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Anonymous voting and minimal manipulability

by Stefan Maus∗, Hans Peters∗ and Ton Storcken∗

March 2005

Abstract

We compare the manipulability of different choice rules by considering the
number of manipulable profiles. We establish the minimal number of such
profiles for tops-only, anonymous, and surjective choice rules, and show
that this number is attained by unanimity rules with status quo.

1 Introduction

In choosing new parliamentary representatives most democracies apply voting
procedures that select among the top-ranked candidates reported by the voters.
It is well known that such procedures are vulnerable to manipulation. For ex-
ample, if there is an electoral threshold, then votes for a small party might be
reconsidered and cast on a (second best) larger party which with high probability
will meet the threshold. Also in a district dependent procedure, a voter might
opt for the second best if his best candidate has only small support, and in that
way prevent a third (worse) candidate to be elected as district representative.
In this paper we study voting procedures with respect to this kind of manipula-
bility. Using a natural measure of manipulation, we show that unanimity rules
with status quo are the least vulnerable among all reasonable procedures.

We consider a framework in which voting procedures are modelled as choice
rules assigning alternatives to profiles of individual preferences. These choice
rules are assumed to be tops-only, meaning that they only depend on the top-
ranked alternatives of the voters. Additionally, two standard and natural con-
ditions are imposed: anonymity and unanimity. Anonymity is an egalitarian
principle, saying that the names of the voters do not matter. Unanimity is a
minimal sovereignty principle: it means that if all voters have the same top can-
didate, then this candidate is elected. To this setting, however, the well known
result of Gibbard [7] and Satterthwaite [20] applies, and therefore any choice
rule satisfying the three mentioned conditions is vulnerable to manipulation.
This means that, for any such rule, there exist a profile and a voter who, by
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changing his preference, can induce a new profile resulting in an outcome which
is better for him. This kind of manipulation may be undesirable for several
reasons. First, the manipulating voter may benefit on the expense of others.
Second, in order to obtain a good outcome, the right input should be given
to the voting mechanism. Finally, the impossibility of manipulation simplifies
the decision process for the voters because they only have to know their own
preferences.

There are several strands of research dealing with this manipulability issue.
One concerns relaxations of the conditions on the rules at hand. Often, stronger
or similar impossibility results are found. See e.g. Pattanaik [18,19] and Ehlers
et al. [5]. A second strand of literature is based on a stochastic approach, again
often resulting in similar impossibilities. See, e.g., Gibbard [8,9] and Dutta
[4]. A third strand imposes preference domain restrictions, often to single-
peaked preferences. If the space of alternatives is one-dimensional, preferences
are single-peaked, and the number of voters is odd, then a Condorcet winner
exists, which is then a non-manipulable choice. See, e.g., Black [2] or Moulin
[17]. If the space of alternatives is more dimensional, then a Condorcet winner
usually fails to exist. Depending on the domain of admissible preferences, non-
manipulable choice rules may or may not exist. See, e.g., Kim and Roush [13],
Border and Jordan [3], and Zhou [21]. (Of course, the given references are far
from constituting a complete list.)

In this paper, we take a different approach. Since all choice rules are manipu-
lable, a natural question is which choice rules are performing best in this respect,
i.e., are the least manipulable. To answer this question we need a measure of
manipulability. An intuitive measure is to count the number of profiles at which
a given choice rule is manipulable: the larger this number the more manipulable
the choice rule is. This measure was introduced by Kelly [10]. He found the
minimal number of manipulable profiles for choice rules which are unanimous
and non-dictatorial in the case of two agents1 and three alternatives. See also
Kelly [11,12]. In Fristrup and Keiding [6] this minimal number was found for
an arbitrary number of alternatives and two agents. Maus et al. [14] obtain a
general result for arbitrary numbers of agents and alternatives: almost dictato-
rial rules are the least vulnerable to manipulation among all non-dictatorial and
unanimous rules. In Maus et al. [15] the minimal degree of manipulation for
surjective and anonymous choice rules is determined. In Maus et al. [16] this
degree is found for unanimous and anonymous choice rules for the case of three
alternatives and an arbitrary number of agents. By enumeration and simula-
tion techniques, Aleskerov and Kurbanov [1] determine the minimal number of
manipulable profiles for twenty six well-known choice rules such as Borda and
plurality. They also discuss other measures for manipulation.

