
 

 

 

Solving Constraint Satisfaction problems with tree-
decomposition
Citation for published version (APA):

Koster, A. M. C. A., van Hoesel, C. P. M., & Kolen, A. W. J. (2002). Solving Constraint Satisfaction
problems with tree-decomposition. Networks, 40(3), 170-180. https://doi.org/10.1002/net.10046

Document status and date:
Published: 01/01/2002

DOI:
10.1002/net.10046

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 29 May. 2024

https://doi.org/10.1002/net.10046
https://doi.org/10.1002/net.10046
https://cris.maastrichtuniversity.nl/en/publications/b7af3f17-3aec-4858-a7fc-592a49b9343e


Solving Partial Constraint Satisfaction Problems with
Tree Decomposition

Arie M. C. A. Koster
Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Takustraße 7, D-14195 Berlin-Dahlem, Germany

Stan P. M. van Hoesel and Antoon W. J. Kolen
Department of Quantitative Economics, Maastricht University, P.O. Box 616,
6200 MD Maastricht, The Netherlands

In this paper, we describe a computational study to solve
hard partial constraint satisfaction problems (PCSPs) to
optimality. The PCSP is a general class of problems that
contains a diversity of problems, such as generalized
subgraph problems, MAX-SAT, Boolean quadratic pro-
grams, and assignment problems like coloring and fre-
quency planning. We present a dynamic programming
algorithm that solves PCSPs based on the structure (tree
decomposition) of the underlying constraint graph. With
the use of dominance and bounding techniques, we are
able to solve small and medium-size instances of the
problem to optimality and to obtain good lower bounds
for large-size instances within reasonable time and
memory limits. © 2002 Wiley Periodicals, Inc.

Keywords: tree decomposition; partial constraint satisfaction;
frequency assignment; MAX-SAT; dynamic programming

1. INTRODUCTION

The Partial Constraint Satisfaction Problem (PCSP) con-
sists of a set of decision variables v � V that have to be
assigned exactly one element (value) from a set of feasible
values called the domain Dv. Each value has a penalty
associated, incurred when selected. Moreover, for some
pairs of variables {v, w}, certain combinations of values
are also penalized. The objective of the problem is to assign
values to all variables so as to minimize the total penalty
incurred. If a solution without penalty is searched for, the
problem is known as the Constraint Satisfaction Problem
(CSP).

In this paper, we study the PCSP with binary relations,
that is, all subsets involve only two variables. Let the set E
� V � V represent all these variable pairs for which some

combination of values incurs a nonzero penalty. Then, the
problem can be modeled on an auxiliary graph, the con-
straint graph, where the vertices correspond to the decision
variables, and the edges, to the pairs in E. Introducing the
variables y(v, dv) for all v � V, dv � Dv as

y�v, dv� � �1 if dv � Dv is selected
0 otherwise,

we obtain the binary quadratic program

min �
�v,w��E

�
dv�Dv

�
dw�Dw

p�v, dv, w, dw�y�v, dv�y�w, dw�

� �
v�V

�
dv�Dv

q�v, dv�y�v, dv� (1)

s.t. �
dv�Dv

y�v, dv� � 1 � v � V (2)

y�v, dv� � �0, 1� � v � V, dv � Dv. (3)

Here, the functions p and q are called the edge penalty
function and the vertex penalty function, respectively. Note
that this program can be linearized fairly easily introducing
the variables z(v, dv, w, dw) � y(v, dv) y(w, dw) (cf.
Padberg [16]).

The PCSP has a wide range of applications. A fairly
direct application is the graph coloring problem, where we
are given a graph G � (V, E) and k colors that can be
assigned to the vertices. This assignment should be such that
the number of edges for which the end-vertices have the
same color is minimized. There are no penalties involved
with the assignment of a color to a vertex, but for each
connected pair of vertices, a k � k unit penalty matrix is
given. The graph is k colorable if and only if an assignment
without penalty exists. A closely related problem, which
actually inspired this research, is a particular formulation of

Received July 1, 2000; accepted July 1, 2002
Correspondence to: A. M. C. A.. Koster; e-mail: koster@zib.de
Published online 00 Month 2002 in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/net.10046
© 2002 Wiley Periodicals, Inc.

NETWORKS, Vol. 40(3), 170–180 2002



the Minimum Interference Frequency Assignment Problem
(MI-FAP), where antennae are to be assigned one frequency
each, taken from a predetermined set of frequencies. For
each antenna, certain frequencies are favored over others,
and, therefore, there are penalties introduced by assigning
frequencies to vertices. Moreover, geographically close an-
tennae may incur interference with one another if close
frequencies are assigned to them. Therefore, certain combi-
nations of frequencies are penalized. In the literature, inter-
ference is treated (with a few exceptions) as a relation
between pairs of antennae. Hence, the MI-FAP can be
modeled as a binary PCSP. Moreover, the MI-FAP is a
fairly general model of the FAP as many versions can be
formulated as a MI-FAP, for instance, the Minimum Span
FAP and the Maximum Service FAP; see [3] and FAP web
[8] for more information. Typically, the penalty matrices
resulting from frequency assignment have a diagonal struc-
ture. The MI-FAP instances that motivated this study (the
so-called radio-link-frequency assignment problems of the
CALMA project [2]) have some specific characteristics
resulting in more general penalty matrices (see Section 5.2).

Another problem that has an elegant translation to the
PCSP is MAX-SAT; see Koster et al. [14]. Finally, many
well-known optimization problems on graphs can be trans-
formed to the PCSP. The generalized subgraph problem (for
instance, the generalized TSP), as introduced in Feremans
[9], is defined as follows: Partition the set of vertices into a
number of subsets. Now, select exactly (at most) one vertex
in each subset in such a way that the solution on the induced
instance is optimal overall.

