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Two-bound core games and the nucleolus

Doudou Gong1,2∗ Bas Dietzenbacher2† Hans Peters2‡
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Abstract

This paper introduces the new class of two-bound core games, where the core can be

described by a lower bound and an upper bound on the payoffs of the players. Many

classes of games turn out to be two-bound core games. We show that the core of each

two-bound core game can be described equivalently by the pair of exact core bounds,

and study to what extent the exact core bounds can be stretched while retaining the

core description. We provide explicit expressions of the nucleolus for two-bound core

games in terms of all pairs of bounds describing the core, using the Talmud rule for

bankruptcy problems, and study to what extent these expressions are robust against

game changes.

Keywords: two-bound core games, nucleolus, Talmud rule

JEL classification: C71

1 Introduction

In the theory of cooperative games (with transferable utility), players collaborate in coalitions

to generate profits. Cooperative game theory analyzes how to allocate profits generated by

the grand coalition among the players in a fair way, and provides several significant solution

concepts.

A central solution concept is the core, which consists of all coalitionally stable pre-

imputations, that is, no coalition will obtain more by deviating from cooperation in the

grand coalition. Bondareva (1963) and Shapley (1967) showed that the core is nonempty

if and only if the corresponding cooperative game is balanced. Another important solution

concept is the nucleolus (cf. Schmeidler 1969), which lexicographically minimizes the excesses

of coalitions. The nucleolus selects from the core in each balanced game.

∗Corresponding author. E-mail: d.gong@maastrichtuniversity.nl.
†E-mail: b.dietzenbacher@maastrichtuniversity.nl.
‡E-mail: h.peters@maastrichtuniversity.nl.
1School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, 710072, China.
2Department of Quantitative Economics, Maastricht University, Maastricht, 6200 MD, The Netherlands.
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Quant et al. (2005) studied the class of compromise stable games where the core coincides

with the core cover (cf. Tijs and Lipperts 1982), and provided an explicit expression of the

nucleolus for this class using the Talmud rule for bankruptcy problems. The core cover is

the set of pre-imputations between a specific pair of bounds. In this paper, we generalize the

approach of Quant et al. (2005) to all games where the core equals the set of pre-imputations

between an arbitrary pair of bounds, which we call two-bound core games.

We show that the core of each two-bound core game can be described equivalently by

the pair of exact core bounds (cf. Bondareva and Driessen 1994), which are defined by the

minimum and maximum individual payoffs within the core. Inspired by Quant et al. (2005),

we provide conditions to check whether a game is a two-bound core game, and describe the

extreme points of the core for each such game. All balanced games with at most three players

are two-bound core games, but this does not hold for more players.

We study to what extent the exact core bounds of a two-bound core game can be stretched

while retaining the core description. It turns out that only three possible cases exist. In the

first case, only the lower bounds are decreased for players who obtain their lower exact core

bounds when all other players obtain their upper exact core bounds, while keeping all other

bounds fixed. In the second case, only the upper bounds are increased for players who obtain

their upper exact core bounds when all other players obtain their lower exact core bounds,

while keeping all other bounds fixed. In the third case, both the lower bound is decreased

and the upper bound is increased for only a single player who obtains the lower exact core

bound when all other players obtain their upper exact core bounds and obtains the upper

exact core bound when all other players obtain their lower exact core bounds.

In line with Quant et al. (2005), we provide an explicit expression of the nucleolus for

two-bound core games in terms of the exact core bounds using the Talmud rule. In fact, the

nucleolus of these games can be equivalently expressed by each pair of bounds describing the

core. We study to what extent these expressions are robust against game changes.

The remainder of this paper is organized as follows. Section 2 introduces preliminary

definitions and notation about cooperative games and bankruptcy problems. In Section 3,

we formally introduce two-bound core games. The nucleolus for two-bound core games is

studied in Section 4. Finally, we conclude this paper with some remarks in Section 5.

2 Preliminaries

Let N be a nonempty and finite set of players and let 2N be the collection of all subsets of

N . An order of N is a bijection σ : {1, . . . , |N |} → N , where |N | denotes the cardinality

of N , and σ(i) represents the player at position i. The set of all orders of N is denoted by

Π(N). Denote by R+ the set of all non-negative real numbers.
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Let x, y ∈ RN . We denote x+ y = (xi + yi)i∈N , x− y = (xi − yi)i∈N , and λx = (λxi)i∈N

for all λ ∈ R. Moreover, x ≥ y denotes xi ≥ yi for all i ∈ N , and x > y denotes xi > yi for

all i ∈ N . The notations ≤ and < are defined analogously. We denote

[x, y] =
{
z ∈ RN

∣∣ x ≤ z ≤ y
}
.

A cooperative game with transferable utility (a game, for short) is a pair (N, v), where

v : 2N → R is the characteristic function with v(∅) = 0, representing the worth v(S) for

each coalition S ⊆ N when the players in S cooperate. The set of all games with player set

N is denoted by ΓN . For simplicity, we write v ∈ ΓN rather than (N, v) ∈ ΓN .

Let v ∈ ΓN . The pre-imputation set of v is

X(v) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = v(N)

}
,

the imputation set of v is

I(v) = {x ∈ X(v) | ∀i ∈ N : xi ≥ v({i})} ,

and the core of v is

C(v) =

{
x ∈ X(v)

∣∣∣∣∣ ∀S ⊆ N :
∑
i∈S

xi ≥ v(S)

}
.

