Towards semantic fMRI neurofeedback

Citation for published version (APA):

Document status and date:
Published: 01/08/2021

DOI:
10.1088/1741-2552/abecc3

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 16 Sep. 2023
Towards semantic fMRI neurofeedback: navigating among mental states using real-time representational similarity analysis

Andrea G Russo1,2*, Michael Lührs3,4, Francesco Di Salle2, Fabrizio Esposito2,3,5,* and Rainer Goebel3,4

1 Department of Political and Communication Sciences, University of Salerno, Fisciano (Salerno), Italy
2 Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi (Salerno), Italy
3 Department of Cognitive Neuroscience, University of Maastricht, Maastricht, The Netherlands
4 Brain Innovation B.V., Maastricht, The Netherlands
5 Department of Advanced Medical and Surgical Sciences, University of Campania ‘Luigi Vanvitelli’, Napoli, Italy

* Authors to whom any correspondence should be addressed.
E-mail: andrusso@unisa.it and fabrizio.esposito@unicampania.it

Keywords: neurofeedback, representational similarity, real-time fMRI, semantic representation

Abstract

Objective. Real-time functional magnetic resonance imaging neurofeedback (rt-fMRI-NF) is a non-invasive MRI procedure allowing examined participants to learn to self-regulate brain activity by performing mental tasks. A novel two-step rt-fMRI-NF procedure is proposed whereby the feedback display is updated in real-time based on high-level representations of experimental stimuli (e.g. objects to imagine) via real-time representational similarity analysis of multi-voxel patterns of brain activity. Approach. In a localizer session, the stimuli become associated with anchored points on a two-dimensional representational space where distances approximate between-pattern (dis)similarities. In the NF session, participants modulate their brain response, displayed as a movable point, to engage in a specific neural representation. The developed method pipeline is verified in a proof-of-concept rt-fMRI-NF study at 7 T involving a single healthy participant imagining concrete objects. Based on this data and artificial data sets with similar (simulated) spatio-temporal structure and variable (injected) signal and noise, the dependence on noise is systematically assessed. Main results. The participant in the proof-of-concept study exhibited robust activation patterns in the localizer session and managed to control the neural representation of a stimulus towards the selected target in the NF session. The offline analyses validated the rt-fMRI-NF results, showing that the rapid convergence to the target representation is noise-dependent. Significance. Our proof-of-concept study introduces a new NF method allowing the participant to navigate among different mental states. Compared to traditional NF designs (e.g. using a thermometer display to set the level of the neural signal), the proposed approach provides content-specific feedback to the participant and extra degrees of freedom to the experimenter enabling real-time control of the neural activity towards a target brain state without suggesting a specific mental strategy to the subject.

1. Introduction

Real-time functional magnetic resonance imaging neurofeedback (rt-fMRI-NF) is a psychophysiological approach in which the on-line measured blood oxygen level dependent (BOLD) signal is provided to the subject as visual [1, 2], auditory [3], haptic [4] or electrical [5] feedback to allow the self-regulation of his/her own neural activity towards target levels [6]. The increasing performance in this task has been previously associated with measurable improvements in specific neurological functions and/or positive changes in behaviors [7]. Rt-fMRI-NF has been successfully applied in a great variety of domains such as motor function [8, 9], emotion regulation [10, 11], prosody [12], pain empathy modulation [13], facial expressions processing [14] and visual task performance [15]. Furthermore, rt-fMRI-NF has found applications in the treatment of different neuropsychiatric disorders [16–20].
The flexibility of fMRI as a functional neuroimaging tool and its successful integration with advanced computational and real-time analysis methodologies has contributed to the development of various experimental rt-fMRI-NF frameworks [21]. As with many growing fields, there are ongoing debates about many aspects of the rt-fMRI-NF experiments such as the provision of explicit strategies [3, 8, 22, 23], how to choose a region-of-interest (ROI) [21] and the control condition [24]. Moreover, depending on the research question, there is a wide spectrum of possibilities concerning the feedback modalities (e.g. visual, auditory, haptic and electrical) and the source of the NF signal (e.g. the mean ROI signal [19], the functional connectivity of a network [20, 25] and the likelihood of decoded neural activity pattern [26]). However, although different NF approaches have been successfully applied in several domains [7, 11, 16, 17, 21], the possibility to provide a more semantically driven feedback, may allow the participant to engage in a specific mental state and self-modulate the semantic representation associated with a stimulus. Moreover, it can encode both the current mental state of the subject from high-level brain representations, as well as its differences from previous and other mental states. For example, a semantic approach to the NF could be better suited to situations where the neural representation of a stimulus is distributed in the brain, such as concept representation [27] and emotion regulation [11]. Particularly, emotion regulation is of primary importance in the context of psychotherapeutic interventions [28] and, recently, rt-fMRI-NF has been shown to be effective in many practical situations [10, 11]. For instance, the real-time (one-dimensional (1D)) modulation of single brain areas associated with emotion processing (e.g. amygdala) has been used in the rehabilitation of patients with depressive symptoms [16, 17, 19, 29–32], borderline personality disorder [e.g. 33] and post-traumatic stress disorder [e.g. 34, 35]. On the other hand, recent studies suggest that basic emotions are better represented using multiple neural signatures, e.g. from a network of brain areas [36]. Along these lines, a semantic representation of the stimulus, estimated with the application of a multidimensional approach to the current participant’s brain activity, may provide the extra degrees of freedom to self-modulate a mental state. For example, in this scenario, participants could have the chance of learning not only to engage in a positive emotion but also to not fall into negative ones or to learn how to undertake a more neutral state.

