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Chapter 1

Introduction

This thesis is in the field of machine learning and games. It presents research
on learning algorithms suitable for improving decisions made during game-tree
search. In this chapter we introduce our definition of search decisions and we
provide a classification of search decisions. We argue why learning can be em-
ployed for search decisions, which leads to the formulation of our research ques-
tion.

1.1 Games and search

Humans have always been interested in games, as entertainment and as an intel-
lectual exercise. Both aspects can be found in today’s computer games: video
games are a basic entertainment tool for almost every kid and programs for
chess-like games have reached (and some surpassed) the level of human intel-
lectual capabilities. Chess-like games are the focus of this thesis. They were
considered from the beginning of AI as a major test bench. Two reasons are
obvious: (1) because reaching the level of human grandmasters is a worthy chal-
lenge; (2) because the abstraction of the games provides an ideal environment
for developing and testing various algorithms. In some games the computers
achieved a level above that of the best humans (such as in checkers [97] and
Scrabble [102]) and in some they even reached perfection [46] (as in Go-Moku
[4] and in nine men’s morris [32]). In chess, today’s programs are playing at
a level of a top grandmaster; a peak performance was shown in 1997, when
DEEP BLUE defeated the best human player in an exhibition match [99, 101].
However, in games like Go or shogi (japanese chess), the play of a computer
program is at amateur level. All in all, it is clear that the challenge of reaching
grandmaster level is (at least) partially fulfilled, but the domain of games is
far from being ‘dead’. Even presupposing that in the future humans are no
longer worthy opponents to computers, games will remain to be a favourable
test domain.

In games, as in many other domains of problem solving, search is a necessity.

1



2 CHAPTER 1. INTRODUCTION

This necessity is a result of the complexity of the domain that prohibits the
humans as well as the computers to recognise instantly the next move. The
role of the search is to expand the possible move sequences, and to compare the
positions at the end of the sequences (i.e., in the leaf nodes). In most of the
games, both for humans and for computers, the deeper the search, the better
the move choice is. Unfortunately, deeper searches explore exponentially more
positions and thus the required time is growing exponentially. Since the time
for a move is limited, the number of positions explored during the search is
also limited. Due to this limitation, there is a burden on every player to search
efficiently, i.e., to explore the most promising lines rather deeply, while spending
little time on the less promising ones. By doing so, it is possible to choose good
moves in a limited time.

1.2 Search decisions

A typical game program relies for search on some variation of the αβ algorithm
[56]. Over the years several enhancements were developed to make the search
more efficient. For every game program it has to be decided which search en-
hancements should be used, and what should be the values of the various param-
eters employed by the particular enhancement. The list of decisions influencing
the search is very long, and any enumeration is likely to be incomplete. Among
the search decisions to be taken there are: the structure of the transposition
table, the move ordering, the depth of the search (or the allocated time), the
‘quietness’ of a position (or which moves are tactical), the search extensions, the
size of the aspiration window, the method of forward pruning, the application
of singular extensions and so on.

Most of these decisions are made off line by the programmer and some on
line, i.e., during the play. Often a search decision can be considered at two levels.
For instance, the order in which the moves are investigated at interior nodes is an
on-line decision. To solve the decision a move-ordering scheme is implemented
including, e.g., a transposition table, a killer heuristic, and a history heuristic.
We note that the history heuristic has some parameters (e.g., the value with
which the history score of a move is increased if the move produced a cutoff).
The values for these parameters have to be decided too, and usually it is done
off line.

In summary, search decisions are the decisions made in a game program,
either on line or off line, which affect in some way the game-tree search.

1.2.1 Classes of search decisions

All search decisions are assumed to have some effect on how the search tree is
expanded. However, they differ in the way of influencing the search. Some of
them may produce a smaller search tree, but do not change the move chosen by
the search given a search depth. Other search decisions are influencing the shape
of the search (investigating some moves more deeply while ignoring others), and,
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thus, may change the preferred move. Most of these are attempting to reach a
compromise between the size of the search tree (which should be minimised) and
the quality of the move made (which should be maximised). Some of the search
decisions are even not obeying this simple rule. They aim at a possibly sub-
optimal move for some ‘speculative’ reason such as expecting a mistake from the
opponent, or gaining time. Almost as a consequence of the above differences,
search decisions differ in the way their efficacy can be evaluated. Based on this
difference, we define three classes of search decisions.

• Class-P search decisions are evaluated using only game positions and dis-
regarding the search tree or game in which they occur.

• Class-S search decisions are evaluated using search trees without reference
to actual move sequences, but not using only positions.

• Class-G search decisions are evaluated on complete move sequences (as
they occur in game trees).

Usually, class-P search decisions can also be evaluated depending on their
performance in the search (such as the size of the search tree). This evaluation
might be even more important for the sake of the performance of the game
program. However, from subsequent chapters it will become clear that the
possibility to evaluate these decisions disregarding the whole search tree or the
whole game results in more (time-)efficient learning algorithms. The same holds
for class-S search decisions. They can also be evaluated using move sequences,
but it is faster to do so using only search trees. To understand the classification
better some examples are discussed in the following.

The main example for class-P search decisions is move ordering. The simplest
way to evaluate a move ordering is to compare how often the move ranked
highest is actually the best move; or how often the best move is ranked in
the front moves. Other search decisions included in this class are detections
of certain static features of the position which may influence the search engine
(e.g., evaluating the status of certain groups in Go).

Class S is the most frequently occurring class of search decisions. This
class includes the various search enhancements such as transposition tables,
iterative deepening, search-extension schemes, forward-pruning techniques, and
so on. For most of these, both the design of the enhancement and its parameters
represent instances of class-S search decisions. Typically, they improve the
quality of the move chosen by the search as well as the size of the search tree
required to choose the move. Thus, they can be evaluated on these two terms:
the quality of the move, and the size of the search tree.

Class-G search decisions have a more global effect in the game. For instance,
time allocation is dividing the remaining time over the moves still to be made
in the game. Another instance is opponent modelling. The idea is to speculate
on a possible mistake of the opponent which might occur later in the game.
These decisions can be evaluated only with the game results in hand (i.e., with
a completed move sequence).
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1.3 Learning in games

This section gives a short overview of the learning algorithms employed in games.
A more extensive overview can be found in [31].

In most of the games, three phases can be distinguished: the opening, the
middle game, and the endgame. Accordingly, game programs to select the move
use algorithms specialised for each phase of the game. In the following we will
discuss the learning algorithms structured according to the game phases.

In the opening phase, game programs rely on an opening book. Learning in
this phase is focused on various tasks. First, if a manually constructed opening
book exists, then learning can play a role on selecting which lines the program
should play, and which lines should be avoided [49]. Second, the opening book
can be extended by learning, or if no opening book is available it can be con-
structed from scratch [19, 20, 30, 67]. Third, if a program is using a relatively
stable opening book, it is preferable to avoid playing the same (possibly faulty)
line over and over again [8, 27, 47, 94, 100].

In the middle game two major components of the programs are involved: the
search engine and the evaluation function. The learning algorithms that try to
improve the search engine are discussed separately in more detail in subsection
1.3.1. The learning algorithms for the evaluation function are discussed below.

In most game programs the evaluation function is a weighted combination
of several features. The most research effort in the domain of learning in games
went into tuning the weights of the evaluation function. The first results date
back to Samuel [94], who tuned the evaluation function of his checkers program
using temporal-difference learning. His approach was replicated by several re-
searchers [8, 9, 109], with the most successful application being in backgammon
by Tesauro [108]. Besides temporal-difference learning, other approaches have
been tested with some success too. The most successful of these were supervised-
learning algorithms [6, 17, 64, 107]; for genetic algorithms some moderate results
were reported [21].

While tuning the weights received much attention, the automatic construc-
tion of evaluation-function features was somewhat neglected. The learning al-
gorithms for tuning the weights that use a multilayer neural network can be
regarded as implicitly constructing features, the features being the hidden neu-
rons. There were a few attempts to construct symbolic features automatically
(e.g., [29, 65, 115]), but without notable success.

In the endgame, most game programs rely on endgame databases [84]. A
notable exception is LOA (see [123]). Since, these databases contain factual
and exact information about the game no learning is required. If the number of
pieces is still relatively high, the programs use similar tools to those employed for
middle-game positions. Consequently, the research on endgame-specific learning
algorithms is rather limited. Most of this research is more general, and use
endgames only as testbed (e.g., [39, 45, 76]). A promising idea is suggested in
[91], where the endgame databases are used for training the evaluation function
in awari. We believe that further research on the pre-endgame-database phase
would be rewarding.
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1.3.1 Learning search decisions

The efficiency of the search engine of a game program depends on a multitude
of search decisions. Optimising the search decisions by hand is rather difficult
for humans, since they have to take into account all effects of the search decision
on the search. The alternative is to use learning algorithms for optimisation.

Learning algorithms for search decisions have been applied successfully in the
past to improve the efficiency [74, 75] and, more recently, to improve the quality
[3, 28, 85] of planning. These algorithms derive and refine search-control rules
that have a symbolic representation, often expressed as predicate clauses. The
learning algorithms employed for optimising these rules are some variations on
the ‘symbolic’ learning algorithms such as explanation-based learning [75] and
inductive logic programming [83]. However, these rule-based learning algorithms
cannot be used to improve search decisions in games, simply because most of the
search decisions in games are not represented as rules. Such rule-based systems
were employed in the early days of computer chess (e.g., in [117]), but they have
proven to be less efficient than the brute-force search engines used in today’s
game programs.

Although the importance was recognised [31], learning search decisions in
games has received little attention so far. In the following we briefly describe
the attempts found in our literature search in this area. Some of the algorithms
are discussed in more detail in the chapters 3, 4, and 5, depending on the class
of search decision.

Some of the existing search techniques have a ‘built-in’ learning mechanism.
Major examples are the Multi-ProbCut [18] and the Realization-Probability
Search [110, 111]. Analogously, the history heuristic [95, 96] and the transpo-
sition tables [16] can be considered as implementing a kind of on-line learning.
These very specific learning algorithms cannot be used to learn any other type
of search decisions.

A number of learning algorithms is designed for a specific type of search deci-
sion, but they are somewhat separated from the search decision to be improved.
These include the learning algorithms for move ordering (e.g., the chessmaps
heuristic [34, 35]), and the learning algorithms for selecting a set of promising
moves in games with a high branching factor [23, 26, 52, 116].

Recently, there were three attempts to develop more general learning al-
gorithms for search decisions. These were tested for a specific type of search
decision but they can be applied for other type of search decisions too. The first
of these was training a neural network with a genetic algorithm to prune un-
promising branches of a search tree [77]. This approach can be easily modified
for other types of search decisions, as we did for time allocation (see subsec-
tion 5.2.3). A second attempt was to formalise the problem of learning search
decisions as an MDP [38]. Some experimental results were given for time alloca-
tion. Third, and perhaps most promising is the sequence of two gradient-descent
algorithms developed for learning search extensions [11, 13, 14]. These two al-
gorithms can, most likely, be employed for learning most of the class-S search
decisions.
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1.4 Research question

From the previous sections it is obvious that search decisions play an impor-
tant role in the performance of game programs. Moreover, we established that
search decisions are difficult to tune manually, and automatic tuning of search
decisions using learning methods would be rewarding. Given these observations,
we formulate our research question:

Which learning algorithms can improve search decisions?

To answer this question, we will choose an instance for each of the three classes
of search decisions described in subsection 1.2.1. For these instances of search
decisions, we will design new learning algorithms, which will be tested experi-
mentally.

1.5 Thesis outline

The thesis is organised as follows. Chapter 1 contains an introduction to the
topics of this thesis: games, search, search decisions, and learning algorithms.
In this we chapter suggest a classification of search decisions in class-P, class-S,
and class-G search decisions.

Chapter 2 describes the environments employed for testing the learning algo-
rithms for search decisions developed in the thesis. There are two test environ-
ments in the game of Lines of Action, the NN-population environment and the
MIA environment, and one test environment in the game of chess, the CRAFTY

environment.
Chapter 3 considers an instance of class-P search decisions: move ordering.

This chapter presents a new move-ordering algorithm, the Neural MoveMap
heuristic. The heuristic uses a neural network to estimate the likelihood of a
move being the best in a certain position. The neural network is trained with
large pattern sets consisting of game positions labelled with the best move.
During the search, the moves considered more likely to be the best are exam-
ined first. In the experiments we investigate the various details of the heuris-
tic, while comparing the heuristic with the state-of-the-art move ordering tech-
niques. From the experimental results we conclude that the Neural MoveMap
heuristic is able to improve the move ordering in all test environments.

Chapter 4 considers an instance of class-S search decisions: forward prun-
ing. This chapter describes two new algorithms for forward pruning. The first
algorithm is the TS-FPV algorithm. The TS-FPV algorithm is a tabu-search
based algorithm for class-S search decisions that have a discrete representation.
The algorithm is applied for learning forward-pruning vectors. The second algo-
rithm is the RL-FPF algorithm. This algorithm is using reinforcement learning
for class-S search decisions with continuous representations. The algorithm is
applied for learning forward-pruning functions. Experiments with forward prun-
ing are described for both algorithms. From the experiments we conclude that
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forward pruning is beneficial and a forward-pruning scheme can be tuned either
by TS-FPV or by RL-FPF.

Chapter 5 considers an instance of class-G search decisions: time alloca-
tion. A new learning algorithm for class-G search decisions is introduced, the
Meta-Actor-Critic algorithm. This algorithm uses a meta-level actor-critic ar-
chitecture. The application to time allocation of an existing genetic algorithm,
SANE (Symbiotic, Adaptive Neuro-Evolution), is described too. These two al-
gorithms are tested experimentally in both test games (LOA and chess). From
the experiments, we conclude that the learning algorithms can improve time
allocation, although the learning time can be prohibitive.

Chapter 6 presents the final conclusions and suggestions for future research.
Appendix A describes briefly three existing learning algorithms that are used

several times in the thesis: temporal-difference learning, SANE and RPROP.
Appendix B presents the generation of the NN-population test environment.
Appendix C presents examples for the move ordering performed by the Neural
MoveMap heuristic in 100 test positions.
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Chapter 2

The test environments

This chapter describes the environments employed for testing the algorithms
developed in the thesis. A test environment consists of a game and a game pro-
gram. Two games were employed: Lines of Action (LOA), described in section
2.1 and chess, described in section 2.2. Both games are two-person zero-sum
games with perfect information. LOA is a game with a smaller complexity, a
shorter game length and three relatively uniform game phases (i.e., the num-
ber of pieces and the strategies involved are not changing drastically during the
game). These features make LOA an attractive domain for generating new ideas,
since they can be tested fast. Chess has a larger complexity, and received most
attention from the game-research community. As a consequence, the available
chess programs are fine-tuned, and use the state-of-the-art techniques. Thus,
chess is a suitable domain for evaluating the algorithms developed. Using two
games for testing provides some indication on the generalisation of these algo-
rithms.

2.1 Lines of Action

The rules of the game Lines of Action are described in subsection 2.1.1 together
with the most important game properties. Then the following two subsections
describe the game programs used as test environment. Subsection 2.1.2 describes
the NN-population environment and subsection 2.1.3 the MIA environment.

2.1.1 The game

Lines of Action [93] is a two-person zero-sum chess-like connection game with
perfect information. It is played on an 8 × 8 board by two sides, Black and
White. Each side has twelve pieces at its disposal. The black pieces are placed
in two rows along the top and bottom of the board, while the white pieces are
placed in two files at the left and right edge of the board (see Figure 2.1a).
The players alternately move a piece, starting with Black. A move takes place

9
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a b c

Figure 2.1: (a) The initial position of LOA. (b) An example of possible moves
in a LOA position. (c) A terminal LOA position.

in a straight line (along files, ranks or diagonals), exactly as many squares
as there are pieces of either colour anywhere along the line of movement (see
Figure 2.1b). A player may jump over its own pieces. A player may not jump
over the opponent’s pieces, but can capture them by landing on them. The goal
of a player is to be the first to create a configuration on the board in which all
own pieces are connected in one unit (for an example, see Figure 2.1c). In the
case of simultaneous connection, the game is drawn. The connections within
the unit may be either orthogonal or diagonal. If a player cannot move, this
player loses. If a position with the same player to move occurs for the third
time, the game is drawn.

The rules presented above are those used at the 7th Computer Olympiad
(Maastricht, 2002). The state-space complexity is estimated to be 1.3×1024 and
the game-tree complexity 1065, with a branching factor of 30 and an average
game length of 38 plies [118]. Although the number of pieces is slightly decreas-
ing during the game, the strategies employed by LOA players remain mostly the
same. Some of these strategies are described in [118]. Similar to humans, most
computer programs do not have a clear distinction of the game phases. They
use the same evaluation function throughout the whole game, and roughly the
same search engine too. Additionally, in the opening phase, for the first few
moves the programs use some small opening books, and in the endgame some
of the programs employ some specific modules to detect a forced win [123]. The
first computer program for LOA was written in 1975 at the Stanford AI lab [25].
The current best programs are YL, MONA and MIA [15].

2.1.2 The NN-population environment

The NN-population test environment consists of a simple search engine and a set
of 100 neural-network evaluation functions. Each of the evaluation functions is
combined with the search engine, and thus the environment includes 100 game
programs. The existence of a large number of evaluation functions provides
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ample diversity to the test environment. This is quite useful for evaluating the
performance of the learning algorithms for search decisions.

The search engine uses the MTD(f) algorithm [87] with the history heuristic
[95] for move ordering.

The evaluation functions use a feed-forward neural network with a hidden
layer consisting of 40 neurons. The output and the hidden neurons use a sig-
moidal activation function. A position is encoded by 65 input units. Each
square is associated to a neuron (+1 for a black piece, −1 for a white one, 0 for
an empty square) with an additional neuron indicating the side to move. The
output neuron represents the minimax estimation of the position. The gener-
ation of the 100 neural-network evaluation functions is described in appendix
B.

2.1.3 The MIA environment

The MIA environment relies on the tournament program MIA (Maastricht In
Action)1. MIA has been written in Java and runs on every well-known operating
system. In the following we describe briefly the search engine and the evaluation
function of MIA. Further details on the program and its performance can be
found in [15, 118, 124].2

MIA performs an αβ depth-first iterative-deepening search. The program
uses a two-deep transposition table [16], null moves [24] and PVS [71]. Before
the null move is tried, the transposition table is used to prune a subtree or to
narrow the window. As far as move ordering is concerned, the transposition
move, if applicable, is always tried first. Next, the last two killer moves [2] are
tried. All the other moves are ordered decreasingly according to their scores
in the history table [95]. In the leaf nodes of the tree a quiescence search
is performed. This quiescence search looks at capture moves, which form or
destroy connections [124].

The evaluation function used in MIA consists of seven features. Feature 1
is the concentration. Positions with concentrated groups of pieces are preferred
over positions where the pieces are scattered on the board. For details on this
feature see [122]. Feature 2 is the centralised centre-of-mass. Positions with
a somewhat more centralised centre of mass are preferred. Feature 3 is the
centralisation. Pieces in the centre are preferred above pieces on the edges.
Feature 4 is the quad feature. This feature looks at solid formations in the
neighbourhood of the centre-of-mass by using quads. Details of this feature can
be found in [124]. Feature 5 is the mobility. A bonus is given for the number of
moves one has. Feature 6 is the wall feature. A wall is a group of pieces which
blocks the opponent’s pieces at the edge. Positions with walls are favoured.
Feature 7 is the side to move. The weights of these features were tuned by TD
learning [122].

1MIA can be played at the website: http://www.cs.unimaas.nl/m.winands/loa/.
2Below we describe the details of the MIA version used in our experiments. Meanwhile the

development of MIA has progressed and the latest version, called MIA IV, has several other
features introduced [119].
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Figure 2.2: The initial position of chess.

2.2 Chess

In subsection 2.2.1 we briefly describe the game of chess. For testing the search
decisions in chess, we employ the tournament program CRAFTY. An overview of
CRAFTY is given in subsection 2.2.2.

2.2.1 The game

Chess is a two-person zero-sum game with perfect information. It is played on
an 8×8 board by two sides, White and Black. White starts. The initial position
is shown in Figure 2.2. The goal of the game is to checkmate the opponent King.
A draw can occur in case of stalemate, repetition of positions, if neither player
can checkmate the opponent’s King with any series of legal moves, or if 50
consecutive moves were made without the movement of any Pawn and without
a capture. The game can also end by agreement or by exceeding the time limit.
For a complete description of the chess rules see [1].

The state-space complexity is estimated to have an upper bound of 1.8×1046

[22], and the game-tree complexity 10123, with a branching factor of 35 and an
average game length of 80 plies [4].

The game has three distinguishable phases: the opening (the first ten to
fifteen moves), the middle game, and the endgame (when both sides have only
a few pieces left). The three phases require rather different strategies by the
players. In the opening phase computer programs as well as humans rely on some
opening book. Most of the games are decided in the middle game, when both
the positional evaluation and the search play a crucial role. In endgames with
only up to six pieces computer programs are relying on endgame databases. In
more complex endings computer programs are mostly relying on the techniques
employed for the middle game, although some of the game knowledge has been
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adapted to this phase, such as the evaluation function. The complex endgame
is the part of the game where so far the human planning appears to be superior.
Overall, the computer programs are able to play on the level of the top human
grandmasters. For an overview of the state of the art of chess programs see [98].

2.2.2 The CRAFTY environment

The test environment for chess is using the tournament program CRAFTY
3 [49,

50, 51]. CRAFTY is one of the strongest chess programs whose source code is
publicly available. On the on-line chess servers it consistently ranks among
the highest-rated players, with a rating in the range of 2400–2500. In our
experiments we used version 17.9.

CRAFTY is a fairly traditional chess program. The search engine relies on
the PVS algorithm, with a transposition table and null moves. The search has
two parts, the full-width search and the quiescence search. The full-width part
uses fractional-ply search-depth increments. It is extended in five cases: if the
move is check, if the move is a recapture, if the side to move is in check and
has exactly one legal move to go out of check, if a passed Pawn is advanced
to the sixth or seventh rank safely, or if the null-move search detects a mate
threat. The exact extension values vary with the version of the program. The
quiescence search includes pawn promotions and capture moves that appear not
to lose material by using a static exchange evaluator.

For move ordering, CRAFTY considers subsequently (1) the move from the
transposition table, (2) the capture moves, (3) the killer moves and (4) the
remaining moves sorted in decreasing order according to their history-heuristic
scores.

The main features of the evaluation function are (1) the material score, (2)
the pawn scoring which considers the placement of Pawns, (3) the piece scoring
which evaluates the placement of each piece as well as piece mobility, and (4)
the king safety which considers the pawn structure around the King along with
material threatening an attack.

3The source code of CRAFTY can be downloaded from ftp.cis.uab.edu/pub/hyatt.
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Chapter 3

Move ordering

This chapter is based on1

1. L. Kocsis and J.W.H.M. Uiterwijk. Learning move ordering in
chess. In J.W.H.M. Uiterwijk, editor, Proceedings of the 6th Com-
puter Olympiad Computer-Games Workshop. Technical Report CS
01-04, IKAT, Maastricht, The Netherlands, 2001,

2. L. Kocsis, J.W.H.M. Uiterwijk, and H.J. van den Herik. Move order-
ing using neural networks. In L. Monostori, J. Váncza, and M. Ali,
editors, Engineering of Intelligent Systems, Proceedings of the 14th In-
ternational Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems (IEA/AIE 2001), Lecture
Notes in Artificial Intelligence, Vol. 2070, pages 45–50. Springer-
Verlag, Berlin, 2001,

3. L. Kocsis, J.W.H.M. Uiterwijk, E.O. Postma, and H.J. van den Herik.
The Neural MoveMap heuristic in chess. In Proceedings of the 3nd
International Conference on Computers and Games (CG 2002), To
appear in the “Lecture Notes in Computer Science” series, 2002,

4. M.H.M. Winands, L. Kocsis, J.W.H.M. Uiterwijk, and H.J. van den
Herik. Learning in Lines of Action. In J.W.H.M. Uiterwijk, editor,
Proceedings of the 7th Computer Olympiad Computer-Games Work-
shop. Technical Report CS 02-03, IKAT, Maastricht, The Netherlands,
2002,

5. M.H.M. Winands, L. Kocsis, J.W.H.M. Uiterwijk, and H.J. van den
Herik. Learning in Lines of Action. In H. Blockeel and M. Denecker,
editors, Proceedings of the 14th Belgium-Netherlands Conference on
Artificial Intelligence (BNAIC 2002), pages 371–378, 2002,

6. M.H.M. Winands, L. Kocsis, J.W.H.M. Uiterwijk, and H.J. van den
Herik. Temporal difference learning and the Neural MoveMap heuris-
tic in the game of Lines of Action. In Q. Mehdi, N. Gough, and
M. Cavazza, editors, Proceedings of the 3rd International Conference
on Intelligent Games and Simulation (GAME-ON 2002), pages 99–
103, 2002.

This chapter deals with the problem of move ordering. The efficiency of the
αβ algorithm is closely related to the size of the expanded search tree and

1The author would like to thank Springer-Verlag, the editors of GAME-ON 2002, and his
co-authors for the permission of reusing relevant parts of the articles in this thesis.
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depends largely on the order in which the moves are considered in interior nodes.
Inspecting good moves first increases the likelihood of cutoffs, decreasing the size
of the search tree. We introduce a new move-ordering heuristic that relies on
learning. The heuristic is tuned and evaluated by experiments.

To determine to which class of search decisions move ordering belongs, we
have to look for ways of evaluating move ordering. One way is to measure how
often the move ranked highest is actually the best move. This measure does
not require any reference to a particular search tree or move sequence, and thus
move ordering is an instance of the class-P search decisions.

In section 3.1 we describe the move-ordering techniques employed in most
of the game programs. Section 3.2 presents the Neural MoveMap heuristic, a
new move-ordering technique that relies on learning. The experimental set-up is
given in section 3.3. The experiments with move ordering are described in sec-
tion 3.4. Section 3.5 provides the conclusions on the move-ordering algorithms.

3.1 Existing techniques

The move-ordering techniques can be distinguished by their dependency of a
search algorithm. Search-dependent techniques rely on information gained from
previous phases of the search. Search-independent techniques rely on game-
dependent knowledge. In the following we provide an overview of both types of
move-ordering techniques.

3.1.1 Search-dependent move ordering

For search-dependent move ordering, we discuss five techniques below: iterative
deepening, the transposition table, the killer heuristic, the history heuristic, and
the countermove heuristic.

Most game programs are using iterative deepening to maximise the chances
to search the best move first [103]. In the root of the tree, the program starts
with a shallow search, and then, iteratively, the search is deepened. The idea
is that the best move for a (d − 1)-ply search is likely to be the best move
(or at least one of the best moves) for a d-ply search. Henceforth, the move
considered to be the best one in the previous iteration is examined first. This
technique results in a rather good move ordering for the position in the root of
the search tree [70]. For internal nodes iterative deepening is rarely used, due
to the computational overhead.2

During the search information about the visited nodes is recorded in a trans-
position table [16]. One of the recorded data is the move producing a cutoff or
leading to the best score. When the node is revisited and has to be re-searched,
the best move from the previous search is considered first. The transposition
table and the technique of iterative deepening have in common that they both

2Internal iterative deepening [5] is used by some programs when the position is not in the
transposition table.



3.1. EXISTING TECHNIQUES 17

rely on previous searches of the position. Both offer a high quality choice as
first move.

The killer heuristic [2] uses the idea that during the search, most moves are
often refuted by the same move. The killer heuristic can be implemented in var-
ious ways. In its simplified form, the heuristic remembers at each search depth
the move which caused the last cutoff. The next time at the same depth and
if legal, the same move will be considered first. There are many improvements
on this idea, such as using more killer moves, weighting the killer moves, and
applying the killer moves at different depths [44]. After the introduction of the
transposition table emphasis on killer moves diminished.

The history heuristic [95, 96] maintains a global history score for each (pos-
sible) move that indicates how often the move was found sufficient. A move is
sufficient if it produces a cutoff or yields the best minimax score. When a move
is found sufficient its history score is increased with an amount that decreases
(usually exponentially) with the search depth. When an interior node is reached
the moves are ordered by their history score.

The countermove heuristic [112] assumes that many moves have a ‘natural’
response, irrespective of the actual position in which the moves occur. The
heuristic, for each non-terminal node, records the move considered to be the
best, available to the opposing side. The move is recorded in a table similar
to the one used by the history heuristic (with the difference that instead of
scores the countermoves are stored). In every node of the search tree, if a legal
countermove exists, it is given a first trial.

3.1.2 Search-independent move ordering

Below we discuss three existing techniques for search-independent move order-
ing. Moreover, we mention a new technique, further discussed in section 3.2.

The most common form of search-independent move ordering is the use of
game-dependent knowledge provided by a domain expert. For instance, in chess
the checking moves, captures and promotions may be investigated before silent
moves.

In Chinese chess, the guard heuristic [54] is based on computing the guard
information for each square of the board. The guard information indicates how
safe the square is for a certain piece. The heuristic prefers moves with a safe
target square or an unsafe origin square.

The chessmaps heuristic [34, 35] employs a neural network to learn the re-
lation between the control of the squares and the influence of the move in the
domain of chess. The control of the squares depends on whether one of the
sides is able to move to that square without losing material. A move influences
an area if one of the following conditions is fulfilled: (1) the piece is moving
to that area, (2) the moving piece attacks that area, or (3) the moving piece
uncovers an attack to that area. Depending on the control of the squares, the
heuristic tries to determine which areas in the position are important. Moves
that influence these important areas are investigated first. A disadvantage of
the chessmaps heuristic is the extensive time overhead necessary to compute
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the auxiliary structures [34]. This is a severe obstacle for its incorporation in
competitive tournament programs.

An idea similar to the chessmaps heuristic is used in the Neural MoveMap
(NMM) heuristic presented in detail in section 3.2.

3.2 The Neural MoveMap heuristic

The Neural MoveMap (NMM) heuristic uses a neural network to estimate the
likelihood of a move being the best in a certain position. The neural network
is trained with large pattern sets consisting of game positions labelled with the
best move. During the search, the moves considered more likely to be the best
are examined first.