The ��-hardness of the PCSP with domain sizes at least
3 follows from a reduction from the 3-coloring problem on
graphs (cf. [10]). In Koster et al. [14], it was proved, with a
reduction from MAX-SAT, that the PCSP is already ��-
hard if all domains have size 2. Computational experiments
affirm these results in practical settings. In Koster et al. [14],
the polyhedral approach is applied with limited success.

In this paper, a lesser-known combinatorial optimization
technique is applied to solve PCSPs. Here, we make use of
the structure of the constraint graph. In case the graph is
treelike, we may solve the problem by using a tree decom-
position of the constraint graph with a small treewidth. The
notions of treewidth and tree decomposition were intro-
duced by Robertson and Seymour [17] in their fundamental
work on graph minors. Besides the major role they play in
graph theory, many ��-hard problems on graphs have been
shown to be solvable in polynomial (linear) time on graphs
with a bounded treewidth (see Bodlaender [5] for an over-
view). So far, these results have been considered of theo-
retical interest only. In this paper, we show that this tech-
nique is of practical importance as well. Together with some
processing techniques, we solve instances of PCSP which
could not be solved with other techniques. In addition, with
an iterative algorithm that uses the tree decomposition al-
gorithm as a subroutine, lower bounds can be computed for
instances that are too large to be solved to optimality.

This paper is organized as follows: In Section 2, we

introduce the solution methodology applied in this paper.
Tree decompositions and treewidth are defined, a heuristic
to find a tree decomposition is presented, and a description
of the dynamic programming algorithm based on the tree
decomposition of the constraint graph is given. The quality
of the algorithm can be improved with the use of (pre)pro-
cessing techniques, which are described in Section 3. We
present the iterative extension of the algorithm that provides
lower bounds for the original problem in Section 4. Com-
putational results for MAX-SAT and frequency assignment
instances are presented in Section 5.

2. SOLUTION METHODOLOGY

In this section, we describe the solution technique ap-
plied in this paper. The method is based on the assumption
that the underlying graph structure of the PCSP admits a
decomposition with a small so-called treewidth. This allows
for a dynamic programming algorithm that solves PCSP in
polynomial time (given the treewidth as a constant). In
Section 2.1, we introduce tree decompositions and tree-
width. Next, we describe in Section 2.2 a heuristic to
compute a tree decomposition with a small treewidth. The
dynamic programming algorithm is the topic of Section 2.3.

Throughout this paper, we use the standard graph theory
terminology as follows: Let N(v) � {w � V : {v, w}
� E} denote the set of vertices adjacent to v � V, the
neighbors of v, and for set S � V, let N(S) � {w � V�S
: ?v�S{v, w} � E} be the neighbors of the vertices in S,
S excluded. Moreover, let �(S, T) denote the set of all edges
between the vertices in S � V and T � V�S, that is, �(S, T)
� {{v, w} � E : v � S, w � T}. We use �(S) as short
version of �(S, V�S). With E[S], we denote all edges with
both vertices in S, that is, E[S] � �(S, S). By G[S] � (S,
E[S]), we denote the subgraph of G � (V, E) induced by
S.

2.1. Tree Decomposition and Treewidth

Robertson and Seymour developed the notion of tree
decomposition in [17]. A tree decomposition T � (I, F) of
a graph G � (V, E) is a graph itself, where the nodes are
induced subgraphs of G, such that each vertex/edge of G is
in at least one subgraph. The edges of the tree decomposi-
tion should be chosen such that T is a tree and, moreover,
that the nodes of T containing an arbitrary vertex of G
induce a connected component in T. The width of a tree
decomposition is the maximum cardinality of the subgraphs
minus one. Formally,

Definition 2.1 (Robertson and Seymour [17]). Let G
� (V, E) be a graph. A tree decomposition is a pair (T, �),
where T � (I, F) is a tree with nodes I and edges F and �
� {Xi : i � I} is a family of subsets of V, one for each node
of T, such that

(i) �i�I Xi � V,

NETWORKS—2002 171



(ii) For every edge {v, w} � E, there is a node i � I
with v � Xi as well as w � Xi, and

(iii) For all v � V, the set of nodes {i � I : v � Xi} is
connected in T.

The width of a tree decomposition is maxi�I�Xi� � 1. The
treewidth of a graph G is the minimum width over all
possible tree decompositions of G.

In Figure 1, a graph and its optimal tree decomposition
are given. The width of this decomposition is 2. Note that a
connected graph has treewidth 1 if and only if it is a tree.

2.2. Construction of a Tree Decomposition

The computation of a tree decomposition with minimal
width is ��-hard [4]. However, for constant k, the decision
whether the treewidth is at most k can be solved in linear
time [6]. This algorithm is exponential in k and therefore
impractical for graphs with larger treewidth. Therefore, we
present in this section a heuristic to compute a tree decom-
position. The idea behind the heuristic is based on separat-
ing vertex sets. In a tree decomposition T, all internal nodes
of T separate G in at least two components. The algorithm
aims at decreasing the cardinality of the nodes in a given
tree decomposition iteratively. We try to replace a node in
an existing tree decomposition by a number of new nodes
for which the maximum cardinality is smaller than is the
cardinality of the original node. To achieve this goal, we
search for small separating vertex sets. Note that finding a
separating vertex set with minimum cardinality is a min-cut
problem. Hence, it can be found with standard network flow
techniques (see [13]).

