Summary

Cardiovascular disease has remained the main cause of mortality in the western world and atherosclerosis accounts for the majority of these deaths. Through the years, infectious agents have been mentioned as potential causes of atherosclerotic disease and especially cytomegalovirus (CMV), being one of the herpesviruses, has been frequently associated with atherosclerotic lesions. The virus - along with the bacterium Chlamydia pneumoniae - has become the most serious infectious candidate for a causative or contributing role in atherogenesis. CMV is a ubiquitous virus, the prevalence of anti-CMV antibodies in the general population is as high as 50-80%, however, by far the majority of infections in immunocompetent hosts remain asymptomatic. On the other hand, CMV is a well-known cause of severe, often fatal, disease in immunocompromised patients, especially transplant recipients and patients suffering the acquired immunodeficiency syndrome (AIDS). CMV induced pathology in these patients may be diverse and often multiple organs are involved. Vascular changes are frequently described to be part of such pathology.

Based on the preexistent hypothesis that vascular involvement may be of principal importance in CMV induced pathology, the studies in this thesis are focussed on CMV interactions with large and medium sized arteries, as well as with the microvasculature, and the clinical relevance of such interactions.

Chapter 1 starts with some general aspects of atherosclerotic lesions and atherogenesis. Furthermore, the possible role of infectious agents in atherosclerosis is discussed on basis of the literature. The main part of this chapter concerns a review of literature describing associations that have been established between CMV and atherosclerosis and other vascular pathologies. At the end of this chapter hypotheses and aims of this thesis are stated.

Chapter 2 describes studies in rat models of localized and generalized CMV infection, using rat-specific CMV (RCMV). Both models constituted evidence for extensive microvascular involvement in CMV associated pathology, manifested by activation and infection of microvascular endothelium, vasculitis, thrombotic occlusions and haemorrhages. Increased bleeding times and thrombocytopenia during disseminated CMV infection supported the existence of diffuse intravascular coagulopathy. The nature and chronology of RCMV induced pathologic vascular events are shown, indicating the importance of (microvascular) endothelial activation and damage in CMV disease.

In chapter 3 the use of a rat allogeneic abdominal aorta transplantation model is
described in a study of the effects of CMV infection on transplantation associated arteriosclerosis. RCMV administration, three weeks after the transplantation, at which time intimal smooth muscle cell (SMC) proliferation and adventitial infiltration of inflammatory cells have reached maximum levels, resulted in enhanced neointima thickness, as well as increased numbers of SMCs in the intima. Moreover, mononuclear cell infiltration into the adventitia was evidently enhanced in RCMV infected recipient rats. RCMV infected cells were only sporadically present in the adventitia, however, were never seen in neointima or media.

The CMV induced effects were not found in syngeneic aorta grafts and were inhibited by prior administration of the acyclic nucleoside analogue (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC), a potent and selective inhibitor of CMV infection. The data indicate that CMV enhances alloimmune graft reactions, as manifested by augmentation of 'atherosclerotic' changes.

SMCs are important constituents of atherosclerotic processes and though they have been suggested to be potential sites of CMV infection, active infection of arterial SMCs in vivo had not been described before. Chapter 4 concerns a study after the susceptibility of medial and neointimal SMCs to acute CMV infection in vivo. Hereto a rat balloon injury model was used. In immunocompetent rats, as well as in rats that had been immunocompromised, the left carotid artery was injured with a balloon catheter. Two weeks after injury, when a neointima had developed and proliferation levels of neointimal SMCs were still high, rats were intravenously infected with RCMV. Two weeks after this RCMV administration, extensive active RCMV infection was established in the innermost layer of the neointima of immunocompromised rats. This was evidenced by the presence of typical nuclear CMV inclusions and of early viral antigens and DNA in the cytoplasm and nucleus of intimal cells, while the virus was visualized in these cells with electron microscopy. The infected cells were almost exclusively SMCs, as could be concluded from the electron microscopic images and staining of infected cells with anti-smooth muscle actin antibodies. In the areas that had been recovered by endothelium, infection of underlying SMCs did not occur. Infected cells were never observed in the media. Moreover, in this model RCMV infection was not detected in rat organs, with the exception of the salivary glands. Neointima and media cross sectional areas were not significantly affected by RCMV infection.