Note that C(v) ⊆ I(v) ⊆ X(v), and C(λv + a) = λC(v) + a for all λ ∈ R+ and a ∈ RN ,

where λv + a ∈ ΓN is defined by (λv + a)(S) = λv(S) +
∑

i∈S ai for all S ⊆ N .

Bondareva (1963) and Shapley (1967) showed that a game v ∈ ΓN is balanced if and

only if C(v) ̸= ∅. The set of all balanced games with player set N is denoted by ΓN
b . A

game v ∈ ΓN is convex (cf. Shapley 1971) if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ) for all

S, T ⊆ N . The set of all convex games with player set N is denoted by ΓN
c . It is known that

ΓN
c ⊆ ΓN

b ⊆ ΓN .

A value φ on a domain of games assigns to each game v in this domain a pre-imputation

φ(v) ∈ X(v). The nucleolus (cf. Schmeidler 1969) is the value η that assigns to each game

v ∈ ΓN with I(v) ̸= ∅ the unique imputation x ∈ I(v) satisfying θ(x) ≼ θ(y) for all y ∈ I(v),

where θ(x) ∈ R2|N|−2 is the vector of excesses v(S)−
∑

i∈S xi for all S ∈ 2N \{N, ∅} arranged

in non-increasing order, i.e., θk(x) ≥ θℓ(x) for all 1 ≤ k < ℓ ≤ 2|N | − 2, and θ(x) ≼ θ(y) if

there exists 1 ≤ t ≤ 2|N | − 2 such that θt(x) < θt(y) and θk(x) = θk(y) for all 1 ≤ k < t, or

θ(x) = θ(y). It is easy to see that η(v) ∈ C(v) for all v ∈ ΓN
b , and η(λv+ a) = λη(v) + a for

all λ ∈ R+ and a ∈ RN .
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A bankruptcy problem is a triple (N,E, c), where E ∈ R+ is the estate to be divided

and c ∈ RN
+ is the vector of claims satisfying

∑
i∈N ci ≥ E. The set of all bankruptcy

problems with player set N is denoted by BN . For simplicity, we write (E, c) ∈ BN rather

than (N,E, c) ∈ BN .

A bankruptcy rule f : BN → RN
+ assigns to each bankruptcy problem (E, c) ∈ BN a

payoff vector f(E, c) ∈ RN
+ such that

∑
i∈N fi(E, c) = E and fi(E, c) ≤ ci for all i ∈ N . A

bankruptcy rule f is self-dual (cf. Aumann and Maschler 1985) if for all (E, c) ∈ BN ,

f(E, c) = c− f

(∑
i∈N

ci − E, c

)
.

A bankruptcy rule f is invariant under claims truncation if for all (E, c) ∈ BN ,

f(E, c) = f (E, (min{ci, E})i∈N ) .

The Talmud (TAL) rule assigns to each bankruptcy problem (E, c) ∈ BN and each player

i ∈ N ,

fTAL
i (E, c) =


min {ci/2, λ} , if

∑
i∈N

ci ≥ 2E,

max {ci/2, ci − λ} , if
∑
i∈N

ci < 2E,

where λ ∈ R is such that
∑

i∈N fTAL
i (E, c) = E. Aumann and Maschler (1985) showed that

the Talmud rule is self-dual and invariant under claims truncation.

The bankruptcy game (cf. O’Neill 1982) vE,c ∈ ΓN associated to bankruptcy problem

(E, c) ∈ BN assigns to each coalition S ⊆ N the residual estate after all other claims have

been satisfied, i.e.,

vE,c(S) = max

0, E −
∑

i∈N\S

ci

 .

Curiel et al. (1987) showed that bankruptcy games are convex games. Aumann and

Maschler (1985) showed that for each bankruptcy problem, the payoff vector assigned by the

Talmud rule coincides with the nucleolus of the corresponding bankruptcy game.

3 Two-bound core games

In this section, we introduce two-bound core games, where the core equals the set of pre-

imputations between a lower bound and an upper bound. Let v ∈ ΓN . Given l, u ∈ RN , the

l,u-efficient set of v

[l, u] ∩X(v)

consists of all pre-imputations between lower bound l and upper bound u, i.e., it is the

intersection of the pre-imputation set and the |N |-dimensional hypercube restricted by l and
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u, so it is a convex set. If this set is nonempty, then its extreme points can be described as

follows. Similar to Quant et al. (2005), we define ml,u,σ(v) ∈ RN for all σ ∈ Π(N) and all

k ∈ {1, . . . , |N |} by

ml,u,σ
σ(k) (v) =



uσ(k), if
k∑

j=1

uσ(j) +
|N |∑

j=k+1

lσ(j) ≤ v(N),

lσ(k), if
k−1∑
j=1

uσ(j) +
|N |∑
j=k

lσ(j) ≥ v(N),

v(N)−
k−1∑
j=1

uσ(j) −
|N |∑

j=k+1

lσ(j), otherwise.

Thus, ml,u,σ(v) assigns to the first players in σ their upper bound payoffs in such a

way that the last players in σ are assigned their lower bound payoffs. The pivot player of

ml,u,σ(v) is the first player in σ who is not assigned the upper bound payoff. If all the players

receive their upper bound payoffs, then the last player is the pivot player of ml,u,σ(v). These

definitions are straightforward generalizations of concepts in Quant et al. (2005) to arbitrary

lower and upper bounds, which can be used to describe the l,u-efficient set.