The present paper is different since we confine ourselves to tops-only choice
rules—often called voting rules. We show that among all unanimous and anony-
mous voting rules, the unanimity rule with status quo is doing best with respect
to manipulability. This rule chooses a given fixed alternative (the status quo)

1In general we use the term “agent” rather than “voter”.
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unless all voters have the same best alternative, possibly different from the sta-
tus quo. We derive this result under the assumption that the number of agents
exceeds the number of alternatives. The fraction of manipulable profiles for this
rule turns out to be of order n·m2−n, where n is the number of voters and m the
number of candidates. So this rule is among the few choice rules which are not
highly manipulable (cf. Kelly [12]). Clearly, this choice rule is only occasionally
used, for instance in the Council of the European Union, and its rigidity makes
it hardly applicable in elections. Therefore, the result presented here is an ex-
ploring step setting an absolute lower bound on the measure of manipulation in
voting rules, rather than a recommendation to use unanimity with status quo
rules. Moreover, we do not know if it holds true if manipulation is measured
differently (see Aleskerov and Kurbanov [1]). On the other hand, this lower
bound makes it possible to compare the level of manipulation of a given rule to
what is achievable in this respect.

Our proof of this result is based on combinatorial arguments which have no
bite if the number of agents does not exceed the number of alternatives. For
the latter case some partial results are mentioned in the final section and in an
appendix to the paper. It turns out that for two agents unanimity rules with
status quo are not necessarily minimally manipulable. Also for two agents, we
obtain a characterization of all minimally manipulable rules under the stronger
condition of Pareto optimality instead of unanimity.

The paper is organized as follows. Section 2 contains preliminaries and
introduces unanimity rules with status quo. Section 3 considers the case where
the number of alternatives is at least four, and Section 4 extends this to three
alternatives. Section 5 concludes.

2 Unanimity rules with status quo

Throughout we consider a finite set A of m alternatives and a set N = {1, 2, ..., n}
of agents. Unless stated otherwise we assume n > 2. The agents have linear
preferences over the alternatives, i.e. (strongly) complete, antisymmetric and
transitive relations on A. Let L(A) denote the set of all these preferences. A
choice rule is a function f from L(A)N to A, where L(A)N denotes the set of
profiles p of linear orderings. At a profile p the preference of agent i ∈ N is
denoted by p(i). Let a, b and c be three alternatives in A. Then ...a...b... = p(i)
means that a is strictly preferred to b at p(i) and c... = p(i) means that c is best
at p(i); in that case we also write top(p(i)) = c. For a profile p in L(A)N the
function top(p) in AN is defined by top(p)(i) = top(p(i)) for all agents i ∈ N .
Also, topset(p) = {top(p(i)) : i ∈ N} is the set of alternatives that are at least
once at the top of an agent’s preference in p. For a profile p ∈ L(A)N and an
alternative a in A let N(a, p) = {i ∈ N : top(p(i)) = a} and n(a, p) = |N(a, p)|,
where |S| denotes the cardinality of the set S.

A choice rule f is called anonymous if it is symmetric in its arguments. It
is called surjective if (as usual) f(L(A)N ) = A. Here, for all V ⊆ L(A)N , the
image of V under f is denoted by f(V ). A slightly stronger condition than
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surjectivity is unanimity : this means that for profiles p, if topset(p) = {a} for
some alternative a, then f(p) = a. So, if all agents order alternative a best, then
it is chosen. A choice rule f is called tops-only if f(p) = f(q) for all profiles
p and q with top(p) = top(q). So the outcome of a tops-only choice rule at a
profile is completely determined by the best alternatives of the agents: such a
rule is usually called a voting rule.