A possible multi-dimensional and semantic approach to the analysis of the neural activity is the representational similarity analysis (RSA). In general, RSA has gathered important insights in various domains [37] and it is based on the idea that the neural activity associated with a stimulus (e.g. an image) encodes its neural representation [38]. Therefore, the combination of different neural patterns defines a multi-dimensional space where the dimensions are the neuro-physical units and a single point in this space is a pattern [37]. For example, considering a set of experimental conditions and their corresponding brain-activity patterns from an ROI, the multi-dimensional space is operationally defined by their mutual (dis)similarities encoded in a representational dissimilarity matrix (RDM) [39–41]. Using a dimensionality reduction approach like multidimensional scaling (MDS) [42, 43], the RDM can be visualized in a two-dimensional (2D) or three-dimensional (3D) scatter plot where the mutual distances among points reflect the dissimilarities among the response patterns [37].

The aim of this work is to propose a novel rt-fMRI-NF paradigm based on a real-time incremental version of the RSA, referred to as real-time RSA (rt-RSA), and to test both its feasibility and validity on real and artificial data. In its simplest implementation, the participants are provided intermittently with a visual feedback. The latter represents the subject’s current neural activity as a movable point in a plane, called representational space (RS), where a set of candidate target neural states (i.e. neural activity patterns associated with specific stimuli such as different objects, faces, etc), estimated in previous fMRI runs, are displayed as fixed points and whose distances reflect their semantic dissimilarity. The aim of the rt-RSA is to let the participants move this point towards a selected target point in the RS by learning to self-modulate his/her own multi-voxel activation pattern in such a way to engage in a specific mental state.

In this work, we hypothesized that the rt-RSA could be implemented with little additional computational steps in a rt-fMRI-NF experiment with a semantic representation of the stimuli. Moreover, we supposed that in an ideal scenario the rt-RSA would prove to be stable and feasible, regardless of the level of noise in the data. Therefore, we developed the following analysis strategy: (a) to verify the application in a real-world scenario, a proof-of-concept rt-fMRI-NF study at 7 T using imagery of concrete objects has been implemented; (b) the stability of the rt-RSA has been assessed both on the data acquired from this single participant and an ensemble of artificial fMRI data sets with similar (simulated) spatio-temporal structure and variable (injected) signal and noise.

2. Materials and methods

2.1. Mathematical description of the method

The possibility to project a newly calculated brain activity pattern on the existing (previously estimated) RS is based on the application of a linear solution to the distance-based triangulation problem, introduced in the field of MDS by de Silva and Tenenbaum.
The solution was part of a different MDS approach originally proposed to overcome the limitation of classical multidimensional scaling (cMDS) [42, 43], also known as principal coordinate analysis, when the number of entries of the input matrix is very large compared to the intrinsic dimensionality of the data (for a complete description of the method, please see [44]). The cMDS belongs to the family of MDS methods, as it projects elements from a high-dimensional space (e.g. a brain pattern) to a lower-dimensional space while preserving the geometry as faithfully as possible [44].

The solution for the distance-based triangulation problem provides a convenient mathematical framework to project a new data point (i.e. a new brain pattern) onto an existing RS by simply applying a previously estimated linear transformation. Specifically, given a set of base stimuli and their evoked activity patterns in an ROI, an RDM is initially calculated based on their pairwise dissimilarities. In our case, the metric chosen for this calculation is the correlation distance. Statistically, this measure normalizes for both the mean and the standard deviation of the spatially variable activity, as measured from the overall signal acquired (until the current time point). Then, the RS corresponding to the estimated RDM is obtained by applying the cMDS to the RDM itself. Finally, using a fixed linear transformation function, the coordinate vector \(\mathbf{x} \) representing the position of the pattern of a new stimulus in the estimated RS is obtained according to the following formula:

\[
\mathbf{x} = -\frac{1}{2} \times \mathbf{L} \times \left(\delta_\mathbf{a} - \delta_\mathbf{μ} \right),
\]

where

\[
\mathbf{L} = \text{eigenvectors(RDM)}^T / \sqrt{\text{eigenvalues(RDM)}},
\]

\(\delta_\mathbf{a} \) is the squared vector of the dissimilarities between the new stimulus and the base stimuli and \(\delta_\mathbf{μ} \) is the sum of the squared columns of the RDM divided by its number of entries (i.e. the number of base stimuli).

2.2. General experimental framework

An rt-fMRI-NF experiment with the use of rt-RSA requires at least two separate sessions: a localizer session and a NF session. To increase the statistical power of the estimated brain activity patterns, the localizer session may include multiple runs with several trials of one base stimulus (one run per base stimulus) or interleaved trials of different base stimuli. In each localizer session, a series of N trials (corresponding to different repetitions of each base stimulus) are delivered to the subject who performs an active (e.g. button pressing) or passive (e.g. image viewing) task. The ROI is ultimately selected at the end of the localizer eventually using a combination of functional and anatomical criteria based on the measured brain activation and a priori regional hypotheses, if available [41].