The data presented in this chapter proved neointimal SMCs to be highly preferential sites for active CMV infection.

In the study described in chapter 5 it was investigated whether neointimal RCMV infection after injury results in arterial changes on the long term. Moreover it was investigated whether the phenotypic state of neointimal SMCs may influence their susceptibility to active CMV infection, since so far we had found neointimal SMCs to become infected at the time of increased neointimal proliferation, while infection of medial SMCs had never been observed.

With respect to the first question, rats received RCMV intravenously, two weeks after balloon injury of the left carotid artery. At 20 weeks after infection, no significant
RCMV induced differences in intima or media thickness were found and intimal SMC proliferation levels, as indicated by bromodeoxyuridin incorporation, had returned to normal levels, irrespective of prior RCMV infection. Moreover, no signs of active infection were observed at that time.

With respect to the second question, RCMV was administered at 8 weeks after balloon injury. At this time neointimal SMC phenotype had changed from a synthetic (dedifferentiated) to a more contractile (redifferentiated) phenotype, which was confirmed by immunohistochemical determination of α-actin, desmin and vimentin contents. Two weeks after virus administration no signs of infection were found in the intima nor in the media. These findings indicate that intimal SMC phenotype determines its susceptibility to active CMV infection in vivo. Since dedifferentiation of neointimal SMCs was associated with enhanced proliferation of these cells, it was concluded that dedifferentiation and/or proliferation are prerequisites for active CMV infection.

Chapter 6 describes a study after the susceptibility of medial SMCs to active CMV infection. RCMV in this study was administered early (three days) after balloon catheterisation of the left rat carotid artery, which is in a period of increased proliferation and dedifferentiation of SMCs in the media. Two and four days after infection, RCMV antigens or other signs of active RCMV infection were observed neither in the media, nor in the neointima that had just started to develop. At 14 days after infection, solitary SMCs, or small clusters of SMCs that contained RCMV specific antigens were sporadically present in the neointima of 50% of the infected rats. However RCMV antigens were not found in medial cells. Since the media had remained negative during the time of migration (3-7 days) of SMCs into the intima, it is unlikely that infected intimal SMCs represent medial SMCs that had been infected before migration (or intimal SMCs, infected by such medial SMCs). It is hypothesized that infection might have taken place by circulating infected blood cells at later times. These data strongly suggest that the arterial media, in contrast to the neointima, is not a preferential site for active CMV infection.

In essence, the studies that are presented in thesis, confirm our hypothesis that CMV induces vascular changes at different levels and of different nature and that vascular involvement is of basic importance in CMV pathology. The most characteristic findings and their possible clinical relevances are recounted hereafter.

- Active RCMV infection of endothelial cells was found, but only of endothelial cells from microvascular origin.
- RCMV was found to enhance neointima formation and neointimal influx and/or proliferation of SMCs, as well as adventitial inflammatory infiltration, but only under allo-immune conditions.
- Neointimal SMCs of larger arteries proved to be highly preferential sites for active RCMV infection, but only when they are in a dedifferentiated/proliferating state and in the absence of intact endothelium.
Infection was found not to be necessarily present for RCMV to influence cellular behaviour, supporting possible mediation by factors, like cytokines and growth factors in such RCMV induced cellular effects.

With respect to microvascular involvement, it was shown that CMV induced endothelial activation and damage may initiate disseminated intra-organ vascular pathology and coagulopathy that manifest CMV disease. Concerning RCMV enhanced events in aorta allografts, these findings are fully compatible with clinical associations that have been found between CMV infection and enhanced allograft rejection with accelerated graft arteriosclerosis. They underline the causative nature of such associations.