The heuristic starts with the trivial tree decomposition in
which we have one node corresponding to the whole graph.
During the process, we have a tree decomposition (T, �)
with T � (I, F). We select the node i � I with �Xi�
maximum. This node is replaced by m � 1 nodes i0, . . . ,
im with vertex sets Xi0

, . . . , Xim
. The nodes i1, . . . , im are

all connected to i0. Each node k � N(i) is connected to
exactly one node j � {i0, . . . , im}, such that all conditions
of a tree decomposition are satisfied again. The sets
Xi0

, . . . , Xim
are defined as follows: We construct a graph

Gi � (Vi, Ei) that consists of the induced subgraph G[Xi]
and the additional edges �k�N(i) C(Xi � Xk), where C(X)
denotes a complete graph on the vertices X [i.e., C(X) is a
clique]. If Gi is a complete graph, then Xi0

:� Xi and m
� 0, that is, we do not change the tree decomposition. If Gi

is not a clique, then we identify a minimum separating
vertex set S � Vi. Let Yi1

, . . . , Yim
be the vertex sets of the

m � 2 components of Gi[Vi�S]. We define Xi0
:� S, and

Xij
:� Yij

� S for all j � 1, . . . , m. A set Xk with k 	 i
has a nonempty intersection with at most one set Yij

, j
� 1, . . . , m: Let v, w � Xi � Xk; then, {v, w} � C(Xi

� Xk) � Ei, which implies that v and w cannot be
separated by S. So, either v, w � S or v, w � Yij

� S for
only one j � {1, . . . , m}. Therefore, we connect each
neighbor k � N(i) with the node ij, j � {1, . . . , m}, for
which the intersection of Xk and Yij

is nonempty; in case
there is no such ij, we connect k with i0. As a consequence,
the new construction is a tree again (see Fig. 2). In the new
tree, the conditions for a valid tree decomposition again
hold. Since �j�0

m Xij
� (�j�0

m Yij
) � S � Xi, condition (i)

is satisfied. To satisfy condition (ii), we have to prove that,
for each edge {v, w} � E[Xi], one of the new vertex sets
Xi0

, . . . , Xim
contains both vertices. If v, w � S, then this

is trivially true. Otherwise, suppose that v � Yij
for some j

� {1, . . . , m}. If w � Yik
, k 	 j, then S does not separate

Yij
and Yik

, a contradiction. Thus, w � Yij
� S � Xij

.
Condition (iii) states that all nodes in the tree that contain
the same vertex v must form a subtree. We only need to
check this for v � Xi. If v � S, then v is contained in all
new nodes and the condition is trivially satisfied. Otherwise,
let v � Yij

for some j � {1, . . . , m}. By construction,
nodes k � N(i) and ij are connected if Xk and Yij

intersect.
Hence, all nodes that contain v form a subtree again.

Note that if Gi is not a clique then there exist vertices v,
w � Xi with {v, w} � Ei. Thus, S � Xi�{v, w} separates
Gi into two components: Yi1

� {v} and Yi2
� {w}. So,

max{�Yi1
� S�, �Yi2

� S�} � �Xi� � 1 
 �Xi�. As a
consequence, the width of the tree decomposition may de-
crease. Figure 3 shows the heuristic in a flowchart.

FIG. 1. Example of a graph and a tree decomposition with width 2.

FIG. 2. Improvement step of a tree decomposition.

172 NETWORKS—2002



2.3. Dynamic Programming Algorithm

Similar to many other ��-hard problems based on
graphs, the PCSP can be solved in polynomial time for
graphs of bounded treewidth. The algorithm is based on the
following idea: Let S � V be a separating vertex set of G
with G[V�S] � G[V1] � G[V2]. Then, the optimal assign-
ment in V1 (or V2) only depends on the assignment in S. So,
given an assignment of S, the problem decomposes into two
independent PCSPs on G[V1] and G[V2], which can be
solved separately. This idea can be formulated as a dynamic
programming algorithm using a tree decomposition (T, �)
of the graph. For every internal node i � I, Xi is a
separating vertex set, which implies that, given an assign-
ment for Xi, the PCSP decomposes into smaller PCSPs for
every branch in the tree.

To describe the algorithm in more detail, we need some
additional notation: For the remainder of the paper, we
assume that the tree is rooted and binary. Let Yi � {v � V
: ?j � I, v � Xj and j descendant of i} denote the set of
vertices that is represented by the subtree rooted at node i.
Given a subset S � V, we denote with dS � (dv)v�S an
assignment of domain elements dv � Dv for every vertex v
� S. Similarly, DS denotes the complete set of assignments
for a given set S.

Now, in a bottom-to-top way, the dynamic programming
algorithm computes for every node i � I all assignments
DYi

for the subset Yi. Starting with a leaf i � I of the tree,
the algorithm stores all assignments for the vertices in Xi.
The computation of all assignments takes �(�v�Xi

�Dv�)
� �(d�Xi�) time, where d � maxv�V�Dv�. Next, given all
assignments for two nodes j, k � I with common prede-

cessor i � I, we can compute all assignments DYi
by

combining every assignment of Yj, every assignment of Yk

that has the same assignment for the vertices in Xj � Xk,
and every assignment of domain elements to the vertices in
Xi�(Xj � Xk). However, since Xi is a separating vertex set
in the graph, we do not have to store all assignments for the
vertices in Yi, but only the assignments that differ for the
vertices in Xi. For an assignment of the vertices in Xi, we
only have to store the best assignment for the vertices in
Yi�Xi. In other words, we have to store, at most, �v�Xi

�Dv�
assignments for node i � I instead of �v�Yi

�Dv� assign-
ments to obtain the overall optimal solution. The computa-
tion of these assignments can be done in
�(�v�Xi�Xj�Xk

�Dv�) � �(d�Xi���Xj���Xk�) time. Finally, for
the root node r � I of the tree T, Yr � V, and so we only
have to store one solution which gives the desired optimal
solution for the problem. The overall computation time of
this algorithm is given by �(nd3k), where k is the width of
the tree decomposition (T, �) of G that is used. So, for
graphs with a treewidth bounded by a constant k, this
algorithm solves the PCSP in time polynomial in n and d,
but exponential in k.

3. REDUCTION TECHNIQUES

The performance of the dynamic programming algorithm
highly relies on additional techniques to reduce the size of
the sets of assignments. We describe two types of reduction
techniques, namely, bounding and dominance. We present
simple techniques that are quickly performed, but also very
complex techniques which are to be processed only when
necessary. In applying these techniques, there is always a
delicate balance between speed and effectiveness. Never-
theless, all techniques are presented in a unified way. All
techniques are based on the following straightforward par-
adigm for extending partial feasible solutions:

A partial feasible solution can be extended to an optimal
solution only if the extension itself is the best possible
with respect to the partial feasible solution. In other
words, if a partial feasible solution is not extended
optimally, the resulting feasible solution is certainly not
optimal.