A single activation pattern (for a given stimulus) can be obtained from the ROI map of regression coefficients (as effect size estimates, see, e.g. [41]) or statistical parameters (e.g. t scores, signal-to-noise estimates, see, e.g. [41]) via the general linear model (GLM) analysis of the fMRI responses at each voxel. The GLM estimation can be performed both online and offline. In the first case, the signal (and noise) incremental estimates are recursively updated over successive trials, whereas in the second case, using the most complete basis set of stimulus and confound predictors, multiple runs are concatenated to maximize the accuracy and power of all base stimulus patterns (to be used for the base RS).

During the NF session, the multi-voxel pattern of the selected ROI is updated via online GLM and its position within the previously estimated RS is periodically displayed as a visual stimulus to the subject. The participants are thus periodically informed about the position of their current mental representation (as obtained from their current brain activity) with respect to the mental representations associated with all base stimuli (as obtained from the brain activity measured during the localizer runs). In this way, the subjects are stimulated to self-modulate their own brain activity to change its position within the RS towards the target position. Operationally, at the end of each task block, the participant’s multi-voxel pattern is extracted from the predefined ROI and the dissimilarities of this pattern vs the base stimuli patterns are calculated and given as input to equation (1) to update the corresponding coordinates in the RS. Moreover, while collecting the series of new patterns (i.e. mental states) over successive NF trials, the trajectory of the current mental state is also displayed to the subject, thereby the history of the modulation is kept visible to the subject to possibly incentive (or disincentive) an undertaken strategy towards reaching the target state.

A graphical description of the procedure is provided in figure 1.

2.3. Method implementation

The proposed method was implemented in Python (Python Software Foundation. Python Language Reference, version 3.7. Available at www.python.org) [45]. The fMRI data were processed online and offline using Turbo-BrainVoyager version 4.0 (TBV) (Brain Innovation B.V., Maastricht, The Netherlands) and imported in Python using the TBV Network Access Plugin (Network Access Plugin) and the corresponding interface (GitHub-expyriment/expyriment-stash) as part of the open-source library Expyriment [46].
2.4. fMRI neurofeedback experiment

2.4.1. Participant

Functional and anatomical data of one healthy left-handed volunteer (male, age 27), with normal vision and without known neurological or psychiatric disorders, were obtained using a 7T scanner (Siemens Healthcare, Germany). Informed written consent was obtained prior to study participation and the experimental procedure was approved by the local Ethics Committee of the Faculty of Psychology and Neuroscience at Maastricht University. The experimental procedure conformed to the principles embodied in the Declaration of Helsinki.

2.4.2. Experimental design

The complete scanning session was divided into two main parts: an offline training session (outside the MR scanner) and a scanning session including the localizer and the NF experiment. In both experiments (localizer and NF) the participant performed an imagery task upon the delivery of an auditory cue. While imagery tasks can be challenging for participants, possibly leading to higher inter-subject variability in the NF performance, the idea of using it is supported by previous rt-fMRI-NF studies [e.g. 16, 17, 19, 35, 47] and by the possibility for the participants to self-modulate the brain pattern by tuning, for example, the visual features associated with the stimulus.

In the training session, the subject was asked to familiarize with the stimuli by visually inspecting and memorizing the images of selected objects as well as listening to their accompanying cues. Two animate (cat, dog) and two inanimate (chair, hammer) objects were chosen as base stimuli. The visual inspection and the memorization of the images and their corresponding auditory cues continued inside the MR scanner during the acquisition of the anatomical data.

The localizer experiment was composed of four consecutive functional runs, one for each object. A single run was experimentally designed as a series of ten tasks and eleven rest blocks of 20 s in which the participant alternately imagined the object corresponding to the delivered auditory cue (e.g. ‘cat’ or ‘chair’). At the end of each task-block, the word ‘stop’ was delivered to the participant to announce the beginning of the resting period. The subject was requested to focus the gaze on a white fixation cross centered on a dark grey screen during the whole acquisition, however no tracking of the eye movements was possible in our settings. The four images
Figure 2. Workflow of the fMRI-NF experiment performed. In the offline training session, the subject was requested to memorize four images and their corresponding auditory cues. In the localizer session, the subject underwent four block-design fMRI acquisitions, one for each stimulus, in which he was requested to imagine as clear as possible the image corresponding to the provided auditory cue. The imagery blocks were interleaved by periods of rest. At the end of each functional acquisition the statistical values relative to the contrast 'imagery vs rest' was extracted for all the voxels of a defined ROI. The dissimilarities among these activation patterns were estimated and first, encoded in a RDM, and then projected onto a plane to create the RS of the ROI. In the neurofeedback session the subject was provided with only one auditory cue and requested to imagine the corresponding image. The imagery blocks were interleaved by periods of rest and small period of feedback. At the beginning of the feedback period the activity pattern of the defined ROI relative to the contrast 'imagery vs rest' is extracted and projected in the RS space. The RS with the new point is given as feedback to the subject.

were selected from a database of naturalistic objects [48] while the corresponding auditory cues were generated using https://soundoftext.com/ that creates audio files from text using the text-to-speech engine of Google Translate. Both the auditory cues and the visual feedback were delivered to the subject using a custom-made Python script with PsychoPy3 module [49].