The NMM heuristic has similarities with two learning approaches employed
for games: the chessmaps heuristic [34, 35] and the comparison paradigm [107,
113]. The chessmaps heuristic was introduced in section 3.1. The comparison
paradigm was originally used for tuning evaluation functions. In [107], a neural
network was trained to compare two board positions. The positions are encoded
in the input layer, and the output unit represents which of the two is better.
The paradigm was employed to evaluate moves in Go [26, 116]. Accordingly,
a neural network was trained to rate the expert moves higher than randomly
chosen moves. Besides neural networks other approaches to represent the binary
relation between moves (i.e., the comparison between two moves) were tested.
These include inductive logic programming [52], and multivariate decision trees
[114].

Both the chessmaps heuristic and the NMM heuristic are using a neural
network for move ordering. However, there are two main differences between the
two heuristics. First, in the chessmaps heuristic the neural network is trained
to evaluate classes of moves, while in the NMM heuristic the neural network
is tuned to distinguish between individual moves. Second, in the chessmaps
heuristic the target vector represents the influence of the move on the squares
of the board, while in the NMM heuristic the target information for a neural
network is directly the likelihood of the move being the best in a certain position.

The NMM heuristic and the comparison paradigm have similar training in-
formation. In both cases a move is labelled for the training as the best. The
difference between the two consists mostly in their purpose. The NMM heuris-
tic is designed to be a move-ordering heuristic used in the internal nodes of
the search tree, and thus it has to be fast. In contrast, the applications of the
comparison paradigm are usually slower, and cannot be employed in internal
nodes in a search-intensive game program due to speed limitations. When they
are employed in a game program, they are designed for selecting directly the
move in the root or biasing the search towards a subset of moves.

The essence of the NMM heuristic is rather straightforward. Yet, the heuris-
tic has several details that are crucial for the heuristic to be effective, i.e., to be
fast and to result in a small search tree. The details include: the architecture
of the neural network (subsection 3.2.1), the construction of the pattern sets
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used for training the neural network (subsection 3.2.2), and the way the neural
network is used for move ordering during the search (subsection 3.2.3). In sub-
section 3.2.4, we formulate the questions on the NMM heuristic that need an
experimental answer.

3.2.1 The architecture of the neural network

The neural network used for move ordering has to be provided with the current
board position and the legal moves in the position. The board position can be
encoded in the input of the neural network in a similar way as for evaluation
functions. This can be done either using the raw board position as input or
using some precomputed features. In the following discussion (as is the case in
the experiments) we assume that encoding of the raw board position is used.

In LOA, we assign one input unit to each square of the board, with +1 for
a black piece, −1 for a white piece and 0 for an empty square. An additional
unit is used to specify the side to move. In total there are 65 units representing
the board.

In chess there are more types of pieces, and consequently we assign six input
units (one for every piece type) to each square. For each unit we have +1 for
a white piece, −1 for a black piece, and 0 if the piece type is not present on
the square. In total we have one active input unit for each piece on the board.
Again, an additional unit is used to specify the side to move. Consequently, the
encoding consists of 385 (6 × 64 + 1) units.

The method of how to encode the moves leads to a more difficult choice. In
the following we investigate three schemes of encoding the moves, viz. the MEI
encoding (Moves Encoded in the Input), the MEOS encoding (Moves Encoded
in the Output, Sparsely), and the MEOC encoding (Moves Encoded in the
Output, Condensed). Below we analyse the potential weaknesses of each of
them.

The MEI move-encoding scheme

The first move-encoding scheme investigated is the MEI encoding scheme. Be-
sides the board position, this scheme inputs the selected move to the neural
network. In the games investigated (LOA and chess), a move has two com-
ponents: a ‘from’ part (denoting the piece to be moved) and a ‘to’ part (the
destination of the move). For instance, we may assign eight input units to the
file and eight to the rank of the ‘from’ part, and similarly eight input units
to the file and eight to the rank of the ‘to’ part. For every move, four units
corresponding to the ‘from-file’, ‘from-rank’, ‘to-file’ and ‘to-rank’ of the move
are set to 1, the rest of the units are set to 0. Consequently, the size of the
input layer allocated for the move is 32 units. This is additional to the units
allocated for representing the board position. In the output layer one single unit
representing the estimated quality of the move under discussion can be used.
The move-encoding scheme is illustrated in Figure 3.1.
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Figure 3.1: The MEI move-encoding scheme of the NMM heuristic.

If we encode the board position in an identical way as we did for the NN
population in LOA (see subsection 2.1.2) and we use a hidden layer with a com-
parable size as for the evaluation functions (subsection 2.1.2), then the resulting
neural network has a similar propagation time as the evaluation function. The
neural network, when used for move ordering, has to inspect all legal moves in
all internal nodes of the search tree, while the neural network for the evaluation
function (the most time-consuming component usually) has to inspect only all
leaf nodes. Since the ratio between the number of leaf nodes and the number of
internal nodes is usually less than the branching factor, the gain from a better
move ordering with this encoding scheme will most likely be lost by the overhead
produced. Thus, the weakness of the MEI scheme is the time overhead.

The MEOS move-encoding scheme

A second move-encoding scheme, called the MEOS encoding, results from an
analysis of the MEI encoding. To make the estimation faster, in the MEOS
scheme the quality of all moves in a certain position is estimated simultane-
ously, instead of estimating separately for every move, as in the MEI encoding.
However, encoding of all moves at once in the input vector of the neural network
is not feasible. An alternative is to have separate output units for all possible
moves, an output vector with 4096 units.3 The resulting encoding scheme is
shown in Figure 3.2. At first glance, the activation time is huge. However,
we only have to compute the outputs corresponding to the legal moves of the

3Both in LOA and chess there are 64 squares on the board. Since the moves are identified
by the current location and the new location of the piece to move, in total there is a maximum
of 64 × 64 = 4096 possible moves.
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Figure 3.2: The MEOS move-encoding scheme of the NMM heuristic.

input position. Consequently, the effective size of the output vector is only the
branching factor of the game. If we compare the number of effective weights
for this encoding scheme with the number of weights of the evaluation func-
tion, we can observe that with the same hidden-layer size, the time necessary
for move ordering in an internal node is similar to the time used by the eval-
uation function. Considering that the number of internal nodes is fewer than
the number of leaf nodes, with identical hidden-layer sizes, the time overhead
of this move ordering will be relatively small. If the size of the hidden layer
is somewhat smaller (or there is no hidden layer at all), the overhead will be
negligible. Thus, the weakness of the MEI scheme is not present in the MEOS
scheme.

A potential weakness of this move-encoding scheme is that, since the number
of real weights is high, the generalisation during the learning phase is likely to
be weak.

The MEOC move-encoding scheme

A third move-encoding scheme, called MEOC encoding, is designed to over-
come the weakness of generalisation for MEOS encoding. The MEOC encoding
scheme is similar to the MEOS scheme, except that we now have one output unit
for every ‘from’ square and one output unit for every ‘to’ square (64 + 64 = 128
units) instead of one output unit for every move. The scheme is illustrated in
Figure 3.3. The estimation of a move will be the mean of the activation value
of the output unit corresponding to its ‘from’ part and that of the output unit
corresponding to its ‘to’ part. So, the training information for a certain move
is generalised to the moves with the same origin or destination. To reduce the
effective size of the output layer, the same technique can be applied as for the
MEOS scheme. Now we have to compute the activation in the ‘from’ half of
the output vector corresponding to the pieces of the player to move (a number
of units equal to the number of pieces that can move) and the activation in
the ‘to’ part of the legal moves (a number of units less than or equal to the
branching factor). If we compare this move-encoding scheme to the previous



22 CHAPTER 3. MOVE ORDERING

a1

b1

h8

a1

b1

h8

Figure 3.3: The MEOC move-encoding scheme of the NMM heuristic.

one, we observe that the real size of the output is reduced from 4096 to 128.
This reduction enforces some generalisation between the moves, reducing thus
the weakness of the MEOS scheme.

The effective size of the output is increased by approximately the number
of pieces the side to move has. This increases the overhead (thus a potential
weakness), but the increase is rather small.

Summarising the analysis of the three move-encoding schemes, we expect
that the MEI encoding has a significant time overhead, and the MEOS encoding
a poor generalisation. The MEOC encoding is expected to generalise better than
the second scheme, but it is somewhat slower. Since the analysis does not lead
to a clear conclusion, we investigate all three move-encoding schemes in our
experiments (see subsection 3.4.1).

3.2.2 The construction of the pattern sets

A pattern (i.e., training instance) consists of a board position, the legal moves in
the position, and the move which is considered to be the best. From these three
components, determining the legal moves by an algorithm poses no problem.
The choices on the other two components are more difficult. There are two
questions to be answered: Where are the best moves coming from? and Which
positions should be included in the training phase?

The source of the best move

In each training instance, one of the legal moves is labelled as the best. The
labelling can have two sources: (1) the move played in the game (as specified in
a game database, if available), and (2) the move suggested by a game program
(the one that will use the neural network for move ordering). If we choose
the second source, the neural network might have the advantage to incorporate
the program’s bias (e.g., a preference to play with Bishops). However, the
disadvantage of the second source is that an additional computation is needed
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for analysing all the positions. For answering the question on the source of the
best move, we will compare the two sources experimentally in subsection 3.4.2.

The positions to be included

Chess games are usually divided into three phases: opening, middle game and
endgame. In each of these phases different strategies are used. In middle-
game positions, the original opening usually has a substantial influence on the
strategies employed by chess players. Consequently, it can be beneficial to
cluster the training positions by opening. In this case, we train several neural
networks each specific to a certain opening. Alternatively, the positions are
mixed, and only one neural network is trained. To answer the question on the
positions, we compare experimentally in subsection 3.4.2 the choice of using
opening-specific neural networks with that of using only one network.

3.2.3 Using the neural network during the search

When the neural network is used during the search the moves are ordered ac-
cording to the network’s estimation of how likely a certain move is the best.
The move ordering has to be placed in the context of the move orderings al-
ready existent in the game program. In the following, we describe three ap-
proaches to include the neural network in the search: (1) the pure neural-
network approach, (2) the straightforward-combination approach, and (3) the
weighted-combination approach. The first two approaches can be implemented
very simple, whereas the third requires additional tuning (see below). All three
approaches deal only with the moves ordered by the history heuristic in the
original implementation, which is not using the NMM heuristic.

The pure neural-network approach

The first approach to use the neural network during the search is by replacing
in every node of the search tree the move ordering of the history heuristic by
that of the neural network.

The straightforward-combination approach

The second approach combines the move ordering of the neural network and
that of the history heuristic as follows. We first consider the move rated best by
the neural network followed by the moves as ordered by the history heuristic,
of course excluding the move picked by the neural network.

The weighted-combination approach

The third approach combines the move ordering of the neural network and that
of the history heuristic, similarly to the second approach, but in a more complex
way.
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The history-heuristic score is built up from information collected during the
search process. Therefore, it has a dynamic nature, but it has little specific con-
nection with the position under investigation. In contrast, the scores suggested
by the neural network are specific to the position; they are static, and do not
gain from the information obtained in the current search process. In principle,
a combination of the two scores can benefit both from information obtained in
the search, and from information obtained off line by analysing a large number
of positions. Such a combination can be more suitable for the position in which
the moves have to be ordered.

A simple method to combine the history-heuristic score and the neural-
network score is by adding them. Since the two scores are not in the same range
at least one of them has to be scaled.

The distribution of the neural-network scores is specific to a certain neural
network and does not depend on the search depth or opening line of a position.4

A sample distribution is given in Figure 3.4, left. The neural-network scores are
approximately normally distributed, and centred around a negative value, since
most moves are not considered the best. The history-heuristic scores are known
to become larger as the search progresses.

One way to normalise the history-heuristic scores is to divide them by the
total number of history updates. After this normalisation, the history-heuristic
scores in the different parts of the search tree are approximately in the same
range. However, they are still in a range different from the neural-network
scores. Therefore, we divide the normalised history-heuristic scores by a coef-
ficient that we term the history weight. The resulting distribution, using the
value 500 for the history weight (see below and subsection 3.4.4), is plotted in
Figure 3.4, right. The history-heuristic scores are only positive, and the peak is
concentrated near 0, since most of the moves rarely produce a history update
during the search.

A second way to normalise the history-heuristic scores is by dividing them
by the standard deviation among the scores in the current position. Experimen-
tally, we observed that the two ways to normalise the history-heuristic scores
lead to similar performances. Since the second one is computationally more ex-
pensive than the first one (we have to compute the standard deviation in every
position), we choose to normalise by the number of updates.

In conclusion, the score used to order the moves (movescore) is given by the
following formula:

movescore = nnscore +
hhscore

n hhupdate × hhweight
(3.1)

where nnscore is the score suggested by the neural network, hhscore is the
original history-heuristic score, n hhupdate represents the number of times the
history table was updated during the search, and hhweight is the history weight.

4Although the independence of the opening line might seem counterintuitive, this is what
we observed experimentally.
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Figure 3.4: The distribution of scores for the neural network (left) and the
history heuristic (right).

To use the above formula for the move score we have to choose a value for the
history weight. If the weight is too large or too small, only one of the components
of the score has influence. This might be beneficial in certain positions (or parts
of the search tree), where one of the move-ordering methods performs poorly,
but overall it is not desirable. In essence, there are two ways to set the history
weight. The first one is using off-line experiments with different values, and
choosing the value leading to the best performance in these experiments. The
second one adapts the weight during the search. Such an adaptive method is
outlined below.

In the case of a good move ordering, the moves causing a beta cutoff are
inspected early. Consequently, we can use the situation in which the beta cutoff
appears later as an error signal to modify the value of the history weight during
the search. If the move causing a beta cutoff was considered later because both
the neural network and the history heuristic scored it low, nothing could have
been done. However, if, for instance, the neural network considered the move
as promising, but it was scored overall lower than some other moves because
the history heuristic scored it low, the history weight should be increased. We
denote the situation in which the neural network scored a move producing a beta
cutoff high, and the history heuristic low, by the term nn-miss. Analogously,
we denote the situation when the history heuristic scored the move high, but
the neural network low, by the term hh-miss. In the case of an nn-miss the
history weight is increased by a small value βnn, and in the case of an hh-
miss the history weight is decreased by a small value βhh. Depending on the
update values, the history weight will converge to a value where the updates
are balanced (∆hhweight = 0), or the ratio between the number of nn-misses
(n nnmiss) and the number of hh-misses (n hhmiss) is inversely proportional
to the ratio between the two update values:

n nnmiss × βnn = n hhmiss × βhh (3.2)
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Experimentally, we observed that the exact values of βnn and βhh do not
have a significant effect on the performance. They should have relatively small
values (e.g., 0.1) in order to prevent large oscillations of the history weight, and
should have similar magnitude (possibly equal) to give the same emphasis to
both components.

3.2.4 Questions on the Neural MoveMap heuristic

In the previous subsections we presented the NMM heuristic. There are a num-
ber of questions regarding the heuristic that require an experimental answer.
First we will enumerate these questions. Then we discuss them in somewhat
more detail and refer to the subsection where they will be answered.

Below we list five questions regarding the NMM heuristic. The first three
questions are on the details of the heuristic.

1. Which move-encoding scheme is the best?

2. How to construct the pattern sets?

3. How to use the neural network during the search?

The next two questions regard the performance of the heuristic.

4. How does the search performance of the NMM heuristic compare to the
performance of other existing heuristics?

5. How good is the move ordering of the heuristic (disregarding any search)?

The first question requires the comparison of the three move-encoding schemes
(viz. the MEI encoding, the MEOS encoding, and the MEOC encoding) de-
scribed in subsection 3.2.1. The question is answered in subsection 3.4.1.

The second question originates from subsection 3.2.2, and has three parts:
(1) What is the preferable size for the learning set?, (2) Is it better to label
the positions by the moves played in the game or by the move suggested by a
game program?, and (3) Is it better to have opening specific pattern sets? The
question is answered in subsection 3.4.2.

For the third question we have to compare the three neural-network ap-
proaches (viz. the pure neural-network approach, the straightforward-combina-
tion approach, and the weighted-combination approach). These approaches were
described in subsection 3.2.3. The question is answered in subsection 3.4.3.

The fourth question serves the evaluation of the NMM heuristic. It requires
the comparison of the performance of the NMM heuristic with the performance
of the history heuristic. Comparing the performance in more games (in LOA
and in chess) provides an indication on the generality of the NMM heuristic.
The question is answered in subsection 3.4.4.

The fifth question gives additional insights into the performance of the NMM
heuristic. This comes down to investigating the quality of the moves predicted,
disregarding any search. The question is answered in subsection 3.4.5.

The five questions above will be answered by the experiments described in
section 3.4. Below we describe the experimental set-up.
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3.3 Experimental set-up

In the experiments with respect to the five questions posed in subsection 3.2.4
we distinguish three phases: (1) the construction of the various pattern sets,
(2) the training of the neural networks to predict the best move, and (3) the
evaluation of the search performance of the move ordering.

In the first phase we construct the pattern sets. To construct a pattern
set we have to select the positions, to generate the legal moves in the selected
positions, and to label one of the legal moves as best. The details on these
sets are described separately for the three test environments in subsection 3.3.1
(for the NN population), subsection 3.3.2 (for MIA) and subsection 3.3.3 (for
CRAFTY).

During the second phase, the neural networks are trained to predict whether
a certain move is the best. The training employs the pattern sets constructed in
the first phase. The available patterns are divided into three sets: a learning set
to modify the weights of the neural network, a validation set for deciding when to
stop the training, and a test set to evaluate the move-ordering performance. In
each epoch the whole learning set is presented to the neural network computing
the partial derivatives of each weight with respect to the mean square of the
output error (i.e., the difference between the target value and the actual output
value). After each epoch, the weights are updated using the RPROP update
rule [89] (for a short description, see appendix A.3). The target value for moves
labelled as the best is 1, otherwise 0. The error measure for evaluation and
stopping criteria is the rate of not having the highest output activation value
for the ‘best’ move (i.e., the error rate). The error on the validation set is tested
after each update. The training is stopped if the error on the validation set does
not decrease after 100 epochs. The error rate is mostly used internally by the
training algorithm, but it is also used for fast comparison between various neural
networks and evaluating the predictive quality of a network.

The third phase measures the search performance of the neural network.
The search performance represents the size of the search tree investigated by
a game program using the neural network for move ordering. This measure is
averaged over a set of test positions. The test positions are described together
with the pattern sets in subsection 3.3.1, subsection 3.3.2 and subsection 3.3.3.
In all figures in this chapter, the search performance is plotted relative to the
performance when only the history heuristic is used, i.e., as node reduction.
The node reduction is the size of the search tree investigated using the neural
network for move ordering divided by the size of the search tree investigated
using the history heuristic. The node reduction can be interpreted as the gain
of using the NMM heuristic instead of the history heuristic.

3.3.1 The pattern sets for the NN population

The positions selected for the pattern sets for the NN population originate from
self-play. The validation set and the test set contain approximately 5,000 board
positions each. The size of the learning set varies. The positions appearing in
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the test set and the validation set do not appear in the learning set. Similarly,
the positions from the test set do not appear in the validation set.

The test set is labelled using 4- and 5-ply deep searches, while the learning
set and validation set are labelled using 2- and 3-ply deep searches. The reason
for a shallower search for the learning set is that it can generate large sets.

For measuring the search performance, we use a set of 600 positions covering
complete game sequences.

3.3.2 The pattern sets for MIA

We used MIA to generate positions through self-play. During the games the
program searched 4-ply deep with a random component in the evaluation func-
tion. For each position the move played by the program was stored as the best
move for that position. The test and validation set included 3,000 position each,
while the learning set included 605,780 positions. The test set, the validation
set, and the learning set are disjunct.

The set of positions for measuring the search performance consists of 322
positions, which appeared in tournament play.

3.3.3 The pattern sets for CRAFTY

Chess games are usually divided into three phases: opening, middle game, and
endgame. In each of these phases different strategies are used. We focus on
middle-game positions. The middle-game positions are selected from game
databases, classified by opening. A move is labelled best by one of two sources:
by the choice of the player as is given in the game database, or by a game-
playing program. For the latter, we employ CRAFTY with 2 seconds thinking
time (approximately a 7-ply deep search).

We constructed four test sets, originating from the opening lines A30, B84,
D85 and E97 [72]. Each of these sets consist of 3,000 positions. To each test set
corresponds a validation set taken from the database with the same opening line
as the test set. These sets also consists of 3,000 positions each. The positions
from the test sets and the validation sets are different. The learning sets are
taken from the same opening line as the corresponding test set or from a more
general one. For instance, the test set A30 has three corresponding learning
sets, viz. A30 with 122,578 positions, A3x with 685,858 positions, and ALL
with 4,412,055 positions (see Table 3.1). Analogously, test set E97 has four
corresponding learning sets: E97, E9x, KI and ALL (see Table 3.1). Other
details on the learning sets are given in Table 3.1. Moreover, a sample of 100
positions from the test sets is given in appendix C.

The set of positions employed for measuring the search performance is iden-
tical to the positions from the test sets used in the training phase.
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Code ECO code No. of positions Opening line
A30 A30 122,578 Hedgehog System of English Opening
A3x A30-A39 685,858 Symmetrical Variation of English Opening
B84 B84 92,285 Classical Scheveningen Var. of Sicilian Defence
SI B80-B99 1,793,305 Sicilian Defence (Scheveningen, Najdorf)

D85 D85 124,051 Exchange Variation of Grünfeld Indian
GI D70-D99 745,911 Grünfeld Indian
E97 E97 111,536 Aronin-Taimanov Variation of King’s Indian
E9x E90-E99 865,628 Orthodox King’s Indian
KI E60-E99 2,498,964 King’s Indian

ALL A00-E99 4,412,055 all openings

Table 3.1: Opening lines of the learning sets.

3.4 Experiments

This section describes the experiments with the NMM heuristic. The experi-
ments are designed to provide the answers on the questions formulated in sub-
section 3.2.4.

The experiments comparing the three move-encoding schemes (viz. the MEI
encoding, the MEOS encoding, and the MEOC encoding) are given in sub-
section 3.4.1. Subsection 3.4.2 deals with the choices on the construction of
the pattern sets, in particular the size of the learning set, the source of the
best move and the specificity of the pattern sets. Subsection 3.4.3 compares
the three approaches in which the neural networks are included in the search
(the pure neural-network approach, the straightforward-combination approach,
and the weighted-combination approach). Additionally, for the straightforward-
combination approach we describe the way the history weight is set. The perfor-
mance of the NMM heuristic is evaluated in subsection 3.4.4. Subsection 3.4.5
gives insight into the predictive quality of the neural networks.

3.4.1 Move-encoding schemes

In this subsection we provide an experimental answer to the question, which of
the three move-encoding schemes (viz. the MEI encoding, the MEOS encoding,
and the MEOC encoding) is the best. To answer this question we employ the
NN-population environment.

Using the experimental set-up described in section 3.3, we performed two
experiments: (1) to obtain a neural network for each move encoding that min-
imises the error rate, and (2) to evaluate for each of these three neural networks
the search performance.

Obtaining the three neural networks

In the first experiment, we trained the neural networks with the three move
encodings, varying the size of the hidden layer and the size of the learning
set. In the experiments, we noticed that the increase of the hidden layer has a
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Figure 3.5: Dependency between the error rate on the test set and the size of
the learning set for the three move-encoding schemes.

clear influence on the MEI encoding only, and only when large learning sets are
used. Unfortunately, for this encoding the required time is already high with a
small hidden layer. The remaining experiments with the NN population were
performed with a hidden layer consisting of 10 units (fully connected to the
input and output units) and direct connections from the input to the output
units. The experiments with MIA and CRAFTY used only the direct connections
from the input to the output units, without any hidden layer. The dependency
between the error rate on the test set and the size of the learning set is plotted
in Figure 3.5.5 For each encoding, we selected the neural network that has the
smallest error rate according to the figure.

Comparison of the three neural networks

In the second experiment, the three neural networks, corresponding to the three
move encodings, are compared in terms of search performance. For this exper-
iment we use the pure neural-network approach (subsection 3.2.3). The search
performances corresponding to the three encodings are plotted in Figure 3.6 as
function of the search depth. The MEI and the MEOS encoding seem to lead
to similar results, and perform significantly better than the MEOC encoding.
Since the time used by the MEI encoding to compute the estimated quality
of the moves in a position is much higher than the time used by the other
two, the MEOS encoding can be considered as the best choice. The following
experiments (subsections 3.4.2 to 3.4.5) were performed using this choice.

5This figure will be discussed in more detail in subsection 3.4.2.
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Figure 3.6: The search performance using the best neural network for each of
the three move-encoding schemes as a function of the search depth.

3.4.2 Construction of the pattern sets

The questions on the construction of the pattern sets are about (1) the size of
the learning set, (2) the source for the best move, and (3) the specificity of the
pattern sets.

The question on the size of the learning set requires a large number of data
points, and therefore it is preferable to test it in a simple environment such as
the NN population. The source of the best move requires a large quantity of
human games, and therefore it can be best tested in chess (using CRAFTY). The
same holds for the specificity of the learning set, since extended knowledge of
opening books is available only in chess.

Size of the learning set

To answer the question on the size of the learning set, we can use the result of
the first experiment presented in subsection 3.4.1. In Figure 3.5 we plotted the
dependency between the error rate on the test set and the size of the learning
set. We observe that for all three move encodings the error rate decreases when
the size of the learning set is increased.

Since the main evaluation criterion is the search performance and not the
error rate, we tested in the third experiment whether the differences in error
rate for the test set correspond to the search performance. In Figure 3.7 we
plotted for four different search depths the search performance against the size
of the learning sets which led to these networks using the MEOS encoding. We
observe in the figure that the monotonic dependency between the error rate and
learning-set size (noted for Figure 3.5) is preserved for search performance too.
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Figure 3.7: The search performance for four different search depths using for
move ordering the MEOS encoding as a function of the size of the learning set.

Source for the best move

The fourth experiment is on the source of the best moves. It gives insight into the
choice between the game-database move and the move suggested by CRAFTY as
training target. For this purpose we used the test set E97 with two learning sets:
E97 and E9x. First we focused on the learning set E97. We labelled the moves of
E97 either by the moves from the game database or by CRAFTY’s suggestions.
Doing so we obtained two learning sets, and accordingly, after the training
process, two neural networks (one for each learning set). Out of the three
approaches to include the neural networks in the search (described in subsection
3.2.3), we only used the pure neural-network approach and the straightforward-
combination approach. The weighted-combination approach needs additional
computation to obtain the history weight, and therefore we left it out for this
experiment (as well as the experiment for the specificity of the learning sets).

The search performances corresponding to the two neural networks are plot-
ted in Figure 3.8, left. The graph shows the search performance as a function
of the search depth for the neural network trained with the learning set la-
belled either by CRAFTY or by the game database. Since we used either the
pure neural-network approach or the straightforward-combination approach, we
have four curves. Similarly, Figure 3.8, right shows the search performances cor-
responding to the learning set E9x. We observe that if the pure neural-network
approach was used, the CRAFTY labelling is beneficial for both E97 and E9x,
since it investigates a smaller search tree. If the straightforward-combination
approach was used the advantage disappeared. Since the CRAFTY labelling pro-
cess is very time consuming6 (especially for larger learning sets), we conclude

6E.g., to label E9x we needed 20 days.
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Figure 3.8: Training the neural networks on game moves or on CRAFTY moves.
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Figure 3.9: Training sets varying from specific to general.

that it is not useful to label the positions with a game program. Hence, it is
preferable to use the moves from the game database. The following experiments
are using only the moves resulting from the original games (as given in the game
database).

Specificity of the pattern sets

The fifth experiment is designed to give an answer on how specific the learning
set should be. Next to the two neural networks resulting from E97 and E9x, we
trained two more neural networks with learning sets KI and ALL (using again
E97 as test set). Out of the four sets the most specific learning set is E97, and
then in this order E9x, KI, and ALL.

The search performances for the four neural networks are plotted in Fig-
ure 3.9. The performance of the neural networks corresponding to the learning
sets E9x, KI and ALL were roughly equal. The neural network correspond-
ing to the most specific learning set (E97) performed worse than the other
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Figure 3.10: Performance of the weighted-combination approach under varying
history weight. The performance is plotted for the E97 test set using two neural
networks, E9x and ALL, and five search depths, from 7 to 11.

three for both the pure neural-network approach (Figure 3.9, left) and the
straightforward-combination approach (Figure 3.9, right). The results suggest
that using more specific learning sets does not improve the performance. For
very specific sets, the performance may be decreased due to the lack of sufficient
training data (in the case of E97: 111,536).

3.4.3 The three neural-network approaches

In this subsection we report on the sixth experiment, viz. on the three ap-
proaches how to include in the best way the neural network in the search. This
question is closely related to the search engine and therefore it is preferable to
use as test environment a strong program such as CRAFTY (in chess).

In subsection 3.4.2 we tested the performance using the test set E97. To
gain a better picture of the performance of the three neural-network approaches
we used three more test sets (A30, B84 and D85), next to E97. For each of the
four test sets (A30, B84, D85 and E97) an opening-specific (A3x, SI, GI and
E9x) and the most general (ALL) learning set were used. With these learning
sets, we obtained four neural networks tailored to a certain test set and a neural
network common to all test sets.

According to the pure neural-network approach and the straightforward-
combination approach the neural networks were included in the search directly.
Thus the corresponding performance was measured without any preparation.
However, to measure the search performances for the weighted-combination ap-
proach, we first had to determine the history weight.

As described in subsection 3.2.3, the history weight can be set according to
two methods, either off line or during the search. For the first method, we have to
measure the search performance corresponding to different values of the history
weight. Below we illustrate this mechanism for test set E97. Figure 3.10 plots
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Figure 3.11: Comparing the three move orderings using the four test sets (A30,
B84, D85 and E97).

the performance for different history-weight values, using the neural networks
trained either with E9x (the left graph in Figure 3.10) or with ALL (right). The
five curves correspond to the performances obtained for search depths 7 to 11.
The best value for the history weight is the one that corresponds to the best
search performance (i.e., the lowest point for a certain curve). We observed that
the best history-weight value was not changing drastically with search depth.
It does, however, change with the neural network.7 The reason for this is that
the best history weight was inversely proportional to the standard deviation of
the neural-network scores. As measured experimentally, the standard deviation
for E9x was almost twice as large as the standard deviation for ALL, and thus
the best history weight for E9x was roughly the half of the best value for ALL.