For an agent i ∈ N , profiles p and q are i-deviations if p(j) = q(j) for all
j 6= i. A choice rule f is manipulable (at profile p by agent i towards profile
q) if p and q are i-deviations, f(p) 6= f(q) and ...f(q)...f(p)... = p(i). In such
a case agent i can benefit at profile p by reporting q(i) in stead of p(i). Let
Mf denote the set of all profiles at which choice rule f is manipulable. Then
|Mf | measures the manipulability of choice rule f . If |Mf | is equal to zero, then
at every profile the choice rule is not manipulable, in which case it is said to
be strategy-proof. If there are at least three alternatives, then only dictatorial
rules are strategy-proof and surjective: this is the well-known result of Gibbard
(1973) and Satterthwaite (1975). Let F denote the class of all anonymous,
surjective and tops-only choice rules and let mF = min{|Mf | : f ∈ F}. So mF

is the minimal level of manipulability among the choice rules in F . Because
dictatorial rules are tops-only but not anonymous, mF is strictly larger than
zero.

For an alternative a we define the unanimity rule with status quo a, denoted
by ua, as follows. Let p be a profile. Then ua(p) := x if {x} = topset(p) for
some x ∈ A, and ua(p) = a in all other cases. So an alternative x different
from a is chosen only if all agents consider it best. The main result of this
paper is that unanimity rules with status quo are the minimally manipulable
rules among all anonymous surjective rules, provided n > m ≥ 3. The number
of manipulable profiles |Mua | can be computed as follows. Consider a profile
p ∈ Mua . Then for some agent i and some i-deviation q, ua(p) 6= ua(q) and
...ua(q)...ua(p)... = p(i). Clearly ua(p) = a and ua(q) 6= a. So, ua(q)... = p(j)
for all agents j ∈ N − {i}. As ua(p) 6= ua(q) it follows that top(p(i)) 6= ua(q).
Since there are m!

2 preferences p(i) with ua(q) ranked above a but (m − 1)! of
these have ua(q) on top, it follows that there are m!

2 − (m− 1)! preferences p(i)
which result in a manipulable profile. Since we can choose i from a set of n
agents, ua(q) 6= a from m − 1 alternatives, and the other alternatives can be
ordered by the other agents in ((m− 1)!)n−1 ways, we find altogether that

|Mua | = n · (m− 1) · (m!
2
− (m− 1)!) · ((m− 1)!)(n−1)

=
1
2
n(m− 1)(m− 2)((m− 1)!)n. (1)

We end this section with a combinatorial observation which is used extensively
in the following two sections.

Remark 1 Let m > 3 and let p be a profile with topset(p) = {x1, x2, ..., xk}.
Let the anonymous and tops-only choice rule f be manipulable at profile p by
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agent i ∈ N(x1, p) towards profile q. Then, obviously, f(p) 6= x1. There are

n!
n(x1, p)! · n(x2, p)!...n(xk, p)!

((m− 1)!)n (2)

profiles r which by anonymity and tops-onliness yield the same outcome as p
under f . As f(p) 6= x1, at most

n!
n(x1, p)! · n(x2, p)!...n(xk, p)!

((m− 1)!)n−n(x1,p) ·
(

(m− 1)!
2

)n(x1,p)

(3)

of these profiles are such that all agents in N(x1, p) prefer f(p) to f(q), and
therefore are not manipulable by such an agent from p to q. Subtracting (3)
from (2), we obtain

|Mf | > n!
n(x1, p)! · n(x2, p)!...n(xk, p)!

((m− 1)!)n(1−
(

1
2

)n(x1,p)

). (4)

3 Minimal manipulation with four or more al-
ternatives

In this section we prove that among all surjective, anonymous and tops-only
choice rules only unanimity rules with status quo are minimally manipulable,
provided that n > m > 4. In the next section we extend this result to n > m >
3.

