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Abstract
Objective
To investigate the link between blood-brain-barrier (BBB) permeability and cerebral blood
flow (CBF) and the relation with white matter hyperintensities (WMH) in cerebral small vessel
disease (cSVD).

Methods
Twenty-seven patients with cSVD received dynamic susceptibility contrast and dynamic
contrast-enhanced MRI to determine CBF and BBB permeability (expressed as leakage rate
and volume), respectively. Structural MRI were segmented into normal-appearing white matter
(NAWM) and WMH, for which a perilesional zone was defined. In these regions, we in-
vestigated the BBB permeability, CBF, and their relation using Pearson correlation r.

Results
We found a decrease in CBF of 2.2 mL/min/100 g (p < 0.01) and an increase in leakage volume
of 0.7% (p < 0.01) per mm closer to the WMH in the perilesional zones. Lower CBF values
correlated with higher leakage measures in the NAWM and WMH (−0.53 < r < −0.40, p <
0.05). This relation was also observed in the perilesional zones, which became stronger in the
proximity of WMH (p = 0.03).

Conclusion
BBB impairment and hypoperfusion appear in the WMH and NAWM, which increase in the
proximity of the WMH, and are linked. Both BBB and CBF are regulated in the neurovascular
unit (NVU) and the observed link might be due to the physiologic regulation mechanism of the
NVU. This link may suggest an early overall deterioration of this unit.
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Cerebral small vessel disease (cSVD) affects small arteries,
arterioles, venules, and capillaries in the brain.1,2 It is an
umbrella term covering several pathologies with various eti-
ologies. White matter (WM) alterations observed as WM
hyperintensities (WMH) on MRI is a common imaging feature
of cSVD.1 Several mechanisms have previously been linked to
the pathophysiology of WMH including hypoperfusion3,4 and
increased permeability of the blood-brain barrier (BBB).5–7

Both BBB permeability and CBF regulation are functional
elements controlled in the neurovascular unit (NVU).8 This
unit is composed of both neuronal and vascular cells, in-
cluding endothelial cells, basal lamina, astrocytes and their
endfeet, neurons, intervening neurons and their axons, peri-
cytes, and (vascular) smooth muscle cells.8–10 One of the
main functions of the NVU is neurovascular coupling, in
which energy demand of brain activity is ensured by regulating
the supply of energetic metabolites, nutrients, and oxygen via
the blood circulation.8,10

Previously, a correlation between BBB impairment and ce-
rebral hypoperfusion has been demonstrated in Alzheimer

disease.11 It is unknown whether this relation also exists in
cSVD. Therefore, we aimed to determine both BBB perme-
ability and CBF, in terms of leakage and flow of gadolinium
contrast agents, respectively, and to study their relationship
with WMH and the perilesional zone in patients with cSVD.

Methods
Study population
The study population was obtained from a larger cSVD pa-
tient population (n = 77) studied earlier for BBB impair-
ment.9 These patients either had a first-ever lacunar stroke or
were diagnosed with mild vascular cognitive impairment
(VCI), which are considered to be the 2 most important
clinical manifestations of cSVD most likely due to age- and
cardiovascular risk factor–related cSVD. These 2 clinical en-
tities are the most common manifestations of the same un-
derlying small vessel disease although VCI is the chronic
manifestation whereas lacunar stroke is acute.10 Patients were
included in this study between April 2013 and December
2014 from the Maastricht University Medical Centre and

Glossary
BBB = blood-brain barrier; CBF = cerebral blood flow; CI = confidence interval; cSVD = cerebral small vessel disease; DCE =
dynamic contrast-enhanced; DSC = dynamic susceptibility contrast; DSI = dynamic scan interval; FLAIR = fluid-attenuated
inversion recovery; FOV = field of view; GM = gray matter; NAWM = normal-appearing white matter; NVU = neurovascular
unit;ROI = region of interest;TE = echo time;TI = inversion time;TR = repetition time;VCI = vascular cognitive impairment;
WM = white matter; WMH = white matter hyperintensities.

e1670 Neurology | Volume 92, Number 15 | April 9, 2019 Neurology.org/N

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


Zuyderland Medical Centre, the Netherlands.9 Specific in-
formation on the inclusion can be found in supplemental data
e-1 (doi.org/10.5061/dryad.m9c8tn8). From that cohort, we
selected all patients who had received both dynamic contrast-
enhanced (DCE) and dynamic susceptibility contrast (DSC)
MRI (n = 27, 69 ± 12 years [mean ± SD], 63% male, 54%
hypertensive, 19% diabetic, 81% prevalence of hypercholes-
terolemia, 19% smokers, average [SD] body mass index 26.4
[4.0]). Definition of specific patient demographics can be
found in supplemental data e-2 (doi.org/10.5061/dryad.
m9c8tn8).