For the second method, i.e., when setting the value for the history weight
during the search, using the update rules described in subsection 3.2.3, we no-
ticed that the history weight does indeed converge to a value where the equilib-
rium equation holds. The search performances are similar to the performances
corresponding to the best static history weights from Figure 3.10.

7An appropriate history weight value for E9x is 300, and for ALL is 500.



36 CHAPTER 3. MOVE ORDERING

Using the value for the history weight obtained according to the first method
mentioned above, we measured the performance of the weighted-combination
approach and compared it to the pure neural-network approach and the straight-
forward-combination approach.

The performances of the three approaches using the neural networks men-
tioned earlier are plotted in Figure 3.11 (for test sets A30, B84, D85 and E97
separately). We observe that the weighted-combination approach outperformed
the other two approaches on all test sets and search depths. Overall, the
straightforward-combination approach seems to be better than the pure neural-
network approach, although for the deepest search the difference in performance
of the two approaches is less clear.

3.4.4 Performance of the Neural MoveMap heuristic

In this subsection, we compare the search performance of the NMM heuristic
to the performance of the existing heuristics, in particular to that of the history
heuristic. We investigate also how the NMM heuristic performed in different
games.

First, we investigate the search performance in each of the three test envi-
ronments (the NN population, MIA, and CRAFTY), and then we compare the
results.

Performance in the NN population

For the comparison in the NN population, between the performance of the NMM
heuristic and the performance of the history heuristic, we used the results of
the second experiment from subsection 3.4.1. Since we already concluded that
the MEOS encoding is the best choice (out of the three investigated encoding
schemes), we focus only on this encoding scheme. For convenience, we reproduce
the performance of the MEOS encoding as function of the search depth in Fig-
ure 3.12. We recall from section 3.3 that the performance is plotted as the size
of the search tree investigated using the NMM heuristic divided by the size of
the search tree using the history heuristic. Thus, in the figure the performance
of the history heuristic represented by the value 1.

Comparing the performance of the NMM heuristic with the performance
of the history heuristic, we observed that the reduction in the size of the tree
(the speed-up) is between 20 and 50 per cent. Abstracting over the even-odd
oscillation the gain initially slightly decreased until depth 5, then it increased
again for deeper search trees.

Performance in MIA

In order to test more reliably the search performance of the NMM heuristic in
LOA, we performed the seventh experiment, employing one of the best tourna-
ment programs available: MIA.8

8The author would like to thank Mark Winands for his assistance in this experiment.
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Figure 3.12: The performance of the NMM heuristic in the NN population as a
function of the search depth.

A neural network was trained with the pattern sets described in subsection
3.3.2. Since the evaluation function of MIA is faster than the evaluation func-
tions from the NN population, we used the MEOS encoding and no hidden layer.
In this way the overhead of the NMM heuristic during search is minimal.

The search performance was tested by using a set of 322 positions, which ap-
peared in tournament play. During the search the pure neural-network approach
(subsection 3.2.3) replaced the history heuristic, used otherwise (see subsection
2.1.3 for the move ordering in MIA).

In Figure 3.13 we plotted the performance of the NMM heuristics as a func-
tion of the search depth. We observed that the performance is decreasing until
depth 5. After depth 6 the relative performance of NMM was improving with
the depth. At depth 11 (which is the regular search depth under tournament
conditions) the reduction was 22 per cent. The overhead of the NMM heuristic
was 6 per cent. Consequently, the effective time reduction was 17 per cent.

Performance in CRAFTY

To compare in CRAFTY the performance of the NMM heuristic with the perfor-
mance of the history heuristic, we used the experimental results from subsection
3.4.3, Figure 3.11. From these results we focused on the weighted-combination
approach for the neural network trained with the learning set ALL. The perfor-
mance, averaged over the four test sets (A30, B84, D85, and E97) is plotted in
Figure 3.14.

We observed that the NMM heuristic outperformed the history heuristic
with a slight margin (approximately 2 per cent) for search depths 3 to 9 and
with an increasing amount for depths 10 and 11 (7.5 per cent for depth 11).
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Figure 3.13: The performance of the NMM heuristic in MIA as a function of
the search depth.

The time overhead for the NMM heuristic was approximately 5 to 8 per cent.
However, this value can be decreased by not using the neural network for move
ordering close to the leaves. The performance loss in this case was negligible
(less than 1 per cent).

Comparison of the results

Considering the results presented in this section, we note that the NMM heuris-
tic outperformed the history heuristic in all three test environments. In all
test environments, and especially in MIA (Figure 3.13) and in CRAFTY (Fig-
ure 3.14), we observed a very similar pattern of results. For shallower search
depths the NMM heuristic was slightly better than the history heuristic, then
for medium depths the performance worsened slightly, and for deep searches
the NMM heuristic outperformed the the history heuristic with an amount that
increased with the depth. If we compare the performance of the NMM heuristic
in chess to that in LOA, we may conclude that the heuristic is more beneficial
in domains where there is little human knowledge on how to order the moves.
Even in the presence of this little knowledge, it results in a notable improvement
over the existent techniques.

3.4.5 Quality of the move ordering

In the eighth experiment, we provide some insight into the quality of the move
ordering of the neural networks, disregarding the search. Since the author is
expert only in chess, and to evaluate the quality of move ordering such knowledge
is helpful, we used the CRAFTY environment. First, we investigate the predictive
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Figure 3.14: The performance of the NMM heuristic in CRAFTY as a function
of the search depth.

test set specific learning set learning set ALL CRAFTY’s prediction
A30 0.33 0.32 0.39
B84 0.36 0.33 0.40
D85 0.35 0.31 0.45
E97 0.39 0.34 0.37

Table 3.2: Rate of correct predictions of the neural networks without any search
and of CRAFTY using 7-ply searches.

quality of the neural networks (i.e., how often the best move is rated highest by
the neural network), and then we illustrate the move ordering by three examples.

In order to test the predictive quality, we measured how often the move
made in the game was considered to be the best by the neural network. The
neural networks used for testing were those from subsection 3.4.4. The results
are presented in Table 3.2. In the table, besides the success rate of the networks
trained on specific learning sets and the ALL learning set, CRAFTY’s predictive
quality is listed for comparison purposes. We observe that the networks are able
to predict the game move in one out of three positions. This performance is
almost as good as that of CRAFTY with a 7-ply deep search.

We illustrate the move ordering of the neural network by three examples,
representing positions where the best move is rather interesting. Other example
positions are given in appendix C. The positions in the appendix were selected
randomly from the test sets described in subsection 3.3.3.

Th first position, given in Diagram 3.1, has been taken from a game between
two of the best chess players of the world, Kramnik and Anand. It is an open
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Diagram 3.1. A position from the Kramnik–Anand game played in Dortmund,
2001 (WTM). Kramnik’s move was h6.
The move ordering of the neural network:
Qb4 Ne5 Bf6 a3 h6 Qh3 Bb1 Bh6 Nd4 b3 Qd4 Bb3 Rd3 Qg3 Re2 Rb1 Bc1 Bg6
Rd5 Bf5 Qf4 Re3 Rf1 Bf4 Qg4 Kh1 Kf1 Re7 h3 Bd3 Ra1 Bd2 Re5 Rc1 Re6 Bh7
Rd2 Re4 Ba4 Be3 a4 Kg2 Be4 Nd2 Qe4 Rd4 Qc4

position, with some threats by White on the king side. The move made by
Kramnik (h6), forces Black to a line of exchanges that leads in the end to an
inferior ending for Black. Without any search, the complications on the board
are hidden for the neural network. The network’s main tool is to look for
similarities between this position and the positions seen during the training,
between the legal moves in this position and the moves labelled best in the
learning set, respectively. Most of the pieces in this position are on familiar
places. However, the move made by White is not frequent at all in middle-game
positions. We ordered the moves using the scores of the neural network trained
with the learning set ALL. Remarkably, the neural network scored the game
move in the top five. Some other promising moves, like Ne5, Bf6 and Qh3 were
also scored high.

The second position (Diagram 3.2) occurred in a game between the best
player of the world, Kasparov, and the FIDE world champion, Ponomariov.
White is a Pawn behind, and although the black King is not castled, there are
relatively few pieces left on the board to build a successful attack. The last move
of Ponomariov was 19...a6, attacking the white Bishop. Kasparov, instead of
moving his Bishop, surprised his opponent with 20. Rh3 (threatening the queen
sacrifice on h7), and won the game in the subsequent attack. The alternative
move would have been Ba4. Observing the move ordering of the neural network,
the move made by Kasparov is ranked the highest, while the second best move
is ranked the third.

The third position, given in Diagram 3.3, has been taken from the 48th game
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Diagram 3.2. A position from the Kasparov–Ponomariov game played in
Linares 2002 (WTM). Kasparov’s move was Rh3.
The move ordering of the neural network:
Rh3 Rfd1 Ba4 f4 Qf4 Rg3 Rd7 Bc6 Re1 Qh7 Qc1 Bd7 Qh4 Rd4 Re3 Rd6 Qh5
Qh3 Bc4 Be8 Rf3 Qe3 g3 c4 a4 b3 Kh1 Rc1 g4 f3 h4 Qd2 Rb1 h3 b4 Ba6 Qg5
Qg6 a3 Rd5 Ra1 Qg7 Rd2 Rdd1 Rd8 Qf8
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Diagram 3.3. A position from the 48th game of Kasparov–Karpov world
championship match played in Moscow 1984/1985 (WTM). Kasparov’s move
was e6.
The move ordering of the neural network:
Bf4 Qd2 e6 Be4 f4 Bc4 Bg5 Re3 Bf8 b4 Re2 Bg7 Be2 Qe2 Re4 Rf1 Rc1 Bf1 Bg6
Rd2 h4 g4 Be3 Kh2 b3 Kh1 Qb1 Rb1 Ba6 Bf5 Qb3 Qa4 a4 Kf1 f3 g3 Bd2 Qc5
Qc4 Qc1 Qc3 Bc1 Ra1 Bb5 Qc6
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of the world championship match between Kasparov and Karpov. This was the
last game of the first title match between the two players. After this game, won
by Kasparov, the match was interrupted because of its length. In the position
in the diagram, Kasparov destroyed the king side of his opponent by 22. e6 fe6
23. Bg6. In the ordering of the neural network, the move played is ranked third,
and the natural alternatives such as Bc4, Be4, and f4 are also ranked in the top
six moves.

3.5 Chapter conclusions

This chapter has considered the problem of move ordering. As we noted in
section 1.2.1 move ordering is the main instance of the class-P search decisions.
For this problem, a new heuristic in the form of a learning algorithm was de-
veloped, the Neural MoveMap heuristic. The heuristic uses a neural network
to estimate the likelihood of a move being the best in a certain position. The
moves considered more likely to be the best are examined first.

We explored the various details of the NMM heuristic, testing it experimen-
tally in the games of LOA and of chess. The experiments on the details had
the purpose of tuning the NMM heuristic. From these experiments we drew the
following conclusions.

• The best choice to encode the moves is to use one output unit for each
possible move of the game (the MEOS encoding).

• The neural network should be trained with large learning sets. The choice
of labelling with the game program or using the moves from the game
database, and the choice of using learning sets specialised on opening
lines does not influence (significantly) the performance.

• The best choice of using the neural network during the search is the
weighted-combination approach.

From the experiments evaluating the performance of the heuristic, we drew the
following conclusions.

• The heuristic is more beneficial in domains where there is little human
knowledge on how to order the moves, but even in the presence of this
knowledge, it results in a notable improvement over the existent techniques
(in particular over the history heuristic).

• The predictive quality of the neural networks is rather good, almost as
good as a 7-ply search of CRAFTY in chess. This suggests that the neural
networks can be useful for other tasks too, like forward pruning.



Chapter 4

Forward pruning

This chapter is based on1

1. L. Kocsis, J.W.H.M. Uiterwijk, and H.J. van den Herik. Search-
independent forward pruning. In B. Kröse, M. de Rijke, G. Schreiber,
and M. van Someren, editors, Proceedings of the 13th Belgium-
Netherlands Conference on Artificial Intelligence (BNAIC 2001),
pages 159–166, 2001,

2. L. Kocsis, H.J. van den Herik, and J.W.H.M. Uiterwijk. Two learning
algorithms for forward pruning. ICGA Journal, 26(3):165–181, 2003.

Human game-playing is characterised by two main factors: (1) humans recognise
which moves are promising, and (2) they only search the promising moves. This
selectivity allows the human players to search deeply in the game tree without
investigating a large number of nodes. In computer programs, the mechanism
of ignoring (or not investigating) unpromising moves is termed forward pruning.

To determine the class of search decisions to which forward pruning belongs,
we have to look for the evaluation criteria of forward pruning. The gain of using
forward pruning is that the search has to explore a smaller tree given a certain
search depth. Thus, the first criterion to evaluate forward pruning is the size
of the search tree. By ignoring seemingly unpromising moves, there is a risk of
missing good moves during the search. This can have the effect of choosing a
weaker move after the search. Thus, the second criterion to evaluate forward
pruning is the quality of the move(s) resulting from the search. Both criteria
require the use of search trees, and consequently, forward pruning is a class-S
search decision. We denote the size of the search tree by ncount() and the
quality of the move by performance(). These measures are usually averaged
over a set of positions.

The chapter is organised as follows. In section 4.1 we describe the existing
forward-pruning techniques and the existing learning algorithms that can be
used for class-S search decisions. Section 4.2 presents TS-FPV, a new learning
algorithm that uses tabu search for class-S search decisions that have a discrete

1The author would like to thank his co-authors for reusing relevant parts of the articles in
this thesis.
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representation. The algorithm is discussed for an instance of the discrete repre-
sentations termed forward-pruning vectors (FPVs). A new learning algorithm
that can handle continuous representations with a large number of weights, RL-
FPF, is presented in section 4.3 (RL-FPF stands for Reinforcement Learning
for Forward-Pruning Functions). The experiments with the TS-FPV algorithm
are described in section 4.4, and the experiments with the RL-FPF algorithm
in section 4.5. Section 4.6 presents the conclusions on the forward-pruning al-
gorithms.

4.1 Existing techniques

Most game programs perform forward pruning based on information obtained by
some extra search effort. Major examples of search-dependent forward pruning
are adaptive null-move pruning [41], Multi-ProbCut [18] and Multi-cut pruning
[12].

In contrast, search-independent forward-pruning techniques do not rely on
additional search, but on some static analysis. In the early days of computer
chess [10] search-independent forward pruning was a must due to the limited ca-
pabilities of the computers in that time. However, the techniques they used were
not very sophisticated and need not much attention here. In recent years, only
a few attempts to develop search-independent forward-pruning techniques have
been published. The most important one is an extended form of futility pruning
[40] developed for chess. This technique results in pruning those (frontier) nodes
where the material balance plus a maximum positional score would produce a
fail-high beta-cutoff. Moreover, forward pruning using some domain-dependent
principles proved valuable for analysing life-and-death problems in Go [125]. A
theoretical analysis [104] examining artificial trees concluded that forward prun-
ing may be useful when there is a high correlation among the minimax values
of sibling nodes in a game tree.

Most search-independent forward-pruning techniques rely on a large number
of parameters. Since it is difficult to foresee the effect of these parameters on the
search, hand-tuning them is very difficult. An alternative is to use automatic
optimisation or learning methods for tuning.

One of the most promising algorithms to learn class-S search decisions was
proposed by Björnsson and Marsland in [11, 14]. The algorithm was developed
for learning search extensions but it can be applied to learn any set of continuous
search parameters belonging to class S. It minimises the size of the search tree,
while keeping the number of correct solutions (i.e., best moves provided with the
set of positions) above a certain threshold. The learning is based on a gradient-
descent algorithm, with the gradient being computed by altering each parameter
in turn by a small amount and measuring the effect of it on the search (the size
of the search tree and the number of correct solutions). In the experiments, the
algorithm successfully improved CRAFTY’s search-extension scheme, reducing
the number of investigated nodes by 30 per cent. The main drawback of this
algorithm is the time necessary for learning when a large number of parameters
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has to be tuned. This drawback is a result of the fact that for every computation
of a gradient the whole set of positions has to be searched.

A variant of the previous algorithm attempts to compute the gradients by
learning from mistakes, or more precisely from the drop in the evaluation value
for subsequent moves [11, 13]. The idea is that the evaluation value can decrease
either because the move made was a mistake, or the new principal variation was
not fully investigated. Thus, the algorithm tries to modify the extension values
so that the new principal variation is part of the solution tree for the previous
move too. The learning algorithm employs a ‘cost model’ that predicts how
many nodes it takes to search an arbitrary position until a certain depth using
the current extension parameters. The cost model is approximated on line for
the positions involved in the search. The gradient-descent algorithm in every
iteration modifies the weights in the opposite direction to the gradient of the
cost model. In contrast to the previous algorithm, it estimates all the gradients
in one iteration, and thus the learning time is not increasing significantly when
more search parameters are tuned, but the necessity to approximate the cost
model on line makes the algorithm complex and hard to use. It also depends
on the validity of the underlying idea, which in certain cases may not hold.2

The learning part of the Realization-Probability Search [110, 111] can be
regarded also as a form of learning search extensions. The search algorithm
computes for each path a product termed “realization probability” that is ob-
tained by multiplying the probabilities of the move categories to which the
moves in the path belong.3 The search is stopped after a path if the realization
probability becomes smaller than some threshold. Iterative searches are per-
formed not by increasing the search depth, but by decreasing the lower bound
on the realization probability. The probability of a move category is computed
(or learned) by collecting the frequency of how often a move belonging to this
category was the best (found either in human games or in self-play). The search
algorithm proved to be successful in the shogi tournament program GEKISASHI,
which won the World Computer-Shogi Championship in 2002 [36].

Moriarty and Miikkulainen [77, 78, 79] used a neural network to prune un-
promising moves in the game of Othello. The input of their neural network
was represented by the raw board position; the output units corresponded to
the possible moves (thus a similar architecture as the MEOS move-encoding
scheme in the Neural MoveMap heuristic, see subsection 3.2.1). The weights
of the neural network were evolved by a genetic algorithm, SANE (Symbiotic,
Adaptive Neuro-Evolution, see appendix A.2). The experiments showed that
the neural network improved the performance compared to the full-width search.

An important feature in the tuning of a search-independent forward-pruning
technique is the way the forward-pruning technique is represented in terms of

2For instance, Björnsson and Marsland note that when a position is bad (the evaluation
value is more than a Pawn down) the learning should be disabled, because sliding down
towards the loss cannot be avoided.

3One might notice that the logarithm of the realization probability is the sum of the
fractional extensions. In the SEX algorithm [66], this sum is termed the “interestingness” of
the terminal node on the path.
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its parameters. For instance, learning methods that rely on some derivative
are not well suited for parameters with discrete values. Below we deal with
both representations. The TS-FPV algorithm considers discrte values and is
described in section 4.2. For many learning algorithms in a continuous space a
large number of parameters (or weights) poses a serious problem. The RL-FPF
algorithm solves this problem by estimating all the derivatives at once. The
algorithm is described in section 4.3.

4.2 Forward-Pruning Vectors (FPVs)

Let us consider a search algorithm that investigates at each node only a subset
of the legal moves, the moves considered as most promising by a move-ordering
algorithm. The size of the subset to be investigated is specified by a number
that is fixed for a certain search depth. Thus, a vector consisting of these num-
bers corresponding to different search depths determines the forward-pruning
decisions. The elements of this vector are integer values, and so this example
is an instance of a discrete representation for a class-S search decision. The
integer-valued vector determining the forward-pruning decisions is termed FPV
(forward-pruning vector). For the example described above the FPV can have
the form �v = (v0, v1, . . . , vD), with v0 specifying how many moves have to be in-
vestigated at the root, v1 at depth 1, and so on. Throughout this section we will
use this example to make the discussion on FPVs more concrete. However, the
algorithm developed for finding FPVs is not restricted to this specific example.

Since the state space of FPVs is very large, it is impossible to test each
FPV, and to choose the best out of them. Consequently, we need some heuris-
tic to explore this space. The design of such a heuristic strongly depends on
how ncount() and performance() are determined. According to our experi-
ence, a reliable estimate for ncount() can be obtained much faster than a re-
liable estimate for performance(). Thus, the large computation time needed
for performance() requires the heuristic to keep the number of FPVs for which
performance() is estimated as small as possible.

In subsection 4.2.1 we define the problem of finding FPVs as a combinatorial
optimisation problem. Then we introduce a partial ordering over the FPVs, and
we make two assumptions on monotonicity using the partial ordering. These
two assumptions are crucial for designing the optimisation algorithm for FPVs.
The algorithm, named TS-FPV, is presented in subsection 4.2.2.

4.2.1 Finding FPVs: an optimisation problem

The problem of finding an optimal FPV can be formulated as

maximise performance(�v)

subject to ncount(�v) ≤ N

�v = (v0, v1, . . . , vD)
vd ∈ Wd, d = {0, 1, . . . , D}
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where D is the maximum search depth, Wd is the set of possible widths for
depth d, and N is the maximum number of nodes allowed be to explored.

We define a partial ordering over the FPVs

�u ≥ �v iff ∀d, ud ≥ vd (4.1)

We make two assumptions using the introduced partial ordering. First, we
assume that if at some depth(s) the game-tree search is wider while at no depth
it is narrower, the number of nodes explored does not decrease, i.e.,

�u ≥ �v ⇒ ncount(�u) ≥ ncount(�v). (4.2)

Second, if at some depth(s) the search is wider while at no depth it is narrower,
the performance does not decrease, i.e.,

�u ≥ �v ⇒ performance(�u) ≥ performance(�v). (4.3)

Empirical support for these assumptions will be given in subsection 4.4.
If the assumptions hold, the problem at hand is similar to the well-known

integer knapsack problem (for an overview of knapsack problems and algorithms,
see [86]). Both problems operate on much the same solution space but in our case
both the objective and the constraint function are non-linear in the elements of
the FPVs, while for the integer knapsack problem they are linear. However, the
assumptions highlight a similar property in the objective and constraint func-
tion: they are monotonic with respect to the introduced partial ordering. One
approach to solve knapsack problems is to use approximation algorithms. These
algorithms rely on the fact that the two functions are directly computable. In
our problem, this is not the case, and thus approximation algorithms cannot be
used. Another approach for knapsack problems is to use local-search algorithms.
Due to the monotonicity of the two functions, these algorithms can be adapted
for finding FPVs.

Optimisation algorithms using local search rely on the neighbourhood of two
solutions. FPV �u is an upper neighbour of �v if at exactly one depth the first
one produces a one ‘step’ wider search. In this case �v is a lower neighbour of �u.
The set of upper neighbours (UN) and lower neighbours (LN) can be defined
as follows

UN(�v) = {�u | �u ≥ �v, �u �= �v,¬∃�w such that �u ≥ �w ≥ �v, �w �= �v, �w �= �u} (4.4)

LN(�v) = {�u | �v ≥ �u, �u �= �v,¬∃�w such that �v ≥ �w ≥ �u, �w �= �v, �w �= �u} (4.5)

The possible types of solutions, similarly to the integer knapsack problem,
are illustrated in Figure 4.1. Feasible solutions are those FPVs which obey the
ncount constraint, infeasible solutions are those which do not. The maximal
solution in our case is the one which uses a full-width search, and the minimal
solution is considering one move at each depth. Feasible solutions which do not
have any upper feasible neighbouring solution are called critical solutions.

The critical solutions play an important role in most of the algorithms for
the integer knapsack problem, and also in our case, since the optimal solution
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Figure 4.1: Solution space of the FPVs corresponding to a certain search depth.
The circles represent FPVs, and the lines indicate the neighbourhood of two
solutions.

is among the critical ones. This fact leads us to a ‘requirement’ for our opti-
misation algorithm: to estimate performance() only for critical nodes. For the
speed of the optimisation algorithm, it is also desirable to estimate ncount()
for as few non-critical solutions as possible, especially infeasible ones (since the
estimation time for ncount() is linear in the value of ncount() itself).

4.2.2 The TS-FPV algorithm

In this section we describe the optimisation algorithm used to obtain FPVs.
The algorithm, called TS-FPV, is a variation on tabu search (TS) [33]. It is in
many respects similar to the algorithms suggested in [37] and [68] for knapsack
problems.

The algorithm uses local search, selecting new FPVs from the neighbourhood
of the current one. There are two selection criteria: intensification and diversi-
fication. Intensification is a selection criterion between candidate neighbouring
solutions used to concentrate the search in the promising regions. Diversification
is counterbalancing intensification by driving the search into new, unexplored
regions. For the intensification criterion one can use the performance of the
candidate solution or some faster estimate of it.

Diversification is realised by maintaining a long-term memory over the so-
lutions. This memory stores the frequency of some attributes of the solutions
met so far. Diversification favours solutions different from those ‘stored’. In our
implementation we stored the frequency of each possible width at each possi-
ble depth. When diversification is required the candidate solutions are ordered
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decreasingly according to the sum of the frequencies of each value of the vector.
To avoid cycles during the search, a tabu list (TL) is maintained. The tabu

list is a FIFO queue which records some properties (the tabu status) of the
most recent solutions. The tabu status determines when a candidate solution is
rejected. In our implementation the tabu status is the old value of the element
modified in the new solution. In the tabu list we store the position of the element
and the value. While this pair is in the list, solutions which have the same value
on the position in question are considered tabu. The length of the tabu list is 7
(in most tabu-search implementations this number is between 5 and 9).

The TS-FPV algorithm consists of a loop including three phases. In the first
phase, the search proceeds from the feasible region towards a critical solution,
selecting always upper neighbours, using intensification as criterion. When a
critical solution is reached its performance() is evaluated and if it is best so
far the corresponding data structure is updated. The second phase consists of
stepping away from the critical solution either towards the infeasible region by
selecting an upper neighbour or towards the feasible region by selecting a lower
neighbour. In either case the selection uses diversification as criterion. After
the second phase the current solution can be either feasible or infeasible. We
can reach the infeasible region either if an upper neighbour was selected or if
our first assumption concerning ncount() was violated. If the current solution
is infeasible, a third phase is required, in which the search proceeds from the
infeasible region towards the feasible one. In this phase lower neighbours are
selected using diversification. This phase stops when the new solution is feasible.
The initial solution is selected either randomly, or by starting from the minimal
solution. The latter has the advantage that the evaluation of ncount in this
region is very fast. In the other case we can find our solution somewhere deep in
the infeasible region. The loop ends if a certain number of cycles (PATIENCE)
has been performed without finding a new best FPV. The pseudo code of the
TS-FPV algorithm is given in Figure 4.2.

Finally, two remarks are in order. (1) We described the TS-FPV algorithm
using a very specific representation for the FPVs. This representation is not a
prerequisite for the algorithm. It can be applied to a much larger class of FPVs.
(2) The algorithm is not assumed to be used for forward pruning only. It can
be applied to other search decisions as well. However, it does depend on the
monotonicity assumptions formulated in subsection 4.2.1. If these assumptions
are most of the time true for a certain discrete search decision, then TS-FPV
can be applied without any modifications.

4.3 Forward-Pruning Functions (FPFs)

During the search we are confronted in many nodes with the possibility of prun-
ing the remaining moves. Such a decision is based on some search parameters,
denoted sp. These parameters may include the search depth, the iteration depth,
the number of moves already investigated in the node, the number of times the
best value was changed in this node, and so on. The forward-pruning decision
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select initial FPV �v;
best perf = 0; cycle = 0;
initialise TL;
do {

/* intensification */
while (FeasibleUpperNeighbours(�v) \ TL ! = ∅)

select �v ∈ FeasibleUpperNeighbours(�v) \ TL;
if (performance(�v) > best perf) {

best perf = performance(�v);
best v = �v;
cycle = 0;

}
/* step away from critical solution */
if (randomchoice)

select �v ∈ UpperNeighbours(�v) \ TL;
else

select �v ∈ LowerNeighbours(�v) \ TL;
/* diversification */
while (InFeasible(�v))

select �v ∈ LowerNeighbours(�v) \ TL;
cycle++;

}
while (cycle < PATIENCE)

Figure 4.2: Pseudo code of the TS-FPV algorithm.

is represented by a function FPF (Forward-Pruning Function) that has as ar-
guments the above-mentioned search parameters. If the value of this function is
below a threshold (e.g., the value 0) the moves are pruned, otherwise they are
not pruned. The FPF can be implemented for example as a neural network with
weights wi. The question is how to tune these weights by a learning algorithm.

In subsection 4.3.1 we introduce a gradient-descent update rule for tuning
the weights of an FPF. The RL-FPF algorithm based on this update rule is
described in subsection 4.3.2.

4.3.1 Tuning the weights

Obviously, training examples for an FPF are almost impossible to obtain. Con-
sequently, supervised-learning methods can be ruled out. The alternative is to
use some variation of reinforcement learning. Then the reward signals can be
related to the size of the search tree and the quality of the suggested move.

For reinforcement learning a major problem is the credit-assignment prob-
lem. For instance, if the search expanded more nodes than allowed, it has to be
determined which forward-pruning decisions were wrong and which were correct.
The former have to be punished and the latter rewarded.

In order to modify the weights in a direction that maximises the reward we
need some information of how the size of the search tree and the performance
will change when a particular weight is changed (some form of gradient). A first
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solution, given in [14], is to do an infinitesimal change in the weight and measure
the effect on the size of the search tree and the performance, respectively. The
main disadvantage of this method is that it has to do the measurement for each
weight separately, which can be very time consuming if the number of weights is
large. The learning method involved needs a relatively smooth gradient, which
in turn requires averaging over a large test set.