Let f ∈ F such that |Mf | 6 |Mua |. The proof of the announced result runs
as follows. For 1 6 k 6 m let Bk = {p ∈ L(A)N : |topset(p)| > k}. So Bk is
the set of profiles at which there are at least k different top alternatives. We
first show that, if k > 4, then Bk is disjoint from Mf and, moreover, that f is
constant on B4. Next, we successively show that f is constant on B3 and B2.
Finally, we show that f is a unanimity rule with status quo.

Lemma 1 Let n > m > 4 and p ∈ B4. Then p /∈ Mf .

Proof. Suppose that f is manipulable at p. By (4) there is an alternative x1

such that

|Mf | > n!
n(x1, p)! · n(x2, p)!...n(x4, p)!

((m− 1)!)n(1−
(

1
2

)n(x1,p)

)

> n!
(n− 3)!

· 1
2
· ((m− 1)!)n

> |Mua |,

where the last inequality follows by (1). This is a contradiction, which completes
the proof.
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Lemma 2 Let n > m > 3 and let k > 3. Suppose Bk ∩Mf = ∅. Then there is
an alternative a such that f(Bk) = {a}.

Proof. Let p, q ∈ Bk and i ∈ N such that p and q are i-deviations. It is
sufficient to prove that f(p) = f(q). To the contrary assume that f(p) = a 6=
b = f(q). As neither p nor q are in Mf it follows that ...f(p)...f(q)... = p(i) and
...f(q)...f(p)... = q(i).

Suppose top(p(i)) = c 6= f(p). Then for an i-deviation r of p such that
r(i) = c...f(q)...f(p)... we would have, by tops-onliness: f(r) = f(p), hence i
could manipulate from r towards q. Since r ∈ Bk, this contradicts Bk∩Mf = ∅.
Hence top(p(i)) = f(p) = a. Similarly it follows that top(q(i)) = f(q) = b. So,
n(a, p) = n(a, q) + 1 and n(b, p) + 1 = n(b, q). Since p and q are i-deviations
in Bk and k > 3, there is an alternative c ∈ A − {a, b} and an individual
j ∈ N(c, p) ∩N(c, q). Consider profiles v and w such that v is a j-deviation of
p with b... = v(j) and w satisfies v(i) = w(j), v(j) = w(i), and v(l) = w(l) for
all l 6= i, j. Note that q and w are j-deviations. Suppose f(v) 6= a. Then by
tops-onliness we may assume without loss of generality that ...f(v)...a... = p(j).
But then f is manipulable at p by j towards v, a contradiction since p ∈ Bk.
So f(v) = a. Then, by anonymity, f(w) = a. Because of tops-onliness we
may assume without loss of generality that ...a...b... = q(j). This makes f
manipulable at q by j towards w, which yields a contradiction with q ∈ Bk.
Hence, f(p) = f(q).

Lemma 3 Let n > m > 4. There is an alternative a such that f(B3) = {a}.

Proof. Lemma 1 implies that Mf ∩B4 = ∅. So Lemma 2 implies that there is
an alternative a ∈ A such that f(B4) = {a}. Let p ∈ B3 − B4. It is sufficient
to prove that f(p) = a. To the contrary suppose f(p) 6= a. Since p ∈ B3 − B4

it follows that |topset(p)| = 3, say topset(p) = {x1, x2, x3}.
First we show that A ⊆ {x1, x2, x3, a}. To the contrary suppose that b ∈

A− {x1, x2, x3, a}. Since n > m > 4 we may without loss of generality assume
that n(x1, p) > 2. Let i ∈ N(x1, p) and consider an i-deviation q from p such
that b... = q(i) and ...f(p)...a... = q(i). Since q ∈ B4, f(q) = a. As f is
manipulable at profile q by i towards p we have a contradiction with Lemma 1.
Hence, A ⊆ {x1, x2, x3, a}. In particular, m = 4 and a /∈ {x1, x2, x3}. We have
also proved that f(r) = a for any profile r ∈ B3 −B4 such that a ∈ topset(r).