In the first subsection, we use this paradigm directly to
remove vertices or to replace them by edges. In Subsection
3.2, we present a penalty shifting procedure, which is used
mainly to obtain lower bounds on the value of the instances,
but can sometimes be used to remove edges from the
constraint graph as well. In Subsection 3.3, we present
techniques to remove values from the domains of vertices
and to remove nonoptimal partial feasible solutions. This is
done in two ways: by using upper-bounding techniques and
by using dominance criteria. In Subsection 3.4, we conclude
with a description of how these techniques are applied in
practice.

FIG. 3. Heuristic for construction of a tree decomposition.

NETWORKS—2002 173



3.1. Constraint Graph Reduction

In this subsection, we describe how we can remove
vertices v � V with �N(v)� � 2 from G. First, consider a
vertex v � V with one neighbor, say w. Then, if in a partial
feasible solution, w is assigned a value d*w, the optimal
choice for v is given by arg mindv�Dv

{q(v, dv) � p(v, dv,
w, d*w)}. Although d*w may differ among all partial solu-
tions, we can determine the best extension of any partial
feasible solution beforehand by, for all dw � Dw, comput-
ing the value

q��w, dw� � min
dv�Dv

�q�v, dv� � p�v, dv, w, dw��

and subsequently adding q�(w, dw) to q(w, dw). This, in
effect, adds to each dw the optimal choice in Dv at the
beginning of the algorithm, allowing us to remove the
vertex v and the edge {v, w} from the instance.

We can generalize this idea to vertices with degree two
as follows: Let v be such a vertex, and let N(v) � {u, w}.
Then, for a partial solution with d*u and d*w selected for u
and w, respectively, the optimal choice for v is d*v � arg
mindv�Dv

{ p(u, d*u, v, dv) � q(v, dv) � p(v, dv, w, d*w)}.
Again, we can do this beforehand by, for all du � Du, dw

� Dw, computing the value

p��u, du, w, dw�

� min
dv�Dv

�p�u, du, v, dv� � q�v, dv� � p�v, dv, w, dw��

and subsequently adding p�(u, du, w, dw) to p(u, du, w,
dw). This, in effect, adds to each combination {du, dw} the
optimal choice in Dv, allowing us to remove the vertex v
and its two incident edges from the instance. Note that
possibly the edge {u, w} may have to be inserted in the
constraint graph.

We can repeat the reduction process until all vertices
with degree at most two are removed.

3.2. Penalty Shifting: Lower Bounding

In this subsection, we present a technique to obtain a
lower bound on the optimal value of the instances by

shifting penalties from edges to vertices and back and from
vertices to the objective and back.

If for an edge {v, w} � E we have penalties with the
property that for some d*v � Dv, p(v, d*v, w, dw) 
 0 for
all dw � Dw, then we can decrease these penalties and
simultaneously increase q(v, d*v) by the same amount. The
same procedure works on vertices. Suppose that we have a
positive penalty q(v, dv) for all dv � Dv. Then, by (2), we
can decrease the penalty q(v, dv) by the minimum vertex
penalty and add the same value to the objective. The con-
dition that all penalties should be nonnegative is not really
crucial, but allows us to maintain a lower bound on the
objective value. Figure 4 illustrates this technique. We have
three vertices, each with two domain elements. Nonzero
edge penalties are indicated beside the edges [Fig. 4(a)]. By
the described procedure, we first can decrease the edge
penalties by increasing the vertex penalties of v [cf. Fig.
4(b)]. Next, we can subtract 1 from the vertex penalties of
v and add this value to the constant part of the objective
[Fig. 4(c)].

3.3. Domain Reduction

In this section, we present methods to reduce the number
of partial feasible solutions by upper bounding (Section
3.3.1) and dominance (Section 3.3.2).

3.3.1. Upper Bounding. Upper bounding in its simplest
form is performed on vertices as follows: Consider a vertex
v and its neighbors N(v). We want to derive an upper bound
u(v, �(v)) on the total penalty incurred by node v in the
optimal solution of the PCSP, that is, an upper bound on the
vertex penalty of v and the edge penalties of the edges
incident with v.

Consider an arbitrary partial solution d*N(v) � DN(v).
Then, we compute the value for v with the lowest penalty:

P�d*N�v�� � min
dv�Dv

�q�v, dv� � �
w�N�v�

p�v, dv, w, d*w��.

Among all possible choices for d*N(v) � DN(v), we take the
one with highest penalty, that is,

u�v, ��v�� � max
d*N�v��DN�v�

P�d*N�v��.

FIG. 4. Example of shifting penalties.

174 NETWORKS—2002



Then, the value u(v, �(v)) is certainly an upper bound on
the penalty incurred by an optimal choice of value for v. So,
if q(v, dv) 
 u(v, �(v)), then dv can be removed from the
domain Dv. We apply this idea in a preprocessing phase of
the dynamic program.

This technique can be generalized to sets of vertices S �
V, instead of single vertices. For arbitrary S � V, we can
compute this upper bound by solving an integer linear
program. For all w � N(S), dw � Dw, we introduce a
binary variable:

y�w, dw� � � 1 if dw � Dw is assigned to w � N�S�
0 otherwise.

If the variable z denotes the actual upper bound, the integer
linear program becomes

u(S, �(S))�max z (4)

s.t. z � q�S, dS� � �
w�N�S�

�
dw�Dw

�
v�N�w��S

� p�v, dv, w, dw�y�w, dw�

� dS � DS (5)

�
dw�Dw

y�w, dw� � 1 � w � N�S� (6)

y�w, dw� � �0, 1� � w � N�S�, dw � Dw. (7)

Here, q(S, dS) denotes the total penalty involved in an
assignment dS, that is,

q�S, dS� � �
v�S

q�v, dv� � �
�v, w��E�S�

p�v, dv, w, dw�.

