Summary

This thesis deals with the spectrum of secondary complications, that occur in patients with type 2 diabetes mellitus, and the effects of dietary and insulin treatment on glucose and lipid metabolism in these patients.

Chapter 1 gives an overview of the pathophysiologic mechanisms leading to hyperglycaemia and responsible for the development of late complications in persons with type 2 diabetes mellitus. A summary is given of the current insights in treatment of diabetes and the ways to achieve near-normal blood glucose control, and emphasizes the importance of other risk factors for the development of cardiovascular disease.

In chapter 2 the results of a survey among patients treated at the outpatient clinic of the Department of Internal Medicine of the University Hospital Maastricht are described. This study was performed in order to attain more information on the quality of metabolic control and presence of secondary complications in these patients. The presence of diabetic complications was assessed by specific questionnaires and detailed physical examination, and compared with a recently published survey among G.P. patients. As expected a higher proportion of our patients was treated with insulin (48% vs. 24%, p<0.01). In addition, they showed a higher prevalence of hypertension (56% vs. 38%), coronary artery disease (48% vs. 40), and cerebrovascular disease (15% vs. 6%). 35% of our patients had signs of peripheral artery disease. Retinopathy was present in 35 patients (28%), of whom 18 had received lasercoagulation treatment. Microalbuminuria was found in 25%, and overt proteinuria in 14% of patients. The presence of microalbuminuria and proteinuria was a strong indicator for cardiovascular disease, polyneuropathy and retinopathy. The use of cardiovascular medication was high: 57 patients used antihypertensive therapy, 37 used diuretics, and 26 long-acting nitrates. Only 25 patients took no medication in addition to their diabetes therapy. This study confirms the clustering of risk factors for cardiovascular disease in type 2 diabetes mellitus.
Chapter 3 describes the clinical situation and presence of secondary diabetic complications of 38 diabetic patients, chronically admitted to a nursing home. Their macrovascular complications and degree of glycaemic control were compared with those in ambulatory diabetic patients, matched for age, sex, known duration of diabetes, and specific antidiabetic therapy. No differences in blood glucose control, plasma triglycerides, blood pressure and serum creatinine were observed between both groups of patients, although plasma cholesterol levels were higher in the ambulatory patients. A high prevalence of cerebrovascular disease, peripheral vascular abnormalities, skin necrosis or leg ulcers and recurrent urinary tract infections was found in the nursing home patients. Hypertension was found in almost 50% of all patients, whereas its prevalence was the highest in the stroke patients. In the ambulatory patients cardiac complaints were more prevalent. Use of medication, especially diuretics and anticoagulant agents, was higher in the nursing home patients.

In chapter 4 the value of fasting blood glucose and serum fructosamine to reliably predict glycaemic control as measured by HbA1c (HPLC-method) was assessed in 264 type 2 diabetic patients on various treatments. Correlation between fasting blood glucose and HbA1c was slightly lower (r=0.67 for all patients (p<0.001)). This was higher in patients on diet (r=0.75), compared to patients treated with sulphonylurea (r=0.70), insulin (r=0.59) and insulin + sulphonylurea (r=0.52). Correlation between fasting blood glucose and serum fructosamine was, although significant, even weaker. The within-subject correlations between the three glycaemic measures were considerably lower. A fasting blood glucose level <8.0 mmol/l correctly predicted HbA1c below 7.5% in only 64% of cases. There was a clear circadian variation of serum fructosamine, as assessed in 15 hospitalized patients. Thus, a normal fasting blood glucose level is a poor predictor of long term adequate glycaemic control as assessed by HbA1c. Serum fructosamine determinations show considerable variation, and have no clinical advantage over HbA1c measurements.