Standard protocol approvals, registrations,
and patient consents
The study was approved by the Medical Ethical Committee of
our institution. All participants were included after written
informed consent was obtained. This study is registered on
trialregister.nl (NTR number NTR3786).

Imaging protocol
All participants received brain imaging on an MRI system
(3T, Achieva TX; Philips Healthcare, Best, the Netherlands)
using a 32-element head coil suitable for parallel imaging.

Structural imaging
A T1-weighted sequence (repetition time [TR]/inversion
time [TI]/echo time [TE] = 8.3/800/3.8 ms; field of view
[FOV] 256 × 256 × 160 mm3; 1.0 mm3 cubic voxel) was
performed to image the anatomy of the cerebrum. To visu-
alize WMH, a T2-weighted fluid-attenuated inversion re-
covery (FLAIR) sequence (TR/TI/TE = 4.800/1.650/299
ms; FOV 250 × 256 × 180 mm3; 1.0 mm3 cubic voxel) was
used.

DCE-MRI
Dynamic imaging was performed using dual temporal reso-
lution DCE-MRI sequence, which consisted of 2 integrated
saturation recovery gradient recalled sequences mainly dif-
fering in dynamic scan interval (DSI) and spatial
resolution.11–13 The first sequence (DSI 3.2 seconds, TR/TE
= 5.6/2.5 ms, flip angle 30°, FOV 256 × 200 × 50 mm3, voxel
size 2 × 2 × 5 mm3, SENSE factor 2, 29 image volumes
including 9 precontrast volumes, duration 1:33 minutes) was
applied during contrast injection (gadobutrol, 0.1 mmol/kg,
injected in the antecubital vein, rate 3 mL/s, followed by a 20
mL saline flush) to measure the fast signal changes due to the
early circulatory phases of the contrast agent. Using the sec-
ond sequence (DSI 30.5 seconds, TR/TE = 5.6/2.5 ms, flip
angle 30°, FOV 256 × 256 × 100 mm3, voxel size of 1 × 1 ×
2 mm3, SENSE factor 2, 45 image volumes including 3 pre-
contrast volumes, duration 22:53 minutes), the slow extrav-
asation of contrast agent in tissue was sampled. Both
sequences overlapped spatially with the periventricular regions
since it is the most vulnerable region in patients with cSVD.11

Before dynamic imaging, T1mapping of the native brain tissue12

was employed to enable the conversion of the contrast-enhanced
signal intensity time series to tissue concentrations.

DSC-MRI
After DCE-MRI, DSC-MRI was performed, which has also
been described previously.13 Employing settings similar to the
DCE-MRI experiments for the injection of the contrast agent,
75 image volumes of the cerebrum were obtained using a 3D
gradient echo (principles of echo-shifting with a train of ob-
servation [PRESTO]) sequence and the contrast agent was
injected at the start of the 11th time point14 (DSI 1.56 sec-
onds, TR/TE 20/30 ms, flip angle 8°, FOV 240 × 190 ×
105 mm3, voxel size 1.9 × 1.9 × 3.5 mm3, duration 1:57
minutes).

Image data analysis
Both DCE and DSC images were corrected for head dis-
placement by aligning the images to a volume image averaged
over the precontrast DCE-MRI scans (FSL v5.015). In the
following, the calculation of quantitative measures of both
DCE-MRI11–13 and DSC-MRI11 are explained.

DCE-MRI
Analysis of the DCE-MRI data consists of pharmacokinetic
modeling and histogram analysis. Voxel-wise values of Kiwere
calculated using the Patlak graphical approach.16 The
employed vascular input function was selected in the superior
sagittal sinus per participant. Hereafter, a histogram was cal-
culated from all Ki values and a noise subtraction method was
performed.11,12 In short, a noise distribution was calculated
based on the negative tail of the Ki histogram. Subtraction of
the noise distribution resulted in a positive Ki histogram,
which reflects the detectable leakage rates. The leakage vol-
ume (vL) was calculated by quantifying the remaining area
under the histogram curve and the leakage rate Ki was cal-
culated as the mean of the noise-corrected histogram in-
cluding all voxels. Here vL represents the spatial extent of
leakage and Ki the rate of the leakage.