Since f(p) 6= a, by tops-onliness we may assume without loss of generality
that f(p) = x1 and ...a...f(p)... = p(i) for some i ∈ N(x2, p)∪N(x3, p). Consider
an i-deviation q of p with a... = q(i). We claim that f(q) = a. Indeed, if q ∈ B4

then this follows from f(B4) = {a}, and if q ∈ B3 − B4 this follows from
the observation in the last sentence of the previous paragraph. But now, f is
manipulable at p by i towards q. Thus, by applying Remark 1 to p for an agent
i in N(x2, p) and also for an agent i in N(x3, p) we obtain

|Mf | > n!
n(x1, p)!n(x2, p)!n(x3, p)!

· ((m− 1)!)n · (1−
(

1
2

)n(x2,p)

)
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+
n!

n(x1, p)!n(x2, p)!n(x3, p)!
· ((m− 1)!)n · (1−

(
1
2

)n(x3,p)

)

> n!
n(x1, p)!n(x2, p)!n(x3, p)!

· ((m− 1)!)n.

Hence
|Mf |
|Mua

| > n!
(n− 2)!

· 2
n(m− 1)(m− 2)

=
(n− 1)

3
> 1,

a contradiction. So f(p) = a and the proof is complete.

Lemma 4 Let n > m > 4 and let f(B3) = {a} for some a ∈ A. Then f(B2) =
{a}.

Proof. Let p ∈ B2 − B3. It is sufficient to prove that f(p) = a. Let x and
y be two alternatives and S and T be two non-empty subsets of N , such that
S = N(x, p), T = N(y, p) and S ∪ T = N . Let s = |S| and t = |T |, such that
s > t. Suppose f(p) 6= a.

First suppose that t > 2. Consider profiles q ∈ B3 which are i-deviations of
p for some i in N such that z... = q(i) for some alternative z ∈ A−{x, y, a} and
...f(p)...a... = q(i). Because of tops-onliness we may assume that for some j in
N we have ...a...f(p)... = p(j), where j ∈ S if f(p) 6= x and j ∈ T if f(p) 6= y.
So, since f(q) = a it follows that f is manipulable both at p by j towards q and
at q by i towards p. So, by applying Remark 1 to profiles q and p we have

|Mf | > (m− 3) · n!
(s− 1)!t!

· ((m− 1)!)n · (1−
(

1
2

)1

)

+(m− 3) · n!
s!(t− 1)!

· ((m− 1)!)n · (1−
(

1
2

)1

)

+
n!
s!t!

· ((m− 1)!)n · (1−
(

1
2

)t

)

= (m− 3) ·
(

(
n!

(s− 1)!t!
+

n!
s!(t− 1)!

) · 1
2

+
n!
s!t!

· (1−
(

1
2

)t

)

)
· ((m− 1)!)n

= (m− 3) ·
(

n · n!
s!t!

· 1
2

+
n!
s!t!

· (1−
(

1
2

)t

)

)
· ((m− 1)!)n. (5)

Here, the first two terms after the inequality sign relate to manipulations at q
towards p, and the last term to manipulations at p towards q. From (5), as
t > 2,

|Mf | >
(

(m− 3) · n · n!
2 · s!t! +

n!
2 · s!t!

)
· ((m− 1)!)n
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and

|Mf |
|Mua |

>
((m− 3)n + 1) · n!

2 · s!t! · 2
n(m− 1)(m− 2)

> ((m− 3)n + 1)(n− 1)!
2!(n− 2)!(m− 1)(m− 2)

> ((m− 3)n + 1)(n− 1)
2(m− 1)(m− 2)

> ((m− 3)(m + 1) + 1)m
2(m− 1)(m− 2)

> 1,

where the last inequality follows since m ≥ 4. This contradicts our assumption
|Mf | 6 |Mua

|. Hence, f(p) = a if t > 2.
Now let t = 1. Consider i-deviations q for i ∈ S such z... = q(i) for z ∈

A− {a, x} and ...f(p)...a... = q(i). Because q ∈ B3 in case z 6= y or n(z, q) = 2
in case z = y, we have f(q) = a and therefore that f is manipulable at q. Hence,
by applying Remark 1 to profiles q to cases where z 6= y and to cases where
z = y we have that

|Mf | > (m− 3) · n!
(n− 2)!