A second solution is trying to obtain an approximation of the intended di-
rection of the gradient. For this purpose the assumptions made in subsection
4.2.1 can be helpful again. For two FPFs, f1 and f2, and search parameters, sp,
the partial ordering relation reads as follows:

f1 ≥ f2 iff ∀sp, f1(sp) ≥ f2(sp) (4.6)

The two assumptions from equations 4.2 and 4.3 are changed as follows:

f1 ≥ f2 ⇒ ncount(f1) ≥ ncount(f2) (4.7)

f1 ≥ f2 ⇒ performance(f1) ≥ performance(f2) (4.8)

These assumptions imply that if we want to increase the performance we
have to increase the values of f and if we want to decrease the size of the search
tree we have to decrease the values of f . Thus, if the highest value that f
can have is Fnp (not prune) and the lowest is Fp (prune), then by minimising
(Fp − f)2 we decrease the size of the search tree and by minimising (Fnp − f)2

we increase the performance. Now, we can write the gradient-descent update
rule for weight wi given the forward-pruning decision f made at the moment t:

∆wi(t) = −∂(Fp − f)2

∂wi
(t) · rncount(t) − ∂(Fnp − f)2

∂wi
(t) · rperf (t) (4.9)

where rncount is the reward function related to the size of the search tree, and
rperf is the reward function related to the performance.

Assuming that f is implemented as a differentiable function (such as a neural
network or a linear combination of search parameters), computing the partial
derivatives from equation 4.9 constitutes no problem. What remains is to choose
the two reward functions, rncount and rperf . These two functions determine the
balance between the size of the search tree and the performance. If rncount is
much higher than rperf , the resulting forward pruning will favour very narrow
trees, disregarding how good the suggested move is. In contrast, if rperf is much
higher than rncount, there will be no (or almost no) forward pruning. Choosing
the appropriate functions can be a tedious process and depends on the specific
experimental setting. In our experimental framework we attempt to find an
FPF that maximises the performance while keeping the size of the search tree
below a certain limit. The following discussion will go along this line.

Let us first investigate rperf . Since we have performance information only
related to a position, it is natural to have the same reward for all forward-
pruning decisions within a search tree (expanding that specific position). Thus,
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if we denote by Tp the set of moments when forward-pruning decisions were
made while searching position p, then

rperf (t) = rperf
p , ∀t ∈ Tp (4.10)

where rperf
p is the reward for the quality of the move choice made in position p.

If the performance for a position is measured in a binary way as correct move or
incorrect move, then rperf

p can be 1 if the move is correct and −1 if incorrect. If
the performance is measured as the score difference between the (true) score of
the move suggested by the search and the score of the best move, then rperf

p can
be exactly this difference (a more detailed description of this measure is given
in subsection 4.4.4). In general rperf

p can be implemented as the performance
measure itself (scaled, optionally, with an arbitrary constant).

Since we choose to limit the number of expanded nodes (ncount) cumulated
over the whole set of positions, rncount should be the same for all forward-
pruning decisions. The simplest choice for this function is

rncount =
ncount(f) − N

N
(4.11)

where N is the limit on the number of expanded nodes. This choice, however,
does not have any significant constraint that would bind the search trees below
the limit allotted (it is a simple linear function of ncount). To modify this we
can induce a discontinuity around N using a piecewise function, e.g.:

rncount =

{
k1 · ncount(f)−N

N , ncount(f) < N

k2 · ncount(f)−N
N , ncount(f) >= N

(4.12)

with k2 >> k1. Whichever form the two reward functions take, it is always
necessary to tune the ratio between them in order to explore the region below
the limit on ncount. Usually, this tuning process is fairly simple.

The algorithm driven by the update rule of equation 4.9 can be used for any
class-S search decision that obeys the assumptions from equations 4.7 and 4.8.
For the specific case of forward pruning the update rule can be extended. If
in a node of the search tree a move produces a change in the best value the
forward-pruning decisions that permitted this (i.e., did not prune the move)
can be strengthened. We denote the reward function for this situation with rcv

(reward for change in value). The target value is Fnp. In contrast, we can
punish those forward-pruning decisions that allowed to search moves that did
not produce a change in the best value. We denote the reward function for this
situation with rncv (reward for no change in value). The target value is Fp.
The resulting update rule is as follows:

∆wi(t) = −∂(Fp−f)2

∂wi
(t) · rncount(t) − ∂(Fnp−f)2

∂wi
(t) · rperf (t)

−∂(Fp−f)2

∂wi
(t) · rncv(t) − ∂(Fnp−f)2

∂wi
(t) · rcv(t)

(4.13)
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Since these two components can be regarded as additional information that
helps the optimisation process driven by the two main components (i.e., the
size of the search tree and the performance), the values for rncv and rcv should
be significantly smaller than the values for rncount and rperf .

4.3.2 The RL-FPF algorithm

Using equation 4.13 we can now design the learning algorithm, which we term
RL-FPF (Reinforcement Learning for Forward-Pruning Functions). The al-
gorithm uses five data structures for the partial derivatives: dwncount, dwperf ,
dwncv[MAXPLY ], dwcv[MAXPLY ], dwtotal. The first four data structures are
for storing the four derivatives of equation 4.13 until the corresponding reward
is known. The rewards rncount and rperf are the same for all forward-pruning
decisions occurring during the search, and thus the sums of the corresponding
derivatives can be stored in one variable each. The rewards rncv and rcv are
different for the different search nodes, and thus the sums require different vari-
ables for all search depths. The fifth data structure, dwtotal, corresponds to
∆wi(t). The RL-FPF algorithm is inserted in the search algorithm of a game
program in such a way that certain parts of the RL-FPF algorithm are ac-
tivated under specifically-detailed conditions (events) of the search algorithm.
Thus, the sequence of actions performed for the RL-FPF algorithm depends on
the particular search algorithm used. Therefore, the RL-FPF algorithm is not
presented in a sequential order, but as a list of actions triggered by events of the
search algorithm. The algorithm uses a set of test positions that are searched
by the game program. One pass of the test set is considered an epoch. The
algorithm updates the weights of the FPF (i.e., batch learning) using a chosen
update rule. As a matter of choice, in our experiments we use RPROP (see
appendix A.3) for this purpose. Although other update rules should work as
well, RPROP has the advantage that it is not using the size of the derivative
(which is not very reliable for our algorithm), but only the direction of it. The
search events and the actions of the algorithm are as follows.

• Event: a new epoch starts
Action: dwtotal and dwncount are set to 0

• Event: the search starts for a new position
Action: dwperf is set to 0

• Event: a new search node is visited
Action: dwcv[ply] and dwncv[ply] are set to 0

• Event: a possible forward pruning is considered
Actions: f is computed using the current search parameters sp and
weight vector w; ∂f/∂w is computed;
(∂f/∂w) × (Fnp − f) is added to dwperf and to dwcv[ply];
(∂f/∂w) × (Fp − f) is added to dwncount and to dwncv[ply] ;
the forward-pruning decision is made using f
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• Event: the best value in a node is changed
Actions: dwcv[ply] is multiplied with rcv and added to dwtotal;
dwcv[ply] and dwncv[ply] are set to 0

• Event: a search is finished for a node
Action: dwncv[ply] is multiplied with rncv and added to dwtotal

• Event: the search is finished for a position p
Action: dwperf is multiplied with rperf

p (depending on the selected move)
and added to dwtotal

• Event: an epoch is finished
Actions: dwncount is multiplied with rncount (depending on the number
of nodes investigated in this epoch) and added to dwtotal;
the weight vector w is updated using dwtotal

So far, we described the RL-FPF algorithm with a focus on forward pruning.
However, equation 4.9 can handle a broader type of class-S search decisions.
Eventually, it can be extended with more problem-specific reward functions,
as we did for forward pruning in equation 4.13. The necessary conditions for
the algorithm are that the FPF has to be differentiable and the monotonicity
assumptions should hold most of the time.

Two examples for class-S search decisions that obey the required conditions
are search extensions and adaptive null-move pruning. In both cases the rep-
resentation should be differentiable. Moreover, the monotonicity assumptions
should be valid for both, as noted in the following. If the search is extended
more deeply for a move class, the investigated search tree will be larger and the
quality of the move chosen better than in the normal search (thus the assump-
tions are valid). In the case of the adaptive null-move pruning [41] the reduction
factor (R) can be modified during the search. When the value of R is increased,
the size of the search tree decreases, as well as the quality of the move. Thus
the assumptions are valid again.

4.4 Experiments with TS-FPV

This section describes the experiments with the TS-FPV algorithm. First, we
introduce in subsection 4.4.1 three forward-pruning schemes with discrete rep-
resentations (FPV variants). We use two test environments for the experiments
with TS-FPV: the NN-population environment and the CRAFTY environment.
The experimental set-up for the NN-population environment is described in sub-
section 4.4.2. The experiments with NN population given in subsection 4.4.3
include a smaller experiment for testing the monotonicity assumptions (formu-
lated in subsection 4.2.1) and the main experiment for measuring the perfor-
mance of the FPVs. Subsection 4.4.4 describes the experimental set-up for the
CRAFTY environment, while the results of the experiments for measuring the
performance of the FPVs in chess are provided in subsection 4.4.5.
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Figure 4.3: FPV variants: (a) generic, (b) FPV-d, (c) FPV-it, (d) FPV-l.

4.4.1 Three FPV variants

In section 4.2, we discussed for simplicity the variant of FPV that uses one value
for each search depth. This value represented the number of moves investigated
in an internal node at the specific depth. Besides the search depth, we can
consider another ‘dimension’: the iteration number. If we consider these two
dimensions instead of a linear vector, the FPVs are more similar to triangu-
lar matrices (as illustrated up to depth 5 in Figure 4.3a). If all the values are
treated separately, there is the risk that the space of FPVs becomes very large.
Alternatively, we may constrain the values along one of the sides of the trian-
gle. Then, we obtain three variants of FPVs: FPV-d uses the same value at a
certain depth (Figure 4.3b), FPV-it uses the same value in a certain iteration
(Figure 4.3c), and FPV-l uses the same value at a certain distance to the leaves
(Figure 4.3d).

4.4.2 Experimental set-up for the NN-population environ-
ment

The TS-FPV algorithm explores the space of FPVs in order to find the FPV
that maximises the quality of the suggested moves (i.e., performance()), while
keeping the number of expended nodes during the search (i.e., ncount()) below
a certain limit. Thus, for the experiments with TS-FPV, we have to measure the
two functions, ncount() and performance(), we have to set a limit on ncount()
and we have to specify the space of possible FPVs. We assess the algorithm by
the performance of the best FPV found by the algorithm. This performance is
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compared to the performance of a full-width searcher.
To measure ncount(), we count the number of nodes explored. There are

mainly two ways to measure performance(): (1) by matching the moves sug-
gested by the search against the moves known as correct for the test positions,
and (2) by game results. In LOA it is difficult to obtain positions annotated
with the correct move, and annotating positions using a game program is not
reliable, since the evaluation functions from the NN population do not have
the same quality as, for instance, the evaluation functions of the top chess pro-
grams. Consequently, to measure the performance of an FPV, we have to rely
on game results. The diversity of the NN population (see subsection 2.1.2)
provides a suitable environment for measuring performance in this way. The
NN population includes 100 game programs. The performance of an FPV is
the tournament performance of a test player (a medium strength player, chosen
from the set of 100 programs) playing with both colours against each of the
whole set of players. The test player is using the FPV-d variant for forward
pruning, while its opponents are searching full width. For the intensification
criterion we need a fast estimate of the performance. This is done by using a
tournament with only 10 players.

The value for the limit on ncount() corresponds to the number of nodes used
by the test player when searching full-width to a certain depth, d. The depth
values we investigate are 1, 2, 3, 4, and 5. The 100 opponents are searching to
depth d.

Specifying the space of possible FPVs implies choosing the set of possible
width values for the FPVs (Wd) and the length of the FPVs (viz. the search
depth of the test player using the FPV). Wd is chosen as {1, 2, 3, 4, 5, 6, 7,
10, 20, all}. The length of the FPVs is varied between 2 and 7. For each FPV
length a different TS-FPV run is performed.

4.4.3 Experimental results with the NN population

In this subsection we describe two experiments: (1) a smaller experiment for
testing the two assumptions underlying the TS-FPV algorithm, and (2) the
main experiments for testing the FPVs that result from the TS-FPV algorithm.

In the first experiment, performed with the NN-population environment, we
tested our two assumptions formulated in subsection 4.2.1. We compared how
frequently the assumptions hold for neighbouring FPVs. In the case of ncount()
this frequency was approximately 98 per cent and in the case of performance()
between 92 and 95 per cent. These values suggest that for two arbitrary FPVs
these assumptions are indeed reasonable.

In the second experiment, we measured the performance of the FPVs result-
ing from the TS-FPV algorithm in the NN-population environment. The perfor-
mances of the best FPVs and the full-width searcher are plotted in Figure 4.4.
Additionally to the full-width searcher and the FPV searcher we included as
comparison the test player which searched full-width, but 1 ply deeper than its
opponents (and the base-line full-width searcher). From Figure 4.4 we can con-
clude that forward pruning using the best FPVs obtained with our algorithm
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Figure 4.4: The tournament performance of the best FPVs, the full-width and
the 1-ply-deeper searcher as a function of search depth.

has indeed beneficial effects. It gives the player almost the gain of an extra ply,
which otherwise would require an increased amount of time.

As an illustration, we consider the best FPV values for opponent search
depth 5 and their performances (see Table 4.1). The best FPVs are given in
more detail in appendix D.1 (Table 4.1 is one of the five tables given there). In
Table 4.1 the first line represents the result for the 5-ply full-width searcher, and
the second line for the 6-ply full-width searcher (both in italics). The three best
FPVs obtained by the optimisation algorithm for FPV length 6 and 7 are given.
The best FPV uses a 7-ply search, and investigates 20 moves in the root, all
moves at depth 1, 20 moves at depth 2, all moves at depth 3, 10 moves at depth
4, 7 moves at depth 5, and 4 moves at depth 6. The performance corresponding
to this FPV is given in bold.

Although the limited number of data points (see appendix D.1) do not allow
us to make too many conclusions about which is the best FPV length or which
is the best FPV structure, we do observe some trends. For each of the five
depths, the best FPV was found at a depth which is only 1 or 2 ply deeper than
the reference depth. This fact suggests that the FPV player should not be too
confident regarding the quality of the move ordering. Regarding the structure
of the best FPVs, we can note that in most cases (except when the search was
extremely narrow), the closer to the root the wider the FPV-based search was.

4.4.4 Experimental set-up for the CRAFTY environment

The forward pruning is implemented in the game program CRAFTY. In an inter-
nal node, CRAFTY considers subsequently (1) the move from the transposition
table, (2) the capture moves, (3) the killer moves, and (4) the remaining (silent)
moves sorted according to their history-heuristic scores. Out of these only after
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depth FPV values performance
5 all all all all all 0.5025
6 all all all all all all 0.7375
6 all all 10 all 10 all 0.5725
6 all all all 20 20 6 0.537500
6 all all all all 10 6 0.502500
7 20 all 20 all 10 7 4 0.6750
7 20 all 10 all 10 7 6 0.6675
7 all all 10 20 10 7 6 0.6500

Table 4.1: FPV values and performances for opponent search of depth 5.

the first silent move a forward pruning is considered. To improve the move or-
dering the NMM heuristic is used with the weighted-combination approach and
the neural network ALL (see subsection 3.4.4).

To measure the performance we use a set of 3,000 test positions. The po-
sitions are middle-game positions, similar to those used for move ordering (see
subsection 3.3), but selected randomly without any clustering. The perfor-
mance is measured as score difference in the following way. For each legal move
in the test positions the minimax score is computed with a 12-ply deep search.
These scores are considered as the ‘true’ scores for the respective moves. The
performance for a position is measured as the difference between the score of
the move suggested using forward pruning and the score of the move suggested
without forward pruning with the reference search depth. The performance for
the whole test set is the average of the performances for the positions included
in the test set. According to our experiments with the score difference 3,000
positions are roughly sufficient to have statistically significant measurements.
If the performance is measured using self-play a few thousands of games are
needed (as argued in [42, 43]). Thus with the score difference the performance
can be measured an order of 100 times faster. For the intensification criterion,
the performance is estimated using 100 positions.

The values for the limit on ncount() correspond to the number of nodes used
by the regular search (i.e., without forward pruning), searching until a reference
depth (4, 5, 6, 7, and 8).

The set of possible FPV values in the experiments was {1, 2, 3, 4, 5, 10, 20,
30, 40, 50, all}. The reference search depth was varied between 4 and 8. The
length of the FPVs (and thus the search depth when forward pruning is used)
was 1 more than the reference depth. For each reference search depth and each
FPV variant a different TS-FPV run is performed searching for the best FPVs.

4.4.5 Experimental results with CRAFTY

In the third experiment, we measured the performance of the FPVs for the
three FPV variants in the CRAFTY environment. The performance of the best
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Figure 4.5: The performance (score difference) of the best FPVs and the 1-ply-
deeper searcher as a function of the search depth.

FPVs for the three FPV variants and the performance of the 1-ply deeper full-
width searcher is plotted in Figure 4.5. The performance of the reference search
depth is always 0. By analysing the plot, we observed that out of the three
FPV variants the best was FPV-l, then FPV-it, and then FPV-d. Naturally,
by investigating much larger trees, the full-width searcher given an extra ply
performed better than all three FPV variants (which is in accordance with the
assumption formulated in equation 4.3). Compared to the reference value (i.e.,
0), FPV-l performed better for all search depths except depth 8. The weaker
performance for this depth might be due to the fact that in the time available
for the experiment TS-FPV investigated only a small percentage of the critical
solutions.4 Thus, it is possible that some of the unexplored critical solutions had
a better performance than 0. If this is not the case, then forward pruning using
FPVs is too ‘risky’ for deeper searches (the gain of an extra ply is outweighed by
the mistakes made by ignoring some moves). FPV-it had a similar performance
as the reference value, and FPV-d performed worse most of the time. The odd-
even oscillation for both FPV-l and FPV-it is interesting to observe. For FPV-l
it is in the same ‘phase’ as the odd-even oscillation of the 1-ply deeper search,
but for FPV-it it is reversed.

As an illustration, we consider the best FPV values for reference search depth
7 and their performances (see Table 4.2). The best FPVs are given in more detail
in appendix D.2. Table 4.2 has three subtables corresponding to the three FPV
variants. In each subtable, the first entry specifies the performance of the 8-ply
full-width searcher (in italics), and the next five entries the performance of the

4The time necessary for evaluating the performance of an FPV grows exponentially with
the search depth. This restricts the number of critical FPVs evaluated for deeper searches.
Additionally, the number of critical solutions of the FPV space also grows exponentially with
the search depth (i.e., the length of the FPVs). Thus, the deeper the search, the smaller the
fraction of investigated critical FPVs and total number of critical FPVs.
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FPV-d
FPV values performance
all all all all all all all all 1.2
all 5 20 all all 4 10 20 -0.96
all 20 20 40 10 10 20 5 -1.06
4 5 all 10 30 all all all -1.12
all 4 all 30 all 10 5 20 -1.24
3 10 all 20 20 20 all all -1.24

FPV-it
FPV values performance
all all all all all all all all 1.2
all 20 all 3 all 10 10 20 0.18
10 30 5 40 40 5 50 10 -0.68
all all all all all 30 30 10 -1.11
10 2 2 4 4 30 all 5 -2.96
all all 20 2 10 30 all 5 -3.08

FPV-l
FPV values performance
all all all all all all all all 1.2
all 3 all 30 10 10 all 20 0.25
10 10 10 all 20 10 all 20 0.09
10 4 10 10 all all all 20 0.09
4 10 20 30 20 10 all 20 0.06
20 5 all 30 10 10 all 20 0.00

Table 4.2: FPV values and performances of the three variants for reference
search depth 7.

top five FPVs found by the TS-FPV algorithm. We recall from subsection 4.4.4
that only after the first silent move a forward pruning is considered, and thus,
the values of the FPVs indicate the number of investigated silent moves. The
FPV-d investigates all silent moves in the root, 5 at depth 1, 20 at depth 3,
all at depth 4, all at depth 5, 4 at depth 6, 10 at depth 7, and 20 at depth 8.
The performance of this vector is −0.96. The best FPV-it investigates all silent
moves in the 1st iteration, 20 in the 2nd, all in the 3rd, 3 in the 4th, all in the
5th, 10 in the 6th, 10 in the 7th, and 20 in the 8th. The performance of this
vector is 0.18. The best FPV-l investigates all silent moves at a distance of 8
from the leafs, 3 at a distance of 7, all at a distance of 6, 30 at a distance of
5, 10 at a distance of 4, 10 at a distance of 3, all at a distance of 2, and 20 at
a distance of 1. The performance of this vector is 0.25. These three FPVs are
illustrated in Figure 4.6.

Out of the three FPV variants, the most interesting one is FPV-l (since it has
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Figure 4.6: The best FPV of each variant for reference depth 7: (a) FPV-d, (b)
FPV-it, (c) FPV-l.

the best performance). For this variant we observe that the last two values of
the best FPVs are all and 20. This pattern can be noticed for the three deepest
searches in Table D.4. A reason behind this might be that the last value has to
be relatively low otherwise the FPV is infeasible, and the one-but-last value is
collecting the ‘full’ information in the next iteration.

4.5 Experiments with RL-FPF

This section describes the experiments with the RL-FPF algorithm. The RL-
FPF algorithm depends strongly on the search algorithm. Therefore, we tested
the RL-FPF algorithm only in the CRAFTY environment, which has the most
well-tuned search algorithm. First, we describe the experimental set-up, with
additional focus on the search parameters. This is followed by the experimental
results.

4.5.1 Experimental set-up

To test RL-FPF in chess we have to include it in a chess program, we have to
choose a representation for the FPF and we have to select the search parameters
which are the input for the FPF. The chess program used is CRAFTY. We chose
to represent the FPF as a neural network without a hidden layer. The reason
to exclude a hidden layer was that the search would be very slow otherwise
(a similar consideration as for the Neural MoveMap heuristic). The output of
the neural network represented the choice of pruning at different ‘checkpoints’.
These checkpoints imply that we do not test for pruning before each move (that
would be too time consuming), but only from time to time. Checkpoints were
after 1, 2, 3, 4, 5, 10, 20, 30, 40, and 50 silent moves. If the decision suggested by
the FPF was to prune, the remaining moves were not investigated. The search
parameters were encoded in the input of the FPF. Since there is no hidden layer,
to enhance the representation ability of the FPF we used very sparse encoding
for most of the search parameters. For integer search parameters that have a
small range we used binary encoding, with one unit for each possible value. For
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numerical search parameters with a large scale we used either one unit or a
‘digital’ encoding. The digital encoding uses one unit for each power (e.g., for
the number 524 using base 10 and the maximum value 1000, we use three units
with the first unit having value 5, the second 2, and the third 4).

The list of search parameters tested in our experiments is the following.

• IT (binary encoding): iteration number

• SD (binary encoding): the search depth of the current node

• D2L (binary encoding): distance to the leaf

• NCOUNT (digital encoding or 1 unit): number of nodes investigated so
far

• ED (digital encoding or 1 unit): the remaining search depth of the current
node including the extensions 5

• NVC (binary encoding): number of times the value of the current node
has been changed

• SVC (digital encoding): the sum of the move numbers (i.e., the order in
the move list) when the value of the current node has been changed

• MOSCORE (digital encoding or 1 unit): the move ordering score of the
next move to investigate (using the history score, the neural network’s
score or the weighted combination of the two)

• HASH (2 units): one of the units represents whether a transposition move
was available and the second whether the score of the transposition move
is still the best

• BOARD (raw encoding): the board position

For training the FPF we used RL-FPF with the RPROP update rule. We
tuned the ratios between rperf and rncount, and between rncv and rcv, respec-
tively, using the shallowest depth (4), with only a few epochs. Essentially, the
weights of FPF were modified very fast so that it reaches a region where the
ncount() was relatively stable afterwards (the region that in TS-FPV would be
considered as a border region). The ratio between rperf and rncount had to be
set in such a way that the ncount() in this region overlaps with the desired
limit on ncount(). The ratio between rncv and rcv was tuned in a similar way,
but with rperf and rncount being set to 0 (otherwise they would dominate).
Moreover, the weights of the neural network were tuned using a learning set
consisting of 3,000 positions selected in a similar way as the the test positions
described in subsection 4.4.4.

The performance was measured and the value for the limit was set in the
same way as described in subsection 4.4.4, using the same test positions. The
test positions were different from the positions included in the learning set.

5This is the variable named ‘depth’ in CRAFTY. The parameters SD and D2L are disre-
garding the fractional extensions, and thus are somewhat different from ED.
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4.5.2 Experimental results

In the following we describe two experiments: a preliminary experiment for
selecting the most beneficial search parameters, and the main experiment for
measuring the performance of the FPFs.

Selecting the search parameters

In the preliminary experiment, we tested which search parameters would be ben-
eficial for the RL-FPF algorithm. The most beneficial search parameters proved
to be IT, SD and D2L. The parameters ED (using digital encoding), NVC and
HASH were also useful, although their effect was not very significant. The pa-
rameters NCOUNT, SVC and MOSCORE were not improving the performance
at all for any of the available encodings. The parameter BOARD had a more
special effect on the performance. It was very useful for improving the perfor-
mance on the learning set, but very harmful on the test set. More precisely, it
was the only search parameter that caused overfitting (and a very significant
one!). Obviously, if the overfitting problem could be avoided, BOARD would
be one of the most important and useful search parameters to use in the input.
However, overfitting can be avoided only by training with a large number of po-
sitions that are sufficiently diversified. This was done for the Neural MoveMap
heuristic by investigating millions of different positions. Yet, it cannot be done
in this framework, since searching all these positions time and again is extremely
time consuming.

We tried to overcome this problem by off-line preprocessing. First, we col-
lected the information from the searches (using a larger number of positions).
Then, we trained a neural network in a supervised way to predict whether a
value change would occur in the ‘current’ node. This would effectively tune
the weights for the third and fourth component in equation 4.13. After this
preprocessing part the weights connected to BOARD were frozen, and RL-FPF
was used to train the rest of the weights. Although this approach solved the
problem of overfitting, it did not improve the performance at all. Despite of our
failure to make this approach work satisfactorily, we believe that it is a promis-
ing line of future research, provided that a suitable mechanism is developed for
collecting the training information for the supervised learning.

The performance of the FPFs

In the main experiment, we measured the performance of the FPFs resulting
from the RL-FPF algorithm. This experiment used the search parameters IT,
SD, D2L, ED, NVC and HASH. The performances of the FPFs corresponding
to the different search depths are plotted in Figure 4.7. Again, the performance
of the reference full-width searcher is 0. Additionally, the performances of the
1-ply-deeper searcher and the performances of the best FPV-l’s are also plotted
for comparison. We observed that the FPFs had superior performance to that
of the FPV-l’s, but was still worse than the 1-ply-deeper searcher (which is
consistent with the assumptions formulated in equations 4.7 and 4.8).
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Figure 4.7: The performance of the FPF, the best FPV-l and the 1-ply-deeper
searcher as a function of search depth.

4.6 Chapter conclusions

This chapter considered the problem of forward pruning, one of the instances
of the class-S search decisions. Two new learning algorithms were proposed:
TS-FPV and RL-FPF. TS-FPV is (one of) the first learning algorithms that is
designed for discrete class-S search decisions. It uses a tabu-search algorithm
to explore the space of the FPVs focusing on the most promising solutions:
the critical FPVs. RL-FPF is a reinforcement-learning algorithm for tuning
FPFs. The optimisation method of RL-FPF is similar to that of [14], but RL-
FPF approximates the derivatives at once and does not need a cycle for each
weight separately. As a consequence, the algorithm can tune an arbitrarily large
number of weights without increasing significantly the learning time.

Both TS-FPV and RL-FPF rely on a partial ordering of their representation
of the forward-pruning decision (and accordingly on the monotonicity assump-
tions). Under these assumptions both TS-FPV and RL-FPF are focusing their
efforts on the most promising solutions (FPVs or FPFs), that are in the border
region between the infeasible and feasible solutions. This focused behaviour
gives the two algorithms some advantage over the more ‘random’ algorithms
such as the evolutionary approach used in [77].

From the experiments we conclude that both TS-FPV and RL-FPF are able
to tune a forward-pruning scheme superior to full-width search. The FPFs
obtained from RL-FPF outperformed the best FPVs resulting from TS-FPV.
This result is most likely due to the additional representation capabilities of the
FPFs. Regarding the details of the representations for the two algorithms, we
conclude the following: (1) out of the three FPV variants tested, the best is
FPV-l, which uses the same value at a certain distance to the leaves; (2) for the
FPFs, the most beneficial search parameters are the iteration number (IT), the
search depth of the current node (SD), and the distance to the leaf (D2L).



Chapter 5

Time allocation

This chapter is partially based on L. Kocsis, J.W.H.M. Uiterwijk, and H.J.
van den Herik. Learning time allocation using neural networks. In T.A.
Marsland and I. Frank, editors, Computers and Games, Proceedings of the
2nd International Conference CG 2000, Lecture Notes in Computers Science
2063, pages 170–185. Springer-Verlag, Berlin, 2001.1

During a game a player has many times to decide which move to make. In most
game programs the decision is made by a search engine. The search requires
time, and in every game, a player is limited by a certain amount of time available
for the whole game. The division of the (remaining) time over the moves still
to be made in the game is called time allocation. The time allocated for a move
often influences the choice of the move. In some positions the choice of the
move is obvious, while in other positions it is more difficult to decide on which
is the best move. Moreover, in some positions a move can be crucial for the
outcome of the game, while in others making a slightly suboptimal move will
not influence the result. Thus one might argue that it is important to use the
time for those positions for which it has the most impact.

In the following we determine to which class time allocation belongs. A
time-allocation mechanism is good if sufficient time is taken on the important
moves, i.e. those moves that have a larger influence on the result. When a move
is made, the influence of the move on the outcome of the game is not known.
Thus, the way to evaluate a time-allocation mechanism is to play out the game
using the mechanism and observing the outcome. Consequently, time allocation
is an instance of class-G search decisions.

The chapter is organised as follows. In section 5.1, we describe the ex-
isting time-allocation techniques. In section 5.2, we introduce two algorithms
for learning time allocation. Both algorithms can be applied for any class-G
search decision. The experiments with time-allocation algorithms are described
in section 5.3. Section 5.4 presents the conclusions.