The NF run was designed according to a similar experimental paradigm. However, differently from the localizer runs, the rest-period was followed by an extra-period of 5 s during which the visual feedback was displayed. This consisted in the RS display where the current activity pattern, as estimated with the incremental GLM from all the previously acquired data, was displayed as a red star, whereas the positions of the base stimuli were represented by yellow points and a label tag with the name.

The participant was instructed to imagine the target object as he had previously done during the corresponding localizer run in order to move the red star in the RS as close as possible to the position where the name of the target object was written on the display. Before entering the scanner, the participant had no specific training with visual feedback but was preliminarily instructed about the future scenario and the type of feedback by watching an animation of a moving point describing a plausible trajectory on a plausible RS (i.e. four fixed points). The experimental procedure is summarized in figure 2.
2.4.3. Data acquisition

FMRI data were obtained using a 7T whole-body scanner (Magnetom; Siemens AG, Erlangen, Germany). The participant was placed comfortably in the MRI scanner with foam padding next to the head to minimize spontaneous or task-related motion.

For the functional acquisition, multi-band [30–52] repeated gradient-echo echo-planar imaging (EPI) sequences were used. Except for the number of time points (localizer session: 430 volumes; NF session: 680 volumes), identical scanning parameters were used for all functional measurements (repetition time (TR) = 1000 ms, echo time (TE) = 21 ms, number of axial slices = 60, matrix = 112 × 112, field of view (FOV) = 224 mm, thickness = 2 mm, interslice gap = 0 mm, multi-band factor = 4). In the NF session, functional images were reconstructed and exported using a direct transmission control protocol/internet protocol connection from the image reconstruction computer to the real-time analysis computer and stored on the hard drive. The real-time data analysis software (TBV) running on the real-time analysis computer was able to read and process the exported images in real-time.

For the acquisition of the structural data, a high-resolution T1-weighted anatomical scan was acquired using a 3D magnetization prepared rapid-acquisition gradient-echo (MP2RAGE) sequence (192 slices, 0.9 mm iso. voxels, no gap, TR = 4500 ms, TE = 2.39 ms, TI1 = 900 ms, TI2 = 2750, FA = 5, FOV = 230 × 230 mm², matrix size = 256 × 256, total scan time = 8 min and 34 s).

2.5. Online data processing

The functional runs of the localizer were processed with TBV to optimally define the target ROI to be used for the extraction of the brain activity patterns elicited by the base stimuli and for the subsequent NF runs. During the localizer session, the online data processing allowed the real-time monitoring of the subject’s head motion and the general quality of the data. More specifically, motion correction with sinc interpolation, linear trend removal, temporal high-pass filtering and spatial smoothing with an isotropic 4 mm full-width at half-maximum Gaussian kernel were applied online to the functional time-series. The online voxel-wise GLM was computed incrementally with one predictor time-course for the imagery task (derived from an incremental boxcar function convolved with a standard hemodynamic response function [53]) and six motion parameters (incrementally derived from the motion correction procedure) as confound predictors. The offline (incremental) GLM was fitted at each voxel using a recursive least squares estimation of the regression coefficients. At the end of the session, pre-processed functional data were reloaded in TBV and the offline GLM analysis was also applied to the complete pre-processed fMRI time series. In both cases, the t-contrast ‘imagery vs rest’ was calculated.

Starting from offline GLM results, an ROI was defined in the inferior temporal cortex (ITC) as this region is well known to encode high-level (semantic) representations of natural objects at the interface between vision and semantics [54–56]. For this study, the ROI definition was performed using a combined anatomical and functional approach. Namely, a whole-brain probabilistic functional map in MNI space was generated from the Neurosynth database [57] using the keyword ‘object’. The statistical threshold was set to q = 0.01 using the false discovery rate [58]. This map was imported in BrainVoyager 21.4 (Brain Innovation, Maastricht, The Netherlands) and an ROI was initially defined by selecting a cluster of activation encompassing the left ITC. Before the NF run, the ROI definition was further adapted to the estimated brain activity from the offline GLM of the localizer runs. Namely, the extracted ROI was imported in TBV where it was transformed to the native space of EPI images and used as a guide to manually define a functional ROI in the ITC from the offline GLM contrast ‘imagery vs rest’ (main effects of all stimuli, p < 0.001). At the end of each functional run, for each voxel of the selected ROI, the t-values relative to the contrast ‘imagery vs rest’ were extracted and stored to a local disk. Upon completion of all the functional runs of the localizer sessions, the stored data were assembled in a matrix, whose dimensions were the number of stimuli and the number of voxels of the ROI. Correlation distance was used to estimate the RDM (four-by-four matrix), the corresponding RS was estimated using cMDS and the transformation matrix to project a new point in the RS was estimated using equation (2).

The data of the NF run were processed in real-time with TBV with the same preprocessing steps and the same statistical analysis (contrast and thresholds), as for the localizer session. The ROI activity pattern related to the contrast ‘imagery vs rest’ was extracted for the incremental time window ending one time point before the beginning of the feedback block, thereby encompassing the whole time series up to this point in time. The incremental GLM included the estimated motion predictors as confounds. To generate the feedback stimulus at the beginning of the feedback block, the extracted t-values from the ITC ROI were used to estimate the position of the current brain state in the RS estimated from the localizer data.