Lemma 1

Let v ∈ ΓN and let l, u ∈ RN be such that [l, u] ∩X(v) ̸= ∅. Then

[l, u] ∩X(v) = conv
{
ml,u,σ(v)

∣∣ σ ∈ Π(N)
}
.

Proof. In view of ml,u,σ(v) ∈ [l, u] ∩X(v) for all σ ∈ Π(N), together with the convexity of

[l, u] ∩X(v) and conv{ml,u,σ(v) | σ ∈ Π(N)}, we have

conv
{
ml,u,σ(v)

∣∣ σ ∈ Π(N)
}
⊆ [l, u] ∩X(v).

Let x ∈ RN be an arbitrary extreme point of [l, u] ∩X(v), i.e., for each 0 < λ < 1 and

all y, z ∈ [l, u] ∩X(v), λy + (1− λ)z = x implies that x = y = z. We claim that there exists

at most one player i ∈ N such that li < xi < ui and [xj = lj or xj = uj for all j ∈ N \ {i}].
Assume, to the contrary, that there exist i, j ∈ N with i ̸= j such that li < xi < ui and

lj < xj < uj . Let 0 < ε < min{xi−li, ui−xi, xj−lj , uj−xj}, let x′ be defined by x′
i = xi+ε,

x′
j = xj−ε and x′

k = xk for all k ∈ N \{i, j}, and let x′′ be defined by x′′
i = xi−ε, x′′

j = xj+ε

and x′′
k = xk for all k ∈ N \ {i, j}. Then x′, x′′ ∈ [l, u] ∩ X(v) and x = 1

2x
′ + 1

2x
′′, which

contradicts the fact that x is an extreme point of [l, u] ∩X(v).

If xi = li or xi = ui for all i ∈ N , then it holds that x = ml,u,σ(v) for all σ ∈ Π(N) such

that xσ(k) = uσ(k) if and only if k ≤ |{i ∈ N | xi = ui}|. If there exists i ∈ N such that

li < xi < ui and [xj = lj or xj = uj for all j ∈ N \ {i}], then it holds that x = ml,u,σ(v) for

all σ ∈ Π(N) such that [xσ(k) = uσ(k) if and only if k ≤ |{j ∈ N | xj = uj}|] and σ(|{j ∈ N |
xj = uj}|+1) = i. Again with the convexity of [l, u]∩X(v) and conv{ml,u,σ(v) | σ ∈ Π(N)},
we have [l, u] ∩X(v) ⊆ conv{ml,u,σ(v) | σ ∈ Π(N)}.
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The l,u-efficient set and the core are both convex subsets of the pre-imputation set. We

are interested in l,u-efficient sets that contain the core. Many well-known sets are of this

type, such as the imputation set and the core cover (cf. Tijs and Lipperts 1982).

Example 1

Let v ∈ ΓN . Define l, u ∈ RN by

li = v({i}) and ui = v(N)−
∑

j∈N\{i}

v({j})

for all i ∈ N . Then [l, u] ∩X(v) = I(v), so the l,u-efficient set contains the core. △

Example 2

Let v ∈ ΓN . Define l, u ∈ RN by

li = v({i}) and ui = v(N)− v(N \ {i})

for all i ∈ N . Then C(v) ⊆ [l, u] ∩X(v), i.e., the l,u-efficient set contains the core. △

Example 3

Let v ∈ ΓN . Define l, u ∈ RN by

li = max
S∈2N :i∈S

v(S)−
∑

j∈S\{i}

(v(N)− v(N \ {j}))

 and ui = v(N)− v(N \ {i})

for all i ∈ N . Then [l, u] ∩X(v) defines the core cover (cf. Tijs and Lipperts 1982), which

contains the core. Quant et al. (2005) defined compromise stable games as games where the

core cover coincides with the core. △

To check whether a core-containing l,u-efficient set coincides with the core, we only need

to verify a specific inequality for each nonempty coalition.

Theorem 1

Let v ∈ ΓN
b and let l, u ∈ RN be such that C(v) ⊆ [l, u]. Then C(v) = [l, u] ∩ X(v) if and

only if for each S ∈ 2N \ {∅},

v(S) ≤ max

∑
i∈S

li, v(N)−
∑

i∈N\S

ui

 . (1)

Theorem 1, the proof of which is in the Appendix, generalizes the work of Quant et al.

(2005), where this result was proven for the specific pair of bounds in Example 3. If the

l,u-efficient set does not contain the core, then expression (1) may hold even when the core

does not coincide with the l,u-efficient set. This is shown by the following example.
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Example 4

Let N = {1, 2} and let v ∈ ΓN be given by v({1}) = 1, v({2}) = 2 and v(N) = 4. Define

l, u ∈ RN by l1 = u1 = 3
2 and l2 = u2 = 5

2 . It is easy to verify that expression (1) holds

for each nonempty coalition. However, C(v) = {x ∈ RN | x1 + x2 = 4, x1 ≥ 1, x2 ≥ 2} and

[l, u] ∩X(v) = {( 32 ,
5
2 )}. Clearly, C(v) ̸= [l, u] ∩X(v). △

We focus on games where the core coincides with some l,u-efficient set. These games are

called two-bound core games.