1The author would like to thank Springer-Verlag and his co-authors for the permission of
reusing relevant parts of the article in this thesis.
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5.1 Existing techniques

In game programs, allocating time can be perceived as deciding on how deep
the search should be. Based on this idea, the time-allocation mechanisms can
be divided into three groups [69]:

• static mechanisms (mechanisms that decide the depth before starting the
game);

• semi-dynamic mechanisms (mechanisms that decide the depth before the
search);

• dynamic mechanisms (mechanisms that can change the depth during the
search process).

In the following we will overview the time-allocation mechanisms according to
this division.

5.1.1 Static time allocation

Most game programs have the possibility to set the search depth to a fixed value.
The disadvantage of static time allocation is that it disregards anything specific
to the positions. Therefore, it is rarely used for tournament play. However, static
time allocation is frequent for experimental environments (e.g., [43]), since it is
providing stable testing conditions.

5.1.2 Semi-dynamic time allocation

Semi-dynamic time allocation received some attention from researchers studying
learning algorithms. In the following we mention two such approaches.

The first approach employs a context-sensitive classifier to recognise the class
of positions which gain from extra search [69]. The system was implemented
in the domain of checkers with some promising success. The drawback of this
approach is that it does not take into the account the influence of the move on
the outcome of the game.

The second approach uses reinforcement learning for choosing the search
depth depending on the speed of the pieces in the game of tetris [38]. The work
reported on this approach still appears to be in early stages.

5.1.3 Dynamic time allocation

Most game programs are using a hand-tuned dynamic time-allocation mecha-
nism. A major example is Hyatt’s publication [48]. It considers some manually
programmed enhancements to a time-allocation mechanism on the basis of the
backed-up minimax value.

Some specific search algorithms have built-in time-allocation mechanisms.
Notable examples for this category are BPIP, Multi-ProbCut and null-move
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pruning (see below). Besides these mechanisms some of the move-extension
schemes can be perceived also as time-allocation mechanisms.

BPIP (Best Play for Imperfect Player) [7] employs an evaluation function
that returns a probability distribution estimating the probability of various er-
rors in valuing each position. Using the probability distribution the algorithm
estimates the utility of the expansion of each leaf. It allocates extra time only if
the expected gain from the extra search is higher than the “cost of time”. The
cost of time is a function of the remaining time and the number of moves to be
made.

In Multi-ProbCut [18] a sequence of shallow searches is performed to detect
whether a certain subtree will affect the minimax value of the root. If it is
unlikely to affect the root value, the subtree is pruned, saving the time for
probably more relevant lines.

The use of shallow searches for forward pruning appears also in adaptive
null-move pruning [41]. In this case one side can make two moves in a row,
and if in this way it still cannot achieve anything, this line will be pruned. The
depth of the null-move search can vary with the depth of the position in the
search tree or with some specific features of the position.

5.2 Learning time allocation

Time allocation is an instance of class-G search decisions. Hence time allocation
is in the most general class of search decisions (see subsection 1.2.1). Below,
in subsection 5.2.1 we will note that learning search decisions is a meta-level
problem, and we will outline some of the properties of the meta-level problem.
Then, in the following two subsections we propose two learning algorithms for
class-G search decisions, which can be applied for time allocation. The first,
described in subsection 5.2.2, is using the meta-level version of the actor-critic
architecture. The second, described in subsection 5.2.3, is using the standard
framework of a genetic algorithm.

5.2.1 The meta-level decision problem

In a game, the player to move has to select among several possible actions (the
legal moves in the position). Selecting a move is termed an object-level decision
problem. The player to ‘solve’ the object-level problem is searching in the space
of possible continuations. During the search, it faces decisions that influence
which possible continuations are investigated. These search decisions constitute
a meta-level decision problem. The object-level search which is carried out as a
consequence of a meta-level decision is termed meta-level action.2

When the player selects an object-level action (i.e., makes a move), it does
so by comparing the utilities (or the approximation of the utilities) of these

2For instance, if at meta level it is decided for investigating a subtree up to a certain depth,
then the search that investigates the subtree is a meta-level action. Often, a meta-level action
is termed also a computational action.
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actions. The utility or value of an action provides a prediction of the game
result, if the action is taken. If the player is rational, it chooses the action
that maximises the utility. Similarly to the object-level actions, the meta-level
actions can be assigned utilities. The utility of a meta-level action derives from
the time required for completing the meta-level action and the utility of the
possible change of the player’s intended object-level action. Again, if the player
is rational, it chooses the meta-level action that maximises the utility of the
meta-level action.

In the following, we outline two properties of meta-level problems. The first
property of a meta-level problem is its increased complexity compared to that
of the object-level problem. The size of the object-level space is the number of
possible positions. The size of the meta-level space is the number of possible
partial searches preceding the search decision in all possible positions. Thus the
complexity of meta-level problems is usually much higher. The high complexity
makes it intractable to compute the utilities of the meta-level actions. Even
the currently available approximation methods are insufficient (e.g., MGSS [92]
fails for search trees with conspiracy numbers [73] higher than 1). An attractive
alternative to these algorithms is improving the selection between the meta-level
actions through learning.

The second property of meta-level problems is that when there are more
meta-level actions between two object-level actions they are approximately com-
mutative [92] (e.g., it is not important which subtree is generated first if each of
them will be investigated). This property influences the design of the learning
algorithm described in subsection 5.2.2.

5.2.2 The Meta-Actor-Critic algorithm

In this subsection we introduce a value-prediction reinforcement-learning algo-
rithm for search decisions.

At the object level, value-prediction algorithms are trying to approximate
the value of a state (i.e., position) or of a state-action (i.e., the pair consisting
of a position and a move in the position). If the values of the states are known,
then an action is chosen by expanding the actions into subsequent states, and
comparing the values of these states. In games, this is done by the usual search
routines. If the values of the state-action pairs are known, the action can be
selected directly by comparing these state-action values.

At the meta-level, testing each search decision is usually too time consuming.
This requires the explicit computation of the state-action values [38].

When using reinforcement learning to learn the values of the search decisions,
a basic idea is to reinforce the search decisions leading to a won game. The
usual problem for reinforcement learning is how to distribute the credit over
the decisions taken in the game. This is the first problem to solve. The second
problem is the long lag before the reward, which can occur if the episode is
long. The episode at the meta level has an other length than the episode at the
object level (which is exactly the length of the game). The meta-level episode
consists (also) of the search decisions taken, and the searches performed as a
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Figure 5.1: Actor-critic architectures. In both architectures the critic learns
the state-values of the object-level problem using the reward provided by its
environment.

consequence. Thus, the meta-level episodes are usually longer than the object-
level episodes (for some search decisions even much longer).

A solution to these two problems may come from the use of the TD error
(see appendix A.1) of the object-level state value (i.e., the evaluation function)
as a reward. In this case, we will reinforce those decisions that improved the
position. Since the meta-level actions between two moves are approximately
commutative the credit assignment can be made uniformly.3

The use of TD error as a reward leads us to an actor-critic architecture, where
the evaluation function is the critic and the part that learns the search decisions
is the actor. There are two main differences between the classic actor-critic (e.g.,
[63, 105, 106]) (Figure 5.1a) and the resulting meta-actor-critic architecture
(Figure 5.1b). First, the state space where the actor operates can differ from
the state space of the critic (usually the first includes the latter). Second, there
can be more than one decision of the actor between two ‘signals’ from the critic.
The first difference does not create a problem since the evaluation function still
predicts the overall performance of the complete program. The second one is
solved by the commutative nature of the meta-level actions.

To avoid the influence of the inaccuracy in the evaluation function on the
final search policy we can use eligibility traces with the same eligibility factor
as the discount rate of the critic [55]. The use of the eligibility also helps if the
original problem is transformed into a POMDP [53].

Using the considerations above, we introduce the update rule for learning a
search policy. The update rule is similar to the temporal-difference update rule

3We will investigate experimentally in subsection 5.3.2 whether the uniform credit assign-
ment is suitable for multiple search decisions between two moves.
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using eligibility traces [105]. It reads

∆vi(tk) = α · δ(tk) · evi(tk) (5.1)

evi(tk) = β · evi(tk−1) +
tk∑

τ=tk−1

∂

∂vi
(y(τ) · d(τ)) (5.2)

where vi denotes a weight of a neural network4 implementing the search decision,
evi is the associated eligibility, tk is the time sequence of the external actions, τ
denotes the moments of the search decisions, δ is the TD error5 of the critic, α
is the learning rate of the actor, β is the discount factor for the eligibility trace,
y is the output vector, and d is the direction of the performed search decision
associated to y with:

di =




1, if a high value of yi is required
−1, if a low value of yi is required

0, if the ith output unit does not influence the decision
(5.3)

To illustrate how the values for d are set, let us consider a meta-level with
five search decisions (sd1..sd5) and a search state where only the first three
(sd1, sd2, sd3) are possible. If we encode the search decisions using five out-
put units (y1..y5), and assume that the choice among them is made with the
use of the maximum operator, then the direction vector associated to sd1 is
(1,−1,−1, 0, 0), to sd2 is (−1, 1,−1, 0, 0) and to sd3 is (−1,−1, 1, 0, 0).

The learning algorithm that uses equations 5.1 and 5.2 for updating the
search policy we call the Meta-Actor-Critic (MAC) algorithm.

For illustration, the pseudo code of the algorithm for a semi-dynamic time
allocation is given in Figure 5.2. The code consists of a main loop that iterates
over a number of games (NG). Inside the main loop there is a second loop that
iterates over the moves of one game. The game is played between two sides, viz.
the side that learns a time-allocation mechanism, and an opponent. When the
learning side is to move, four tasks are performed: (1) a search depth (sd) is
selected (2) the eligibilities are updated, (3) the weights are updated, and (4) a
move is selected using a search routine. The search depth is selected depending
on the output of the neural network (�y). Assuming one output unit for each
possible search depth, the selected depth is the one corresponding to the output
unit with the highest value. Occasionally, the depth is selected random. The
eligibilities are updated according to equation 5.2, with the direction vector
having 1 for the selected search depth, and −1 for th rest. If the next move
is not the first move to be made by the learning side, the weights are updated
using equation 5.1. In the equation, the TD error of the critic is replaced by
the difference between the state value of the current position, V , and the state

4The update rule is given for a neural network, but it can be used for other differentiable
function approximators as well.

5If the critic estimates the outcome of the game and not the ‘reward’, then we must use
the negamax value of the evaluation function.
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initialise �v;
for (g = 0; g < NG; g++) {

startgame;

while (not gameover) {
if (learning side to move) {

/* select search depth */

set the input of the neural network;

compute �y;

select sd;

/* update eligibility */

forall j: dj = (sd == j)?1 : −1;

�ev = �ev + ∂(�y · �d)/∂�v;

/* update weights */

compute V ;

if (not first move)
�v = �v + α · (prev − prevV ) · �ev;

prevV = V ;

/* search and move */

move = search(sd);

makemove(move);

}
else {

move = getmove();

makemove(move);

}
}
�v = �v + α · (result − prevV ) · �ev

}

Figure 5.2: Pseudo code of the MAC algorithm for semi-dynamic time alloca-
tion.

value of the previous position, prevV . The state value of the position is some
function of the evaluation function.6 The selection of the move uses the search
engine of the game program with the selected depth.

If the MAC algorithm is used for dynamic time allocation, then the first two
tasks of the pseudo code are inserted in the search engine at the place where
the search depth is decided.

5.2.3 Genetic algorithms for time allocation

In subsection 5.2.2, we argued that a meta-level policy has to use state-action
values. The approach taken to learn these values was that of value-prediction
methods, that lead us to the Meta-Actor-Critic algorithm. An alternative to

6More details about state values are provided in appendix A.1. An example of function
that maps the evaluation function to state values is given in equation 5.4.
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value-prediction methods is to use genetic algorithms.
If we use genetic algorithms to evolve a neural network that implements the

search policy, then the fitness assignment to a certain player is not different
from the case of learning evaluation functions (i.e., some function of the game
result).7 A genetic algorithm that can evolve neural networks is SANE (see
appendix A.2). In the experiments, when we apply SANE for learning time
allocation, we refer to it as the SANE-TA algorithm.

5.3 Experiments

This section describes the experiments with the time-allocation algorithms. In
subsection 5.3.1, we compare experimentally the two learning algorithms for
time allocation, viz. the MAC algorithm and the SANE-TA algorithm. In
this subsection, the two learning algorithms are compared for the case of semi-
dynamic time allocation. The performance of the MAC algorithm can be influ-
enced by the presence of multiple search decisions during the search (cf. foot-
note 3). Multiple search decisions appear only for dynamic time allocation.
The experiments with the MAC algorithm for semi-dynamic and dynamic time
allocation are described in subsection 5.3.2. Subsection 5.3.3 compares the per-
formance of the MAC algorithm with the performance of existing time-allocation
mechanisms. For illustrating the difference among time-allocation mechanisms
an example is provided in subsection 5.3.4.

5.3.1 Comparison of the two learning algorithms

In this subsection, we compare experimentally the MAC algorithm and the
SANE-TA algorithm in terms of performance and learning time. For the exper-
iments, we employ the NN-population environment.

Experimental set-up

The two learning algorithms (viz. the MAC algorithm and the SANE-TA algo-
rithm) are employed for learning a time-allocation mechanism. For each learning
algorithm we measure the performance of the time-allocation mechanism and
the training time.

The performance of a time-allocation mechanism is measured as the tour-
nament performance of a test player using the time allocation. The better
time-allocation mechanism results in a better tournament performance. The
tournament performance of the test player (taken from the set of 100 players
described in section 2.1.2) is measured in games played with both colours against
the whole set (a total of 200 games). At each move three search depths are avail-
able (for decision) for the test-player: 1, 2 or 3.8 The opponents are searching

7An example of choosing the fitness function for learning evaluation functions is described
in appendix B.

8Time constraints on the experiments did not allow us to have a greater variety in search
depths.
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always to a depth of 2. The test player is constrained by the time available for
a game. The time constraint is enforced not in seconds but in the number of
nodes evaluated. The amount of nodes available for searching is incremented
with a fix number (incr) after each move and diminished by the amount spent
to decide on the move.9 The value for incr is varied. The starting time is set
to 5 · incr. If the available time is consumed, the test player is forced to move
using the current search tree, without any further evaluations. The advantage
of incremental timing for our experiments is that it already contains a uniform
division of time per move. The task for a ‘wiser’ time-allocation method is to
shorten the search at certain moves to save the time for later when, possibly, it
is more helpful. The opponents of the test player do not have time constraints.

The training time for the two learning algorithms is measured as the number
of tournaments. The time necessary for a tournament is linear in the time
required for a game (or simply linear in incr).

For both learning algorithms the time-allocation mechanism is represented
by a neural network. The input of the network consists of the position and
the available time. The network has three outputs corresponding to the three
search depths. The depth is decided in a winner-takes-all manner.

The time-allocation mechanism trained with the MAC algorithm is denoted
SD-MAC (Semi-Dynamic Meta-Actor-Critic). For the learning algorithm, an
additional momentum term is used in the update rule (equation 5.1). In equa-
tion 5.2 β is set to 0.9 (same as γ for the evaluation functions).

The time-allocation mechanism evolved by SANE-TA is denoted SD-SANE
(Semi-Dynamic SANE). In the algorithm, the fitness value of a neural network
is defined as the tournament performance.

Experimental results

The performances of the two time-allocation mechanisms for different values of
incr are plotted in Figure 5.3. We observe that SD-SANE performs better then
SD-MAC for almost the whole range of values of the increment.

The comparison between the time consumed by the two learning algorithms
is given in Figure 5.4. In the figure, we observe that the time used by SD-SANE,
is significantly higher than that used by SD-MAC. To have a more precise idea
about time, the experiment for one tournament (200 games) took approximately
10 minutes, and thus the last data points for the genetic algorithm took in the
order of some weeks.

5.3.2 Semi-dynamic vs. dynamic time allocation

In this subsection we describe the experiments with the MAC algorithm for a
semi-dynamic and a dynamic time allocation mechanism. A dynamic mecha-
nism is more dependent on the search algorithm. Therefore, we employ the

9The incremental timing is widely used on Internet game servers and, with the help of
electronic clocks, becomes more popular in human tournaments too. Its main benefit is that
it avoids losing on time if a game lasts too long.
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Figure 5.3: The performance of the two time-allocation mechanisms, for varying
available number of nodes/move.

CRAFTY environment, since it has a superior search engine compared to the
other test environments. In the semi-dynamic mechanism, SD-MAC, the search
depth is decided before the search starts. In the dynamic mechanism, Dyn-
MAC, after each iteration of the search it is decided whether to continue with
the next iteration or to stop the search. For both mechanisms a neural network
is used for the decision. The architecture of the two neural networks is explained
below.

Experimental set-up

The experiments require (1) measuring the performance, (2) setting the time
control, (3) choosing the architecture of the two neural networks, and (4) setting
the parameters of the MAC algorithm. The first two are necessary for the
evaluation of the time-allocation mechanisms, and the last two are necessary for
the implementation of the time-allocation mechanisms.

Measuring the performance and the time control using the CRAFTY environ-
ment can be done in a similar way as in the NN-population environment (see
subsection 5.3.1). The performance of a time-allocation mechanism is the tour-
nament performance of the the adapted player that uses the mechanism playing
against a static version of CRAFTY. To ensure variety in the games, 100 differ-
ent starting positions are used. From each position both players start once with
White and once with Black. Thus, the tournament consists of 200 games. The
adapted player is constrained by the time available for the game, enforced in
the number of nodes. As in subsection 5.3.1 incremental time is used, but since
chess games are longer than LOA games, the starting time is set to 10·incr. The
static player is not constrained by time, and searches to a fixed depth, d. The
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Figure 5.4: The amount of time used by the two learning algorithms to reach
the performance plotted in Figure 5.7. The ‘time’ is measured as the number
of tournaments (i.e., 200 games) multiplied by incr.

adapted player always completes a minimal two-ply search, and never searches
deeper than d + 1.

Choosing the architecture of the neural networks for time allocation implies
(1) selecting the input features, (2) choosing the output layer that implements
the decision, and (3) setting the size of the hidden layer. For SD-MAC the
most obvious input features are the board position and the remaining time.
For the board position we use raw encoding. The remaining time is encoded
as the number of nodes left divided by the value of the increment. For Dyn-
MAC, additionally to the board position and the remaining time, we use in
the input the iteration depth, the evaluation score resulting from the last two
iterations and the number of nodes used so far (divided by incr). In SD-MAC
the output represents the choice among the available search depth values. Thus
each output unit corresponds to a value of the search depth (as in subsection
5.3.1). In our set-up, always three values are available. Given that the static
opponent searches to depth d, the three values are: d − 1, d, and d + 1. The
decision in Dyn-MAC is a binary one (i.e., to continue the search or not). Thus,
we use only one output. If the value of the output is higher or equal than 0, the
search proceeds with the next iteration, and if it is lower than 0, the search is
stopped. For both neural networks, we use 10 hidden units.

In the MAC algorithm the neural networks are trained using equations 5.1
and 5.2. Special attention requires the TD error, δ, in the equation 5.1. In the
NN-population test environment this is simply the difference between the eval-
uation score of two consecutive positions in the game. This was so because the
evaluation functions of the NN population were trained by temporal-difference
learning to approximate state values (i.e., the expected results). This is not
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Figure 5.5: The performance of the semi-dynamic and dynamic time allocation
for the MAC algorithm for depth 3.

the case with the evaluation function of CRAFTY and thus the evaluation score
has to be transformed. Empirically, we noticed that using a sigmoidal function
fulfils the requirement. The function is given below.

V (p) =
2

1 + e−0.05·score(p)
− 1 (5.4)

where V (p) denotes the state value of a position p, and score(p) is the evaluation
score of position p returned by the search algorithm. Thus δt = V (pt+1)−V (pt).
For β (from equation 5.2) we use the value of 0.95. Moreover, the update rule
is combined with RPROP (see appendix A.3) using batch learning.

Experimental results

Using the MAC algorithm we trained a neural network for the semi-dynamic
and the dynamic time allocation for two different search depths of the static
opponent: 3 and 5. The resulting performance of the semi-dynamic and the
dynamic time allocation corresponding to depth 3 is plotted in Figure 5.5 for
various values of incr. Similarly, the performance corresponding to depth 5 is
given in Figure 5.6. The interesting range of values for incr in the case of depth
3 is between 100 and 10,000. Below 100 the search will not be able to complete
a minimal two-ply search. Above 10,000 it is possible to complete a four-ply
search for every move. Thus outside of this range of values, the time-allocation
mechanisms have little influence. Similarly, the interesting range of values for
depth 5 is between 1,000 and 100,000.

We observe that the performance of the dynamic time allocation is superior
to the performance of the semi-dynamic one for both search depths and most
values of incr. Thus, we conclude that the MAC algorithm is able to use the
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Figure 5.6: The performance of the semi-dynamic and dynamic time allocation
for the MAC algorithm for depth 5.

additional freedom in the dynamic time allocation, and it is not hampered by
multiple search decisions during one search process.

5.3.3 Performance of the Meta-Actor-Critic algorithm

In this subsection, we compare the time allocation resulting from the MAC algo-
rithm to other time allocation mechanisms. In the NN-population environment,
we compare the MAC algorithm to (1) a static time allocation, (2) a theoret-
ical bound on the performance of semi-dynamic mechanisms which learn the
“boards worth extra search” [69], and (3) SD-SANE. In the CRAFTY environ-
ment we compare the MAC algorithm to (1) a static time allocation, and (2)
the time allocation of CRAFTY.

Experimental set-up for the NN population

The experimental set-up is roughly the same as in subsection5.3.1. Additionally
to SD-MAC and SD-SANE, we measure the performance of two more time-
allocation mechanisms: static and SD-ES (see below). Thus, in total we have
four time allocation mechanisms.

The first mechanism is called static (cf. subsection 5.1.1). For each of the
three possible search depths a performance is obtained. The resulting perfor-
mance of the mechanism is the best performance for the three individual depths.

The second mechanism, SD-ES (Semi-Dynamic Extra-Search), implements
a theoretical bound on the performance of semi-dynamic mechanisms which
learns the “boards worth extra search” [69]. More precisely, the SD-ES searches
to depth k + n (instead of k) only if the extra search alters the move choice.
This information is not available before the k+n-ply search, so it is necessary to
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Figure 5.7: The performance of the four time-allocation mechanisms, for varying
available number of nodes/move.

learn which boards will gain from extra search. For our experiments we assumed
that we have an oracle. The oracle compares the move choices for both search
depths. If the two choices are identical, it will suggest depth k, otherwise k +n.
The search resource consumed by the oracle is not counted for the player. For
k we use depth 1 or 2, and n is set to 1. The choice between the two values for
k is made in a similar way as for the static mechanism.

The third and fourth mechanism (SD-MAC and SD-SANE) were described
in subsection5.3.1.

Experimental result for the NN population

The performances of the four time-allocation mechanisms for different values of
incr are plotted in Figure 5.7. The performance of the static mechanism should
be interpreted as the maximum of the three curves (corresponding to the three
possible depths). The performance of the SD-ES mechanism is represented as
the combination of the performances corresponding to the two values of k.

Comparing the tournament performances of the four time-allocation mech-
anisms, the static one has the worst results. The relation between the perfor-
mance of SD-MAC and the performance of SD-ES depends on the value of the
increment. None of the two mechanisms appears to dominate the other. Finally,
SD-SANE performs best over the whole range of values of the increment.

Experimental set-up for CRAFTY

The experimental set-up is roughly the same as in subsection 5.3.2. Additionally,
we test two more time allocation mechanisms.
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Figure 5.8: The performance of the time allocation mechanisms in CRAFTY for
depth 3.

The first mechanism is called static (same as in subsection 5.3.1). For each of
the possible search depths a performance is obtained. The resulting performance
of the mechanism is the best performance for the three individual depths.

The second mechanism is the time allocation of CRAFTY. We denote this
mechanism CRAFTY-TA. Roughly, it uses two main variables for stopping the
search on time: absolute time limit and time limit. The search is stopped either
if the search used already more time than absolute time limit or it exceeded
time limit and the current evaluation score is not significantly worse than the
last evaluation. In our implementation, we enforce the time in nodes searched.
The values for the two (modified) variables is given below.

node limit = inc + rem nodes/35

absolute node limit = rem nodes

where rem nodes is the number of remaining nodes. The time-allocation mech-
anism used in CRAFTY is described in more detail in [48].

Experimental results with CRAFTY

The performance of the static, the CRAFTY-TA, and the Dyn-MAC time alloca-
tion corresponding to search depth 3 is plotted in Figure 5.8 as function of the
values of incr. The performance of the static mechanism should be interpreted
as the maximum of the three curves (corresponding to the three possible depths,
viz. 2, 3 and 4). The performances of the three time-allocation mechanisms cor-
responding to search depth 5 are plotted in Figure 5.9.

Comparing the static time allocation with the time allocation of CRAFTY,
we observe that their performances are rather similar. This is most likely due to
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Figure 5.9: The performance of the time allocation mechanisms in CRAFTY for
depth 5.

the incremental timing that favours the static time allocation. The Dyn-MAC
mechanism improves on the existing time allocation in CRAFTY for almost all
values of incr in the range of interest.

5.3.4 Example for time allocation

In this subsection we provide an example for time allocation. In the exam-
ple we compare three time-allocation mechanisms: (1) static with depth 6, (2)
CRAFTY-TA, and (3) Dyn-MAC (see subsection 5.3.3). We use the experi-
mental set-up for CRAFTY described in subsection 5.3.3, with search depth 5
and increment 10,000 (cf. Figure 5.9). The player that uses one of the three
time-allocation mechanisms plays White starting from the position given in Fig-
ure 5.10a. The position was reached after 10 moves. The games played by using
the three mechanisms are given in Figure 5.11. Besides the moves we provide
the search depth in brackets until the point where bifurcation taken place (move
12 and 21).

We observe that the static player searched on move 11 to depth 6, and
left almost no time for the next move which had to be searched to a depth
2 only. This move (12. Bf4; see Figure 5.10b for the position) is most likely
not a very good one, and later the game was lost by White. CRAFTY-TA
and Dyn-MAC started with a shallower search than the static-depth player,
and were able to make the right decision at move 12. The two followed the
same sequence of moves until move 21 (Figure 5.10c). Although they made the
same moves, Dyn-MAC continuously searched fewer plies than CRAFTY-TA,
which made it possible to do a 6-ply deep search on move 21. The move made
by Dyn-MAC (21. Kg2, with the idea of h3) appears somewhat superior to
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Figure 5.10: Critical positions for time allocation: a) starting position at move
11 (WTM), b) position at move 12 (WTM), c) position at move 21 (WTM).

static depth 6 – CRAFTY
11. Qf3 (6) h6 12. Bf4 (2) Bg4 13. Qg3 d4 14. Ne4 Nxe4 15. Qxg4 Nf6 16. Qf5 Bd6 17. Bd2
Qd7 18. Rfe1 Qxf5 19. Bxf5 Rab8 20. b3 Rfe8 21. f4 g6 22. Bd3 Nd5 23. Be4 Bxf4 24. Bxf4
Nxf4 25. Bxc6 Rec8 26. Be4 f5 27. Bd3 Nxd3 28. cxd3 Kf7 29. Rac1 Rc3 30. Kf2 Re8 31.
Rxe8 Kxe8 32. Rxc3 dxc3 33. Ke2 h5 34. Kd1 h4 35. Kc2 h3 36. g3 Kd7 37. Kxc3 g5 38.
Kd4 Kd6 39. b4 a6 40. a4 Ke6 41. b5 a5 42. Kc5 f4 43. gxf4 g4 44. f5+ Kd7 45. b6 g3 46.
hxg3 h2 47. Kb5 h1=Q 48. Kxa5 Qd5+ 49. Ka6 Kc6 50. g4 Qd8 51. Ka7 Qxb6+ 52. Ka8
Qb7 0-1

CRAFTY-TA – CRAFTY
11. Qf3 (5) h6 12. Bxf6 (4) Qxf6 13. Qxf6 (5) gxf6 14. Na4 (5) Re8 15. c3 (5) Bd6 16. Rfe1
(5) Be6 17. b4 (5) Be5 18. g3 (5) Rab8 19. Rac1 (5) Bg4 20. Nc5 (5) Bd6 21. Na6 (4) Rbc8
22. Nc5 Rxe1+ 23. Rxe1 Be5 24. Rc1 Re8 25. a4 Bh3 26. Re1 Be6 27. Rc1 Bg4 28. f4 Bd6
29. Kf2 Bxc5+ 30. bxc5 Kf8 31. Re1 Rxe1 32. Kxe1 Ke7 33. a5 h5 34. Kd2 Ke6 35. Ke3
Bf5 36. c4 Bxd3 37. Kxd3 dxc4+ 38. Kxc4 a6 39. Kd4 f5 40. Kc4 Ke7 41. Kd4 f6 42. Kd3
Kd8 43. Kc4 Kd7 44. Kc3 Kd8 45. h3 Ke7 46. Kc4 Kd7 47. Kd3 Ke7 48. Ke3 Kd7 49. Kd3
Ke7 50. Kc4 Kd7 51. Kc3 Ke7 52. Kd3 Kf7 53. Kc4 Ke7 54. Kd3 Kf7 55. Kc4 Ke7 56. Kc3
Kf7 57. h4 Ke7 58. Kd3 Ke6 59. Kd4 Kd7 60. Kc3 Ke6 61. Kc4 Ke7 62. Kd3 Kd7 63. Kc3
Ke6 64. Kd4 Kd7 65. Kd3 Kc7 66. Kc3 Kd7 67. Kd3 Kc7 68. Kc4 Kd7 69. Kb3 Kc8 70.
Kc4 Kd7 71. Kd4 Ke6 72. Kc4 Kd7 1/2-1/2

Dyn-MAC – CRAFTY

11. Qf3 (4) h6 12. Bxf6 (4) Qxf6 13. Qxf6 (4) gxf6 14. Na4 (5) Re8 15. c3 (4) Bd6 16. Rfe1

(4) Be6 17. b4 (4) Be5 18. g3 (4) Rab8 19. Rac1 (4) Bg4 20. Nc5 (4) Bd6 21. Kg2 (6) Bxc5

22. bxc5 Kg7 23. Rxe8 Rxe8 24. Rb1 Be2 25. Bf5 Re5 26. g4 h5 27. h3 Re7 28. Kg3 hxg4

29. hxg4 Bc4 30. a3 Re2 31. Rb7 a5 32. Ra7 Re1 33. Rxa5 Rc1 34. Bd7 Rxc3+ 35. Kg2 d4

36. Bxc6 d3 37. Ra8 f5 38. gxf5 d2 39. Rd8 Rd3 40. Rxd3 Bxd3 41. Ba4 Kf6 42. Kf3 Bb5

43. Bd1 Kxf5 44. Ke3 Ke5 45. Kxd2 Kd4 46. a4 Bc6 47. a5 Bb7 48. Be2 Kxc5 49. a6 Bc6

50. Ke3 Bd5 51. Bd3 Bc6 52. f4 Bg2 53. Be4 Bxe4 54. Kxe4 Kb6 55. Ke5 Ka7 56. f5 Kxa6

57. Kf6 Kb5 58. Kxf7 Kc4 59. Ke6 Kd3 60. Ke5 Ke3 61. f6 1-0

Figure 5.11: Example games for time allocation.
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the move made by CRAFTY-TA (21. Na6 with Nc5 back on the next move).
Dyn-MAC eventually won the game, while CRAFTY-TA drew. Of course, the
moves emphasised above are not the only (important) decisions for the results.
We understand that the outcome of the games are influenced by other moves
as well, and also by the moves of the opponent. Nevertheless, the example
provides a clear understanding of the difficulties that an intelligent program
may face when deciding on a search decision.