2.6. Offline data analysis

The full time-series data acquired during both the localizer and the NF session were reloaded in TBV and used for further analyses.

The data of the functional runs of the localizer session were reloaded in TBV to investigate the stability of the rt-RSA approach by simulating four NF
experiments. The assumption behind these simulations is that, if the rt-RSA is mathematically correct, given a bidimensional representation space where N neural patterns (i.e. base stimuli) are displayed as points whose reciprocal distances reflect their mutual dissimilarities, a point representing a new neural pattern (i.e. a new stimulus), that is identical to one of the base stimuli, should occupy its same position in the RS. Therefore, first, the t-maps estimated on the full time-series of all the functional runs were used to estimate the RS and the corresponding linear transformation for the projection of a new pattern in the space. Then, one at the time, the same functional data of one of the localizer runs were used to extract a t-map at the end of each task-block that was projected onto the previously estimated RS to simulate the dynamically updated brain pattern as the input of a virtual NF display. The distances, and the trajectory, from the input to the target are estimated at each block. Crucially, the results of these analyses are completely independent on the type of data (i.e. real or artificial) and on the quality/success of the NF run. Moreover, as both online (incremental) and offline GLM analyses are conducted on the same localizer data, this situation simulates an ideal experimental scenario where a generic participant is able to engage in the target neural pattern by closely mimicking the neural activity associated with a target stimulus. In this analysis, based on the visual inspection of several simulated trajectories, an arbitrary distance from the target of 0.2 or less was considered an acceptable result, albeit choosing 0.15 or 0.25 did not change the conclusions.

Localizer data were used to assess the stability of the brain patterns used to create the RS, whereas the NF data were used to evaluate the performance of the subject.

Using all the functional data of the localizer, first, a reference RDM was estimated on the t-maps extracted from the full time-series. Then, using the incremental GLM, a map for each functional run was calculated at the end of each task-block and the corresponding RDM was estimated. The monotonic correlation between the vectorized upper triangular part of the latter RDM and the vectorized upper triangular part of the reference RDM was statistically evaluated with a signed-rank test [40, 41, 55]. The idea behind this analysis is that with an increase in the number of time points and, as a consequence, in the number of task blocks, it is possible to understand if the brain activity has become more stable and if the participant has been able to modulate consistently his brain activity. Therefore, this analysis could help us to evaluate prospectively, before the NF session, the quality of the localizer data as well as the stability of the base RS.

The performances of the NF run were post-hoc estimated by measuring the distances in the RS of the projections of current brain patterns (i.e. the projections showed to the participant) to the corresponding target. This analysis allowed us to have a measure of the participant’s performance in modulating his brain state in relation not only to the target stimulus, but also to the other base stimuli whose dissimilarities generate the RS. In practice, the fewer the steps (i.e. feedback received) to reach the target, the faster the dissimilarity with the target brain state decreases and the dissimilarities with the other base stimuli clone the original ones. Furthermore, estimating the distance between the projection of the last block and the target provides a measure of success for the NF outcome, as the lower this distance, the better the participant has likely fulfilled the task of engaging in that specific mental representation.

Similar analyses were used to evaluate the outcome of the rt-RSA on an ensemble of artificial data sets eliciting different noise conditions.

For each simulation, five different artificial time-series of 430 images (the same number of time points of the real localizer data) were simulated in an ROI of 100 voxels. All voxel time-series of all data sets were initialized with random Gaussian noise with zero mean and different variances ($\sigma = 0.5, 1, 2, 3$). In each data set, an ideal activation time-course was injected into a variable percentage of voxels, therefore leaving the rest of the voxels with only noise. This ideal activation time course was generated by convolving the canonical hemodynamic response function with a box-car function according to the same paradigm of the real localizer experiment. However, for each voxel, the signal amplitude of each block was scaled with a random factor from a uniform distribution ranging from -1 to 3, to simulate variable modulation performances of the participant across task blocks. In addition, to simulate five different patterns (associated with five simulated stimuli), the subsets of active voxels were varied across the five artificial data sets. In particular, assigning a numerical index to the five patterns from 0 to 4, the percentage of active voxels for the even patterns was randomly extracted from a uniform distribution of integers ranging from 30 to 60, whereas the percentage of active voxels for the odd patterns was randomly extracted from a uniform distribution of integers ranging from 20 to 30.

This procedure was repeated 1000 times, and for each simulation, the distances of the projected brain activity in the RS from the target, as well as the correlation of the RDM calculated at the end of each task block with the reference RDM, were calculated. These performances were thus reported on the average of 1000 simulations.

The whole analysis was repeated four times after increasing level of noise variance ($\sigma = 0.5, 1, 2, 3$) to evaluate the performance of the rt-RSA under various noise conditions.
3. Results

The localizer data were preliminary used to simulate a different NF experiment for each stimulus, by extracting the brain pattern of the ROI at the end of each task block and calculating its position in the RS. The estimated distance between each projection (as obtained via incremental online GLM) and its corresponding target (as obtained via full offline GLM) showed, for all the stimuli, a decreasing trend over task blocks and a value of zero at the end of the session. In particular, the stimulus ‘cat’ showed a maximum distance from the target of 0.6 at the first task block and a distance lower than 0.2 from the 6th task block on. The stimulus ‘dog’ showed a maximum distance from the target of 0.5 at the first task block and a distance lower than 0.2 from the 8th task-block on. Similarly, the stimulus ‘hammer’ showed a maximum distance from the target of 0.65 at the 2nd task block and a distance lower than 0.2 from the 8th task-block on. The stimulus ‘chair’ showed a maximum distance from the target of 0.5 at the first task block and a distance lower than 0.2 from the 8th task-block on.