The clinical relevance of dedifferentiated/proliferating intimal SMCs being highly susceptible to active CMV infection, is less clear. However, the finding has a lot of potential, since SMCs in such a phenotypic state are present in the intima of vascular pathologies, such as atheromatous plaques, post-angioplasty arteries, as well as in arterial grafts. In which way(s) active CMV infection of these cells, or reactivation of latently present CMV under certain local conditions, may contribute to the pathogenesis of such lesions, needs to be further elucidated.
Samenvatting

Hart- en vaatziekten vormen nog steeds de voornaamste doodsoorzaak in de westere wereld en atherosclerose neemt hierbij verreweg de belangrijkste plaats in. Door de jaren heen zijn verschillende infectieuze agentia genoemd als potentiële causale factoren in het ontstaan van atherosclerose. Met name cytomegalovirus (CMV), een herpesvirus, is frequent geassocieerd met atherosclerotische lesies en - samen met de bacterie Chlamydia pneumoniae- is dit virus de meest serieuze kandidaat gebleken voor een causale of bijdragende rol van infectie aan het chronische proces dat atherosclerose is. CMV is wereldwijd een veel voorkomende verwekker van infecties - 50-80% van de mensen in de algemene populatie heeft specifieke antistoffen tegen CMV-, echter, bij mensen met een normale immunologische weerstand verlopen deze infecties over het algemeen asymptomatisch. Anders ligt het in geval er sprake is van een verminderde immunologische afweer. In AIDS patiënten en ontvangers van orgaantransplantaten is CMV een beruchte, oorzaak van ernstige en dikwijls fataal verlopende infecties. CMV geïnduceerde pathologie in deze patiënten is uiteenlopend van aard en betreft vaak meerdere organen. Vasculaire veranderingen zijn herhaaldelijk beschreven onderdeel uit te maken van dergelijke pathologie. Gebaseerd op onze hypothese dat vasculaire betrokkenheid van wezenlijk belang is in CMV geïnduceerde pathologie, zijn de studies die in dit proefschrift beschreven worden gericht op mogelijke interacties van CMV met grote en middelgrote arteriën en met de microvasculatuur, alsmede op de klinische relevantie van dergelijke interacties.

Hoofdstuk 1 begint met enige algemene aspecten van atherosclerotische lesies en het ontstaan hiervan. Vervolgens wordt de mogelijke rol die infectieuze agentia hierbij kunnen spelen, bediscussieerd. Het belangrijkste deel van dit hoofdstuk betreft een overzicht van de bestaande literatuur waarin gevonden associaties worden beschreven van CMV met atherosclerose en andere vasculaire pathologische veranderingen. Tot slot worden hypotheses en daaruit resulterende doelstellingen van de onderzoeken die beschreven worden in dit proefschrift, uiteengezet.

Hoofdstuk 2 beschrijft de onderzoeken in rattenmodellen van gelocaliseerde en gegeneraliseerde CMV infectie, waarbij gebruik gemaakt werd van een rat-specifiek CMV (RCMV). Beide modellen leverden bewijzen voor uitgebreide microvasculaire betrokkenheid in CMV geassocieerde pathologie, welke gemanifesteerd wordt door activatie en infectie van microvasculair endotheel, vasculitis, thrombotische afsluitingen en bloedingen. Verlengde bloedingstijden en lage concentraties van stollingsfactoren en thrombocyten tijdens gegeneraliseerde CMV infectie ondersteunen het bestaan van diffuus intravasculaire stolling. De aard en chronologie van RCMV
geïnduceerde vasculaire pathologische veranderingen worden getoond, en indiceren het belang van (microvasculaire) endotheelactivatie en schade tijdens gegeeneraliseerde CMV infectie.

In hoofdstuk 3 wordt het gebruik van een model van allogene (abdominale) aortatransplantatie in ratten beschreven, in een studie naar de effecten van CMV op transplantatie geassocieerde arteriosclerose. Toediening van RCMV, drie weken na de transplantatie, wanneer proliferatie van gladde spiercellen in de zich vormende neointima en infiltratie van ontkleedcellen in de adventitia maximaal zijn, resulteerde zowel in een toename van neointimadikte, als in een toegenomen aantal neointimale gladde spiercellen. Bovendien was er in de met RCMV geïnfecteerde ratten sprake van een duidelijk toegenomen infiltratie van mononucleaire cellen in de adventitia. Met uitzondering van een sporadisch RCMV geïnfecteerde cel in de adventitia, werd actieve infectie nooit waargenomen in de neointima of media. De door RCMV geïnduceerde effecten werden niet gezien in syngene aortatransplantaten en werden in de allogene transplantaten volledig voorkomen door het vooraf toedienen van (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (HPMPC), een acyclisch nucleoside analoog met een zeer effectieve en selectieve activiteit tegen CMV. De resultaten van deze studie wijzen erop dat CMV allo-immunologische reacties in het transplantaat stimuleert, wat zich manifesteert in een toename van ‘atherosclerotische’ veranderingen.