5.4 Chapter conclusions

This chapter considered time allocation, one of the instances of the class-G
search decisions. We proposed two learning approaches for time allocation.
First, we introduced a new learning algorithm for class-G search decisions, the
MAC algorithm. The algorithm uses a modified actor-critic architecture that
can be used for search decisions. Second, we suggested a genetic algorithm,
SANE-TA, suitable for learning time allocation.

From the experiments comparing the two learning algorithms, we conclude
that with the SANE-TA algorithm a better time-allocation mechanism can be
obtained than with the MAC algorithm, but the time required for training by
the former is significantly higher, and even prohibitive. From the experiments
comparing semi-dynamic and dynamic time allocation, we conclude that the
MAC algorithm is suitable for dynamic time allocation, and is not hampered
by multiple search decisions during one search process. Although the rather
shallow search depths used in the experiments do not allow us to have a definite
conclusion on the performance, we observe that the time-allocation mechanism
resulting from the two learning algorithms achieved comparable or better results
than the existing time-allocation mechanisms investigated (including a well-
tuned time-allocation mechanism).



Chapter 6

Conclusions and future
research

In this thesis we addressed the research problem of improving search decisions
by learning algorithms. In subsection 1.2.1, we introduced a classification of
search decisions in class-P, class-S, and class-G search decisions. Subsequently,
we chose an instance for each class: move ordering for class-P search decisions,
forward pruning for class-S search decisions, and time allocation for class-S
search decisions. The research question formulated in section 1.4 was addressed
by developing learning algorithms for each of the three instances. The experi-
mental results showed that the learning algorithms are capable of improving the
particular instance of the search decisions, and are competitive with the existing
algorithms for the search decisions.

The main conclusions for the three instances of search decisions were given in
the sections 3.5, 4.6, and 5.4. In this chapter we summarise these conclusions (in
section 6.1 to section 6.3) and provide promising directions for future research
(in section 6.4).

6.1 Move ordering

We noted that move ordering is the main instance of the class-P search decisions.
We developed a new move ordering heuristic, the Neural MoveMap heuristic.
The heuristic uses a neural network to estimate the likelihood of a move being
the best in a certain position. The moves considered more likely to be the best
are examined first.

Concerning the details of the heuristic, we concluded that the best choice
to encode the moves in the neural network is to use one output unit for each
possible move of the game. The neural network should be trained with large
learning sets. The learning sets can be labelled either with the game program
or using the moves from a game database. The best approach to use the neural
network during the search is the weighted-combination approach, which orders
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the move according to a weighted sum of the neural-network and the history-
heuristic score of the respective moves.

We have shown that the neural network predicts the best move in chess
almost as often as a 7-ply search of CRAFTY, and more important, by using the
Neural MoveMap heuristic, the search expands smaller trees than the existing
heuristics (specifically the history heuristic) both in the games of LOA and of
chess.

6.2 Forward pruning

Forward pruning is an instance of class-S search decisions. We defined two types
of representations for forward pruning: (1) FPVs, which is a discrete represen-
tation, and (2) FPFs, which is a continuous representation. We developed two
new learning algorithms, designed for maximising the quality of the move se-
lected by the search while keeping the size of the search tree below a specified
limit: the TS-FPV algorithm and the RL-FPF algorithm. The TS-FPV algo-
rithm uses a tabu-search algorithm to explore the space of the FPVs focusing
on the most promising solutions: the critical FPVs. The RL-FPF algorithm is
a reinforcement-learning algorithm for tuning FPFs.

The experimental results showed that the two algorithms are able to tune
a forward-pruning scheme that has a better overall performance than the full-
width search. The FPFs obtained from RL-FPF outperformed the best FPVs
resulting from TS-FPV.

6.3 Time allocation

We remarked that time allocation is a class-G search decision. We proposed
two learning algorithms for time allocation, viz. the Meta-Actor-Critic algo-
rithm and the SANE-TA algorithm. The Meta-Actor-Critic algorithm (MAC)
is a gradient-descent actor-critic algorithm. The SANE-TA algorithm is an
application of a genetic algorithm, SANE.

We concluded that SANE-TA algorithm resulted in a better time-allocation
scheme than the MAC algorithm, but the time required for training by the
former is significantly higher, and even prohibitive. Both algorithms resulted
in a comparable or better time allocation than the existing time allocation
algorithms tested in our experiments. Finally, we concluded that the Meta-
Actor-Critic algorithm is able to use the additional freedom in the dynamic
time allocation, and it is not hampered by multiple search decisions during one
search process.

6.4 Future research

There are two main directions to extend the work described in this thesis: (1)
improving the learning algorithms developed, and (2) extending the learning
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algorithms developed so far to other instances of the same class of search deci-
sions or even to an other class. Below we discuss both directions for each of the
learning algorithms proposed in the thesis.

Improving the Neural MoveMap heuristic. Most of the details of the
heuristic (subsection 3.2.1 to subsection 3.2.3) were studied already, and these
details were well tuned experimentally. Nevertheless, there are a two modifica-
tions that may be beneficial for the heuristic. The first consists of using more
knowledgeable features instead of (or additionally to) encoding the raw board
position in the input of the neural network. The features of the evaluation
function are reasonable candidates for this purpose. The second modification is
related to the learning algorithm. As it was described in the thesis, the heuristic
relies on off-line training. A combination of off-line and on-line learning may
benefit both from the general knowledge of the game and from the specifics of
the position on the board. In the heuristic, the weighted-combination approach
is already adding on-line knowledge (resulting from the history heuristic scores)
to the off-line knowledge of the neural network, but further training the neural
network during the search may be a better way to incorporate on-line knowledge
in the heuristic.

Extending the Neural MoveMap heuristic. It is unlikely that the heuristic
can be used for search decisions other than move ordering.

Improving the TS-FPV algorithm. The algorithm may benefit from ex-
tending the FPV variants. All three variants investigated were rather simple,
and by designing more complex ones the result should be beneficial for the
forward-pruning algorithm. The disadvantage that may result from the more
complex FPV variants is the increase of the cardinality of FPV space, and as
a consequence the increase in time in the optimisation phase. The increase in
time can be diminished if faster ways to evaluate the performance of FPVs are
developed.

Extending the TS-FPV algorithm. The algorithm is easy to be modified
for other class-S search decisions with a discrete representation. It would be
interesting to test the algorithm for choosing the sequence of search depths in
iterative deepening or some of the extension schemes.

Improving the RL-FPF algorithm. The first source for improvement can
be the use of additional search parameters. This was discussed in more de-
tail in subsection 4.5.2. A second source could be the faster evaluation of the
performance of the FPFs.

Extending the RL-FPF algorithm. Modifying the algorithm for class-S
search decisions with continuous representation is possible, but not so straight-
forward as modifying the TS-FPV algorithm. This is because, the algorithm
depends partially on reward terms that are dependent on the search decisions.
For every search decision these reward terms have to be designed. Nevertheless,
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modifying the algorithm for learning search extensions is a promising direction
for further research. The RL-FPF algorithm can be modified for class-P search
decisions, such as move ordering. However, tuning the algorithm for move or-
dering in such a way that it results in a move ordering competitive with the
existing techniques is a rather difficult task.

Improving the Meta-Actor-Critic algorithm. Since the class-G search
decisions have to be evaluated on complete move sequences, the time required
by the learning algorithms for this class is usually high. Although, the Meta-
Actor-Critic algorithm is faster than the genetic algorithms, the training time
is a serious problem. Similarly as for the forward pruning algorithms, speed up
of the algorithm can result only from shortening the time used for evaluation.

Extending the Meta-Actor-Critic algorithm. The algorithm may be ex-
tended for any search decision with continuous representation, independently of
the class it belongs to. However, there are two difficulties. First, the algorithm
should be improved with the specifics of the search decision. Second, the algo-
rithm should be sped up. Despite of these difficulties, it would be challenging to
modify the Meta-Actor-Critic algorithm for learning forward pruning or search
extensions.

Improving the SANE-TA algorithm. The SANE algorithm is continuously
improved by the authors of the algorithm. The improvement of the SANE-TA
algorithm can result either from the improvement of the SANE algorithm, or
an improvement in the way SANE is applied for time allocation. The latter can
be achieved by speeding up the evaluation.

Extending the SANE-TA algorithm. The SANE algorithm is a general
purpose genetic algorithm, and thus extending SANE-TA for other search de-
cisions is rather simple. SANE was applied already for forward pruning in the
game of Othello [77].
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Appendix A

Learning algorithms

Below we provide three learning algorithms. Appendix A.1 describes temporal-
difference learning, appendix A.2 describes SANE, and appendix A.3 describes
RPROP.

A.1 Temporal-difference learning

An attractive approach to tune an evaluation function is temporal-difference
(TD) learning (see, e.g., [105]). In TD learning, a learning agent interacts with
its environment to achieve a goal. The agent senses the state of the environment,
and performs actions that affect that state. In the domain of games, the state
is represented by a position, and the actions by moves. The goal of the agent
(i.e., player) is to win the game. Each state s has associated a value V (s),
representing the estimation of the likelihood of winning the game from that
state. In a game program, the state value can be used as an evaluation function
in the search tree.

In the learning phase, the state values are updated so that they approach a
target value. Let us consider a sequence of game positions s0, s1, . . . , sT . The
target value for the final position, sT , is given by

V target(sT ) =




1, if sT is a win for White
0, if sT is a draw

−1, if sT is a win for Black
(A.1)

The target values for the non-terminal positions s0, s1, . . . , sT−1 are given by

V target(st) = γV (st+1) (with 0 < γ ≤ 1) (A.2)

The discount factor γ is used to favour early over late success.
Occasionally, TD learning can be slow. To speed up the learning, we can
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use TD(λ), which averages toward future target values:

V target(st) = (1 − λ)
T−t−1∑

k=1

λk−1V (st+k) + λT−t−1V (sT ) (with 0 ≤ λ ≤ 1)

(A.3)
In equation A.3, for simplicity we omitted the discount factor γ. The precise
combination of γ and λ is described in [105].

In game programs using TD learning, V is typically represented by a parame-
trised function. To tune the weights of this function, we minimise the mean
square of the TD error (i.e., V target(st) − V (st)) with the following gradient
updating rule:

∆wt = α(Vt+1 − Vt)
t∑

k=1

λt−k ∂V (sk)
∂wi

(A.4)

The gradient updating rule given above suggests a ‘plain’ back-propagation-
like adaptation, but some of the improvements developed for supervised learning
(e.g., [88]) are likely to work for TD learning also.

To employ TD learning, we need to generate sequences of positions. Game
sequences can be generated using game databases or games played by the learn-
ing program itself. In the latter case, a further choice can be made on the
opponent. Possible options include using an already existing game program,
playing against players with similar strength on the Internet, playing against
itself, or using more learning players which improve their skill by playing to-
gether.

A.2 SANE

SANE1 (Symbiotic, Adaptive Neuro-Evolution) [80, 81, 82] is a genetic algo-
rithm that evolves a population of neural networks.

SANE maintains and evolves two populations: a population of neurons and
a population of networks. Each individual in the neuron population represents
a hidden neuron in a 2-layer feed-forward network. The chromosome associated
to a neuron specifies to which input or output neurons it is connected, and the
weight of the connections. Each individual in the network population specifies
a set of neurons to include in a neural network.

The genetic algorithm of SANE has two phases: evaluation and recombina-
tion. In the evaluation phase each individual in the neuron population and in
the network population is assigned a fitness value. The fitness of a neuron is
the sum of the fitnesses of the best five networks in which it is included. The
fitness for a neural network is provided from exterior by the ‘user’, depending
on how the network is performing in the target environment.

In the recombination phase, the neuron population is ranked based on fit-
ness values. The neurons are selected for recombination depending on their

1The source code of SANE is available from the University of Texas Computer Sciences,
Neural Networks’ home page http://www.cs.utexas.edu/user/nn/.
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rank, and combined using a one-point crossover operation. The fittest neurons
are preserved to the next generation. A similar recombination is used for the
network population.

SANE was found to form ‘good’ neural networks fast, while maintaining the
diversity in the population. To employ SANE, one has to specify mainly the
topology of the neural network (i.e., the sizes of the input layer, the output layer
and the hidden layer), and to implement the fitness function for the network.

A.3 RPROP

RPROP (Resilient backpropagation) [88, 89, 90] is a weight update rule that
performs a direct adaptation of the weight based on local gradient information.
As other update rules used in supervised learning for neural networks, RPROP
employs the first-order partial derivative of each weight with respect to the over-
all network error. In most cases the error is the mean square error between the
target and actual output of the network (typical supervised training), summed
over all training instances (i.e., batch learning). The form of the update rule,
however, is not dependent on how the error function or the partial derivative is
computed.

The basic principle of RPROP is to eliminate the (potentially) harmful in-
fluence of the size of the partial derivative on the weight step. Only the sign of
the derivative is considered to indicate the direction of the weight update. The
weight change is determined by a weight-specific, so-called ‘update-value’ ∆wi:

∆wi(t) =




−∆i(t), if ∂E
∂wi

(t) > 0
+∆i(t), if ∂E

∂wi
(t) < 0

0, otherwise
(A.5)

where wi stands for individual weights, E is the error function, and t is the
moment of the update. The new update-values ∆i(t) are computed with the
following formula:

∆i(t) =




η+ × ∆i(t), if ∂E
∂wi

(t − 1) × ∂E
∂wi

(t) > 0
η− × ∆i(t), if ∂E

∂wi
(t − 1) × ∂E

∂wi
(t) < 0

∆i(t − 1), otherwise
(A.6)

with 0 < η− < 1 < η+
In words, equation A.6 works as follows. If the partial derivative of the

corresponding weight retains its sign, the update-value is increased by the factor
η+ in order to accelerate convergence toward a local minimum. If the partial
derivative changes its sign, which indicates that the last update was too large
and the local minimum was jumped over, the update-value is decreased by the
factor η−.

At the beginning, all update-values are set to an initial value ∆0. In order to
prevent the weights from becoming too large or to ‘freeze’, the update-values are
constrained between ∆min and ∆max (typically 1e−6 and 50.0, respectively).
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Thus, RPROP has a relatively small number of parameters (η+, η−, ∆0,
∆min and ∆max), and appears to be robust with respect to them. It was found
having fast convergence, and a good generalisation ability on unknown inputs
[88].



Appendix B

Generating the NN
population

The set of evaluation functions included in the NN population consists of 100
neural networks. These 100 neural networks were generated by tuning a larger
number of neural networks using a specific genetic algorithm (SANE) and the
TD-learning algorithm, and selecting the best 100 out of these.

Tuning the evaluation functions with SANE

An evaluation function is tuned with a genetic algorithm by evolving the weights
of the neural network. To evolve the weights of the evaluation functions with ge-
netic algorithms, we used a method called SANE [81] (for a short description see
appendix A.2). SANE is a fairly generic program for evolving neural networks.
It requires the definition of two problem-dependent details: the topology of the
neural network and the fitness function. The topology of the neural network
specifies the size of the input, output, and hidden layer. These are described
in section 2.1.2. The fitness function specifies how good a neural network is for
a specific problem. In our case the fitness is defined as the tournament perfor-
mance when the neural network is included in a game program as evaluation
function. The performance is evaluated in a swiss tournament1 with 15 rounds
that included the neural networks from one generation. The best neural network
from each generation is saved (50, in total).

Tuning the evaluation functions with TD learning

To tune evaluation functions through TD learning, we used the equations from
appendix A.1, with λ = 0.8 and γ = 0.9. In order to use TD learning we have
to generate game sequences. In general, game sequences can be generated using

1In the swiss pairinings system the players are paired in every round with opponents
with approximately the same amount of points obtained so far. The swiss system is used in
tournaments with a large number of participants.
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game databases or games played by the learning program itself. In the latter
case, a further choice can be made on the opponent. Possible options include
using an already existing game program, playing against players with similar
strength on the Internet, playing against itself, or using more learning players
which improve their skill by playing together. In LOA, game databases and an
Internet server are not available. The remaining option is to use games played
by the program which use the evaluation function to be trained. Three training
strategies were tested: STD (Single TD player), MTD (Multiple TD player)
and SANE-TD. In the first strategy (STD) the evaluation function is trained
using games played against itself. The neural network is saved after every 100
games. During the learning 10,000 games were played. From the resulting 100
neural networks the top 50 were selected using a 20-round swiss tournament.
The second strategy (MTD) used 10 TD players each being trained by playing
against the rest. For this strategy, the top 50 networks were selecteded in a
similar way as for STD. The third strategy (SANE-TD) used three TD play-
ers that played against SANE opponents. The TD players were included in the
tournament evaluating the fitness of the SANE neural networks (see above). Af-
ter the 15-round tournament has been finished, SANE, through recombination,
generated a different set of neural networks (a new generation), and the training
of the TD players continued with these. After each tournament the there TD
neural networks are saved. From the resulting 150 networks (3 networks × 50
generations) the top 50 were selected using a 20-round swiss tournament.

Selecting the NN population

We compared the four methods (SANE, STD, MTD, SANE-TD) in a tourna-
ment with 50 players for each method (a total of 200 players). The tournament
used the swiss pairing system and lasted 50 rounds. The results are summarised
in Table B.1. The result for each method is given as the ratio between the to-
tal amount of points obtained by the players representing the method, and the
total number of points in the tournament. The standard deviation reflects the
deviation in performance inside a method. The tournament resulted in a clear
superiority of the TD players over the genetic ones. Out of the three TD training
strategies, SANE-TD had the worst result, due to the weaker opponents (pro-
vided by the genetic algorithm). The values of the standard deviation indicate
that the advantage of STD and MTD compared to the other two methods is
significant, whereas the difference between STD and MTD was not significant.
To obtain a better set of evaluation functions, we generated 60 more players
using the two ‘pure’ TD methods (30 with STD and 30 with MTD). These 60
new players together with 60 top players (30 STD and 30 MTD) from the first
tournament are included in a second tournament (Table B.2).

The final set of evaluation functions were selected as the top 100 players
from the second tournament based on their performances (see last column of
Table B.2).
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method # of players result std. dev.
sane 50 0.199 0.027
std1 50 0.276 0.024
mtd1 50 0.288 0.025

sane-td 50 0.237 0.011

Table B.1: Selecting the evaluation function population: 1st tournament. The
players for sane are generated using SANE, for std1 using STD, for mtd1 using
MTD, and for sane-td using SANE-TD.

method # of players result std. dev. final set
std1 30 0.228 0.049 20
mtd1 30 0.261 0.037 28
std2 30 0.238 0.038 24
mtd2 30 0.273 0.051 28

Table B.2: Selecting the evaluation function population: 2nd tournament. The
players for std1 and mtd1 are from the 1st tournament, and the players for std2
and mtd2 originate from a new set generated using STD and MTD.
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Appendix C

Examples of move ordering

Appendix C presents the move ordering performed by the Neural MoveMap
heuristic in test positions originating from the four test sets described in sub-
section 3.3. The positions are labelled with the moves played in the game were
it occurred. The neural network used for move ordering was trained with the
learning set ALL (see subsection 3.4.4). The positions were selected randomly
from the four test files: #1–25 is from A30, #26–50 is from B84, #51-75 is from
D85 and #75–100 from E97 [72].

#1 WTM: Nd6

��������
��������
��������
��	�����
��������
��������
��������
��
�����

Rd6 Nd6 gf5 Ba3 f3 Ne5 g5 e3
b4 Na3 Be3 Bf4 Bb2 h4 Rfe1
Kg2 Nb6 Ne3 f4 Rd4 Bd2 Rd5
Nd2 a3 a4 Na5 h3 Rd3 Rde1
Nb2 Kh1 e4 Bh6 Rd2 Bg5

#2 WTM: Rd3
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Rac1 Kg2 e3 e4 Rd4 Kg3 Ke3
Rg1 Na4 a3 a4 Rd2 Rd3 Rd7
Ne4 Nd5 Re1 Nb5 Rh1 b4 h3
Ba3 Rdc1 Rd6 f5 Rf1 c5 Rd5
Nb1 Bc1 Rab1 h4 Rdb1

#3 WTM: Nc3
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Nc3 e4 Nf4 b3 f4 a4 Rb1 Kh2
Bd2 Qb3 g4 Nd4 Qc2 Be4 Qd2
a3 h4 Qa4 f3 b4 Bh1 Re1 Qd3
Qe1 Kh1 Bf3 Qd4
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#4 WTM: Rad1
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Rad1 Rfd1 f4 Rac1 f3 a4 Rfe1
Nc2 Rae1 h3 e5 a3 Na4 Nf5 h4
Nf3 Nd1 Kh1 Bh3 Ncb5 Qd2
Nb1 Nd5 Nc6 Qd3 Qe3 g4 Qe1
b4 Ne6 Bc1 Ba3 Qf3 Rfc1 Ndb5
Bf3 Bh1 Rfb1 Qg4 Qc2 Qh5
Rab1 Qd1 c5

#5 WTM: Bb7
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Nf3 Bb7 Nge4 Nh3 Rac1 e3 Nf7
Rd4 e4 Nb5 f5 Nce4 Rd7 Kf1
Ne6 Kh1 b4 Re1 Nd5 a3 Rd3
Ba3 Bh3 Na4 Bh1 Rd2 h3 Nb1
h4 Rd6 Rdc1 Nh7 Rdb1 c5 Bc1
Bf3 Bd5 Bf1 f3 Rab1 Rf1 a4
Be4 Bc6 Rd5

#6 WTM: dc6
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dc6 Rac1 de6 e4 a3 e3 Rd2 Nd2
b3 Rdc1 Ng5 Ne5 Rd4 Re1 Bh3
a4 h3 Ne1 b4 Kf1 Bf1 Rab1
Nd4 Rd3 h4 Nh4 Rf1 Rdb1
Bh1 g4 Kh1

#7 WTM: Qe2
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Qe2 Rc1 Qc2 d5 Qd2 e4 Nd2
a4 dc5 Ne5 h3 a3 Qd3 Ne4 Na4
Re2 Nh4 h4 Ne2 Bf1 Ng5 Bh3
Ba3 g4 Bh1 Qb1 Nb1 Nd5 Qc1
Rf1 Kf1 Bc1 Rb1 Nb5 b4 Kh1

#8 WTM: Ne4
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Ne4 Bd4 Rc1 Be4 f5 Nd5 Qc2
Qd4 Qb3 Qd2 Qc1 b3 Qa4 Rb1
Bg1 g4 Bf2 Nb5 a3 Qe1 Na4 b4
Rf2 Bc1 Qd3 Qb1 Nb1 a4 Rf3
h4 Bh1 Bf3 Bd2 Kg1 Rg1 Qd5
Rh1 Re1 Kh1

#9 WTM: Rb1
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Rb1 Rc1 Qd2 Qa4 Bh6 Bc5
Qb3 Qc2 Qc1 Bd2 d4 Nd2 a4
a3 Qb1 Ng5 h4 h3 Bg5 Bf4 Nh4
Ne1 Bh3 g4 Qe1 Re1 Bh1 Bc1
Ne5 Kh1 Bd4 Nd4

#10 WTM: Nb6
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cb5 Nc5 c5 Nc3 Nb6 Rd7 Bb6
Rd2 Nb2 a3 Bd2 Bd4 b4 Ba7
Rc2 Bf4 Bc5 Kf1 Rd3 Rd5 Ra1
f3 Rf1 Bg5 h4 Rc3 g4 Re1 Rd6
h3 Rd4 Kg2 Rb1 f4 Bh6 Kh1

#11 WTM: Nd5
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b4 e4 Be3 Nd5 Bg5 h3 Rb1 Qc2
Bf4 Nd2 Bd2 Re1 e3 b3 Nh4
Ne1 Ne4 Qb3 Ng5 Qd2 Bh6
Qa4 Nb5 Ne5 a4 g4 Qe1 Na4
Bh3 Bh1 Kh1 h4 Nb1 Ra2 Na2
d4 Nd4

#12 WTM: Nd4
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Rac1 e4 Nd4 Rd4 Rd2 a3 Rd6
h3 Rd3 Nd5 e3 Nd2 a4 Na4
Ne1 Ne4 Rh1 Kh1 h4 Rdc1 b4
Ba3 Re1 g4 Ng1 Nb1 Nb5 Bc1
Nh4 Rdb1 Kf1 Kh3 Rg1 Ng5
Rab1 Rf1 Rd5 Ne5 Kg1 c5
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#13 WTM: Qd4
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Nd4 e4 Qd4 Ng5 b3 Qh6 Qc4
Qh3 Bd2 Qg5 Qb4 a3 Ne5 Ne4
a4 Qg4 b4 Rd4 Nb5 Ne1 g4
Rd7 h3 Qf6 Bh3 Nd2 Bf1 Ne2
Qe4 Bh1 Qf4 Rb1 Kf1 Qa4 Nb1
Rf1 Na4 Re1 Rd3 Kh1 Rd6
Qh5 Qh7 Nd5 Rd2 Rd5

#14 BTM: Bf8
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Nc5 e5 Ne5 Bf8 b5 Nf8 b6 Qb8
Qc6 Rb8 Nb6 Qd8 Qc4 Qa5
Ng4 h6 Qc5 Bd8 g6 Rd8 Qb6
Nb8 h5 g5 a5 Ne4 Nh5 Ra7 Kf8
d5 Kh8 Rf8 Nd5

#15 BTM: Bf6
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Bf6 gf6 Kf8

#16 BTM: Nf6
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Nf6 Ne5 Rac8 Nc4 Nh6 Rfc8
Rfe8 Rfd8 Nd5 Qe5 Bd5 Ne3
Rad8 f6 Nf2 Bd7 Qc5 g5 Bc4
a5 Qg6 Qf5 Rae8 Nh2 Ra7 Qh4
Qh6 Ba2 Qg5 f5 Nd7 Bf5 Rab8
Nc8 h6 Bc8 Na4 Rfb8 Kh8 Bb3
Qb5 Qh3 g6 Qa5 Qd5

#17 BTM: b5
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Qc7 a5 b5 Re8 e5 Rd8 Rc8 Ne8
Qa7 h6 Bd8 Ra7 Qe8 d5 Bc6
Qc8 Ne5 Be4 Nd5 g6 Nh5 g5
Ne4 Ng4 Kh8 h5 Bc8 Qd8 Bd5

#18 BTM: Ne8
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Rc8 h6 Qc7 Qd7 a6 Na5 Re8
d5 Qc8 a5 Nb4 Qe8 Rb8 Ne5
Ne4 Qb8 e5 Nd7 Nb8 Bc8 Ng4
Kh8 h5 Ba6 b5 g6 Nd5 Nd4
Ne8 Nh5

#19 BTM: Be6
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Nc5 e5 Bb7 Bd7 Be6 Qa5 Nb8
Rd8 Qc5 Kg7 Qb8 Bg4 Qd8
Qc6 f5 e6 f6 Bf5 Re8 Qb7 b3
Qd7 Kh8 Bh3 g5 h5 Qb6 h6
Qc4 d5

#20 BTM: Nfe4
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Qc7 Qd7 a6 Nce4 a5 Ne6 Nfe4
Re8 Ng4 e5 e6 Ncd7 Nb7 h5
d5 Rc7 Qe8 Nfd7 Nh5 Rb8 Na6
Rc6 Bh6 g5 h6 Na4 Nb3 Ra8
Ne8 Bh8 Nd3 Kh8 b5 Nd5

#21 BTM: Nd5
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Nf4 Rad8 Nd5 Bf6 Bf3 Bd6 d3
Qc7 Bf8 a5 Nd3 Red8 Na2 Nf8
Bg5 g5 Ba6 Bh1 a6 Bd8 g6 f5
Qb5 h5 Nc2 Bh4 Bc8 Qc6 Rf8
Rac8 Rab8 Bc6 c4 Be4 Kh8
Qd5 Qd6 Kf8 Reb8 Ng5 Kh7
Na6 Qa4 Qc8 f6 Nc7 Rec8 Bg2
Nc6 Bd5 Qd8 Nd8
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#22 BTM: Be7
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Rd5 Bg6 Be7 Nd5 Nb5 Rac8
Ne8 N7a6 a6 a5 Qd5 Bf3 Bd4
Re8 Rd7 Na4 Be5 Nd7 Bc6
N5a6 Rd4 b5 Rf8 Bb1 Bd5 Bg2
Kf8 g6 Nd3 Bg5 Rdc8 Qa6 Bf5
Qc8 h6 Nb3 Rdb8 Rd6 Bc2 h5
g5 Bh1 Kh8 Qc6 e5 Bh4 Rab8
Bd3 Qb8