Definition 1

A game v ∈ ΓN
b is a two-bound core game if there exist l, u ∈ RN such that

C(v) = [l, u] ∩X(v).

The set of all two-bound core games with player set N is denoted by ΓN
t . It is worthwhile

mentioning that many classical games are two-bound core games. For example, additive

games, unanimity games, bankruptcy games (cf. O’Neill 1982), 1-convex games (cf. Driessen

1986), big boss games (cf. Muto et al. 1988), clan games (cf. Potters et al. 1989), compromise

stable games (cf. Quant et al. 2005) and reasonable stable games (cf. Dietzenbacher 2018).

It turns out that the core of each two-bound core game can be described by the following

specific pair of bounds. Let v ∈ ΓN
b . The lower exact core bound is defined by

l∗i (v) = min
x∈C(v)

xi for all i ∈ N.

The upper exact core bound is defined by

u∗
i (v) = max

x∈C(v)
xi for all i ∈ N.

The lower and upper exact core bounds were also studied by Bondareva and Driessen (1994).

Lemma 2

A game v ∈ ΓN
b is a two-bound core game if and only if C(v) = [l∗(v), u∗(v)] ∩X(v).

Proof. The if-part follows directly from the definition of two-bound core games. For the only-

if part, assume that C(v) = [l, u]∩X(v) for some l, u ∈ RN . Then li ≤ l∗i (v) and ui ≥ u∗
i (v)

for all i ∈ N , so [l∗(v), u∗(v)] ⊆ [l, u]. Together with C(v) ⊆ [l∗(v), u∗(v)] ∩X(v), it follows

that C(v) ⊆ [l∗(v), u∗(v)] ∩ X(v) ⊆ [l, u] ∩ X(v) = C(v). Hence, C(v) = [l∗(v), u∗(v)] ∩
X(v).

All balanced games with at most three players are two-bound core games, but this does

not hold for more players.
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Proposition 1

ΓN
t = ΓN

b if and only if |N | ≤ 3.

Proof. Let v ∈ ΓN
b with |N | = 2. Then it can be seen directly that v ∈ ΓN

t since

l∗i (v) = v({i}) and u∗
i (v) = v(N) − v(N \ {i}) for all i ∈ N , which implies that v(S) ≤

max{
∑

i∈S l∗i (v), v(N)−
∑

i∈N\S u∗
i (v)} for all S ∈ 2N \ {∅}, so Theorem 1 applies.

Let v ∈ ΓN
b with |N | = 3. For all i ∈ N ,

v({i}) ≤ l∗i (v) ≤ max

l∗i (v), v(N)−
∑

j∈N\{i}

u∗
j (v)

 .

For all S ∈ 2N with |S| = 2,

v(S) ≤ v(N)−
∑

i∈N\S

u∗
i (v) ≤ max

∑
i∈S

l∗i (v), v(N)−
∑

i∈N\S

u∗
i (v)

 .

Hence, v ∈ ΓN
t by Theorem 1.

Let v ∈ ΓN
b with |N | > 3 be defined by v(N) = 3, v({i, j}) = 1 for distinct i, j ∈ N and

v(S) = 0 otherwise. Then l∗k(v) = 0 for all k ∈ N , u∗
i (v) = u∗

j (v) = 3, and u∗
k(v) = 2 for all

k ∈ N \ {i, j}. This implies that

v({i, j}) = 1 > 0 + 0 = l∗i (v) + l∗j (v)

and

v({i, j}) = 1 > 3− 2(|N | − 2) = v(N)−
∑

k∈N\{i,j}

u∗
k(v).

Hence, v /∈ ΓN
t by Theorem 1 and Lemma 2.

In what follows next, we study to what extent the exact core bounds of a two-bound core

game can be stretched while retaining the core description. It turns out that the exact core

bounds can be stretched in only three different ways.

Proposition 2

Let v ∈ ΓN
t . If there exist l, u ∈ RN with [l, u] ̸= [l∗(v), u∗(v)] such that C(v) = [l, u]∩X(v),

then exactly one of the following cases holds:

(i) l ≤ l∗(v) and u = u∗(v),

(ii) l = l∗(v) and u ≥ u∗(v),

(iii) there exists i ∈ N such that li < l∗i (v), ui > u∗
i (v), and lj = l∗j (v) and uj = u∗

j (v) for

all j ∈ N \ {i}.

8



Proof. In view of l ≤ l∗(v) and u ≥ u∗(v), it suffices to prove that if l ̸= l∗(v) and u ̸= u∗(v),

then case (iii) arises. Assume to the contrary that there exist i, j ∈ N with i ̸= j such that

li < l∗i (v) and uj > u∗
j (v). Let x ∈ C(v). Define x′ by x′

i = xi − ε, x′
j = xj + ε and x′

k = xk

for all k ∈ N \ {i, j}, where ε = min{xi − li, uj − xj} ≥ min{l∗i (v) − li, uj − u∗
j (v)} > 0.

Then x′ ∈ [l, u] ∩ X(v), but x′ /∈ C(v) in view of x′
i = li < l∗i (v) or x′

j = uj > u∗
i (v). So,

C(v) ̸= [l, u] ∩X(v), which is a contradiction.