Chapter 5 describes a study of intensified dietary treatment in sixty-one ambulatory patients with type 2 diabetes mellitus and fasting blood glucose levels above 7 mmol/l (average 12.0 ± 0.6 mmol/l). At the start of the study 33 patients were obese. Non-obese patients showed more severe beta-cell deficiency than obese, and did not improve in blood glucose control during diet. In the obese patients three response patterns to treatment were observed: weight loss and improvement in metabolic control accompanied primarily with increased beta-cell function or increased insulin action, or worsening of metabolic control. Those with less impaired beta-cell function and shorter known duration
of diabetes showed the most favourable response. Weight reduction was essential to obtain metabolic improvement, irrespective of the preceding fasting blood glucose concentrations.

Chapter 6 describes the effects of 6 months insulin or sulphonylurea therapy on blood glucose control and lipid metabolism in a randomized crossover study in 13 non-obese patients with type 2 diabetes mellitus who failed to achieve adequate blood glucose control on dietary treatment. Three patients, who showed a clear improvement on insulin (median glycosylated haemoglobin fell from 14.7 to 8.6%), withdrew from the study prematurely because of subjective and objective signs of hyperglycaemia after crossover from insulin to sulphonylurea, thus favoring the insulin treatment. In the other 10 patients, fasting and postprandial blood glucose levels, and glycosylated haemoglobin were lower during insulin than on sulphonylurea. Increase in body weight was somewhat greater on insulin therapy. Six patients experienced improved well-being on insulin compared with sulphonylurea. A significantly higher HDL-cholesterol level was found after insulin treatment than after sulphonylurea, whereas the LDL:HDL-cholesterol ratio and VLDL-triglycerides were lower. On the basis of C-peptide response after intravenous injection of glucagon those patients could be identified, who had better blood glucose control with insulin.

In chapter 7 it was shown that a simple regimen comprising twice-daily administration of intermediate-acting or a mixture of fast- and intermediate-acting insulin significantly improved blood glucose control with a slight concomitant improvement of plasma lipids. This improvement of blood glucose control in the individual patient was directly correlated with the increase in body weight, that was observed in these patients. This implies that more severe hyperglycaemia reflects a more catabolic state, which is reversed by insulin therapy. Insulin therapy could be safely instituted on an outpatient base. Almost all patients reported improved well-being, and disappearance of hyperglycaemic symptoms. Such symptoms often were previously not recognized as such. No severe complications of insulin therapy were seen. In the obese patients a comparable improvement in blood glucose control was achieved. Thus, obesity does not seem to be a contraindication for institution of insulin treatment.

In chapter 8 the possible advantages of more complicated treatment regimens, involving a combination of insulin and sulphonylurea was reported in type 2 diabetic patients with secondary failure to oral hypoglycaemic agents. A scheme comprising twice-daily insulin injections was compared with regimens of once-daily insulin in combination with glibenclamide. With both treatment regimens patients reported improved well-being and diminished hyperglycaemic complaints, while no severe hypoglycaemias were observed. The increase
in body weight, and improvement of blood glucose control was comparable with all treatments. However, with combined therapy insulin dose was lower (26 vs. 42 U). With both treatments significant increases of HDL-cholesterol were observed, while plasma triglycerides and non-esterified fatty acids decreased. Total cholesterol decreased only in the patients treated with insulin alone. Apolipoproteins AI, AII and B did not show any significant changes. The increase of HDL-cholesterol without concomitant increase of apolipoproteins AI and AII suggest enrichment of the HDL-particle with cholesterol during insulin therapy.

Chapter 9 describes the factors which determine the decision for elderly diabetic patients to start with insulin therapy, when blood glucose control has become inadequate despite diet and oral hypoglycaemic drugs. According to Fishbein and Ajzen an attitude-behaviour model was constructed which included the determinants intention, attitude, subjective norm and self-efficacy. A high correlation existed between the intention to and the actual start or continuation of insulin therapy. The main factor that explained the intention to commence insulin treatment was the subjective norm. This means that patients are guided by the opinion of important other persons, in these circumstances especially the treating internist, the family physician and the diabetes nurse. Tablet-treated patients reported a negative opinion of their physician towards their treatment with insulin. Intention was also determined by self-efficacy, e.g. expectations about the skills concerning injecting insulin. Self-monitoring of blood glucose and knowledge about diabetes positively influenced self-efficacy, attitude towards and intention to start insulin treatment. These findings imply that education needs to enforce the subjective norm and improve the patient’s self-efficacy, and that a stimulating attitude of the treating physician towards insulin therapy is essential.
Samenvatting