The trajectories of the projections in the RS showed, for all the stimuli, that, at the end of the time series, the positions of the estimated brain patterns coincide with the positions of the corresponding targets. In addition, the visual inspection of the trajectories suggested how each stimulus follows a different path towards its target (figure 4).

Functional data of the localizer runs were used to evaluate the stability of the brain patterns across trials, whereas the functional data of the NF run were used to estimate the performances of the participant.

The Spearman correlation between RDMs, estimated at each task block, and the reference RDM, estimated at the end of the localizer session with a full GLM, showed an overall increasing trend across the task blocks (figure 5(a)). The correlation coefficient remained negative from the 1st to the 4th task block, before turning positive at the 5th task block, reaching a maximum of 0.77 ($p = 0.07$) at the 7th task block, and, finally, falling down to lower values (0.33, $p = 0.49$) in the last two task blocks (figure 5(a)). The estimated distances from the target in the RS showed an overall decreasing trend across the task-blocks. In the first four task blocks, the distances remained higher than 0.4 with a maximum of 0.82 at the 3rd task block, but then the distance from the target decreased towards a minimum of 0.12 at the last time-point (figure 5(b)).

The analyses of the artificial datasets were useful to evaluate the stability and accuracy of the rt-RSA under different noise conditions by estimating the distances from the projection of the current brain activity (at each task block) to the target in the RS and the correlation between the RDMs at each task block and the reference RDM. After 1000 simulations, the average distance exhibited a monotonic decreasing trend over time for different noise conditions (figure 6) with a minimum of \sim0.05 for $\sigma = 0.5$ and a maximum of \sim0.2 for $\sigma = 3$. An opposite trend was observed in the analysis of the RDM correlations (figure 7). Namely, the average Spearman correlation coefficient exhibited a monotonic increasing trend over time for each noise level. The exponential nature of the curve was more evident at lower noise levels ($\sigma = 0.5, 1$). At the first block, the starting point of the curve showed lower values at higher noise levels ($\sigma = 0.5, 1$). At the first block, the starting point of the curve showed lower values at higher noise levels, ranging from a maximum of 0.83 (p value combined with Fisher’s method <0.05) ($\sigma = 0.5$) to a minimum of 0.22 (p value combined with Fisher’s method <0.05) ($\sigma = 3$).

4. Discussion

In this work, rt-RSA, a method based on RSA and a novel procedure for the real-time embedding of the current mental state in the 2D visualization via cMDS,
Figure 4. Trajectories of the projections on the RS over the task-blocks, evaluated on the localizer data. Four neurofeedback experiments were simulated by sampling incrementally the fMRI data of one of the stimuli and projecting these values in the defined RS. The estimated projections for all the stimuli move towards (and at the end perfectly overlap with) the corresponding targets.

Figure 5. Evaluation of the subject’s performance: correlation between RDMs in the localizer data (a), distances between the projection and the target in the RS (b) and trajectory of the projection in the RS (c). The Spearman’s correlation between the RDMs estimated at the end of each task-block (i.e. a subset of the time series) and the reference RDM estimated at the end of the time series, show an increasing trend suggesting a stabilization of the brain patterns in the localizer data (a). The estimated distances between the projection in the RS and the target show a decreasing trend supporting the idea that, in the neurofeedback session, the subject learned to modulate his brain pattern in order to engage in the target mental state (b). The trajectories of the projections in the RS confirm that the subject managed to move the point corresponding to his brain activity towards the target (i.e. ‘dog’) (c).

has been introduced for rt-fMRI-NF paradigms. The online implementation of RSA (in a real-time incremental procedure) enabled a novel type of multi-dimensional feedback of the participant’s brain activity which can be semantically related to an internal stimulus representation (thereby reflecting the actual mental state of the subject) via multi-voxel pattern analysis. Using rt-RSA, the online estimated neural pattern is displayed as a movable point on a plane and engagement in mental tasks navigates the point towards (or away from) one or more target points displayed at fixed positions. The relative distance between the current location of the NF point—representing the current mental state—and the other points approximate their mutual (dis)similarities. The other semantic ‘anchor’ points reflect mental states that the participant was previously engaged in during a localizer session. In this way, the participant is requested to change the position of the movable point towards one of the target points in a fixed RS space by self-modulating his/her own brain activity until reaching a desired mental state.

There are (at least) two potential advantages of this framework over classical NF paradigms. The first is that the NF display encodes (and therefore the self-modulation operates on) distributed multi-voxel patterns of brain activity within the selected ROI, which is (known or found to be) critically involved in
Figure 6. Distances from the target in the RS on the average on 1000 simulated datasets in various noise conditions: data with Gaussian noise $\mu = 0$, $\sigma = 0.5$ (a), data with Gaussian noise $\mu = 0$, $\sigma = 1$ (b), data with Gaussian noise $\mu = 0$, $\sigma = 2$ (c) and data with Gaussian noise $\mu = 0$, $\sigma = 3$ (d). In all the cases, the distances from the target have a decreasing trend towards zero.