Moreover, we show that the first case in Proposition 2 arises only if the players whose

lower bounds are decreased obtain their lower exact core bounds when all other players

obtain their upper exact core bounds. The second case in Proposition 2 arises only if the

players whose upper bounds are increased obtain their upper exact core bounds when all

other players obtain their lower exact core bounds. The third case in Proposition 2 arises

only if the player whose exact core bounds are stretched obtains the lower exact core bound

when all other players obtain their upper exact core bounds and obtains the upper exact

core bound when all other players obtain their lower exact core bounds.

Theorem 2

Let v ∈ ΓN
t and let l, u ∈ RN . Then the following statements hold:

(i) If l ≤ l∗(v) and u = u∗(v), then C(v) = [l, u] ∩X(v) if and only if

v(N) = l∗i (v) +
∑

j∈N\{i}

u∗
j (v) for all i ∈ N with li < l∗i (v).

(ii) If l = l∗(v) and u ≥ u∗(v), then C(v) = [l, u] ∩X(v) if and only if

v(N) = u∗
i (v) +

∑
j∈N\{i}

l∗j (v) for all i ∈ N with ui > u∗
i (v).

(iii) If there exists i ∈ N such that li < l∗i (v), ui > u∗
i (v), and lj = l∗j (v) and uj = u∗

j (v)

for all j ∈ N \ {i}, then C(v) = [l, u] ∩X(v) if and only if

u∗
i (v) +

∑
j∈N\{i}

l∗j (v) = v(N) = l∗i (v) +
∑

j∈N\{i}

u∗
j (v). (2)

Proof. (i) For the only-if part, assume that C(v) = [l, u] ∩ X(v), where l ≤ l∗(v) and u =

u∗(v). We show that v(N) = l∗i (v)+
∑

j∈N\{i} u
∗
j (v) for all i ∈ N with li < l∗i (v). Assume, to

the contrary, that there exists i ∈ N with li < l∗i (v) such that v(N) ̸= l∗i (v)+
∑

j∈N\{i} u
∗
j (v).

Let x ∈ C(v) be such that xi = l∗i (v). Then we have

v(N) = xi +
∑

j∈N\{i}

xj < l∗i (v) +
∑

j∈N\{i}

u∗
j (v).

9



It follows that there exists j ∈ N \ {i} such that xj < u∗
j (v). Define x′ by x′

i = xi − ε,

x′
j = xj + ε and x′

k = xk for all k ∈ N \ {i, j}, where 0 < ε < min{xi − li, u
∗
j (v)− xj}. Then

x′ ∈ [l, u] ∩X(v), but x′ /∈ C(v) in view of x′
i < xi = l∗i (v). So, C(v) ̸= [l, u] ∩X(v), which

is a contradiction.

For the if-part, assume that l ≤ l∗(v) and u = u∗(v) such that v(N) = l∗i (v) +∑
j∈N\{i} u

∗
j (v) for all i ∈ N with li < l∗i (v). We show that C(v) = [l, u] ∩ X(v). In

view of C(v) = [l∗(v), u∗(v)]∩X(v) ⊆ [l, u]∩X(v), we only need to prove that [l, u]∩X(v) ⊆
[l∗(v), u∗(v)]∩X(v). Let x ∈ [l, u]∩X(v). Then xi ≥ li = l∗i (v) for all i ∈ N with li = l∗i (v).

For all i ∈ N with li < l∗i (v),

xi = v(N)−
∑

j∈N\{i}

xj ≥ v(N)−
∑

j∈N\{i}

uj = v(N)−
∑

j∈N\{i}

u∗
j (v) = l∗i (v).

Together with x ≤ u = u∗(v), we obtain that x ∈ [l∗(v), u∗(v)]∩X(v). Hence, [l, u]∩X(v) ⊆
[l∗(v), u∗(v)] ∩X(v).

(ii) The proof is analogous to the proof of (i).

(iii) For the only-if part, assume that C(v) = [l, u] ∩X(v), where li < l∗i (v), ui > u∗
i (v),

and lj = l∗j (v) and uj = u∗
j (v) for all j ∈ N \{i}. We show that expression (2) holds. Assume

that v(N) ̸= u∗
i (v) +

∑
j∈N\{i} l

∗
j (v) or v(N) ̸= l∗i (v) +

∑
j∈N\{i} u

∗
j (v). Then, analogous to

the proofs of (i) and (ii), it follows that C(v) ̸= [l, u] ∩X(v), which is a contradiction.

For the if-part, assume that there exists i ∈ N such that li < l∗i (v), ui > u∗
i (v), lj = l∗j (v)

and uj = u∗
j (v) for all j ∈ N \ {i}, and expression (2) holds. We show that C(v) =

[l, u] ∩X(v). In view of C(v) = [l∗(v), u∗(v)] ∩X(v) ⊆ [l, u] ∩X(v), we only need to prove

that [l, u] ∩X(v) ⊆ [l∗(v), u∗(v)] ∩X(v). Let x ∈ [l, u] ∩X(v). Then

xi = v(N)−
∑

j∈N\{i}

xj ≥ v(N)−
∑

j∈N\{i}

uj = v(N)−
∑

j∈N\{i}

u∗
j (v) = l∗i (v)

and xj ≥ lj = l∗j (v) for all j ∈ N \ {i}, so x ≥ l∗(v). Similarly,

xi = v(N)−
∑

j∈N\{i}

xj ≤ v(N)−
∑

j∈N\{i}

lj = v(N)−
∑

j∈N\{i}

l∗j (v) = u∗
i (v)

and xj ≤ uj = u∗
j (v) for all j ∈ N \{i}, so x ≤ u∗(v). It follows that x ∈ [l∗(v), u∗(v)]∩X(v).