DSC-MRI
Cerebral blood flow (CBF) was also calculated in a voxel-wise
manner. CBF was calculated by using a block-circulant

Figure 1 Perilesional zones

Fluid-attenuated inversion recovery image (A) of a 73-year-old woman with
cerebral small vessel disease and a map showing the perilesional zones (B)
around white matter hyperintensities (WMHs) (dark blue).
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singular value decomposition algorithm, in which singular
values below 10% of the maximal singular value were set to
zero.17,18 The arterial input function employed for the flow
assessment was derived from the anterior cerebral artery. To
exclude contamination of large blood vessels, voxels with
cerebral blood values >10%were excluded from the analysis.19

Regions of interest (ROIs) analysis
and measures
T1-weighted images and FLAIR images were coregistered to
the averaged precontrast DCE-MRI scans. Subsequently, WM
was segmented from the gray matter (GM) using Freesurfer20

and the WMH were segmented from normal-appearing WM
(NAWM) using a semi-automated method21 followed by vi-
sual checks under supervision of vascular neurologists (J.S.
and R.J.v.O.). This resulted in 3 tissue ROIs: the NAWM,
WMH, and GM, which consisted of the basal ganglia and
cortex. For spatial analysis, the NAWM was divided into
a number of perilesional zones by segmenting 5 shells with
2-mm width using a dilation operation of 2 mm around the
WMH (figure 1). For all ROIs, the Ki, vL, and the mean value
of CBF were calculated. The coupling (i.e., regression) co-
efficient α was defined as the regression slope between the
leakage measures and CBF and was calculated per shell.

Statistical analysis
The absolute values of the leakage measures (Ki and vL) and
CBF values over the shells were assessed using regression
analysis. Furthermore, the relation between the leakage
measures and CBF was studied by calculating both the
Pearson correlation coefficient (r) and the coupling co-
efficient α and was adjusted for age and sex. All correlation

analyses were performed for the NAWM, GM, and WMH. In
case a significant correlation between leakage measures and
CBF was observed in the NAWM, the coupling coefficient α
was investigated as a function of distance to the WMH using
linear regression. Significance was inferred for p < 0.050. All
statistical analyses were performed using commercial software
(SPSS, version 22, IBM, Armonk, NY).

Data availability
On request via the corresponding author, the identified
summary data used in this study will be shared with other
researchers.

Results
We present mean values over all patients of the CBF, the
leakage volume vL, and leakage rate Ki for all ROIs in table 1
and an example of maps with values for CBF and leakage rate
Ki for a patient with cSVD in figure 2. In figure 3, mean values
of CBF, the leakage volume vL, and leakage rate Ki are pre-
sented for the perilesional zones.

Leakage measures
Leakage volumes vL were higher in WMH than in NAWM
(mean [95% confidence interval (CI)] 6.5 [1.3, 11.7]%, p =
0.016) and higher in the WM than in the GM (NAWM: 14.2
[11.1, 17.2]%, p < 0.001; WMH: 20.7 [15.3, 26.0]%,
p <0.001) (table 1). Higher leakage rates were observed in
theWM than in the GM (NAWM: 0.8 [0.4, 1.1] × 10−4 min−1,
p<0.010;WMH: 1.0 [0.5, 1.5] × 10−4min−1, p< 0.010) (table 1).
In the perilesional zones of WMH, a relation between the leakage

Table 1 Values of cerebral blood flow (CBF), leakage volume, and leakage rate in cerebral small vessel disease

Tissue region CBF, mL/min/100 g, mean ± SD vL, %, mean ± SD Ki (×10
24 min21), mean ± SD

NAWM 80 ± 19 37 ± 17 3.5 ± 1.6

WMH 59 ± 22 43 ± 20 3.7 ± 1.8

GM 112 ± 23 23 ± 15 2.7 ± 1.3

Abbreviations: GM = gray matter; vL = leakage volume; Ki = leakage rate; NAWM = normal-appearing white matter; WMH = white matter hyperintensities.