Dit proefschrift exploreert het spectrum van de late complicaties, die kunnen ontstaan bij personen met diabetes mellitus type 2, en beoordeelt de effecten van dieet- en insuline-therapie op glucose- en vetstofwisseling bij deze patiënten.

Hoofdstuk 1 geeft een overzicht van de pathofysiologische mechanismen, die leiden tot de hyperglycemie, en verantwoordelijk zijn voor het ontstaan van late complicaties bij personen met diabetes mellitus type 2. De huidige inzichten in de behandeling van diabetes, de manieren waarop bijna-normale bloedglucose-regulatie kan worden bereikt, en het belang van andere risicofactoren bij het ontwikkelen van hart- en vaatziekten worden besproken.

In hoofdstuk 2 worden de resultaten beschreven van een onderzoek naar de kwaliteit van metabole instelling en aanwezigheid van secundaire complicaties bij een aselecte steekproef van type 2 diabetes patiënten, die op de polikliniek van de afdeling Inwendige Geneeskunde worden behandeld. De aanwezigheid van complicaties werd vergeleken met de resultaten van een recent gepubliceerd inventarisatie-onderzoek onder patiënten in een huisartsenpraktijk. Naar verwachting bleek een groter aantal van onze patiënten met insuline te worden behandeld (48% vs. 24%, p<0.01). Tevens bleek er een hogere prevalentie te bestaan van hypertensie (56% vs. 38%), coronairlijden (48% vs. 40%), en cerebrovasculaire afwijkingen (15% vs. 6%). 35% van onze patiënten had tekenen van perifeer vaatlijden, terwijl retinopathie aanwezig was bij 35 patiënten (28%); 18 van hen waren reeds met lasercoagulatie behandeld. Microalbuminurie werd geconstateerd bij 25%, en manifeste proteinurie bij 14% der patiënten. De aanwezigheid van microalbuminurie en proteinurie bleek een goede indicator voor de aanwezigheid van cardiovasculaire afwijkingen, polyneuropathie en retinopathie. Het gebruik van cardiovasculaire medicatie was aanzienlijk: 57 patiënten gebruikten bloeddrukverlagende medicijnen, 37 gebruikten diuretica, en 26 lang-werkende nitraten. Slechts 25 patiënten gebruikten geen medicijnen naast hun specifieke antidiabetische behandeling. Dit
onderzoek bevestigt de clustering van risicofactoren voor hart- en vaatziekten bij patiënten met type 2 diabetes mellitus.

Hoofdstuk 3 beschrijft de metabole regulatie en aanwezigheid van secundaire complicaties bij 38 diabetes patiënten, die chronisch opgenomen waren in 2 Maastrichtse verpleegklinieken. De resultaten werden vergeleken met bevindingen bij een voor wat betreft leeftijd, geslacht, bekende duur van de diabetes en antidiabetische therapie vergelijkbare groep poliklinisch behandelde patiënten. De door ons onderzochte patiënten troffen 15% van de populatie van de betrokken verpleeghuisen. Tussen beide groepen werden geen verschillen in diabetes instelling, plasma triglyceriden, bloeddruk en nierfunctie gevonden. De plasma cholesterolgehalten van de poliklinische patiënten waren hoger. 22 van de patiënten in de verpleegkliniek hadden een cerebrovasculair accident (CVA) doorgemaakt, tegen 4 poliklinische patiënten. Bij 18 van deze 22 patiënten had het CVA geleid tot hemiparese en verzorgingsbehoeften, en was dit de reden voor opname in de verpleegkliniek geweest. De prevalentie van hypertensie bedroeg 50%, waarbij hypertensie frequenter voorkwam bij de CVA-patiënten, in vergelijking met de patiënten zonder cerebrovasculaire aandoeningen. De verpleegkliniek-patiënten hadden een hoge frequentie van perifere vaatlijden (76%) en amputaties (24%), huidnecrose en ulcera cruris, en urine-infecties (76%), terwijl bij de poliklinisch behandelde patiënten cardiale klachten frequenter voorkwamen (47% vs. 24%, p<0.01). Medicatie-gebruik, met name van diuretica en antistollingsmiddelen, was hoger bij de verpleegkliniek-patiënten.