Hence, [l, u] ∩X(v) ⊆ [l∗(v), u∗(v)] ∩X(v).

Proposition 2 and Theorem 2 directly imply the following result, which shows exactly

under which condition two-bound core games can be described by different pairs of bounds.
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Corollary 1

Let v ∈ ΓN
t . Then there exist l, u ∈ RN with [l, u] ̸= [l∗(v), u∗(v)] such that C(v) = [l, u] ∩

X(v) if and only if there exists i ∈ N such that v(N) = l∗i (v) +
∑

j∈N\{i} u
∗
j (v) or v(N) =

u∗
i (v) +

∑
j∈N\{i} l

∗
j (v).

4 The nucleolus

In this section, we consider the nucleolus of two-bound core games. Quant et al. (2005)

provided an explicit expression of the nucleolus for compromise stable games in terms of the

pair of bounds in Example 3, using the Talmud rule for bankruptcy problems. On the one

hand, we extend their approach by providing an explicit expression of the nucleolus for all

two-bound core games in terms of the exact core bounds. On the other hand, we show that

the nucleolus can be equivalently expressed by each pair of bounds describing the core.

Lemma 3

Let v ∈ ΓN
t . Then

η(v) = l∗(v) + fTAL

(
v(N)−

∑
i∈N

l∗i (v), u
∗(v)− l∗(v)

)

= u∗(v)− fTAL

(∑
i∈N

u∗
i (v)− v(N), u∗(v)− l∗(v)

)
.

The proof of Lemma 3, which is in the Appendix, is similar to the proof of Theorem 4.2

of Quant et al. (2005). However, as the following example shows, the expression obtained by

Quant et al. (2005) in terms of the pair of bounds in Example 3 is not valid for all two-bound

core games.

Example 5

Let v ∈ ΓN
t with N = {1, . . . , n} and n ≥ 4 be defined by v(N) = v({1, 2}) = v({1, 3}) = 1

and v(S) = 0 otherwise. Then l∗(v) = u∗(v) = (1, 0, . . . , 0) and C(v) = {(1, 0, . . . , 0)}, so

η(v) = (1, 0, . . . , 0) + fTAL (0, (0, . . . , 0)) = (1, 0, . . . , 0).

However, v is not a compromise stable game, and η(v) cannot be expressed using the lower

bound l = (0, . . . , 0) and the upper bound u = (1, . . . , 1) from Example 3 in view of

η(v) ̸= (0, . . . , 0) + fTAL (1, (1, . . . , 1)) = ( 1n , . . . ,
1
n ).

△

More generally, the nucleolus of two-bound core games can be equivalently expressed in

terms of each pair of bounds describing the core.

11



Theorem 3

Let v ∈ ΓN
t . Then

η(v) = l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)
= u− fTAL

(∑
i∈N

ui − v(N), u− l

)

for all l, u ∈ RN such that C(v) = [l, u] ∩X(v).

Proof. Let l, u ∈ RN be such that C(v) = [l, u] ∩ X(v). If [l, u] = [l∗(v), u∗(v)], then the

statement follows directly from Lemma 3. Suppose that [l, u] ̸= [l∗(v), u∗(v)]. Then, by

Proposition 2, exactly one of the following cases holds.

(i) l ≤ l∗(v) and u = u∗(v). By Theorem 2, v(N) = l∗i (v) +
∑

j∈N\{i} u
∗
j (v) for all i ∈ N

with li < l∗i (v). This implies that
∑

j∈N u∗
j (v)− v(N) = u∗

i (v)− l∗i (v) < ui − li for all i ∈ N

with li < l∗i (v). Applying Lemma 3, invariance under claims truncation, and self-duality,

η(v) = u∗(v)− fTAL

(∑
i∈N

u∗
i (v)− v(N), u∗(v)− l∗(v)

)

= u− fTAL

(∑
i∈N

ui − v(N), u− l∗(v)

)

= u− fTAL

(∑
i∈N

ui − v(N), u− l

)

= l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)
.

(ii) l = l∗(v) and u ≥ u∗(v). By Theorem 2, v(N) = u∗
i (v)+

∑
j∈N\{i} l

∗
j (v) for all i ∈ N

with ui > u∗
i (v). This implies that v(N)−

∑
j∈N l∗j (v) = u∗

i (v)− l∗i (v) < ui− li for all i ∈ N

with ui > u∗
i (v). Applying Lemma 3, invariance under claims truncation, and self-duality,

η(v) = l∗(v) + fTAL

(
v(N)−

∑
i∈N

l∗i (v), u
∗(v)− l∗(v)

)

= l + fTAL

(
v(N)−

∑
i∈N

li, u
∗(v)− l

)

= l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)

= u− fTAL

(∑
i∈N

ui − v(N), u− l

)
.
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(iii) There exists i ∈ N such that li < l∗i (v), ui > u∗
i (v), lj = l∗j (v) and uj = u∗

j (v) for

all j ∈ N \ {i}. By Theorem 2,

v(N)−
∑
j∈N

l∗j (v) = u∗
i (v)− l∗i (v) =

∑
j∈N

u∗
j (v)− v(N).