The constraints (6) and (7) enforce that, for each neigh-
bor of S, exactly one value is chosen. For a given choice of
values d*N(S), the right-hand sides of constraints (5) are the
penalties incurred with each of the corresponding assign-
ments for S. Thus, an assignment dS with the smallest
penalty determines the highest value z can obtain for the
particular choice of values for the neighbors of S. For each
possible assignment of values to the neighbors of S, we
determine this value. The worst choice of d*N(S) is the one
for which this value is maximal. This choice determines the
value of z, that is, u(S, �(S)).

An assignment dS � DS with q(S, dS) 
 u(S, �(S))
cannot be extended to an optimal complete assignment.
Hence, dS can be removed from the set of assignments DS.
An assignment with q(S, dS) � u(S, �(S)) is called
nonredundant.

The main problem with u(S, �(S)) is that it takes time to
compute. It may be preferable to compute the value of some
relaxation of (4)–(7). The standard LP-relaxation does not

generate really powerful upper bounds. Our choice is there-
fore to relax (4)–(7) by taking a subset of the constraints (5),
that is, a number of partial feasible solutions with low q(S,
dS). In case we restrict ourselves to one good partial solu-
tion d*S for S, we can solve the relaxed problem by inspec-
tion and use this as an upper estimate of u(S, �(S)):

u�S, ��S�� � q�S, d*S�

� �
w�N�S�

�
dw�Dw

�
v�N�w��S

� p�v, d*v, w, dw�y�w, dw�

� q�S, d*S� � �
w�N�S�

max
dw�Dw

�
v�N�w��S

p�v, d*v, w, dw�. (8)

The upper bound u(S, �(S)) is especially powerful if the
number of edges in the cut-set �(S) is small or if the sum of
the maximum penalties incurred by the cut-set edges is not
too large; see (8). If the upper bound u(S, �(S)) � 0 for a
subset S, then we know that, given any assignment to the
vertices V�S, the partial solution can be extended to a
complete solution without additional penalty. This implies
that we can remove the subset S and the edges �(S) from the
constraint graph.

3.3.2. Dominance. Upper-bounding techniques are a
quick way to eliminate the worst domain elements (or
partial feasible solutions), but these techniques sometimes
only remove a small fraction of the values that are redun-
dant. The upper bounding technique can be advanced by
looking at individual domain elements.

Let v � V. Consider DN(v), that is, the partial solutions
of N(v). If these partial solutions can all be extended
optimally with a value of Dv�{d*v}, then d*v is not neces-
sary. Hence, d*v can be removed from Dv. We say that d*v is
dominated by the values in Dv�{d*v}. This concept can also
be generalized to sets of vertices, similar to the generaliza-
tion of the upper bounds to sets S � V. Let d*S be an
assignment to S; then, d*S is dominated by the other nonre-
dundant assignments DS�{d*S} if every partial feasible so-
lution of N(S) can be extended to a solution at minimum
cost with an assignment of DS�{d*S}.

The decision problem of whether a partial feasible solu-
tion is dominated by the remaining ones can be modeled as
an integer linear program in a similar way as in the case for
the upper bound u(S, �(S)) (see [15] for details). Since this
formulation has a constraint for all remaining partial feasi-
ble solutions, it again is worthwhile to relax some of them
to determine dominance faster. In the most extreme form,
we compare a partial feasible solution d*S with only one dS.
Let �p(v, dv, d*v, w, dw) � p(v, dv, w, dw) � p(v, d*v,
w, dw) for all {v, w} � �(S), dw � Dw. If

NETWORKS—2002 175



q�S, dS� 	 q�S, d*S�

� �
�v, w����S�

max
dw�Dw

�p�v, dv, d*v, w, dw� � 0, (9)

then d*S is dominated by dS.

3.4. Implementation Issues

The above-described techniques are applied in both a
preprocessing phase and during the dynamic programming
algorithm. In the preprocessing phase, we apply the graph
reduction techniques, the penalty shifting, as well as the
upper bounding and dominance for single vertices until no
further reduction is achieved. During the dynamic program-
ming algorithm, the upper bounding and the simplified
dominance test (9) are applied for every computed separat-
ing vertex set.

4. ITERATIVE VERSION OF THE DYNAMIC
PROGRAMMING ALGORITHM

Both time and memory are sometimes insufficient to
solve large instances with the dynamic programming algo-
rithm described in Section 2.3, even if we use the reduction
techniques of Section 3. During the execution of the algo-
rithm, the number of nonredundant assignments explodes
for these instances. We can point out two reasons: On the
one hand, the width of our tree decomposition is too large.
On the other hand, the number of domain elements of a
vertex is too large. In the latter case, we may make use of
the structure of the penalties. In the MI-FAP instances of the
CALMA project, for example, the penalty matrices contain
large blocks of penalties that are almost equal. In this case,
it is relatively uncritical to assign either one of the frequen-
cies in such a block. The large differences in total penalty
are caused by changing the assigned frequency from one
block to another. This structure of the penalty matrices
allows for the following approach: Instead of assigning
single values to the vertices, identify a subset of values with
each vertex. By estimating the vertex and edge penalties for
these subsets from below, the optimal value of this newly
created PCSP is a lower bound on the optimal value of the
original PCSP. The time and memory requirements for

solving the newly created PCSP are much smaller, since the
domains of the vertices are shrunken substantially.