In hoofdstuk 4 wordt de waarde van het nuchtere bloedglucose en serum fructosamine gehalte beoordeeld om de kwaliteit van metabole controle te voorspellen. Een met de HPLC-methode bepaalde concentratie van geglycosylleerd hemoglobine is hierbij de 'gouden standaard'. In totaal werden 264 patiënten bestudeerd. De correlatie tussen nuchter bloedglucose en HbA1c was iets lager (r=0.67 voor alle patiënten (p<0.001)). Deze correlatie was het grootst bij met dieet behandelde patiënten (r=0.75), in vergelijking met patiënten, die met tabletten (r=0.70), insuline (r=0.59) of insuline + sulfonylurea (r=0.52) werden behandeld. De correlatie tussen nuchter bloedglucose en serum fructosamine was nog lager. De correlatie tussen de drie variabelen van glycemische controle binnen één persoon waren aanzienlijk lager. Een nuchter bloedglucose gehalte <8.0 mmol/l voorspelde een HbA1c lager dan 7.5% slechts correct in 64% van de gevallen. Er bestond een duidelijke variatie van het serum fructosamine gehalte gedurende de dag, met een significante postprandiale stijging om 10 uur 's ochtends. Het nuchtere bloedglucose gehalte heeft een matige voorspellende waarde voor het HbA1c gehalte. Het serum fructosamine vertoont
gedurende de dag aanzienlijke variatie, en heeft geen voordelen boven de bepaling van het geglycosyleerd hemoglobine.

Hoofdstuk 5 beschrijft een onderzoek naar de effecten van intensieve dieettherapie bij 61 ambulante patiënten met type 2 diabetes mellitus met een nuchter bloedglucose-gehalte hoger dan 7.0 mmol/l (gemiddeld 12.0 ± 0.6 mmol/l). Bij aanvang van het onderzoek hadden 33 patiënten een overgewicht. Niet-obese patiënten toonden een ernstiger defect in insuline-secretie dan obese patiënten. Tijdens dieet verbeterde hun glucose-regulatie niet. Bij de patiënten met overgewicht werden drie vormen van respons waargenomen: gewichtsverlies met verbetering van de metabole regulatie bij een verbetering van de residuele insuline-secretie dan wel een verbetering van de insuline-werking, of verslechtering van de glucose-regulatie. Diabeten met een hogere residuele insuline-secretie of met een korte duur van de diabetes toonden de meest gunstige respons. Gewichtsverlies was essentieel om een verbetering van de instelling te bereiken, onafhankelijk van de hoogte van het bloedglucose-gehalte.

In hoofdstuk 6 worden de effecten op glucose- en vetstofwisseling van 6 maanden behandeling met insuline vergeleken met sulfonylurea therapie in een gerandomiseerde cross-over studie bij 13 type 2 diabetes patiënten met een normaal lichaamsgewicht, die met dieet alleen niet goed gereguleerd waren. Drie patiënten vielen voortijdig uit de studie, vanwege hyperglycemische klachten nadat zij van insuline overgegaan waren naar tablet therapie. Zij toonden een sterke verbetering van metabole regulatie tijdens insuline, waarbij de mediane waarde van het geglycosyleerd hemoglobine daalde van 14.7 naar 8.6%. Bij de overige 10 patiënten waren de nuchtere en postprandiale bloedglucose spiegels, en het geglycosyleerd hemoglobine lager gedurende insuline in vergelijking met tablet therapie. De toename van het lichaamsgewicht was tijdens insuline echter groter. Zes patiënten rapporteerden dat zij zich tijdens insuline therapie beter voelden dan tijdens tablet behandeling. Tijdens insuline was het HDL-cholesterol gevalt significant hoger, en de LDL: HDL-cholesterol ratio en het VLDL-triglyceriden gehalte waren lager. Op basis van de stijging van het plasma C-peptide gehalte na injectie van 1 mg glucagon konden die patiënten worden geïdentificeerd, die tijdens insuline beter gereguleerd waren.