This implies that v(N) = 1
2

∑
j∈N (u∗

j (v) + l∗j (v)). Then

η(v) = l∗(v) + fTAL

v(N)−
∑
j∈N

l∗j (v), u
∗(v)− l∗(v)


= l∗(v) + fTAL

1

2

∑
j∈N

(u∗
j (v)− l∗j (v)), u

∗(v)− l∗(v)


= l∗(v) + 1

2 (u
∗(v)− l∗(v))

= 1
2 (u

∗(v) + l∗(v)).

Define (E∗, c∗) ∈ BN by E∗ = v(N) −
∑

j∈N l∗j (v) and c∗ = u∗(v) − l∗(v), and define

(E, c) ∈ BN by E = v(N)−
∑

j∈N lj and c = u− l. Then

E − E∗ =
∑
j∈N

l∗j (v)−
∑
j∈N

lj = l∗i (v)− li > 0,

ci − c∗i = (ui − u∗
i (v)) + (l∗i (v)− li) > E − E∗,

and cj = c∗j for all j ∈ N \ {i}. Moreover, for all j ∈ N \ {i},

ci > c∗i = u∗
i (v)− l∗i (v) = v(N)−

∑
k∈N

l∗k(v) ≥ u∗
j (v)− l∗j (v) = c∗j = cj .

This implies that fTAL
i (E, c) = fTAL

i (E∗, c∗) + E − E∗ = fTAL
i (E∗, c∗) + l∗i (v) − li and

fTAL
j (E, c) = fTAL

j (E∗, c∗) for all j ∈ N \ {i}. Applying Lemma 3 and self-duality,

η(v) = l∗(v) + fTAL

(
v(N)−

∑
i∈N

l∗i (v), u
∗(v)− l∗(v)

)
= l∗(v) + fTAL (E∗, c∗)

= l + fTAL (E, c)

= l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)

= u− fTAL

(∑
i∈N

ui − v(N), u− l

)
.
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Example 6

Let v ∈ ΓN
t with N = {1, 2, 3} be defined by v({1}) = v({2}) = 2, v({3}) = 4, v({1, 2}) = 10,

v({1, 3}) = 6, v({2, 3}) = 12, and v(N) = 20. Then l∗(v) = (2, 2, 4) and u∗(v) = (8, 14, 10).

Since l∗1(v) + u∗
2(v) + l∗3(v) = v(N) = u∗

1(v) + l∗2(v) + u∗
3(v), Theorems 2 and 3 imply that

η(v) = (2, 2, 4) + fTAL (12, (6, 12, 6)) = (8, 14, 10)− fTAL (12, (6, 12, 6))

= (2, 0, 4) + fTAL (14, (6, 14, 6)) = (8, 20, 10)− fTAL (18, (6, 18, 6))

= (2, 0, 4) + fTAL (14, (6, 20, 6)) = (8, 20, 10)− fTAL (18, (6, 20, 6)) = (5, 8, 7).

The first two expressions are in terms of the lower exact core bounds and the upper exact

core bounds. The third expression is based on a decrease of only the lower exact core bound

of player 2 to l2 = 0. The fourth expression is based on an increase of only the upper

exact core bound of player 2 to u2 = 20. The fifth and sixth expressions are based on a

decrease of player 2’s lower bound to l2 = 0 and an increase of player 2’s upper bound to

u2 = 20 simultaneously. In view of u∗
1(v) + l∗2(v) + l∗3(v) < v(N) < l∗1(v) + u∗

2(v) + u∗
3(v) and

l∗1(v)+ l∗2(v)+u∗
3(v) < v(N) < u∗

1(v)+u∗
2(v)+ l∗3(v), the lower and upper exact core bounds

of players 1 and 3 cannot be stretched. △

So far, we have studied to what extent the exact core bounds of a two-bound core game

can be stretched while retaining the core and nucleolus descriptions. Instead of stretching

the lower and upper bounds, we can also study to what extent these expressions are robust

against game changes. It turns out that the worths of coalitions can be increased subject to

specific restrictions.

Theorem 4

Let v ∈ ΓN
t and let l, u ∈ RN be such that C(v) = [l, u] ∩ X(v). If w ∈ ΓN is such that

v(S) ≤ w(S) ≤ max{
∑

i∈S li, v(N) −
∑

i∈N\S ui} for all S ∈ 2N \ {∅}, then the following

statements hold:

(i) C(v) = C(w),

(ii) η(v) = η(w).

Proof. (i) Define v̂ ∈ ΓN by v̂(S) = max{
∑

i∈S li, v(N)−
∑

i∈N\S ui} for all S ∈ 2N \{∅}. By
Theorem 1, v(S) ≤ v̂(S) for all S ∈ 2N \ {∅}. Let w ∈ ΓN be such that v(S) ≤ w(S) ≤ v̂(S)

for all S ∈ 2N \ {∅}. Then C(v̂) ⊆ C(w) ⊆ C(v). We claim that C(v̂) = C(v). Suppose,

to the contrary, that there exists x ∈ C(v) \ C(v̂). Let S ∈ 2N \ {N, ∅} be such that∑
i∈S xi < v̂(S). If v̂(S) =

∑
i∈S li, then

∑
i∈S xi <

∑
i∈S li, so xi < li for some i ∈ S,

contradicting x ∈ C(v). If v̂(S) = v(N) −
∑

i∈N\S ui, then
∑

i∈S xi < v(N) −
∑

i∈N\S ui,

so xi > ui for some i ∈ N \ S, contradicting x ∈ C(v). Hence, C(v) = C(w) = C(v̂).
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(ii) Statement (i) implies that w ∈ ΓN
t and C(w) = C(v) = [l, u] ∩X(v) = [l, u] ∩X(w).