Gladde spiercellen zijn belangrijke deelnemers aan atherosclerotische processen en hoewel bij herhaling genoemd als potentiële ‘target’cellen voor CMV infectie, is actieve CMV infectie van gladde spiercellen in vivo nog niet eerder beschreven. Hoofdstuk 4 betreft een studie die gedaan is naar de gevoeligheid van mediale en neointimale gladde spiercellen in vivo, voor acute CMV infectie. Hierbij werd gebruik gemaakt van een balloncatheterisatiemodel in ratten (een bekend model in onderzoek naar aspecten van neointimavorming). In zowel immunocompetente als immunogecompromitteerde ratten werd de linker arteria carotis communis gecatheteriseerd, waarbij over een traject van de vaatwand, endotheel ‘gestript’ werd. Twee weken nadien, wanneer zich in respons op deze mechanische beschadiging een neointima had gevormd en het niveau van proliferatie van intimale gladde spiercellen nog steeds sterk verhoogd was, werden ratten intraveneus geïnfecteerd met RCMV. Twee weken na infectie werd in de immunogecompromitteerde ratten een massale actieve RCMV infectie gezien van de binnenste (aan het lumen grenzende) laag van de neointima. Deze infectie manifesteerde zich in de aanwezigheid van voor CMV typische kerninluitsels, alsmede van virale (vroege) antigeen en viraal DNA in kern en cytoplasma van intimale cellen, terwijl bovendien het virus zelf met behulp van elektronenmicroscopie in deze cellen zichtbaar gemaakt kon worden. De geïnfecteerde cellen betroffen vrijwel allemaal gladde spiercellen, zoals aangetoond met antilichamen tegen gladde spiercel α-actine en met elektronenmicroscopie. Daar waar reëndothelialisatie had plaats gevonden, werd geen infectie van de onderliggende gladde spiercellen gezien en geïnfecteerde cellen werden eveneens nooit waargenomen in de media. Verder bleek er, met uitzondering van de speekselklachten, geen actieve
RCMV infectie aanwezig in de organen. RCMV had geen significant effect op neointima- en mediaoppervlakte. De bevindingen in deze studie laten zien dat neointimale gladde spiercellen in vivo in hoge mate gevoelig zijn voor actieve infectie door CMV.

In de studie die wordt beschreven in hoofdstuk 5, werd onderzocht of neointimale RCMV infectie, welke optreedt na beschadiging van de arteriële vaatwand, in arteriële veranderingen op de lange termijn resulteert. Bovendien werd onderzocht of het fenotype van de intimale gladde spiercel mogelijk van invloed is op diens gevoeligheid voor actieve CMV infectie, daar er tot op dat moment slechts infectie van intimale gladde spiercellen gevonden was, ten tijde van verhoogde proliferatie, terwijl infectie van mediale gladde spiercellen nog nooit was aangetoond.

Met betrekking tot de eerste vraag, ontvingen ratten RCMV weer twee weken na het toebrengen van schade aan de vaarwand van de a. carotis. Na 20 weken werden geen significante door RCMV geïnduceerde verschillen in dikte van neointima en media gevonden en was het niveau van gladde spiercelproliferatie in de neointima genormaliseerd, zoals kon worden afgeleid uit DNA incorporatie van toegediend bromodeoxyuridine. Bovendien werden er geen tekenen van actieve infectie meer gezien.

Met betrekking tot de tweede onderzoeksvraag, werd RCMV acht weken na de ballonschade toegediend. Op dat tijdstip is het fenotype van gladde spiercellen in de neointima veranderd van een overweldigd ‘synthetisch’ (gededifferentieerd) fenotype in een meer ‘contractiel’ (ge(re-)differentieerd) fenotype, wat bevestigd werd door immunohistochemische kleuring van α-actine, desmine en vimentine in de neointima. Twee weken na RCMV toediening werden geen tekenen van actieve infectie gezien in de intima of media. Deze bevindingen suggereren dat het fenotype van de intimale gladde spiercel bepaald is voor diens gevoeligheid voor actieve infectie door CMV. Omdat dedifferentiatie geassocieerd is met verhoogde proliferatie van intimale gladde spiercellen, is de conclusie dat dedifferentiatie en/of proliferatie voorwaarde(n) zijn voor actieve CMV infectie.