In hoofdstuk 7 wordt aangetoond dat een eenvoudig insuline schema met tweemaal daagse toediening van middellangwerkend insuline of een mengsel van middellangwerkende en snelwerkende insuline de diabetes instelling sterk verbeterde bij personen met falen op orale therapie. Er bleek een duidelijke relatie tussen de metabole verbetering en de toename van het lichaamsgewicht. Bij de meeste patiënten werd zonder problemen de insuline behandeling poliklinisch aangevangen. Bijna alle patiënten meldden een verbetering van het welbevinden, en een verminderende van, vaak niet tevoren als zodanig herkende,
hyperglycemische klachten. Aangezien de 6 patiënten met overgewicht een vergelijkbare verbetering van de diabetes instelling toonden, is obesitas ons inziens geen reden om insuline behandeling achterwege te laten.

In hoofdstuk 8 worden de metabole effecten van combinatie van insuline met glibenclamide bestudeerd bij patiënten met secundair falen op orale therapie. Zowel met insuline alleen als met combinatie-therapie verbeterde het welbevinden van de patiënten en verdwenen hyperglycemische klachten; ernstige hypoglycemieën werden niet waargenomen. Er was bij beide behandelingsschema’s een vergelijkbare toename van het lichaamsgewicht en daling van de bloedglucosegehalten. Echter, bij combinatie-therapie was de benodigde dosis insuline lager (26 vs. 42 E). Een significante stijging van het HDL-cholesterol, en daling van vrije vetzuren en triglyceriden werd waargenomen. Het totale cholesterolgehalte daalde alleen bij patiënten, die insuline gebruikten. Het gehalte van de apolipoproteinen AI, AII en B veranderde niet. Deze toename van het HDL-cholesterol zonder stijging van het apoAI gehalte betekent een verrijking van het HDL-partikel met cholesterol onder invloed van insuline.

In hoofdstuk 9 worden de factoren bestudeerd die de beslissing van een persoon met diabetes om insuline te gaan spuiten beïnvloeden. Naar het model van Fishbein and Ajzen werd een attitude-gedrag model opgesteld, dat de determinanten intentie, attitude, subjectieve norm en self-efficacy omvatte. Er bestond een hoge correlatie tussen de intentie om insuline te gaan of blijven spuiten en het daadwerkelijk vertonen van dit gedrag. De belangrijkste factor die deze intentie bepaalde was de subjectieve norm. Dit betekent dat patiënten in aanzienlijke mate geleid worden door zgn. belangrijke andere personen, in dit geval de behandelend specialist, de huisarts, en de diabetesverpleegkundige. Patiënten die tabletten gebruikten rapporteerden een negatieve houding van hun behandelend arts ten aanzien van insuline therapie. De intentie werd tevens bepaald door de self-efficacy, dat wil zeggen de mate waarin een individu verwacht om technisch moeilijke handelingen (prikken, juiste hoeveelheid insuline bepalen) goed te kunnen uitvoeren. Het zelf kunnen bepalen van het bloedglucosegehalte en kennis omtrent diabetes beïnvloedden de self-efficacy, attitude en intentie positief. Educatie dient derhalve de subjectieve norm te versterken en de self-efficacy van een patiënt te verbeteren. Een stimulerende houding van de behandelende arts ten aanzien van insuline behandeling is essentieel.