· (1− (
1
2
)1) · ((m− 1)!)n

+
n!

(n− 2)!2
· (1− (

1
2
)2) · ((m− 1)!)n

= ((m− 3)
1
2

+
3
8
) · n!

(n− 2)!
· ((m− 1)!)n.

Hence

|Mf |
|Mua |

>
((m− 3) 1

2 + 3
8 ) · n!

(n−2)!

1
2 · n · (m− 1) · (m− 2)

=
(m− 3)(n− 1) + 3

4 (n− 1)
(m− 1)(m− 2)

>
m(m− 21

4 )
(m− 1)(m− 2)

> 1,

where the last inequality follows since m > 4. This contradicts our assumption
|Mf | 6 |Mua | and therefore completes the proof.

The following theorem shows that in case of at least four alternatives minimal
manipulation is only satisfied by unanimity rules with status quo. Recall that
F denotes the set of all surjective, tops-only and anonymous choice rules.

Theorem 1 Let n > m > 4. Let f ∈ F . Then |Mf | 6 |Mg| for all g ∈ F if
and only if f is a unanimity rule with status quo.
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Proof. Assume that |Mf | 6 |Mg| for all g ∈ F . It is sufficient to show that f
is a unanimity rule with status quo. By Lemmas 3 and 4 there is an alternative
a ∈ A such that f(B2) = {a}. For every x ∈ A let px denote a profile such that
topset(px) = {x}. By tops-onliness it is sufficient to prove that f(px) = x, for
then f = ua, the unanimity rule with status quo a. Let

A1 = {x ∈ A− {a} : f(px) = x},
A2 = {x ∈ A− {a} : f(px) = y for some y /∈ {x, a}},
A3 = {x ∈ A− {a} : f(px) = a}, and
A4 = {x ∈ A− {a} : f(pa) = x}.

Let mi = |Ai| for i ∈ {1, 2, 3, 4}. Then m4 ∈ {0, 1} and, by surjectivity, m3 6 1
and m3 = 1 ⇒ m4 = 1. Hence, m4 > m3 and since m1 + m2 + m3 = m− 1, we
have

m1 + m2 + m4 > m− 1. (6)

By a similar argument as the one resulting in (1), there are exactly 1
2 (m −

2) ((m− 1)!)n manipulable profiles for each x ∈ A1, hence in total

m1 · 1
2
(m− 2) ((m− 1)!)n

. (7)

Now consider x ∈ A2. The total number of profiles of the format px is equal to
((m− 1)!)n. These profiles are manipulable unless f(px) is ranked above a for
each agent (since f(B2) = {a}). This results in ((m− 1)!)n − ((m− 1)!/2)n =
((m− 1)!)n·(1− (1/2)n) manipulable profiles. Furthermore, if q is an i-deviation
of px such that ...f(px)...a... = q(i) and x... 6= q(i), then f is manipulable at q
by i towards px since f(q) = a. This results in another n · (m!− (m− 1)!) /2 ·
((m− 1)!)n−1 manipulable profiles, namely all such deviations with x not on
top for exactly one agent and f(px) ranked above a for the same agent. In
total, this adds

m2 ·
(

(1−
(

1
2

)n

) +
1
2
n(n− 1)

)
((m− 1)!)n (8)

manipulable profiles.
Next, consider x ∈ A4, hence x = fp(a) and x 6= a. Consider an i-deviation
q of pa such that ...a...f(pa)... = q(i) and ...a 6= q(i). Then, since f(q) = a, f
is manipulable at pa towards q. This yields ((m− 1)!)n manipulable profiles,
namely all profiles of the format pa. On the other hand, for an i-deviation q of
pa with ...f(pa)...a... = q(i) we have that f is manipulable by i at q towards pa.
Since there are m!/2 preferences where f(pa) is ranked above a, this results in
another (m!/2) · n · ((m− 1)!)n−1 = 1