Let us illustrate this idea with an example depicted in
Figure 5. Figure 5(a) shows the penalty matrix for a partic-
ular edge. The level of interference on this edge is 10 if the
difference between the values (frequencies) is less than 2. If
we divide the values into two groups {1, 2}, and {3, 4}, we
obtain four blocks in the table of edge penalties with (al-
most) the same values. In most cases, there is no difference
between the penalties as long as the pairs of values are in the
same block. Therefore, let us construct a new PCSP in
which we have to assign either the subset {1, 2} or the
subset {3, 4} to the vertices. The edge penalties in this
newly created PCSP are given by the minimum of the
values in each block [see Fig. 5(b)]. Solving this substan-
tially smaller problem provides a lower bound on the opti-
mal value of the original problem. The quality of the lower
bound depends on the size of the blocks: Many small blocks
will provide a better lower bound than will a small number
of large blocks. As mentioned before, in applications such
as MI-FAP, the block structure of the penalty matrices
arises naturally, since the available values for an antenna
can be divided into groups of values that are in the same part
of the spectrum.

We can extend this idea to an iterative method that
provides a sequence of lower bounds for the original in-
stance. The dynamic programming algorithm is used as a
subroutine to solve the newly created PCSPs. The iterative
algorithm starts with an initial partition of the domains.
Solving this PCSP results in a lower bound on the optimal
value for the original PCSP. Next, given a solution for this
first subproblem, the partition of the domains in subsets is
refined in such a way that the newly created PCSP provides
a lower bound that is at least as good (but hopefully better)
as the previous one. This process of creating PCSPs with
refined subsets is repeated until either (i) a solution is found
where each assigned subset consists of a single domain
element, (ii) a solution whose value is equal to the upper
bound, or (iii) time and/or memory requirements prevent us
from solving the actual subproblem. For further details on
the iterative algorithm in general, and the refinement of the
subsets in particular, we refer to the technical report version
of this paper [15].

FIG. 5. Example to illustrate the idea behind the iterative algorithm.

176 NETWORKS—2002



5. COMPUTATIONAL RESULTS

The approach described in the previous sections was
tested on two sets of PCSPs. The first set consisted of 19
MAX-SAT instances taken from the second DIMACS chal-
lenge on cliques, colorings, and satisfiability [7]. The sec-
ond set of instances was taken from the CALMA project [2]
on the radio-link-frequency assignment. The algorithms
were implemented in C��. We used the callable library of
CPLEX, version 4, to solve (integer) linear programming
problems (upper bounding, dominance).

5.1. MAX-SAT

Maximum satisfiability (MAX-SAT) problems can be
converted to PCSPs [14]. Given a set of variables X and a
set of clauses C, a graph with �X� � �C� vertices and ¥c�C

xc edges is constructed, where xc is the number of variables
in clause c. As all considered instances are, in fact, MAX-
3-SAT instances, the number of edges equals 3�C�. The
domains of the vertices contain either two elements (vari-
ables) or xc elements (clauses). The two domain elements
for a variable are true and false. Each clause has a domain
element for every variable (or its negation) in the clause.
The edges connect the clauses with the variables. A variable
and a clause are connected if the variable (or its negation) is
in the clause. If the variable x is in the clause, the only
combination of elements that is penalized is { false, x}; if
the negation of x is in the clause, only the combination
{true, x�} is penalized. All penalties are equal (one). Now,
k clauses can be satisfied if and only if there exists a
solution to the PCSP with value �C� � k. So, the problems
are equivalent.

Since the domains are pretty small, we do not perform

any (pre)processing for the MAX-SAT instances. Also, the
iterative version of the algorithm is not performed. Table 1
shows the results for both computing a tree decomposition
of the graph (columns “computed width” and “Heur.”) and
the dynamic programming algorithm (column “DP”). The
computations were carried out on a Linux-operated PC with
a Pentium III 800 MHz processor and 512 MB of internal
memory. The “dubois” instances have such a structure that
the treewidth is 3 in all cases, whereas for the “pret”
instances tree decompositions of width 8 are computed by
the heuristic described in Section 2.2. For the dynamic
programming algorithm, only the computation time is re-
ported since the optimal value for all instances equals one,
that is, only one clause cannot be satisfied. The results show
that the heuristic to compute a tree decomposition is, in
almost all cases, the most time-consuming part. Given a
decomposition, the time required by the dynamic program-
ming algorithm increases more or less linearly in the num-
ber of clauses/variables for the “dubois” instances (except
for the instances “dubois50” and “dubois100”). For the
“pret” instances, the computation times of the dynamic
programming algorithm increase much faster, which can be
explained by the fact that the width of the tree decomposi-
tion (in this case 8) is part of the exponent of the running
time.

5.2. Radio–link–frequency Assignment

Within the CALMA project, 11 instances for minimizing
the interference in a military radio-link network are pro-
vided. The CELAR instances are real life; the GRAPH
instances are randomly generated with the same character-
istics as the CELAR instances. An overview of the results

TABLE 1. Computational results for the dynamic programming algorithm (MAX-SAT instances).

Instance
No.

variables
No.

clauses �V� �E�
Computed

width

CPU time (seconds)

Heur. DP

dubois20 60 160 220 480 3 176.1 142.4
dubois21 63 168 231 504 3 160.2 156.3
dubois22 66 176 242 528 3 186.9 171.5
dubois23 69 184 253 552 3 269.5 190.4
dubois24 72 192 264 576 3 309.2 206.7
dubois25 75 200 275 600 3 354.3 223.4
dubois26 78 208 286 624 3 400.4 242.1
dubois27 81 216 297 648 3 453.2 262.3
dubois28 84 224 308 672 3 508.4 280.7
dubois29 87 232 319 696 3 570.8 302.0
dubois30 90 240 330 720 3 657.3 322.5
dubois50 150 400 550 1200 3 3509.0 894.2
dubois100 300 800 1100 2400 3 35,969.6 3585.0

pret60_40 60 160 220 480 8 176.2 138.0
pret60_60 60 160 220 480 8 131.6 138.6
pret60_75 60 160 220 480 8 131.2 136.2
pret150_40 150 400 550 1200 8 2468.6 10,137.4
pret150_60 150 400 550 1200 8 2465.0 10,180.7
pret150_75 150 400 550 1200 8 2466.6 10,142.6

NETWORKS—2002 177



available for these instances can be found at FAP web [8]
(see also [3]).