Figure 2 Maps of the cerebral blood flow and leakage rate

Fluid-attenuated inversion recovery image (A) of
a 73-year-old woman with cerebral small vessel
disease and maps with values for cerebral blood
flow (CBF) (B) and leakage rate Ki (C).
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volumes, but not the leakage rates, was observed: the leakage
volume increases with 0.7% (95% CI 1.0%, 0.4%, p < 0.01)
per mm closer to the outer boundary of WMH (figure 3).

Cerebral blood flow
CBF in the WMHwas lower than in the NAWM (mean [95%
CI] −20.4 [−25.2, −15.6] mL/min/100 g, p < 0.001). In the
WM, CBF was lower than in the GM (NAWM: −32.2 [−35.8,
28.6] mL/min/100 g, p < 0.001,WMH: −52.6 [−57.4, −47.8],
p < 0.001) (table 2). In the perilesional zones, the CBF
value decreased with 2.2 (95% CI 2.0, 2.4, p < 0.01) mL/min/
100 g per mm closer to the outer boundaries from WMH
(figure 3).

Relation between CBF and BBB permeability
Table 2 shows the Pearson correlation coefficient r and the
coupling coefficient α for the leakage measures and CBF for
various regions in the brain. Larger leakage volumes vL were
associated with lower CBF in the NAWM and WMH (figure
4). Higher leakage rates Ki were correlated with lower CBF in
the NAWM and WMH (figure 4).

For the perilesional zones of the WMH, a similar relation of
larger leakage volumes vL and higher leakage rates Ki with
lower CBF was observed as found in the NAWM. The
strength of the coupling coefficient α between the leakage rate
Ki and CBF increased with 0.17 × 10−6 1/(mL × 100 g) (p =
0.03) per mm closer to theWMH. No relation of the coupling
coefficients α between the leakage volume vL and CBF were
observed.

Discussion
In the present study on patients with manifest cSVD, we
investigated the permeability of the BBB and CBF as well as
their relation. We showed that BBB impairment and lower
CBF were strongest in or close to the WMH, and became less
prominent at greater distance from the WMH. We also
revealed a negative relation between increased BBB impair-
ment, in terms of both increased leakage rate and volume, and
lower CBF in bothNAWMas well asWMH. This relation was
strongest in tissue regions close to the WMH.

In the WMH, stronger leakage rates and volumes were ob-
served than in the NAWM and GM. Leakage volumes
appeared to be largest in the proximity of theWMH. This is in
concordance with an increase in abnormal BBB permeability
towards the WMH observed in previous studies22,23 and
implies that the BBB inNAWM is increasingly impaired in the
proximity of WMH. Expansion of WMH has been suggested
to proceed at its borders.24,25 Altogether this suggests that
BBB impairment may occur prior to the formation of WMH.
This thought fits the hypothesis that a more leaky BBB results
in WM damage involving perivascular edema6,7,26,27; a more
permeable BBB can lead to accumulation of bloodborne products
causing perivascular edema, which can intoxicate brain cells and
ultimately leads to demyelination as observed in WMH.7,26,27

CBF values of the WMH were on average 26% lower than of
the NAWM, which demonstrated the hypoperfusion in the
lesions. This agrees with a study also using DSC-MRI in
patients with leukoaraiosis.28 We also showed a decrease of
the CBF in the perilesional zone, which more or less nor-
malized at more distant regions from the outer boundaries of
WMH. Thus, even in normal-appearing tissue in cSVD, the
physiology is deviant in the proximity of WMH. This is in
accordance with a longitudinal study showing low CBF pre-
ceding WMH formation.3 The impairment of CBF regulation
involves a plausible pathophysiologic sequence through
changes of the vessel wall structure of microvessels including

Figure 3 Cerebral blood flow (CBF), leakage volume, and
leakage rate for thewhitematter hyperintensities
(WMH) and perilesional zones