Figure 7. Spearman’s correlation between RDMs estimated at the end of each task-block and the reference RDM on the average on 1000 simulated datasets in various noise conditions: data with Gaussian noise $\mu = 0$, $\sigma = 0.5$ (a), data with Gaussian noise $\mu = 0$, $\sigma = 1$ (b), data with Gaussian noise $\mu = 0$, $\sigma = 2$ (c) and data with Gaussian noise $\mu = 0$, $\sigma = 3$ (d). In all the cases, the correlations with the reference RDM have an increasing exponential trend towards one.

the semantic processing of the stimulus, rather than 1D (spatially averaged) ROI signals [19, 59, 60] or pairwise connectivity estimates [61]. The second is that the (locally) distributed pattern of brain activity is dynamically compared, not just to one, but many, base or reference patterns, thus providing additional degrees of freedom, both to the experimenter (in the preparation and set-up of the NF materials) and to the participant (in the choice of the mental strategy), to more efficiently (self-) modulate a mental representation along multiple dimensions. It is important to clarify the difference between a simple imagination training and the NF experiment. During the localizer experiments (imagination training), the subject is simply requested to imagine a given object. During the NF experiment (imagination modulation), the subject is requested to imagine a given object and seeing the trajectory of a point on a screen. Thus, the (expected) added value of the NF is the possible modulation of the brain activity resulting from
the subject changing or tuning the features of the imagined object to gain control over the same brain activity pattern toward a target state. Rt-RSA was successfully tested in a real rt-fMRI-NF experiment at 7 T where the subject performed a visual imagery task and the brain activity from an ROI in the left ITC was recorded.

The imagery task was chosen for a proof-of-concept study, as it enabled the possibility to modulate the brain activity related to semantic features of the stimuli in a region known to encode the high-level representation of natural objects [54–56]. The functional data from a localizer session were used to both generate the RS for a set of four base stimuli (to be used in the NF session) and to simulate NF experiments. While the actual NF performances of the subject were evaluated on the real NF data from the NF session, the computational feasibility and the statistical accuracy of the rt-RSA approach under simulated ideal conditions of successful modulation were evaluated on the same localizer data. In addition, 1000 simulations of multi-voxel ROI patterns were performed to evaluate the rt-RSA approach under different signal-to-noise conditions.

The analysis of the simulated NF experiments with real fMRI data from the localizer session demonstrated that it is possible to implement a visual 2D NF by estimating in real-time the current brain pattern by dynamically updating (with negligible delays) the position of the associated current mental representation in a previously defined (and fixed) RS. Indeed, the resulting trajectory of a point on a 2D plane and the final collapsing of this point to the target position demonstrated that the provided visual feedback could be in principle correct and stable. More specifically, the results of the simulated NF experiments clearly showed that if the participant is in principle able to become engaged in the same mental state which causes exactly the same distribution of brain activity elicited by the target stimulus in the target ROI, the resulting visual feedback could in principle guide this process towards the perfect match between the positions of the current and target brain patterns. However, although the results of the real NF run are promising, further studies are needed to establish a more robust experimental paradigm that is less participant-dependent. For instance, considering a group of participants acquired with the presented paradigm, it is likely that some of them would need more than one localizer session to elicit a set of robust and meaningful brain patterns associated with the experimental stimuli compared to others. Eventually, the RS for the NF run could be created from the concatenation of multiple localizer runs within the same session. Similarly, it is possible that some participants would require more than one NF run (i.e. NF training runs in addition to the NF training outside the scanner) to handle properly this type of NF and successfully complete the task. Thus, future pilot studies could be designed allowing a varying number of localizer runs (between subjects) before the NF runs and/or a varying number of NF runs (within subject) across different sessions (e.g. in different days), in order to correlate the amount of training with the NF performance. This would also disentangle the effects of imagination training (across runs) and imagination NF. Moreover, sham NF runs should be designed to assess the specific modulation effects provided by the real NF. This could be done, for example, by projecting patterns generated during the NF run onto a different RS, e.g. estimated from a different (unrelated) control ROI of identical size. An alternative approach could be the random update of the distances between the current brain pattern and the patterns associated with the (true) base stimuli. The results from the rt-fMRI-NF experiment demonstrate that the rt-RSA approach can be applied in a real-world scenario, with little additional computational steps and no additional hardware requirements. Thus, our proof-of-concept study suggests that it would be possible to integrate an rt-RSA based procedure within several experiments using existing NF paradigms.

The integration of a multi-dimensional NF display did not introduce additional difficulties for the participant to understand the task, at least according to the report from the single participant examined in this study. Indeed, while the task progress is perceived by the subject like ‘a journey in a geographical map’, the investigator can still rely on the distance from the target as a simple (1D) index of success to evaluate the subject’s performance [21]. Moreover, the offline analyses performed on the localizer data showed how it is possible to obtain a preliminary assessment of the stability of the RS as initially created from the base stimuli, in a similar way as it happens in a 1D NF where it is possible to evaluate the variability of the BOLD percent signal changes over the trials. In our case, this analysis revealed a drop of the correlation values in the last two task blocks likely due to mental fatigue.