#23 BTM: Nbd7
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�����	��
��������
��������
��������
�
������
��������

Qb7 Nbd7 Nc6 Rd8 Rb7 Qd7
Rc4 Rc5 d5 Re8 Rc6 Nfd7 h6
b5 e5 h5 Ne8 Rd7 g6 Qd8 g5
Nh5 Ne4 Qe8 Bd8 Nd5 Ng4 a5
Kh8 Ra7

#24 BTM: Qb6

��������
��������
��������
��������
��������
��������
�������
��������

Qa5 Bc3 Be5 Qd7 e5 Qb6 Rc8
Bd7 a6 Nb4 Nf4 Rb8 Nb2 Nf2
Be4 a5 Bc8 Bg4 Bh6 Bh3 Qc8
b5 Nc1 Nc5 h5 g5 Qb8 h6 Bf6
Kh8 e6 f6 Qc7 Ne1 Bh8 Be6
Qe8 Bd4 Ne5 b6 Re8

#25 BTM: Nb7

��������
��������
��������
	�������
��������
��������
���
����
�������

ed5 Nb7 Qh4 Qc7 Nc4 f5 d6
Qf6 Bd4 Bc3 a6 h6 b5 f6 Nc6
Rc8 Rb7 Bf6 Qc8 g5 Kh8 Ra8
Re8 Bh6 Bh8 gh5 Qe8 Qe7 e5
Be5 Qg5 Nb3

#26 WTM: Nd2

��������
��������
��������
	�������
��������
����
��
��������
��������

Na5 Bg2 Qe2 Kh1 f5 Qd2 Nd5
Qd4 Ne2 Nd2 Bg4 Bd4 Rc1 Rf2
Qe1 Qd3 Be2 Nd4 Bh5 g6 Bf2
Re1 Bc1 h4 e5 Bb6 Bd2 Nb5
Na2 Ra2 Nb1 Qb1 Qd6 Qd5
Kf2 Ra3 Qc1 h3 Kg2 Nc1 Bh1
Rb1 Bc5 Nc5

#27 WTM: Nd4

��������
��������
��������
��������
���	����
����
���
��������
��������

Nd4 Bd4 Qd4 g5 Rg3 c3 Qe2
Qf3 f5 a5 Qe1 Rg2 Re1 Qd2
Nc5 h4 Qd3 h3 Qf1 Na5 Nd2
Qc1 Rf1 Rc1 Ra3 c4 Ra2 Qb1
Kg2 Bd2 Bc1 Nc1 Bf2 Rb1

#28 WTM: e5

��������
��������
�����	��
��������
��������
��������
�������
��
�����

Be3 Bf3 e5 a4 Bd3 Na4 Qe1 f5
b3 a3 Qd4 Bc4 Qd3 h3 g4 Bd2
Rb1 Ba6 b4 Nb1 g3 Rf3 Kg1
Rg1 Bh5 Qd6 Bg4 Rf2 Qd2
Re1 h4 Nb5 Bb5 Nd5 Qd5

#29 WTM: Rae1

��������
��������
��������
	�������
��������
����
��
��������
��������

Bd4 Qg3 Rae1 Rad1 Bb6 b3 f5
g4 e5 Bg4 Be2 Rac1 Ne2 Nd5
b4 Rfe1 Bh5 Nd1 Nc4 Rfd1
Rg1 Ra3 Qg1 g3 Na2 Nb5 Qh4
Qe2 Rfc1 Nb3 Ra2 Rab1 h4
Ncb1 Bd1 Kg1 Rfb1 h3 Ndb1
Qe1 Bc5

#30 WTM: Bb7

�	������
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��������
��������
����
��
��������
��������

Bb7 Qg3 Rd1 Bf4 Kh1 Ne4 Bf2
Qf2 Rc1 a3 Ne6 a4 Bh5 Nf5
Nce2 g4 Qe2 Ncb5 Qc1 Bh6
Bc1 b3 Nd5 h4 Bd2 Nde2 Bg4
Be4 Qd1 Qd2 Be2 Bg5 Na4
Ndb5 Rf2 Bd5 Nb3 g3 Nb1
Rb1 Qb1 Qh4 Nd1 b4 Kf2 h3
Nc6 Bc6 Bd1
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#31 WTM: g5

��������
��������
�����	��
��	�����
��������
����
��
��������
��������

g5 Qe2 e5 Qd2 f5 Nb3 Qe1 Rc1
h4 Rg1 Nde2 h3 a3 Bg2 Kg1 a4
Bc1 Nce2 Rb1 b4 Nf5 b3 Re1
Bg1 Rf2 Qd3 Qb1 Nd5 Be2
Na4 Kg2 Qc1 Nb1 Ne6 Bd2
Ncb5 Bf2 Ndb5 Nc6

#32 WTM: Nd5

��������
��������
���	����
������
�
��������
��������
��������
��������

Nd5 Rd5 Rd6 Qg1 Qf1 Re2 Bf4
a3 Nh4 Ne4 Ne5 Bd2 b3 Bf6 a4
Nb5 h3 Bc1 Bd8 Rd3 Nd2 Qe2
Bh4 Be3 Kg1 g4 Nb1 Qd2 Ng1
Rfd2 Rb1 g3 h4 Na4 Nd4 Rc1
Ra1 Ne2 b4 Bh6 Qe4 Rdd2 Be7
Qe3 Qe5 Rd4 Rf1

#33 WTM: Ng5

��������
��������
��������
��������
��������
��������
��������
��
�����

ed6 h3 Nd4 Ne4 Kh1 Nd1 Qe4
Bd2 Be3 a4 Ng5 f5 Rd1 a3 b3
Qd3 Nd5 Qb5 Nb5 g3 Re1 Rb1
Qd1 Nb1 Ne1 Nd2 b4 Nh4 h4
Qe3 Qd2 Rf2 Na4 Qf2 Qe1 Qc4

#34 WTM: Bd4

��������
��������
�����	��
��������
���	����
����
���
�������
��������

Bd4 Rad1 Bf3 Rfd1 Bc4 Nd5
Bd3 b4 Bd1 Rae1 Na4 Qh4 g4
Nd1 Rac1 f5 Kh1 h3 Rab1 g3
a4 Ba6 Ra2 Bh5 Qg3 Nb1 Ne4
Qf3 Bg4 Nb5 Qe1 Na2 Rfb1
Bd2 Bc1 Bb5 Rfe1 b3 Rfc1 h4

#35 WTM: a3

��������
��������
�����	��
��	�����
��������
�������
�����
��
��������

Rd1 e5 Bg3 Bh4 a3 Nb3 Rc1 a4
Bg1 g4 b3 Qe3 f5 Nce2 Nde2
Rg1 b4 Be2 Nf5 g3 Rb1 Qe2
Ncb5 Kg1 Ne6 h3 Qd2 Qc1
Nd1 Ndb5 Be3 h4 Nc6 Qd1
Qb1 Bh5 Nb1 Na4 Nd5 Bd1
Bg4

#36 WTM: Qc2

��������
��������
�����	��
��������
��������
����
��
��������
��������

Rc1 e5 b3 Nb6 Nc3 Qe2 Qd2
Qc2 Kh1 Qd3 Bc5 g4 Be2 Qe1
a3 b4 Rf2 f5 g3 h3 Bd4 Bc1
Rb1 Qc1 Bd2 Re1 Bf2 Bh5
Qd4 Kf2 Qb1 Qb3 Nc5 Bg4 h4
Qd5 Qd6

#37 WTM: Rae1

��������
��������
��������
��������
��������
��������
�������
��������

Ne4 Rad1 Bd3 Qf4 Qf2 a3 Rf4
Bf3 Bh5 a4 Rae1 Bg4 Nd1 Qh4
Qg5 Rac1 Qg7 b4 Rf2 Rfd1
Nb5 h4 Rf3 Qh3 Na4 Qg4 Qg6
b3 Nb1 Bb5 Rab1 Rg1 Bd1
Nd5 Rfb1 Qe3 Rf7 Qe1 Qf3 Rf6
Rfc1 Qd3 h3 Rfe1 Rf5 Bc4

#38 WTM: Qf3

��������
��������
��������
��������
�����
��
��������
��������
��������

Nc6 Qe2 Qf3 Qg4 Qh5 Ne4
Qd2 Qe1 Bg3 Nb3 Nf5 Nf3 Rf3
Qd3 Re1 Nce2 Ne6 Nd5 b3 Bh6
Bg5 g4 Kg1 h4 Be3 Ncb5 a5
Rf2 Rg1 h3 b4 Qb1 Ra2 Nb1
Na2 Rc1 Rb1 Ra3 Nde2 Ndb5
g3 Qc1 Bc1 Bd2

#39 BTM: Bg5

��������
��������
��������
��������
��������
�������
��������
��������

Nc5 Ne5 Bg5 Rfe8 e5 Rc4 Rfd8
Qc5 Nb6 Rc7 d5 Rc5 Nf6 Qc7
g6 Qg5 Bc6 Bd5 Qa4 Qb5 Rb8
Rc3 Bf6 Kh8 Nb8 f5 b3 Qa2
Bd8 Be4 Ra8 Rcd8 Rce8 h6
Rc6 Qb6 Qe5 Ba8 Qa3 f6 h5
Rc2 Qd5 Qd8 Qf5
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#40 BTM: Qe5

��������
��������
�����	��
��������
��������
�������
��������
��
�����

0-0 Ne5 Nd5 b4 Rc8 Rd8 Qe5
Kc8 Rb8 Nb4 Na5 Ng4 h5 Bc8
g5 Bd6 Qb6 h6 Ra7 Qb8 Bc5
Qa7 Qb7 Ng8 Qd8 Bb4 Ne4
Na7 g6 a5 Bf8 Kf8 Ba3 Bd8
Rf8 Rg8 Kd8 Nb8 Nd8 Qd6
Nd4 Qa5 Nh5 Qc8

#41 BTM: Be7

��������
��������
��������
��������
���
����
��������
��������
��������

Be7 Kd7 Kd8

#42 BTM: Nd4

��������
��������
�����	��
��������
��������
����
���
�������
��������

Nd4 Qc7 b5 Bd7 Nd7 d5 e5
Ng4 Re8 Ne8 Ne4 Nd5 Qa5
Rb8 h6 b6 g6 Nb4 Na5 h5 Qb6
Kh8 Nb8 Ne5 g5 Ra7 Qe8 Na7
a5 Qd7 Nh5

#43 BTM: Rf8

��������
��������
�����	��
��������
���
����
�������
��������
��������

Bb7 d5 e5 Qc5 Rb7 Bd7 Qc7
b5 Nd5 Rf8 Qe8 Nd7 Ne8 Ng4
Re8 Ra8 Kh8 g6 h6 Qa8 a5 Kf7
Ne4 Qg2 Qc4 Kf8 Bf8 Qb7 Nh5
Qa4 Qe4 Qd7 Rd7 g5 Qf3 h5
Qd5 Qc3 Qb5

#44 BTM: Qb4

�	������
��������
��������
����	���
����
��
��������
��������
��������

Nbc6 Qc7 Qb4 Qb6 Bb7 Ng6
f5 Rd8 Ba6 Nc4 Qb5 Qa7 Bf6
Qd5 g6 Ng4 Nec6 Bd8 Qd6
Bh4 Nd3 g5 Qd4 Qc3 Qc6 h6
Qc4 Kh8 Bd6 Qa5 Qg1 Bg5
Bd7 Nbd7 Nf3 h5 f6 Qc2 Qf2
Na6 Ned7 Re8 Qe3

#45 BTM: Qc7

��������
��������
�����	��
��������
�	������
����
��
��������
��������

Qc7 d5 Bf8 Nc6 Rc7 Nc2 b5
Nbd5 b6 Ne8 Rb8 h6 Qf8 Ng4
h5 Qe8 Nfd5 Na2 Ra7 Kh8 Kf8
g5 Nd3 g6 Nh5 Qb6 Ne4 Qa5

#46 BTM: Qb2

��������
��������
�����	��
��������
��������
����
���
�������
��������

0-0 Nd7 Nd4 Bd7 Qb2 Qc7
Qd4 Qa5 Qd8 Ng4 Nh5 Bf8 d5
Ng8 Nd5 Qb4 Qc5 Ne4 e5 g6
Nb4 Rg8 Na5 Bd8 h6 Qb5 Nb8
Rb8 Qa7 Nd8 h5 Kf8 Rf8 Kd8
Na7 Ra7 Qb3 Ne5 Kd7 a5

#47 BTM: Nd5

��������
��������
�����	��
��������
��������
�������
���
����
��������

Nd5 ed4 0-0 Qd8 Bd8 h4 Bd6
Qc6 Nh7 Nc5 Qd6 b5 Bc5 Nb6
Bf8 Ng4 Kf8 Ne4 Qb6 Qb8 Rh7
Ng8 Kd8 b6 Nb8 Rb8 Ra7 Rg8
g5 a5 Nf8 Rf8 Bb4 Qc4 Ba3
Qc2 Rh6 Qa5 Qc5 Qc3

#48 BTM: Be7

��������
��������
�����	��
��������
��������
�������
��������
��
�����

Be7 ef4 Rc8 Nc5 Kc8 g6 Bc6 b5
h6 h5 a5 d5 Rb8 Ke7 g5 Nb8
Qc6 Rd8 Qb8 Qc3 Ng8 Ra7
Kd8 Qc5 Bc8 Qd8 Ne4 Rg8
Qc4 Be4 Nh5 Bd5 Ng4 Nd5
Qc8
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#49 BTM: Nc5

��������
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��������
��������
����
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��������
��������

Nc5 b5 e5 Re8 Ne5 Nb6 Rd8
Rb8 b6 g6 d5 Ne8 Ng4 Nd5
Qc5 Qc4 Qc6 h6 Qb8 Nb8 Bd8
Qd8 Kh8 Qb6 h5 Ra7 g5 a5
Qa5 Nh5 Ne4 Qc3

#50 BTM: de5

��������
��������
�����	��
��������
��������
����
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��������
��������

de5 Bc6 Qa5 Rac8 Qb2 d5 Nd5
Qc3 b5 Be8 Ne8 Bb5 Rab8 Ng4
Qc4 Re8 Qb3 Qc5 Ba4 Rdc8
Bc8 Qa3 Rdb8 Ne4 g6 h6 Kf8
h5 Qf4 Qd4 Rf8 Ra7 g5 Bf8
Kh8 b6 Nh5 Qb6 Qa4 Qe4 Qb5

#51 WTM: Re1

��������
��������
��������
��������
��������

�������
��������
��������

Rg2 Qa7 Kg1 Re1 Rd1 Rc1
Ke1 Rb1 Kg2 Qf5 Ke2 Qa6
Nd2 Ne1 h4 Ne5 Bc1 Qb5 Qd5
c4 Qa4 Ng5 Qb6 Ng1 Nh4 Bb2
Bc5 Qh5 Qe5 d5 h3 Qc5 Rh3
Bd6 Rg4 Rg6 Be7 Qb4 Rg5
Qc7 Bb4 Qd8 Qg5 Rg1

#52 WTM: c4

�	������
��������
���	���

��������
��������
��������
�������
��������

c4 Qb2 f4 Bd2 Qb4 Rg1 Bg5
Kd2 Qd1 Bf4 Qa3 Bd3 Kf1 Qc2
Kd1 Bb5 Bc1 Bg7 Qb1 Bd1
Qb5 Rh2 Bf8 Rh3 Bc4 Be3 Qa4
Qa2 0-0 a6 Qc4 Bf1 Qb6 Ba6
Rf1 Qb7

#53 WTM: Kf1

��������
��������
��������
	�������
��������
��������
�������
��������

Kf1 Kd2 Kd1 Be4

#54 WTM: ba3

�	������
��������
�	������
��������
��������
����
���
�������
��������

ba3 e5 Qd2 d5 Qb3 Rc1 Qc2
b3 Ne5 Nd2 Bb5 Nb5 Bh6 Nd5
Qc1 Re1 Bd3 Na4 Nh2 g4 Ng5
Nb1 Bf4 h4 Bc4 Qb1 Bg5 Ne1
Qd3 Kh2 Qe1 Bd2 Bc1 Rb1
Kh1 Nh4 g3 Qa4 b4 Ba6

#55 WTM: Qb3
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��	�����
��������
����	���
��������
������
�
�������
��������

Be5 Rc1 Qb3 Rb1 f4 Qd2 Nf5
Qc2 f3 Bh5 b5 Nb3 h4 Nf3 h3
a4 Ra2 Bg4 e4 Ndb5 Bc4 Qc1
Ncb5 Qb1 Qd3 Bd3 Nd5 Kh1
Nc2 Qa4 Ba6 Bf3 Qe1 Na4 Bb5
Ne6 Na2 Bh4 Ne4 Re1 Nb1
Nc6 Bf4

#56 WTM: h3

��������
��������
��������
�������
��������
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��������
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0-0 Ba8 Bb7 h3 Qb3 Qd2 Qa4
Qd3 e5 Ng5 Rb3 Qe2 Bb3 Rb4
h4 Qc1 Rc1 a4 Kd2 Kf1 Bc4
Be6 Bd2 Bf7 Bc6 Bh6 Ng1 Bc1
Ke2 Nd2 Ra1 a3 Bg5 Ne5 g3
Nh4 Qc2 Rf1 Rg1 Rb6 Bf4 Rb5
Rb2 Bg8

#57 WTM: Bc6

��������
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�������
�����
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��������
��������
��������

cd4 0-0 Bc6 Nd4 Ba4 Be3 Bc4
Qa4 Bd3 Qe2 Be2 Qd2 Bd2
Qd4 h4 Bh6 Qd3 Bg3 h3 e5
Ke2 c4 Kf1 Qc1 Bg5 Bf1 Bd6
Bb8 Ng5 a4 Rc1 Bc7 a3 Rg1
Qc2 Qb3 Bc1 g4 Ba6 g3 Ng1
Rb3 Ra1 Rb4 Nd2 Rb2 Rf1
Nh4 Kd2 Be5 Ne5
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#58 WTM: Bb4

��������
��������
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��������
��������
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���
��������

Bb4 Bg5 Ra1 Rc1 Bc3 d5 Qc1
Be3 Re1 e5 Bd3 Bb5 Qc2 Rb7
Rb3 Ng5 Bc4 Ne1 Rb5 Rb4 h3
Ba5 Bf4 Ne5 Be1 Kh1 Nh4 Qe1
Qb3 Ba6 h4 g3 Rb2 Bc1 g4 Bh6
Rb6 Qa4

#59 WTM: Bc3

��������
��������
��������
��������
��������
��������
���
���
��������

0-0 Kf2 f4 Rc1 Nf4 Bc3 d5 g4
Bf1 Rb1 Bf4 Qb5 h4 Bb4 Kc1
a4 Nc3 Be3 Qa3 Qb2 Qb7 Kf1
Qe3 a3 Bc1 Bh3 Rf1 Qd1 Qc3
Qd3 h3 Ng1 Qd5 Bg5 Qb1 Kd1
Bh6 Qb6 Nc1 Qb4 e6 Qf7 Ba5
Rd1 Rg1 Qc2 Qa4 Qc4 Qe6

#60 WTM: Rc2
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��������
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��������
��������
����
���
��������
��������

Rc8 Ne5 Re1 Qe2 Rc5 Rc2 Qd2
Nd2 Ne1 h3 Rb1 Rc7 Qd3 Rc4
Qc2 b4 Bd2 Ng5 a4 Qe1 g3 a3
Rc3 Bh6 h4 Nh4 Bf4 Bg5 Ra1
g4 Kh1 Rc6

#61 WTM: Qd4

�	������
��������
��������
��������
�������
����
���
��������
��������

Bd4 Qd4 0-0 Qb3 Bb3 Qf3 Bd3
Bb5 Bd2 Qd2 Qe2 Bd5 f3 Be2
Bh6 Bf7 Qd3 Kf1 h4 f4 Qg4
e5 Bf4 Be6 Ke2 a4 Ra1 Bf1 h3
Qh5 Rc2 Qc2 g3 Ba6 Rb1 Rg1
g4 Rf1 Qa4 a3 Kd2 Bg5

#62 WTM: 0-0

�	������
��������
��������
��������
��������
����
���
�������
��������

0-0 d5 dc5 h3 e5 c4 a4 Bh6 Rb7
Ne5 h4 Rb2 Rb5 Bf4 Kf1 Rb6
Rc1 Ng5 Qc1 Ng1 a3 Qc2 Bd1
Rb3 Qb2 Qd3 Rg1 Bc4 Nh4
Ra1 Bg5 Rb4 Bd3 Kd1 g3 Bb5
Rf1 Rd1 Bf1 Ba6 Qd1

#63 WTM: Rb1

��������
��������
��������
	�������
��������
���
���
��������
��������

h5 Rc1 Rb1 Bh6 Qa5 d5 f3 e5
g4 Bc2 Nc3 Nf4 Rh3 f4 Kg1
Qc2 Qb2 Nc1 Bg5 g3 Qc1 Rh2
Ng1 Bb1 Bf4 Qb4 Qe1 Rd1
Rg1 Ng3 Ba6 Re1 Qc3 Bb5 Bc4
Ke1 Qd1

#64 BTM: Bd7

��������
��������
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��������
��������
����
���
�������
��������

Be6 Bd7 Nbd5 Bg4 Ng4 Nbd7
e4 Rc8 Nfd5 g5 Qd7 Qc7 Nc8
Qe7 Ne4 Nh5 Bd3 Bc8 Bf8 a6
Qc8 Kh7 Nh7 Qd6 a5 Rf8 Nc4
Na4 Qb8 Bh6 Qd5 Kh8 Bc2
Bh8 Be4 Kf8 Re6 Bb1 Rb8 Re7
Nfd7 Bh3

#65 BTM: Rhc8
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���
��������
��������
��������
��������

Rhe8 Rhc8 f6 Rac8 Bc4 b6
Rae8 Ba6 Rhg8 Rhf8 Rad8
Rhd8 h5 f5 a5 Ba4 g5 Ke7
Rhb8 Ke8 Rab8 Bd3 Bf1 h6
Bc6 Rag8 a6 Raf8 Be2 Kd8

#66 BTM: Na5
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��������
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��������
��������
����
��
��������
��������

Ne5 Rc8 Nd4 Na5 Qa5 f6 Nb4
e5 Qd7 e6 b6 Rb8 Qc7 a6 Qd6
Qd5 f5 Nb8 Re8 b5 a5 Qc8 g5
Qb6 Qb8 h5 Qe8 h6
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#67 BTM: Rfd8
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��������
��������
��������
�������
��������

Rfd8 Ba2 Rfc8 Rad8 Rac8 Bc8
Bd5 Rab8 Bd7 Bc4 a5 Rfe8 f6
Kg7 Rfb8 f5 a6 g5 h5 Bb3 Bg4
Kh8 Rae8 Bh3 h6 Bf5

#68 BTM: Kg7

��������
��������
��������
��������
��������
��������
��������
�������

Kg7 Ke6 g5

#69 BTM: b6

��������
��������
��������
	�������
��������
��������
���
����
�������

Nc6 b6 Bf6 Bg4 Bb2 Bd7 b5 e5
e6 Nc4 a6 Rd5 f6 Rb8 Bd4 Nb3
Be6 Be5 Bh6 Bf5 Bc3 Re8 Kg8
h6 h5 g5 Ba1 Bh8 f5 Rd6 Rd7
Ke8 Bh3

#70 BTM: Ba6

�	������
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��������
��������
��������
�������
��
�����

Nd7 cd4 Nc6 e6 Qc7 Ba6 c4
Be4 Qd6 a6 Qc8 Na6 Qd7 f5
Re8 a5 Bc8 f6 Bc6 b5 h6 Kh8
Qd5 Bd5 e5 Bd4 Bf6 h5 Bh8
Bh6 Qe8 g5 Be5 Qd4

#71 BTM: cd4

�	������
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��������
��������
��������
�������
��������
��
�����

cd4 Nc6 Nd7 e6 Qc7 b6 Qa5
Bd4 c4 e5 b5 Qd7 Qd4 Qd6
Qc8 a6 Be5 a5 Na6 Re8 Kh8
Bh6 Qb6 f5 h5 Bf6 h6 f6 g5
Bh8 Qe8 Qd5

#72 BTM: ba5
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�������
��������
�������
��������
��������

ba5 Bb7 Rd5 Bh6 e6 e5 Bg7
Bd7 Bg4 Rb8 Ba6 Re8 f6 Kg7
Rd7 Rd6 Be6 h5 b5 h6 a6 Kh8
g5 Bf5 f5 Bh3

#73 BTM: Rc8
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��������
��������
����
���
�������
��������

Rc8 Nd7 Be4 Nc6 e6 Na6 Rd8
a5 Bd5 a6 Bc6 Bf6 Ba6 b5 Bd4
Kh8 f6 Bh6 f5 Bh8 Re8 h6 h5
g5 e5 Be5 Bc8

#74 BTM: 0-0
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��������
��������
����
���
�������
��������

0-0 cd4 Bg4 Bd7 b6 Bf6 Qc3
Be6 c4 Qc7 e6 Qa4 Qa2 b5 Bf5
Qd8 Nd8 a6 f6 h6 h5 Rb8 Qb6
Qa3 e5 Bh6 Kd8 Qa6 Kf8 Qb5
Be5 Nb8 Bf8 Bh3 g5 Rf8 Ne5
Rg8 f5 Bd4 Nd4 Kd7 Nb4 Qb4

#75 BTM: e5

�	������
��������
��������
��������
��������
�������
�
������
��������

Nc6 Nd7 Bg4 b6 Bh3 Be5 Rd8
Qh6 Be6 Qh5 e5 Bh6 e6 Bf6
Na6 Qf4 h5 Qg4 a5 f5 b5 a6
Bf5 Bc3 Qe5 Bd7 Qe3 Kh8 Qa5
f6 Re8 Qd2 Qg2 Bd4 Qg3 Qd5
Qf5 Qh4 Qb5 Bh8 Qc1 Qf6 h6
Qc5
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#76 WTM: c5
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c5 Qd2 b4 Rc1 Kh1 Qb3 a4 Nf2
Nf4 g4 Re1 Nb5 Qe1 Rf2 Kf2
Qc2 a3 Qc1 Qa4 h4 b3 g3 Rb1
Na4 Nb4 Nb1 Ne5 Ne1 h3 Nc1
Qb1 Nc5

#77 WTM: Qc2
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f3 ba5 Bb2 c5 ef5 b5 f4 Nb3
Qc2 Nf3 Nb5 a4 Kh1 Bd3 Re1
h3 g3 Bh5 Bg4 Qb3 Rb3 Bf3
g4 h4 Qe1 Ra1 Rb2 Na2 Qa4
Na4

#78 WTM: Rc2
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Nc4 a4 Nb5 Rfd1 Bc4 b5 a3
Qc2 Rg1 Qc4 Bb5 Qd1 Rc2 h3
Ba6 Rcd1 Kg1 h4 g4 g3 Bd3
Ba3 Ndb1 Na4 Ra1 Qa3 Rfe1
Rb1 Bd1 Qa4 Rf2 Ba1 Ncb1
Rce1 Nd1

#79 WTM: Ne4
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Ne4 Qd8 bc6 Be3 Na4 Ba3 f3
Rb1 Qa4 c5 Qc2 a4 Nb1 Bg4
Qd3 Bb2 Bg5 Bf3 Bd3 Qb3
Qd6 Re1 h3 Kh1 g3 Bh6 Nd5
b6 Qe1 Bh5 Qd2 Bf4 f4 g4 a3
Bd2 h4 Qd4 Qd7 Qd5

#80 WTM: Be3
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dc6 Be3 Ne6 c5 a4 Kg2 Qb3
Nh3 ef5 Rb1 Ba3 Kh1 f4 Qc2
Bb2 b5 Qd2 a3 Bd3 Qd3 Rf2
Bd2 Re1 h4 g4 Qe1 Nf7 h3 Kf2
Qa4 Bf4 Nb5 Nh7 Na4 Nb1
Qd4

#81 WTM: a5
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b6 d6 a5 Ba3 Qd2 Bd4 Qb3
Ba7 Kh1 Nb2 Be3 Rb1 Ra3
Qd3 Rc1 Nb1 g3 Qc2 h4 h3
Rf2 Bd3 Ne5 Be7 Na5 Bb4 Na2
Ra2 g4 Kf2 Qc1 Qb1 Bf2 Nd6
Qe1 Na3 Qd4 Re1 Nd2 Ne3
Bd6 Bb6 Nb6

#82 WTM: b6

��������
����	���
��������
��������
�
������
��������
�������
��������

cd6 f3 Qd2 b6 Na4 Qa4 Nb2
Qb3 Qd4 Rb1 a6 c6 Bg4 Nb1
Rc1 Ra3 Re1 Nb6 g3 Ba3 Kh1
Qd3 Qb1 Ra2 h4 h3 Qe1 Qc1
Bh5 Ra4 Qc2 g4 Nd6 Na3 Nd2
Bf3 Ne5 Ne3 Bd3 Na2

#83 WTM: a4
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Nc4 Qc2 Nb3 a4 Bc4 Kh1 Nc7
Nc3 Ra1 Na7 h4 h3 Qa4 Qe1
g4 g3 Rf2 Rb3 Rb2 Bd3 Re1
Nd6 Nd4 Kf2 Bb2 Qb3 Rb4

#84 WTM: Bg5
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Rd1 Bg5 Be3 h3 Nd5 Re1 b4 b3
a3 c5 Bf4 Nb5 Rb1 Ng5 Bd2 a4
Ne1 Nd2 Bd3 Kh1 Nd4 Bd1 g3
Bh6 Na4 Nh4 Ne5 Nb1 h4 Nd1
g4
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#85 WTM: Ne3
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Ne3 Nb5 b5 Rad1 a4 Rac1
Rfd1 g3 f3 f4 Qg4 Qe3 Qh5
Nb2 Qb2 Kh1 Rab1 Rfc1 Nd2
a3 h4 Qd2 Qe1 Na5 Ne5 Qf3
Na3 g4 Qd3 Rfb1 Nb6 Qd1 Qc2
h3 Rae1 Rfe1 Nd6 Nb1 Na4
Nd1