(A) CBF, (B) leakage volume, and (C) leakage rate for the WMH (i.e., 0 mm)
and perilesional zones in the normal-appearing white matter with in-
creasing distance to the WMH. Corresponding regression lines of the aver-
age values per perilesional zone are plotted. CBF values increased (y = 58.5 +
2.2x, p < 0.01) and leakage volumes decreased linearly (y = 46.1–0.7x, p <
0.01) with increasing distance from the WMH. No significant linear relation
was observed for the leakage rate over the perilesional zones (p = 0.69),
though it also decreased at larger distance.
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narrowing of the arteriolar lumen and thickening of the vessel
wall by fibro-hyaline material.4,26,29 These structural changes
in the vessel wall can impair hemodynamics, through influ-
encing contraction and dilation of vessels, and can lead to
ischemia in the most distal vascular territories.29 These
regions are most vulnerable for impairment of blood supply
and are likely to be at risk for structural brain damage.4

In the present study, we found that both leakage measures
(i.e., leakage volume and rate) were negatively related with
lower CBF in all tissue regions; stronger leakage values were
linked with lower CBF. This link became weaker in the per-
ilesional zones at larger distances from the WMH. In the
following, several suggestions are offered to explain the results
found in the current study.

Purely considering the blood vessels (i.e., without a regulatory
mechanism and with subtle BBB defects) in healthy aging,
a positive relation would have been expected, as a decreased
CBF would give rise to less supply of contrast material and
consequently less leaking contrast molecules. We propose

several mechanisms that may explain the negative relation
between BBB leakage and lower CBF. First, a lower shear
stress, which can result from lower CBF, has been shown to
contribute to lower expression of tight junctions hence lead-
ing to a more permeable BBB.30 Second, it has been suggested
that hypoxia, which can also result from lower CBF, induces
the activation of several mechanisms including the increase of
BBB permeability8 to prevent tissue damage.

Our study demonstrates a link between BBB impairment and
lower CBF, but whether they are causally related, and in which
direction, cannot be concluded. Nevertheless it suggests that
both are involved in the pathophysiology of cSVD. Both BBB
and CBF are regulated by the NVU. The link between BBB
impairment and lower CBF suggests that the defect of one
functional element of the NVU can affect other NVU ele-
ments. This points at an early overall impairment of the NVU
in cSVD and is in agreement with other studies showing that
multiple elements of the NVU, including degeneration of the
extracellular matrix,31 vascular smooth muscle cells, and
pericytes,32,33 are disrupted in cSVD. Moreover, based on the

Table 2 Relation between the leakage measures and cerebral blood flow for the NAWM, WMH, GM and the perilesional
zones

Pearson correlation (CI) Coupling coefficient (CI)a p Value

Leakage volume vL

NAWM −0.40 −3.4 (−6.8, −0.1) 0.045

WMH −0.53 −4.6 (−8.3, −0.9) 0.016

GM −0.36 −2.2 (−4.8, 0.4) 0.094

Perilesional zones (distance to WMH, mm)

2 −0,45 −4.9 (−8.8, −1,1) 0.015

4 −0.40 −4.5 (−8.5, −0.5) 0.030

6 −0.35 −3.8 (−7.7, 0.2) 0.063

8 −0.37 −3.7 (−7.4, 0,0) 0.052

10 −0.42 −4.0 (−7.4, −0.5) 0.027

Leakage rate Ki

NAWM −0.41 −3.0 (−6.0, 0.0) 0.033

WMH −0.48 −3.9 (−6.9, 0.0) 0.030

GM −0.37 −2.0 (−4.0, 0.0) 0.077

Perilesional zones (distance to WMH, mm)

2 −0.46 −5.0 (−9.0, −1.0) 0.017

4 −0.44 −5.0 (−9.0, −1.0) 0.019

6 −0.42 −4.0 (−8.0, −1.0) 0.026

8 −0.39 −4.0 (−7.0, −0.0) 0.034

10 −0.40 −4.0 (−7.0, −0.0) 0.030

Abbreviations: CI = confidence interval; GM = gray matter; NAWM = normal-appearing white matter; WMH = white matter hyperintensities.
a Units: vL: ×10

−3%/(mL/min/100 g); Ki: ×10
−6 mL−1·100 g−1.
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increasing strength of the link between BBB impairment and
lower CBF with closer distance to the WMH, we suggest that
NVU impairment may be related to structural damage in the
WM. Recent studies have also proposed a similar view im-
plying that impairment of the NVU is a pathologic loop ul-
timately leading to a cascade of damage including WM
injury.8,29 Future studies should investigate the highly com-
plex mechanisms in the NVU and study the BBB permeability
and hypoperfusion in a longitudinal fashion to further estab-
lish their link and tell us more about a causal direction.