*Hoofdstuk 6* beschrijft een studie naar de gevoeligheid van mediale gladde spiercellen voor actieve CMV infectie. RCMV werd in deze studie in een vroeg stadium (drie dagen) na balloncatherisatie van de a. carotis toegediend, in de periode van verhoogde dedifferentiatie en proliferatie van gladde spiercellen in de media. Twee en vier dagen na infectie werden er in de media, noch in de neointima welke zich op dat moment juist begon te ontwikkelen, RCMV antigenen of andere bewijzen van actieve infectie gezien. Twee weken na infectie werden in de neointima van 50% van de ratten sporadisch solitaire cellen en/of kleine clusters van cellen waargenomen die RCMV antigenen bleken te bevatten. In de media echter werden nooit geïnfecteerde cellen gedetecteerd. Omdat de media gedurende de periode van migratie (3–7 dagen na balloncatheterisatie) RCMV negatief is gebleven, is het zeer onwaarschijnlijk dat de RCMV positieve cellen in de intima, mediale gladde spiercellen betreffen, welke vóór migratie naar de intima geïnfecteerd zijn (of intimale gladde spiercellen die door zulke mediale cellen geïnfecteerd zijn). De hypothese is dat infectie van intimale gladde
spiercellen heeft plaats gevonden via circulerende geïnfecteerde cellen, in een later stadium na infectie. Deze data suggereren sterk dat de arteriële media, in tegenstelling tot de neointima, geen voorkeursplaats is voor actieve CMV infectie.

In essentie bevestigen de studies die in dit proefschrift gepresenteerd worden, onze vooraf bestaande hypothese dat CMV vasculaire veranderingen induceert op verschillende niveaus en van verschillende aard en dat dergelijke veranderingen van fundamentele betekenis zijn in CMV geïnduceerde pathologie.

De meest karakteristieke bevindingen, alsmede de mogelijk klinische relevanties ervan, worden hierna nog eens op een rij gezet.

- Actieve RCMV infectie van endotheliale cellen is aangetoond, doch alleen van microvasculair endothiel.
- RCMV stimuleert zowel de vorming van een neointima en intima-influx en/of proliferatie van intimaal gladde spiercellen, als infiltratie van inflammatoire cellen in de adventitia, doch alleen onder allo-immune condities.
- Neointimale gladde spiercellen zijn gebleken voorkeurscellen te zijn voor actieve RCMV infectie, doch alleen indien zij in een gededifferentieerde en/of prolifererende staat verkeren en in de afwezigheid van intact endothiel.
- Infectie bleek niet persé noodzakelijk voor RCMV om het gedrag van cellen te beïnvloeden, wat een mogelijke rol voor cytokines en groeifactoren ondersteunt.

Wat betreft de microvasculaire veranderingen, is het aannemelijk gemaakt dat door CMV geïnduceerde endotheliale activatie en schade, vasculaire pathologie in organen en stollingsstoornissen initiëren, welke symptomatische CMV infecties kenmerken. De door RCMV gestimuleerde reacties in allogene aortatransplantaten passen bij de gevonden correlaties tussen CMV infectie en toegenomen transplantaatafstoting met versnelde arteriosklerose in ontvangers van allogene transplantaten. Zij onderstrepen een waarschijnlijk causaal karakter van dergelijke correlaties.

De klinische betekenis van het in hoge mate gevoelig zijn van gededifferentieerde / prolifererende intimaal gladde spiercellen voor actieve CMV infectie is minder eenduidig, hoewel het een in dit opzicht mogelijk zeer interessante bevinding betreft. Gladde spiercellen met een dergelijk fenotype zijn immers aanwezig in de intima van arteriële lesies, zoals atheromateuze plaques, ‘gedotterde’ arteriële gebieden en getransplanteerde arteriën. Op welke wijze(n) actieve CMV infectie van deze cellen, en/of reactivatie van latent aanwezig CMV onder bepaalde locale condities, kan bijdragen aan de pathogenese van dergelijke lesies, verdient vervolgonderzoek.