The analyses of the artificial datasets allowed to assess the impact of noise on the trajectories under ideal conditions of successful NF. These gathered two main observations. First, the projection of the current neural representation, and its final convergence to the target points, remains stable also when the fMRI signal is affected by a relatively higher amount of noise. However, higher noise levels critically affect the position of the current point at the beginning of the experiment, thereby potentially increasing the length of the trajectory in the RS, and therefore the minimum number of steps required, to reach the target. Second, the amount of noise has an impact on the reference RDM itself and, therefore, on the RS, thereby the monotonic correlations between current and reference RDMs may be reduced.

Taken together, these results may suggest that, in an ideal scenario, the presence of higher noise levels...
simply causes longer paths to the target state, i.e. noise itself does not necessarily undermine or disrupt the stability of the rt-RSA under the assumption that the participant has successfully learnt to regulate his/her mental states with the decided strategy. However, it should be also pointed out that the stabilization of the statistical values does not represent per se an indication that the subject has successfully consolidated an optimal mental strategy. Actually, if the subject chooses a wrong strategy, there is no guarantee of successful convergence, even at very low noise levels. Nonetheless, as far as the noise is assumed constant across the blocks, the final distance of the current, from the target, representation may still provide a useful indication of the overall performance in modulating the mental state according to that strategy.

The proposed method may become a promising tool for the self-regulation of brain signals as it is flexible and versatile and provides both the participant and experimenter with transparent visual feedback about how the current mental state relates to related ‘anchor’ mental states in a semantic map. There are, however, no fundamental limitations about both the feedback modality and the input type. For instance, different physical dimensions can be used as different feedback channels, and it is theoretically possible to use other fMRI-derived measures, such as the connectivity or the output weights of a classification procedure. The choice of the mental task, for which no detailed instructions are needed, is completely up to the participants and their own representations, the only requirement being that a robust activation pattern is elicited (and verified) during the localizer session. As a consequence, besides integrating a visual feedback during object imagery, as shown in the present study, rt-RSA could be in principle used in more complex scenarios such as those employed in NF-based emotion regulation [11]. In fact, basic (positive or negative) emotions have been previously associated with specific neural signatures within different brain regions [36], including, e.g. the amygdala [62]. Therefore, it could be possible to project (and target) patterns with different emotional valence, on the same RS from one (or more) of these brain regions, after training the subject to engage in some different mental states that become associated with different local patterns [11] during the localizer session. Technically, it is only essential to keep the same number and order of voxels in the ROI(s) to correctly fit the original dimensions of the RS [37].

Finally, towards a proper generalization of this approach, and to counteract the inter-subject variability in local patterns, as resulting from the localizing/training phase with more complex stimuli, it could be possible to force higher levels of smoothing to the functional data. Moreover, it will be important to include an eye-tracker to control for the eye movements and to introduce a group-derived RS. Indeed, in principle, it is feasible to derive one unique RDM from the group-level analysis of several subjects (e.g. from a healthy or control cohort) and along these lines, create one ‘external’ RS, estimate the corresponding linear transformation and apply it consistently in a series of NF sessions of individuals from a different group (e.g. patients) upon the alignment of the estimated neural pattern from the individual to a common space [63, 64]. As a consequence, the participants could be asked to self-modulate their own mental state by navigating through predefined mental states associated, not (only) with their own neural representations, but rather with some ‘control’ representations from different people.

However, all this approach will need proper design and careful testing to be validated prior to any clinical applications.

5. Conclusion

In conclusion, a new method for rt-fMRI-NF has been introduced which promises to go beyond the classical approach of fMRI signal self-modulation. The presented simulation and the preliminary results from an rt-fMRI-NF proof-of-concept study demonstrate that rt-RSA provides the possibility to project the current mental state in a fixed RS for a given ROI enabling a semantic feedback to the subject for the self-regulation of mental states in a multi-dimensional space. This approach has been shown to be computationally and statistically feasible and its application to a real NF experiment based on a simple imagery task at 7 T has yielded encouraging results. Nonetheless, the experimental results presented here from only one participant, including the simulations, should be only taken as proof of technical feasibility in support of the rationale of the analytic methodology. Thus, taken together (with simulations) these results are meant to provide a more solid background and concrete motivation for future pilot studies to increase the number of subjects and to assess performances in a multi-subject study, eventually at lower (i.e. clinical) magnetic fields (e.g. 1.5 or 3 T).

Data availability statement

The data generated and/or analyzed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author on reasonable request.

Acknowledgments

The authors thank Sara Ponticorvo and Assunta Ciardo for the useful discussions about the features
of the presented approach and for their precious proofreading.

ORCID iDs

Andrea G Russo https://orcid.org/0000-0002-2793-4212
Fabrizio Esposito https://orcid.org/0000-0002-5099-9786

References

[25] Pereira J, Direito B, Sayal A, Ferreira C and Castelo-Branco M 2019 Self-modulation of premotor cortex interhemispheric connectivity in a real-time functional magnetic resonance imaging neurofeedback study using an adaptive approach Brain Connect. 9 662–72
[31] Young K D, Siegle G J, Zotev V, Phillips R, Misaki M, Yuan H, Drevets W C and Bodurka J 2017 Randomized clinical trial of real-time fMRI amygdala neurofeedback for major depressive disorder: effects on symptoms and