Future interventions could aim to counteract functional loss
in cSVD to preserve the WM. Moreover, BBB and CBF
measures can be employed as quantitative imaging bio-
markers to monitor the effectiveness of these interventions. It
is also shown that BBB impairment and lower CBF are related
in WM degeneration possibly in the context of early overall
NVU impairment.

More studies are needed to establish the exact link between
BBB impairment and lower CBF. Nevertheless, this link may

Figure 4 Scatterplots between cerebral blood flow (CBF), leakage volume, and rate for various regions of interest

Scatterplot between CBF and leakage volume (A.a–A.c) and CBF and leakage rate (B.a–B.c) with corresponding (unadjusted) regression line. Significant
negative correlations were observed between CBF and the leakage volume for the normal-appearing white matter (y = 0.65 − 3.5 × 10−3x, p = 0.05) (A.a) and
whitematter hyperintensities (y = 0.71 − 4.6 × 10−3x, p = 0.02) (A.c). A similar relation (but not significant) between reduced CBF and increased leakage volume
in the gray matter was observed (y = 0.52 − 2.6 × 10−3x p = 0.09) (A.b). Significant negative correlations were also observed between CBF and leakage rate for
the normal-appearingwhitematter (y = 0.64 − 3.6 × 10−6x, p = 0.03) (B.a) andwhitematter hyperintensities (y = 0.60 − 3.96 × 10−6x, p = 0.03) (B.c). A comparable
relation (but not significant) between lower CBF and higher leakage rate was observed in the gray matter (y = 0.56 − 2.6 × 10−6x, p = 0.08) (B.b).
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imply that targeting either one (i.e., BBB impairment or
hypoperfusion) for treatment of cSVD could be done in-
directly; for example, stabilization of the BBB may lie in the
better control of the vascular condition by controlling the
vascular risk factors, for example hypertension, by using an-
tihypertensive drugs34 or smoking cessation.35

For this study, a dedicated technique to measure subtle
leakage was employed. The DCE-MRI sequence includes
a fast and a slow sequence to measure the wash-in of the
contrast agent, to accurately sample the vascular input func-
tion, and the slow extravasation of contrast agent in tissue,
respectively. Another strength of our study is that a spatial
perilesional analysis was performed that showed regional
differences around WMH.

Our study also has limitations. First, this study is an explor-
ative study and therefore the study population is not large.
Consequently, our results should be interpreted with caution.
Nevertheless, this study shows promising results in in-
vestigating the possible relation between BBB impairment
and diminished blood flow using MRI. Future studies in-
vestigating the link between both mechanisms should include
more participants. Second, for the contrast-enhanced tech-
niques, different blood vessels were used to select the vascular
input function, as for each technique the best option was
selected. The effect of different vascular input functions on the
link between BBB permeability and CBF should be studied in
more detail. Third, the observed CBF values for the current
study population seem to be higher than those found in the
literature. Possibly this is caused by a different measurement
or analysis method that was used to determine absolute values
of CBF. However, we used the method as described in a study
by van de Haar et al.,13 to which our results compare well.
Furthermore, we performed the same method for the entire
study population and the derived correlations are not de-
pendent on the magnitude of the CBF values. Fourth, the
determination of the coupling coefficient α was based on re-
gression analysis between leakage measures and CBF over
multiple participants, which yielded that participants with
lower CBF exhibit stronger BBB impairment. The observed
link suggests the involvement of a physiologic regulation
mechanism of the NVU to compensate for oxygen or me-
tabolite deficiency. However, whether BBB permeability and
hypoperfusion are truly dynamically coupled in the same
participant is not yet proven from this study and requires
a longitudinal setup. Finally, because we have selected patients
with cognitive impairment, some patients might have some
early Alzheimer pathology, which may have confounded our
results. However, we strove to exclude patients with Alz-
heimer disease as much as possible based on extensive neu-
ropsychological assessment, evaluation of patient history, and
screening volumetric MRI abnormalities (i.e., evident hip-
pocampal atrophy).

We demonstrated functional loss of the cerebral microvas-
culature in terms of BBB impairment and cerebral

hypoperfusion, and their link in the WM and the perilesional
zones of the WMH. This link may indicate early overall de-
terioration of the NVU. Future investigation into WM de-
generation in cSVD should consider the failure of multiple
mechanisms in the context of NVU impairment.
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