By Theorem 3,

η(v) = l + fTAL

(
v(N)−

∑
i∈N

li, u− l

)
= l + fTAL

(
w(N)−

∑
i∈N

li, u− l

)
= η(w).

5 Concluding remarks

In this paper, we introduced the large class of two-bound core games and provided explicit ex-

pressions of the nucleolus in terms of all pairs of bounds describing the core, using the Talmud

rule for bankruptcy problems. Other values for two-bound core games are directly obtained

by replacing the role of the Talmud rule in these expressions by any other bankruptcy rule.

Quant et al. (2006) studied these extensions from a general point of view and paid particular

attention to the specific random arrival rule (cf. O’Neill 1982). González-Dı́az et al. (2005)

followed a similar approach with a focus on the adjusted proportional rule (cf. Curiel et al.

1987). Future research could study extensions of these and other bankruptcy rules to the

class of two-bound core games.
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Appendix

Proof of Theorem 1

Proof. For the only-if part, assume that C(v) = [l, u] ∩X(v). Then, according to Lemma 1,

we have ml,u,σ(v) ∈ C(v) for all σ ∈ Π(N). Let S ∈ 2N \ {∅} and consider σ∗ ∈ Π(N) such

that σ∗(k) ∈ N \S for all k ∈ {1, . . . , |N \S|}. If the pivot player of ml,u,σ∗
(v) is an element

of N \ S, then ml,u,σ∗

i (v) = li for all i ∈ S, so

v(S) ≤
∑
i∈S

ml,u,σ∗

i (v) =
∑
i∈S

li.

If the pivot player of ml,u,σ∗
(v) is an element of S, then ml,u,σ∗

i (v) = ui for all i ∈ N \ S, so

v(S) ≤
∑
i∈S

ml,u,σ∗

i (v) = v(N)−
∑

i∈N\S

ml,u,σ∗

i (v) = v(N)−
∑

i∈N\S

ui.

Combining these two cases, we obtain expression (1).

For the if-part, assume that expression (1) holds for all S ∈ 2N \ {∅}. We only need to

prove that [l, u] ∩X(v) ⊆ C(v). In view of the convexity of the core, together with Lemma

1, it suffices to show that ml,u,σ(v) ∈ C(v) for all σ ∈ Π(N). For all S ∈ 2N \ {∅} and all

σ ∈ Π(N),

v(S) ≤max

∑
i∈S

li, v(N)−
∑

i∈N\S

ui


≤max

∑
i∈S

ml,u,σ
i (v), v(N)−

∑
i∈N\S

ml,u,σ
i (v)

 =
∑
i∈S

ml,u,σ
i (v).

Hence, ml,u,σ(v) ∈ C(v) for all σ ∈ Π(N).

Proof of Lemma 3

Proof. Define w ∈ ΓN by w(S) = v(S) −
∑

i∈S l∗i (v) for all S ∈ 2N . Then l∗i (w) = 0 and

u∗
i (w) = u∗

i (v)− l∗i (v) for all i ∈ N , C(w) = [l∗(w), u∗(w)]∩X(w), and η(v) = l∗(v) + η(w).

For each i ∈ N , there exists x ∈ C(w) such that xi = l∗i (w), so

0 = l∗i (w) = xi = w(N)−
∑

j∈N\{i}

xi ≥ w(N)−
∑

j∈N\{i}

u∗
j (w).

Similarly, for each i ∈ N , there exists x ∈ C(w) such that xi = u∗
i (w), so

u∗
i (w) = xi = w(N)−

∑
j∈N\{i}

xi ≤ w(N)−
∑

j∈N\{i}

l∗j (w) = w(N).
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Define (E, c) ∈ BN by E = w(N) and c = u∗(w). Then vE,c(N) = E = w(N) and for all

i ∈ N ,

l∗i (vE,c) = max

0, E −
∑

j∈N\{i}

cj

 = max

0, w(N)−
∑

j∈N\{i}

u∗
i (w)

 = 0 = l∗i (w)

and

u∗
i (vE,c) = min{E, ci} = min{w(N), u∗

i (w)} = u∗
i (w).

This implies that

C(vE,c) = [l∗(vE,c), u
∗(vE,c)] ∩X(vE,c)

=

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = vE,c(N) and l∗(vE,c) ≤ x ≤ u∗(vE,c)

}

=

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = w(N) and l∗(w) ≤ x ≤ u∗(w)

}
= [l∗(w), u∗(w)] ∩X(w)

= C(w).

Potters and Tijs (1994) showed that the nucleoli of two balanced games are equal if their

cores are equal and at least one of the two games is convex. Since vE,c is convex, this implies

that η(vE,c) = η(w). Applying self-duality,

η(v) = l∗(v) + η(w)

= l∗(v) + η(vE,c)

= l∗(v) + fTAL(E, c)

= l∗(v) + fTAL(w(N), u∗(w))

= l∗(v) + fTAL

(
v(N)−

∑
i∈N

l∗i (v), u
∗(v)− l∗(v)

)

= u∗(v)− fTAL

(∑
i∈N

u∗
i (v)− v(N), u∗(v)− l∗(v)

)
.
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