#86 WTM: f4
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Ne4 Ng3 Qh3 Nc3 Ne6 f3 Qc3
f4 b4 Rae1 Rac1 Qe4 Qd2 c5
Qb3 b3 Nh7 g4 Rfe1 Rab1
Rad1 Qd4 Qe3 Qg6 g3 Nd4 h3
Qg3 h4 a4 a3 Nc1 Qa3 Qf3 Kh1
Nf4 Rfc1 Nf3 Qc2 Rfb1 Qd1
Nf7 Rfd1 Qb1 Nh3 Qf5

#87 WTM: Bc5
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Nd5 Qd5 g3 Bc5 e7 f3 Ne4 a4
Rac1 Bg4 b5 Rab1 Rae1 Bd3
Ba7 Bc4 Rad1 Qe1 Qd1 g4 Nb5
Bb5 Bf4 Rfc1 Rfe1 Bf3 h3 Qc2
Rfb1 Qd6 Rfd1 Bd1 Ba6 a3
Bg5 Bb6 Bh6 Qc1 f4 Kh1 Na4
Qb2 Qd3 Bd4 Nb1 Bh5 Nd1
Qd4

#88 BTM: ab6

��������
��������
��������
��������
��������

�������
��������
��������

ab6 cb6 dc5 Bf8 Be6 Bd7 Rf7
a6 Bh3 Nh4 Rb8 h5 Re6 a5 c6
g4 Kh8 Qf8 Qe8 Rf5 Bf5 Kh7
Qd7 Nh8 Rf8 Bh8 Qe7 Kf8 Kf7
Bg4 Ne7 Nf8

#89 BTM: c5
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h6 Nf6 f4 fe4 c6 Rf7 Qd7 Rf6
Kh8 Bh6 Bf6 c5 Ra4 Bd7 Rb8
Nc6 Ra7 Ba6 Ra6 Ra5 h5 Bh8
Bb7 Be6 Nd5

#90 BTM: Rdg8
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hg4 Rdg8 Ng8 Kb8 f6 Bh4 g6
f5 b5 Bc5 g5 Bd6 Qb5 Bg5
Rdf8 Qa4 Nc5 h4 Qc6 Nf5
Rde8 Kc7 Qe8 Rhg8 Nd6 Bf6
Ng4 Qc7 a5 a6 Bb4 Rhf8 Rhe8
Rh7 Ba3 Bf8 Qd6 Na5

#91 BTM: Bg4
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Nd4 a6 Nd7 Bg4 Ne5 Bd7 Qe7
Rb8 Na5 Ng4 Ne7 b6 Be6 a5
Ne4 h6 Qd7 Nh5 d5 Re4 h5
Bh8 Nb8 Bf8 Bh6 Bh3 Kh8
Nb4 Re7 Rf8 Kf8 Bf5 Re5 g5
Re6 b5 Nd5

#92 BTM: Nh4
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Qh4 Ne5 Bh3 Nh4 f5 Kg7 Qg5
Rg8 Qe7 Nf4 Bg4 Qf6 h5 Be6
c6 Rb8 Re8 a6 Bd7 b6 Qe8 Rh8
a5 Bf5 f6 Qd7 c5 Nh8 Ne7 b5
Kg8 Kh8

#93 BTM: d5
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Nf5 d5 g5 Ng8 Qd7 Re8 Nc6
Rf6 Rf7 f3 Qe8 a6 Nd5 Rg8
Rc8 Qb6 e3 b6 Qa5 Rh8 Rf5 h5
Qb8 a5 Rb8 Qc8 Nc8 b5 Kg8
Qc7
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#94 BTM: h6
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Nf6 h6 Nd4 b6 Qf7 Bf6 a6 Qc7
Nh6 Qe7 Kh8 Rf7 Ne7 Qa4 a5
Rb8 h5 Qe6 Ne3 Bh6 Qc6 Qb5
b5 Kf7 Nc7 Nh4 Bh8 Ng3 Rf6
Qd8

#95 BTM: e4
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e4 ef4 h6 Ng6 Rb8 Qc7 Ne8
Bb7 Kh8 a6 Ne4 a5 Qe8 Qb6
Be6 Ng4 Qd7 Bd7 Re8 Bh6 Rf7
Kf7 Bh8 Nd7 Ned5 h5 Nh5 Qa5
Ba6 Nfd5 Nc6

#96 BTM: f4
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Ngf6 Nh6 f4 a6 Rf7 Nef6 a5 b6
Bh6 Ne7 g5 c6 Bd7 dc5 Qh4
Qg5 Be6 fe4 Rb8 h5 Rf6 h6 Qf6
Qd7 Bf6 Qe7 b5

#97 BTM: dc5
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dc5 Nf6 g5 Nh6 Ne7 Rf4 Qf7
Bf6 Kh8 Nd8 Bh6 Nd4 a6 Re8
Rf3 Qf5 h6 Rf7 d5 Qe7 a5 Nb4
Nh2 Nb8 b6 h5 Qe8 Bh8 Ne3
Nf2 Na5 Qe6 Rb8 b5 Rf6 Kf7
Rd8 Rf5 Qd8

#98 BTM: fe5

��������
��������
��������
��������
�������

��������
�������
��������

de5 Nge5 fe5 Nh6 Nce5 g5 Qe5
Bh6 f5 Be6 Kh8 Bd7 a6 Nd4
Bf5 Ne7 Qf7 Nd8 h6 b6 Rb8
Qe7 Qd7 a5 Ne3 Nb4 Rf7 h5
Nh2 Na5 Qd8 Bh8 Nb8 Qe6
Kf7 d5 Nf2 b5

#99 BTM: Ra8
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Ra8 f5 Nc5 Nf6 b6 Re8 c5 h6
c6 Rc5 g5 f6 Ra3 Nf5 Bh6 Nc6
b5 Ra6 Nb6 Qe8 Bh8 h5 Kh8
Rd5 Ra7 Bf6 Nb8 Ra4 Nd5
Rb5 Ra2

#100 BTM: f4
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f4 Nf6 fe4 b6 g5 Qc7 b5 Rf6
Kh8 Qe8 Bh6 Ra7 Ra5 h6 Rc6
Bf6 Kf7 Nc6 Rf7 Ra8 h5 Re8
Bh8 Nb8 Nb6 Rb6 Qa5 Nd5
Qb6



Appendix D

Forward-Pruning Vectors

Appendix D presents the best FPVs with their performances in LOA (D.1) and
in chess (D.2).

D.1 FPVs in LOA

The performance of the best FPVs in LOA is given in Table D.1 (see subsection
4.4 for details). The table has five parts corresponding to five search depths
for the opponent. In each of the five parts of the table the first line represents
the result for the full-width searcher, and the second line the +1 ply full-width
searcher (both in italics). The three best FPVs obtained by the optimisation
algorithm with each opponent depth and each explored FPV length are given.
The performance of the overall-best FPV corresponding to a certain opponent
depth is given in bold.

D.2 FPVs in chess

The best FPVs are given in Table D.2 for FPV-d, in Table D.3 for FPV-it and
in Table D.4 for FPV-l (see subsection 4.4 for details). In each table and for
each reference search depth, the first entry specifies the performance of the 1-ply
deeper full-width searcher (in italics), and the next five entries the performance
of the top five FPVs.
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opponent search depth = 1
depth FPV values performance

1 all 0.5675
2 all all 0.9275
2 7 20 0.8200
2 10 7 0.8175
2 3 all 0.7275
3 10 2 1 0.9050
3 4 4 4 0.8925
3 7 6 1 0.8900
4 4 1 2 6 0.8500
4 5 1 2 5 0.8450
4 4 2 2 2 0.8400
5 3 1 2 1 3 0.8625
5 3 1 1 6 4 0.8575
5 3 1 2 3 2 0.8525
6 4 1 2 1 1 2 0.8450
6 4 1 1 1 1 10 0.8225
6 3 1 2 1 1 7 0.8025

opponent search depth = 2
depth FPV values performance

2 all all 0.4775
3 all all all 0.8400
3 10 all 6 0.8050
3 10 20 7 0.7850
3 20 10 5 0.7500
4 10 10 3 2 0.6225
4 10 7 4 2 0.6075
4 7 7 6 2 0.5950
5 7 4 3 2 3 0.6000
5 5 7 3 4 1 0.5925
5 7 6 2 3 2 0.5800
6 6 3 4 2 1 2 0.4900
6 5 3 5 2 1 2 0.4725
6 5 5 4 2 1 1 0.4700

opponent search depth = 3
depth FPV values performance

3 all all all 0.5300
4 all all all all 0.8175
4 all all 10 10 0.6650
4 all 20 20 5 0.6625
4 20 all 20 6 0.6200
5 20 all 5 7 4 0.7750
5 20 all 7 7 3 0.7500
5 20 10 7 20 2 0.7350
6 10 10 6 7 4 7 0.5575
6 7 all 7 5 2 2 0.5525
6 10 20 7 6 3 1 0.5500
7 6 10 6 7 4 1 1 0.5575
7 10 10 6 5 3 1 1 0.5450
7 7 4 6 4 6 3 1 0.5225

opponent search depth = 4
depth FPV values performance

4 all all all all 0.4700
5 all all all all all 0.8000
5 all all 20 all 4 0.6675
5 all all all 10 6 0.6650
5 all all 10 all 10 0.6550
6 20 all 10 6 7 4 0.5050
6 all all 7 4 7 3 0.4900
6 20 all 7 7 6 5 0.4825
7 20 all 7 7 4 2 4 0.5200
7 20 20 7 6 3 6 3 0.4700
7 10 20 6 10 6 1 4 0.4600

opponent search depth = 5
depth FPV values performance

5 all all all all all 0.5025
6 all all all all all all 0.7375
6 all all 10 all 10 all 0.5725
6 all all all 20 20 6 0.537500
6 all all all all 10 6 0.502500
7 20 all 20 all 10 7 4 0.6750
7 20 all 10 all 10 7 6 0.6675
7 all all 10 20 10 7 6 0.6500

Table D.1: FPV values and performances in LOA.
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reference search depth = 4
FPV values performance
all all all all all 3.8
3 2 all 20 20 0.32
5 5 all 10 10 0.17
5 5 20 10 20 0.11
4 5 20 10 all -0.09
3 2 20 20 all -0.15

reference search depth = 5
FPV values performance
all all all all all all 2.8
4 10 40 10 10 40 0.19
5 30 all 3 5 10 -0.17
5 5 all 10 20 all -0.33
5 5 100 30 5 10 -0.70
3 30 20 3 30 4 -0.74

reference search depth = 6
FPV values performance
all all all all all all all 2.2
10 30 20 4 all 10 20 -0.09
5 5 20 30 all 20 20 -0.49
5 10 30 5 all 20 all -0.77
3 40 20 5 30 30 30 -0.81
20 30 all 2 5 10 all -0.90

reference search depth = 7
FPV values performance
all all all all all all all all 1.2
all 5 20 all all 4 10 20 -0.96
all 20 20 40 10 10 20 5 -1.06
4 5 all 10 30 all all all -1.12
all 4 all 30 all 10 5 20 -1.24
3 10 all 20 20 20 all all -1.24

reference search depth = 8
FPV values performance
all all all all all all all all all 1.3
10 10 all 10 10 all 30 all 20 -1.00
all all all 10 20 5 10 10 all -1.07
30 10 30 10 10 all 20 all 20 -1.09
20 30 50 3 30 10 3 all all -1.66
3 all 30 5 10 all all all all -1.66

Table D.2: FPV-d values and performances in chess.



120 APPENDIX D. FORWARD-PRUNING VECTORS

reference search depth = 4
FPV values performance
all all all all all 3.8
all all 30 20 5 0.02
10 3 30 3 10 -0.11
all 5 20 4 10 -0.56
all all 20 3 10 -0.73
all all 5 10 10 -0.96

reference search depth = 5
FPV values performance
all all all all all all 2.8
all all 20 3 20 10 0.49
all 5 all 3 20 10 0.44
all 20 30 5 20 10 0.32
all 20 50 3 20 10 0.23
all all 20 10 20 10 0.20

reference search depth = 6
FPV values performance
all all all all all all all 2.2
all all all 20 5 30 10 -0.18
all 40 10 40 4 30 10 -0.42
all 5 all 40 10 30 10 -0.49
all all all all all 20 10 -0.56
all 20 40 20 10 30 10 -0.55

reference search depth = 7
FPV values performance
all all all all all all all all 1.2
all 20 all 3 all 10 10 20 0.18
10 30 5 40 40 5 50 10 -0.68
all all all all all 30 30 10 -1.11
10 2 2 4 4 30 all 5 -2.96
all all 20 2 10 30 all 5 -3.08

reference search depth = 8
FPV values performance
all all all all all all all all all 1.3
all all 40 all all all 10 10 20 -0.26
all all all all all 50 10 10 20 -0.32
all all all all all all 3 10 20 -0.42
all 30 2 20 20 10 all 30 10 -1.08
all all 5 all 10 10 all 30 10 -1.23

Table D.3: FPV-it values and performances in chess.
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reference search depth = 4
FPV values performance
all all all all all 3.8
all 2 5 20 10 1.04
5 4 20 10 10 0.82
5 2 5 all 10 0.79
20 3 3 30 10 0.08
10 2 4 all 10 -0.09

reference search depth = 5
FPV values performance
all all all all all all 2.8
30 2 5 30 20 10 0.74
10 10 30 5 5 20 0.46
5 2 10 all 20 10 0.45
3 5 20 40 10 5 0.44
all 3 10 30 10 5 0.17

reference search depth = 6
FPV values performance
all all all all all all all 2.2
5 10 all 10 10 all 20 1.08
10 10 all 5 10 all 20 1.02
40 5 20 5 10 all 20 0.76
5 5 all 20 10 10 all 0.69
10 10 all 10 5 all 20 0.62

reference search depth = 7
FPV values performance
all all all all all all all all 1.2
all 3 all 30 10 10 all 20 0.25
10 10 10 all 20 10 all 20 0.09
10 4 10 10 all all all 20 0.09
4 10 20 30 20 10 all 20 0.06
20 5 all 30 10 10 all 20 0.00

reference search depth = 8
FPV values performance
all all all all all all all all all 1.3
5 2 10 20 30 20 all all 20 -0.16
all 3 20 40 10 10 all all 10 -0.19
5 2 10 all 20 30 all 20 20 -0.23
all 20 30 3 5 30 all all 10 -0.30
4 2 10 all 20 30 all 30 20 -0.31

Table D.4: FPV-l values and performances in chess.



122 APPENDIX D. FORWARD-PRUNING VECTORS



Summary

This thesis presents research on learning algorithms suitable for improving pro-
gram decisions that may influence the game-tree search. Such decisions are
called search decisions. In Chapter 1, we provide some general background infor-
mation. We introduce a classification of search decisions based on the difference
in the way search decisions are evaluated (more precisely how their efficacy is
evaluated). Three classes are identified: (1) Class-P search decisions, (2) Class-
S search decisions, and (3) Class-G search decisions. Class-P search decisions
are evaluated by using Positions only, Class-S search decisions are evaluated by
using Search trees, Class-G search decisions are evaluated by using complete
move sequences (as they occur in Game trees).

We would like to investigate how learning can be employed for search deci-
sions. This leads to the formulation of our research question: which learning
algorithms can improve search decisions? The question is addressed in the fol-
lowing chapters by choosing an instance for each of the three classes of search
decisions, and by designing new learning algorithms suitable for these instances.
The learning algorithms are tested experimentally.

Chapter 2 describes the environments employed for testing the learning algo-
rithms. A test environment consists of a game and a game program. Two games
are employed: Lines of Action (LOA) and chess. Both games are two-person
zero-sum games with perfect information. LOA is a game with a smaller com-
plexity, a shorter game length, and three relatively uniform game phases (i.e.,
the number of pieces and the strategies involved are not changing drastically
during the game). These features make LOA an attractive domain for generating
new ideas, since they can be tested fast. In LOA, we use two test environments:
(1) the NN-population environment, which includes a set of 100 neural-network
evaluation functions, combined with a simple search engine, and (2) the MIA
environment adopted from the tournament program MIA. Chess has a larger
complexity, and so far received most attention from the game-research commu-
nity. As a consequence, the available chess programs are fine-tuned, and use
state-of-the-art techniques. Thus, chess is a suitable domain for evaluating the
algorithms developed. In chess, we use one test environment adopted from the
tournament program CRAFTY.

Chapter 3 deals with move ordering. This is considered to be the main in-
stance of class-P search decisions. We introduce a new move-ordering heuristic,
the Neural MoveMap heuristic. The heuristic uses a neural network to estimate
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the likelihood of a move being the best in a certain position. The moves con-
sidered more likely to be the best are examined first. We describe the details of
the heuristic, and we formulate five questions. The first three questions concern
details of the heuristic; the next two questions deal with the performance of the
heuristic. All questions are answered by experiments. From the experiments on
the details of the heuristic we conclude that (1) the best choice for move encoding
is using one output unit for each possible move, (2) the neural network should
be trained with large learning sets, which are labelled either by a game program
or by using moves from a game database, and (3) the best approach to use the
neural network during the search is a weighted-combination approach, which
orders the moves according to a weighted sum of the neural-network scores and
the history-heuristic scores. From the experiments evaluating the performance
of the heuristic, we conclude that (1) by using the Neural MoveMap heuristic
the search expands smaller trees than the existing heuristics (specifically the
history heuristic) both in the games of LOA and chess, and (2) the neural net-
work predicts the best move correctly in chess almost as often as a 7-ply search
of CRAFTY.

Chapter 4 deals with forward pruning. This is an instance of class-S search
decisions. Forward pruning is evaluated by the size of the search tree and by the
quality of the move. The measures are usually averaged over a set of positions.
We define two types of representation for forward pruning: (1) forward-pruning
vector (FPV), which is a discrete representation, and (2) forward-pruning func-
tion (FPF), which is a continuous representation. For each of the two types
of representation a learning algorithm is developed: the TS-FPV algorithm for
FPVs, and the RL-FPF algorithm for FPFs (TS stands for Tabu Search and RL
for Reinforcement Learning). Both algorithms are designed for maximising the
quality of the move selected by the search while keeping the size of the search
tree below a specified limit. The algorithms rely on two assumptions: (1) if at
some depth(s) the game-tree search is wider while at no depth it is narrower,
the number of nodes explored does not decrease; and (2) if at some depth(s)
the search is wider while at no depth it is narrower, the performance does not
decrease. The critical forward-pruning solutions (FPVs or FPFs) are those that
are feasible (i.e., the size of the search tree is below the limit), and cannot
be widened at any depth without becoming infeasible. If the two assumptions
hold, the optimal solution is among the critical ones. The TS-FPV algorithm
uses a tabu-search algorithm to explore the space of the FPVs focusing on the
critical FPVs. The RL-FPF algorithm is a reinforcement-learning algorithm
for FPFs. It uses a gradient-descent update rule, which combines four reward
terms corresponding to (1) the size of the search tree, (2) the quality of the
move in the root, (3) the moves in an internal node that change the value of
the node, and (4) the moves in an internal node that do not change the value
of the node. The experimental results show that the two algorithms are able
to tune a forward-pruning scheme that has a better overall performance than
the full-width search. The FPFs obtained from RL-FPF outperformed the best
FPVs resulting from TS-FPV.

Chapter 5 deals with time allocation. This is an instance of class-G search



125

decisions. We propose two learning algorithms for time allocation, viz. the
Meta-Actor-Critic algorithm and the SANE-TA algorithm. The Meta-Actor-
Critic algorithm (MAC) is a gradient-descent actor-critic algorithm. It uses the
framework of a temporal-difference algorithm for learning the state-action values
of the search decisions, with the change in the value of the evaluation function
(the critic) as intermediary reward (the evaluation function being an estimation
of the game result). The SANE-TA algorithm is an application to time alloca-
tion of an existing genetic algorithm, SANE. From the experiments we conclude
that the SANE-TA algorithm results in a better time-allocation scheme than the
MAC algorithm, but the time required for training by the SANE-TA algorithm
is significantly higher, and even prohibitive. Both algorithms result in a com-
parable or better time allocation than the existing time allocation algorithms
tested in the experiments. Finally, we may conclude that the MAC algorithm
is able to use the additional freedom in dynamic time allocation, and that it is
in no way hampered by multiple search decisions during one search process.

In Chapter 6, we revisit the research question and summarise the main con-
clusions of the preceding chapters. Moreover, we provide promising directions
for future research. For each learning algorithm described in the thesis, we dis-
cuss how these algorithms can be improved and/or extended for other instances
of search decisions.
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Samenvatting

Dit proefschrift beschrijft een onderzoek op het gebied van leeralgoritmen. Het
gaat om het verbeteren van programma-beslissingen, die het zoekproces in de
spelboom bëınvloeden. Zulke beslissingen noemen we in deze samenvatting
kortheidshalve zoekbeslissingen. Hoofdstuk 1 geeft enige algemene achtergrond-
informatie. We introduceren een classificatie van zoekbeslissingen, die gebaseerd
is op het verschil in de manier waarop zoekbeslissingen worden geëvalueerd
(beter gezegd hoe hun effect wordt geëvalueerd). We identificeren drie klassen:
(1) Klasse-P zoekbeslissingen, (2) Klasse-S zoekbeslissingen, en (3) Klasse-G
zoekbeslissingen. Klasse-P zoekbeslissingen worden geëvalueerd met alleen spel-
posities (Eng.: Positions). Klasse-S zoekbeslissingen worden geëvalueerd met
zoekbomen (Eng.: Search trees), Klasse-G zoekbeslissingen worden geëvalueerd
met volledige partijen (Eng.: Games).

We onderzoeken hoe diverse verschillende leermethoden gebruikt kunnen
worden voor het nemen van zoekbeslissingen. Dit leidt tot de formulering
van onze onderzoeksvraag: welke leeralgoritmen kunnen zoekbeslissingen ver-
beteren? De vraag wordt in de volgende hoofdstukken nader bezien. We kiezen
voor elk van de drie klassen zoekbeslissingen een voorbeeld en ontwerpen ver-
volgens nieuwe leeralgoritmen die geschikt zijn voor deze voorbeelden. De leer-
algoritmen worden experimenteel getest.

Hoofdstuk 2 beschrijft de omgevingen die gebruikt zijn om de leeralgorit-
men te testen. Een test omgeving bestaat uit een spel en een spelprogramma.
Er is gebruik gemaakt van twee spelen: Lines of Action (LOA) en schaken.
Beide spelen zijn twee-persoons nul-som spelen met perfecte informatie. LOA
is een spel met een kleinere complexiteit, een kortere spellengte en drie relatief
uniforme spelfasen (d.w.z. dat het aantal stukken en de gebruikte strategieën
niet drastisch veranderen tijdens het spel). Deze kenmerken maken LOA tot
een aantrekkelijk domein voor het genereren van nieuwe ideeën, vooral omdat
ze snel kunnen worden getest. In LOA gebruiken we twee test-omgevingen:
(1) de NN-populatie omgeving, met een verzameling van 100 neurale-netwerk-
evaluatiefuncties die verbonden worden met een eenvoudige zoekmachine, en
(2) de MIA omgeving, die gebruik maakt van het toernooiprogramma MIA.
Schaken heeft een grotere complexiteit en heeft tot nu toe de meeste aandacht
van de spel-onderzoekgemeenschap gehad. Dientengevolge zijn de beschikbare
schaakprogramma’s zeer verfijnd en maken ze gebruik van state-of-the-art tech-
nieken. Daarom is schaken een geschikt domein om de ontworpen algoritmen te
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testen. Bij het schaken gebruiken we één test-omgeving, die gebaseerd is op het
toernooi programma CRAFTY.

Hoofdstuk 3 gaat over het ordenen van zetten. Dit is het belangrijkste voor-
beeld van een klasse-P zoekbeslissing. We introduceren een nieuwe heuristiek
voor het ordenen van zetten, de Neural MoveMap heuristiek. De heuristiek ge-
bruikt een neuraal netwerk om een schatting te geven van de waarschijnlijkheid
dat een zet de beste is in een bepaalde positie. De zetten die waarschijnlijker
geacht worden de beste te zijn worden eerst onderzocht. We beschrijven de
details van de heuristiek en we formuleren vijf vragen. De eerste drie vragen
hebben betrekking op de details van de heuristiek en de overige twee vragen
op de prestaties van de heuristiek. De vragen worden beantwoord met behulp
van experimenten. Op basis van de experimenten betreffende de details van de
heuristiek concluderen wij (1) dat de beste keuze om de zetten te coderen is
het gebruik van één output-unit voor iedere mogelijke zet, (2) dat het neurale
netwerk getraind moet worden met grote leerverzamelingen die van een waarde
voorzien zijn ofwel met behulp van een spelprogramma ofwel met behulp van
de zetten uit een spel-database, en (3) dat de beste benadering om het neu-
rale netwerk tijdens het zoekproces te gebruiken een benadering met gewogen
combinaties is: de benadering ordent de zetten volgens een gewogen som van
de scores van het neurale netwerk en de scores van de history heuristiek van de
zetten. Op basis van de experimenten die de prestaties van de heuristiek eva-
lueren concluderen we (1) dat met behulp van de Neural MoveMap heuristiek
het zoekproces kleinere bomen ontwikkelt dan de bestaande heuristieken (met
name de history heuristiek), zowel bij LOA als bij schaken, en (2) dat het neu-
rale netwerk bij schaken de beste zet bijna net zo vaak goed voorspelt als een
7-ply zoekproces van het programma CRAFTY.

Hoofdstuk 4 handelt over voorwaarts snoeien. Dit is een voorbeeld van een
klasse-S zoekbeslissing. Voorwaarts snoeien wordt geëvalueerd door middel van
de grootte van de zoekboom en de kwaliteit van de zet. De maten worden
gewoonlijk gemiddeld over de verzameling posities. Wij definiëren twee typen
representaties voor voorwaarts snoeien: (1) FPVs (Forward-Pruning Vectors),
een discrete representatie, en (2) FPFs (Forward-Pruning Functions), een con-
tinue representatie. Voor ieder van de twee representaties is een leeralgoritme
ontwikkeld: het TS-FPV algoritme voor FPVs, en het RL-FPF algoritme voor
FPFs (TS staat voor Tabu Search en RL voor Reinforcement Learning). Beide
algoritmen zijn ontworpen om de kwaliteit van de zet die geselecteerd is op ba-
sis van het zoekproces te maximaliseren met inachtneming van een bovengrens
voor de grootte van de zoekboom. De algoritmen zijn gebaseerd op twee aan-
namen: (1) dat als de zoekboom op een of meer diepten breder is en op geen
enkele diepte smaller, dan is het aantal onderzochte knopen niet minder, en (2)
dat als de zoekboom op een of meer diepten breder is en op geen enkele diepte
smaller, dan is de prestatie niet minder. De kritische voorwaarts-snoei oplos-
singen (FPVs of FPFs) zijn die oplossingen die mogelijk zijn (dat wil zeggen,
waarvoor de grootte van de zoekboom kleiner dan de bovengrens is) en niet op
willekeurige diepte breder kunnen worden gemaakt zonder dan onmogelijk te
worden. Als de twee aannamen gelden, dan moet de optimale oplossing zich
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bevinden tussen de kritische oplossingen. Het TS-FPV algoritme gebruikt een
tabu-search algoritme om de ruimte te exploreren van de FPVs, met een focus op
kritische FPVs. Het RL-FPF algoritme is een reinforcement-learning algoritme
voor FPFs. Het maakt gebruik van een gradient-descent update regel die vier
beloningstermen combineert overeenkomstig (1) de grootte van de zoekboom,
(2) de kwaliteit van de zet in de wortel van de boom, (3) de zetten in een in-
terne knoop die de waarde van de knoop veranderen, en (4) de zetten in een
interne knoop die de waarde van de knoop niet veranderen. De experimentele
resultaten tonen aan dat beide algoritmen een voorwaarts-snoeiproces kunnen
ontwikkelen dat een beter resultaat oplevert (kleinere boom) dan een volledig
zoekproces. De FPFs die verkregen zijn met behulp van het RL-FPF algoritme
waren beter dan de beste FPVs die verkregen zijn met het TS-FPV algoritme.

Hoofdstuk 5 gaat over tijdstoewijzing. Dit is een voorbeeld van een klasse-
G zoekbeslissing. We stellen twee leeralgoritmen voor tijdstoewijzing voor,
namelijk het Meta-Actor-Critic algoritme en het SANE-TA algoritme. Het
Meta-Actor-Critic algoritme (MAC) is een gradient-descent actor-critic algo-
ritme. Het maakt gebruik van een temporal-difference algoritme om de waarden
te leren van toestand-actie paren voor zoekbeslissingen, waarbij de verander-
ing in de waarde van de evaluatiefunctie (de critic) als tussentijdse beloning
optreedt. (De evaluatiefunctie wordt dan gebruikt als een schatter van het re-
sultaat van het spel.) Het SANE-TA algoritme is de toepassing van een bestaand
genetisch algoritme, SANE, op het gebied van tijdstoewijzing. Op basis van de
experimenten concluderen wij dat het SANE-TA algoritme een beter tijdstoewij-
zingsschema oplevert dan het MAC algoritme, maar dat de tijd die nodig is om
het eerstgenoemde algoritme te trainen is beduidend langer, en dikwijls zelfs
te lang. Beide algoritmen resulteren in vergelijkbare of betere tijdstoewijzing
dan de bestaande tijdstoewijzingsalgoritmen die in de experimenten getest zijn.
Ten slotte concluderen wij dat het MAC algoritme in staat is om de additionele
vrijheid in de dynamische tijdstoewijzing te benutten, en niet belemmerd wordt
door meervoudige zoekbeslissingen tijdens een zoekproces.

In Hoofdstuk 6 komen we terug op de onderzoeksvraag en vatten de belang-
rijkste conclusies van de voorgaande hoofdstukken samen. Verder geven we
enige veelbelovende richtingen voor vervolg-onderzoek aan. Voor ieder leeral-
goritme dat is beschreven in dit proefschrift gaan we na hoe deze algoritmen
verbeterd kunnen worden voor en/of uitgebreid naar andere voorbeelden van
zoekbeslissingen.
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