included in the 
microbiome 
GWAS. 
LifeLines-DEEP (LLD) 
The LifeLines-DEEP cohort (LLD) is a subcohort of the prospective LifeLines cohort from the northern provinces of the 
Netherlands (Groningen, Drenthe and Friesland) and includes participant of Dutch ethnicity. The overlap between samples 
with 
genotyping and microbial 16S sequencing data yielded 875 samples (504 females, 371 males, mean age 45.4(13.3) yrs) used 
for 
the microbiome GWAS analysis, of these 70 participants were PPI users and eight people used antibiotics in the six months 
previous to fecal collection. 
METSIM (METabolic Syndrome In Men) 
METSIM 
The METabolic Syndrome In Men (METSIM) cohort is a longitudinal population-based cross-sectional cohort comprising of 
10,197 randomly selected non-diabetic Finnish men (aged from 45 to 73 years) who were examined in 2005-2010. For the 
current microbiome GWAS study, we used a subset of the METSIM cohort consisting of 522 samples (mean age 61.91 (5.42) 
yrs) 
with overlapping genotyping and microbial 16S sequencing data. For the current microbiome GWAS study, we used a subset 
of the METSIM cohort consisting of 522 samples (mean age 61.91 (5.42) yrs) with overlapping genotyping and microbial 16S 
sequencing data. 
MIBS (Maastricht Irritable Bowel Syndrome) 
The MIBS cohort with biobank aims to identify subgroups of IBS according to phenotypical and genotypical characterization. 
At present, it includes 520 subjects with a clinical diagnosis of IBS according to the Rome III criteria (from primary-tertiary 
care) and 220 age- and gender-matched healthy controls. For the present microbiome GWAS study, only controls (N=80, 
mean age 48.7(18.2), 43% male) were included.  
NGRC (NeuroGenetics Research Consortium) 
The NeuroGenetics Research Consortium (NGRC) is a collaborative study of gene-environment-microbiome interaction on 
Parkinson’s disease (PD). It is being conducted in the United States. For the microbiome GWAS study, only 133 control 
participants were used; they were free of neurodegenerative disease at a mean age of 71.9(7.5) years old, 58% were female. 
 
NTR (the Netherlands Twin Registry) 
The NTR collects data and biological samples on Dutch multiples and their family members. One of each twin pair was 
randomly selected for inclusion in the GWAS analyses (156 twin pairs, 123 unrelated individuals, 279 individuals total, mean 
age 35.4(12), 29.8% male). Both MZ twins were included for the ICC calculations between MZ twin pairs for comparison with 
heritability estimates (156 twin pairs). None of the participants reported using antibiotics within six months of fecal 
collection. 
PNP (Personalized Nutrition Project) 
The PNP is a large-scale nutrition initiative in Israel that aims to help people make food choices that would normalize their 
blood glucose level and improve their health and well-being. The cohort has over 1,000 healthy individuals of Israeli ethnicity 
living in Israel and aged between 18 and 70 years. The cohort consists of self-reported Ashkenazi (n=508), North African 
(n=64), Middle Eastern (n=34), Sephardi (n=19), Yemenite (n=13) and ‘admixed/other’ (n=408) ancestries. 481 individuals 
were included in the current study (mean age 43.7(13.1), 36.4% male).  
PopCol (Population-based Colonoscopy) 
Population-based Colonoscopy (PopCol) is a cohort study in Stockholm, Sweden, which includes a data-rich set of individuals 
with data available from bowel symptoms questionnaires, gastroenterology visits, and biospecimensAfter data merging and 
quality control, we used data from 134 individuals (83 females, 51 males, mean age 54.8(11.3) yrs) in the microbiome-GWAS. 
Of 
these, 6 PopCol participants were proton pump inhibitors (PPI) users and 12 used antibiotics. 
Rotterdam Study III 
The Rotterdam Study (RS) is a prospective population-based cohort study established in 1990 to study determinants of 
disease 
and disability in Dutch adult/elderly individuals, aged ≥ 40 years. The overlap between samples with genotyping and microbial 
16S sequencing data yielded 1,220 samples (705 females, 515 males, mean age 57(5.9) yrs) for use in the microbiome GWAS 
analysis. Of these 260 participants used PPI, and none used antibiotics in the six months before fecal collection. 
SHIP (Study of Health in Pomerania) 
The Study of Health in Pomerania (SHIP) is a prospective longitudinal population-based cohort study encompassing two 
independent cohorts SHIP (N=4,308; baseline examinations 1997-2001) and SHIP-TREND (N=4,420; baseline examinations 
2008 - 
2012) 1,901 datasets (1,043 females, 858 males, age 53.7(14.0) yrs) with overlapping genotype and microbiome data were 
included in the current study. Of these, 149 individuals used PPIs and 25 had antibiotics at the time of inclusion. 
HCHS/SOL 
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The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) is a prospective, population-based cohort study of 16,415 
Hispanics/Latino adults (ages 18-74 years) who were selected using a two-stage probability sampling design from four US 
communities (Chicago, IL; Miami, FL; Bronx, NY; San Diego, CA)102,103. The overlap between genetically unrelated subjects 
with 
microbial 16S sequencing data yielded 1,097 samples (676 females, 421 males, age 57.2(10.9) yrs) used in the microbiome 
GWAS analysis. Of these, 341 used medication including PPIs for indigestion, heartburn, or stomach problems, and 321 used 
antibiotics in the six months before the fecal collection. 
TwinsUK 
TwinsUK is a population-based cohort established in 1992 to study the genetic and environmental basis of a range of complex 
diseases and conditions in adult/elderly twins from the UK One twin out of each pair was randomly excluded from the 
population 
of 1,793 individuals, leaving 1,205 volunteers (1,101 females and 104 males, age 61.5(10.7) yrs) on which to conduct the 
microbiome GWAS analysis. Of these, 78 used PPIs and 62 had antibiotics 6 months prior to sampling. 