Although all (minimum interference) frequency assign-
ment problems can be formulated as PCSPs, the character-
istics of radio link frequency assignment make these in-
stances particularly suitable for the tree decomposition
approach. The most eye-catching difference between radio-
link-frequency assignment and other wireless communica-
tion systems is that the connections are established mobile-
to-mobile without the interposition of so-called base
stations. Hence, we cannot distinguish between an up- and
downlink direction of a bidirectional connection and so
cannot use separate frequency bands for the directions. The
only requirement is that the frequencies assigned to both
directions are at a fixed distance. Consequently, the penalty
matrices have a far more arbitrary structure in comparison
with those from, for example, GSM frequency planning (see
[8, 13] for more details). In this section, we solve seven of
the 11 instances to optimality and we obtain good lower
bounds for the other instances. Before this study, nontrivial
lower bounds were only available for two instances.

The solution procedure consists of three steps: (i) in-
stance preprocessing, (ii) computation of a tree decomposi-
tion, and (iii) application of the dynamic programming
algorithm including the processing techniques. In case time
or computer memory is insufficient for computing the op-
timal solution, the iterative version of the dynamic program-
ming algorithm is applied. The computations are performed
on a DEC 2100 A500MP workstation with 128 MB internal
memory. We refer to [15] for implementation details.

Table 2 reports on the first two steps of the solution
procedure. For all instances, problem statistics before and
after preprocessing are reported. We report the number of
vertices (�V�), the number of edges (�E�), and the average
number of domain elements (�D�). In addition, we report the
value that is fixed by the preprocessing phase. The last two
columns of the table show the width computed by our
heuristic and a lower bound on the treewidth given by the
maximum clique size minus one (note that every clique
should be in at least one node of the tree).

From Table 2 we can draw the following conclusions:
For the instances CELAR 06–08, the graph reduction
techniques result in an instance size reduction of roughly
20%. The domain reduction techniques and penalty shifting
have only a marginal effect. For the other instances, the
combination of graph reduction, penalty shifting, and do-
main reduction techniques is very successful. In this way,
three instances are solved by preprocessing only. For the
other instances, the tightness of many constraints resulted in
reduced domains and nontrivial lower bounds on the opti-
mal value. The running time of the preprocessing phase is
within 1 minute for all instances.

For the second step, Table 2 shows that the gap between
the computed width and the lower bound varies from zero
for small instances to very large values for the instances
GRAPH 11 and GRAPH 13. For these instances, it is not
clear which bound is poor. We tried several variants of our
heuristic to improve the width of the tree decomposition, but
without any success.

Results for the third step and for the iterative algorithm
are reported in Table 3. Besides the best lower and upper
bound known, and the value fixed by preprocessing, we
report on the value obtained by the dynamic programming
algorithm and the iterative method, as well as their compu-
tation times. These results were obtained with the dynamic
programming algorithm without dominance. Experiments
with the dominance test did not result in a better perfor-
mance of the algorithm for these instances. The instances
CELAR 09, GRAPH 06, and GRAPH 12 can be solved very
efficiently with this method, due to the availability of a tree
decomposition with a small width. Instance CELAR 06
takes more than 7.5 hours. The optimal value for all these
instances is equal to the best-known upper bound from
Kolen [12]. Note that without preprocessing and upper
bounding it is impossible to solve these instances due to the
large number of partial solutions that have to be kept in the
memory. For the same reason, the other instances could not
be solved with the dynamic programming algorithm, even
with the application of preprocessing and upper bounding.

For these instances, as well as for instance CELAR 06,

TABLE 2. Statistics and preprocessing results (CALMA instances).

Instance

Before preprocessing After preprocessing
Computed

width
Lower
bound�V� �E� �D� �V� �E� �D� Fixed

CELAR 06 100 350 39.9 82 327 39.9 0 11 10
CELAR 07 200 817 39.9 162 764 34.6 0 17 10
CELAR 08 458 1655 39.5 365 1539 39.4 0 18 10
CELAR 09 340 1130 39.5 67 165 35.6 11,391 7 7
CELAR 10 340 1130 39.5 0 0 — 31,516 — —

GRAPH 05 100 416 37.1 0 0 — 221 — —
GRAPH 06 200 843 37.7 119 348 16.2 4112 17 5
GRAPH 07 200 843 36.7 0 0 — 4324 — —
GRAPH 11 340 1425 37.7 340 1425 32.6 2553 104 7
GRAPH 12 340 1255 37.6 61 123 15.3 11,496 4 4
GRAPH 13 458 1877 38.4 456 1874 38.1 8676 133 6

178 NETWORKS—2002



we applied the discussed iterative algorithm. For each in-
stance, two runs of the algorithm were carried out with
different initial domain partitions. In one, we partition each
domain into two subsets and, in the other, into four subsets.
The best result is reported in Table 3. For CELAR 06, the
algorithm stops since it cannot find any further refinement
of the domain partitions. For all other instances, the algo-
rithm stops due again to memory limitations.

The lower bound derived in this way for CELAR 06 is
very strong: only one below the optimal value. For both
CELAR 07 and CELAR 08, the values are the first non-
trivial lower bounds. The gap between lower and upper
bounds is closed by, respectively, 87.3 and 33.2%. For the
instances GRAPH 11 and GRAPH 13, the width of the tree
decomposition is too large to apply the dynamic program-
ming algorithm with any success.