Recruitment The following bias might occur in extrapolation the results to the general population: 
1. Despite the multi-ethnic setup of the study, the consortium sampling is still dominated by the cohorts of European 
ancestry and European residence. 
2. 16S taxonomic profiling method used in the study is known to introduce bias in the microbiome composition. There is a 
significant imbalance in the cohorts methodology in selection of 16S domains and DNA extraction methods, which might lead 
to underestimate the genetic effects on bacterial taxa which are not sufficiently covered by the methods used by numerous 
cohorts. 
3. Several cohorts participating in the study utilize age-, sex- and symptom-dependent bias in recruitment process.  

Ethics oversight All participants enrolled had signed the informed consent. For LLD/MIBS cohorts approved as clinical studies, only population 
controls were used in the current analysis.  
 
BSPSPC: approved by the institutional ethical review committee of Kiel University, Germany 
CARDIA: approved by Institutional Review Boards of University of Alabama at Birmingham, Birmigham, AL, Kaiser Permanente 
Division of Research, Oakland CA, University of Minnesota, Minneapolis, MN, and Northwestern University, Chicago, IL.  
NeuroIMAGE+COMPULS: approved by the regional ethics committee of each site (Nijmegen and Utrecht: Commissie 
Mensgebonden Onderzoek Regio Arnhem-Nijmegen, 2013, NL nr 42004.091.12 
COPSAC: approved by Danish Ethics Committee (H-B-2008-093) and the Danish Data Protection Agency (2008-41-2599) 
DanFunD: approved by Ethical Committee of Copenhagen County (Ethics Committee: KA-2006-0011; H-3-2011-081; 
H-3-2012-0015) and the Danish Data Protection Agency 
FGFP: approved by the medical ethics committee of the University of Brussels–Brussels University Hospital (approval 
143201215505, 5/12/2012). 
FOCUS: approved by the institutional ethical review committee of Kiel University 
GEM: approved by Mount Sinai Hospital Research Ethics Board (Toronto–Managing Center) and local centers 
GenerationR: approved by the Medical Ethical Committee of Erasmus MC, University Medical Center Rotterdam. 
KSCS: approved by EUMC review board 2014-06-024 and KBSMC review board 2013-01-245. 
LLD: Each participant signed an informed consent form before participation in the cohort according to the UMCG Institutional 
Review Board (IRB; #M12.113965). 
METSIM: approved by Ethics Committee of the Northern Savo Hospital District, Finland 
MIBS: Each participant signed an informed consent form before participation in the cohort according to the Maastricht 
University Medical Center (MUMC+) IRB (#MEC 08-2.066.7/pl). 
NGRC: approved by institutional review boards at the participating institutions: Albany Medical Center, Emory University, 
Kaiser 
Permanente Northwest Division, New York State Department of Health, Oregon Health & Sciences University (OHSU) and the 
Department of Veterans Affairs VA Puget Sound Health Care System (VAPSHCS). 
NTR: approvCentral Ethics Committee on Research involving human subjects of the VU University Medical Center, 
Amsterdam 
PNP: Approved by Tel Aviv Sourasky Medical Center Institutional Review Board (IRB), approval numbers TLV-0658-12, 
TLV-0050-13 and TLV-0522-10; Kfar Shaul Hospital IRB, approval number 0-73; and Weizmann Institute of Science Bioethics 
and 
Embryonic Stem Cell Research oversight committee. 
PopCol: approved by the local Committee of Research Ethics (Forskningskommitté Syd) at Karolinska Institutet, Stockholm, in 
November 2001 
RotterdamStudy: approved by the institutional review board (Medical Ethics Committee) of the Erasmus Medical Center and 
by 
the review board of The Netherlands Ministry of Health, Welfare and Sports. 
SHIP/SHIP-TREND: approved by medical ethics committee of the University of Greifswald 
HCHS/SOL: approved by approval of the Ethics and Institutional Review Boards of all institutions involved (i.e., Bronx Field 
Center 
– Albert Einstein School of Medicine; Chicago Field Center – University of Illinois Chicago; Miami Field Center – University of 
Miami; San Diego Field Center – San Diego State University) 
TwinsUK: approved by the Cornell University IRB (Protocol ID 1108002388)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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