6. CONCLUDING REMARKS

In this paper, we described how the concept of tree
decomposition can be used to compute an optimal solution
of partial constraint satisfaction problems. From theory, it is
well known that many combinatorial optimization problems
can be solved in polynomial time if the treewidth of the
underlying graph is bounded by a constant. The practical
relevance, however, was hard to determine, due to a lack of
implementations. In this paper, we report on a computa-
tional study to solve partial constraint satisfaction problems
with this technique. Many ��-complete problems such as
MAX-SAT, k-coloring, and frequency assignment can be
easily formulated as PCSPs. Therefore, our method can be
used to solve MAX-SAT and frequency-assignment in-
stances. For frequency assignment, this result could only be
achieved with the aid of additional reduction techniques,
like graph reduction, upper bounding, and dominance. By

the introduction of an iterative algorithm that uses a tree
decomposition-based dynamic program as a subroutine, the
first nontrivial lower bounds could be derived for most of
these instances.

In conclusion, these results show that the tree decompo-
sition approach can be an alternative to integer program-
ming, especially in those cases where the latter method fails.
To be competitive on a larger class of problems, there is a
need for further ideas on how to improve the performance of
both the heuristic to construct a tree decomposition (which
is a problem independent task) and the dynamic program-
ming algorithm (where problem-specific properties have to
be taken into account).

Acknowledgments

The authors would like to thank Rudolf Müller for his
suggestions which resulted in the iterative algorithm of
Section 4. Moreover, they would like to thank the referees
for their time and effort to point out many significant
improvements to earlier versions of this paper. This research
was carried out while the corresponding author was a Ph.D.
student at Maastricht University.

REFERENCES

[1] K.I. Aardal, A. Hipolito, C.P.M. van Hoesel, and B. Jansen,
A branch-and-cut algorithm for the frequency assignment
problem, Research Memorandum 96/011, Maastricht Uni-
versity, 1996. Available at http://www-edocs.unimaas.nl/
abs/rm96011.htm.

[2] K.I. Aardal, C.A.J. Hurkens, J.K. Lenstra, and S.R. Tiou-
rine, Algorithms for radio link frequency assignment: The
CALMA project, Oper Res (to appear).

TABLE 3. Results of dynamic programming (CALMA instances).

Instance
Best lower

bound [1, 11]
Best upper
bound [12]

Fixed by
preprocessing

Dynamic
programming

(optimum)
Iterative method
(lower bound)

CPU time (seconds)

Dynamic
programming

Iterative
method

CELAR 06 5 3389 0 3389 3388 27,102 9429
CELAR 07 5 343,592 0 — 300,000 — 275,736
CELAR 08 0 262 0 — 87 — 313,168
CELAR 09 14,969 15,571 11,391 15,571 —a 23 —a

CELAR 10 31,204 31,516 31,516
Solved by

preprocessing

GRAPH 05 — 221 221
Solved by

preprocessing
GRAPH 06 — 4123 4112 4123 —a 29 —a

GRAPH 07 — 4324 4324
Solved by

preprocessing
GRAPH 11 — 3080 2553 — — — —
GRAPH 12 — 11,827 11,496 11,827 —a 11 —a

GRAPH 13 — 10,110 8676 — — — —

a Iterative method not applied, since problem is solved rapidly by dynamic programming.

NETWORKS—2002 179



[3] K.I. Aardal, C.P.M. van Hoesel, A.M.C.A. Koster, C. Man-
nino, and A. Sassano, Models and solution techniques
for the frequency assignment problem, ZIB-report 01-40,
Konrad-Zuse-Zentrum für Informationstechnik Berlin,
2001. Available at http://www.zib.de/PaperWeb/abstracts/
ZR-01-40/.

[4] S. Arnborg, D.G. Corneil, and A. Proskurowski, Complex-
ity of finding embeddings in a k-tree, SIAM J Alg Discr
Methods 8 (1987), 277–284.

[5] H.L. Bodlaender, A tourist guide through treewidth, Acta
Cybernet 11 (1993), 1–21.

[6] H.L. Bodlaender, A linear time algorithm for finding tree-
decompositions of small treewidth, SIAM J Comput 25
(1996), 1305–1317.

[7] The second DIMACS implementation challenge: ��-hard
problems: Maximum clique, graph coloring, and satisfiabil-
ity; see http://dimacs.rutgers.edu/Challenges/ or http://
mat.gsia.cmu.edu/challenge.html, 1992–1993.

[8] A. Eisenblätter and A.M.C.A. Koster, FAP web—A website
devoted to frequency assignment. URL: http://fap.zib.de,
2000.

[9] C. Feremans, Generalized spanning trees and extensions,
Ph.D. Thesis, Université Libre de Bruxelles, 2001. Avail-
able at http://smg.ulb.ac.be/Theses/Theses.html.

[10] M.R. Garey and D.S. Johnson, Computers and intractability:

A guide to the theory of ��-completeness, Freeman, New
York, 1979.

[11] C.A.J. Hurkens and S.R. Tiourine, Upper and lower bound-
ing techniques for frequency assignment problems, Techni-
cal Report COSOR 95-34, Eindhoven University of Tech-
nology, 1995. Available at ftp://ftp.win.tue.nl/pub/
techreports/cosor/.

[12] A.W.J. Kolen, A genetic algorithm for frequency assign-
ment, Technical report, Maastricht University, 1999.

[13] A.M.C.A. Koster, Frequency assignment—Models and al-
gorithms, Ph.D. Thesis, Maastricht University, 1999. Avail-
able at http://www.zib.de/koster/.

[14] A.M.C.A. Koster, C.P.M. van Hoesel, and A.W.J. Kolen,
The partial constraint satisfaction problem: Facets and lift-
ing theorems, Oper Res Lett 23 (1998), 89–97.

[15] A.M.C.A. Koster, C.P.M. van Hoesel, and A.W.J. Kolen,
Solving frequency assignment problems via tree-decompo-
sition, Technical Report RM 99/011, Maastricht University,
1999. Available at http://www.zib.de/koster/.

[16] M. Padberg, The Boolean quadric polytope: Some charac-
teristics, facets and relatives, Math Program 45 (1989),
139–172.

[17] N. Robertson and P.D. Seymour, Graph minors. II. Algo-
rithmic aspects of tree-width, J Alg 7 (1986), 309–322.

180 NETWORKS—2002