2nm ((m− 1)!)n manipulable profiles. So
to the total this adds

m4 · (1
2
nm + 1) ((m− 1)!)n (9)

manipulable profiles. Combining (1) with (7)–(9), we obtain

1
2
(m− 1)(m− 2) ((m− 1)!)n > |Mf |

9



> m1 · 1
2
(m− 2) ((m− 1)!)n

+m2

(
(1− (

1
2
)n) +

1
2
n(n− 1)

)
((m− 1)!)n

+m4

(
1
2
nm + 1

)
((m− 1)!)n

. (10)

If m2 6= 0 or m4 6= 0 then the right-hand side of (10) is strictly larger than

1
2

((m− 1)!)n · [m1(m− 2) + m2(m− 2) + m4(m− 2)]

> 1
2
n(m− 1)(m− 2) ((m− 1)!)n

,

where we use (6) for the last inequality. This contradicts (10), hence m2 =
m4 = m3 = 0 and m1 = m− 1. Thus, f(px) = x for all x ∈ A. This completes
the proof.

4 Minimal manipulation with three alternatives

In this section the result of the previous section is extended to the three alterna-
tives case. We show that among all surjective, anonymous and tops-only choice
rules only unanimity rules with status quo are minimally manipulable. For the
rest of this section let n > m = 3 and let f ∈ F with |Mf | 6 |Mua |. We first
show that f is not manipulable at a profile with three different top alternatives.
Lemma 2 then implies that f is constant on B3. Next, this is established for B2.
Then, similar to Theorem 1, it follows that f is a unanimity rule with status
quo.

Lemma 5 Let p ∈ B3. Then p /∈ Mf .

Proof. Suppose that f were manipulable at p by some agent, say i in N(x1, p).
Remark 1 then implies that

|Mf | > n!
n(x1, p)! · n(x2, p)!n(x3, p)!

((m− 1)!)n(1−
(

1
2

)n(x1,p)

).

So, |Mf | > 1
2 ·n(n−1)·((m−1)!)n. As n > 4 it follows that |Mf | > n((m−1)!)n =

|Mua |. This contradiction completes the proof.

Remark 2 By Lemmas 2 and 5 there is an a ∈ A such that f(B3) = {a}.
Lemma 6 Let a be an alternative such that f(B3) = {a}. Then f(B2) = {a}.
Proof. Let p be a profile in B2 − B3. It is sufficient to prove that f(p) = a.
Let x and y be two alternatives and S and T be two non-empty subsets of N ,
such that S = N(x, p), T = N(y, p) and S ∪ T = N . Let s = |S| and t = |T |,
and assume s > t.
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First we show that, if a ∈ {x, y}, then f(p) = a. So assume that a ∈ {x, y}.
Suppose f(p) 6= a. Then there is a z ∈ A− {x, y}, an i ∈ S, and an i-deviation
q of p such that z... = q(i) and ...f(p)...a... = q(i). Since q ∈ B3, by assumption
f(q) = a and therefore f is manipulable at q by i towards p. This contradicts
Lemma 5. Hence, for all profiles r ∈ B2 with a ∈ topset(p), f(r) = a.

Next suppose a /∈ {x, y}. First consider the case t > 2. Suppose f(p) 6= a.
Let z ∈ {x, y} − f(p). Since f is tops-only we may assume that z... = p(i) and
...a...f(p)... = p(i) for some i ∈ N(z, p). Let v be an i-deviation of p such that
a... = v(i). As topset(v) = {x, y, a}, Lemma 5 implies f(v) = a. Hence, f is
manipulable at p by i towards v. Remark 1 implies |Mf | > n!

s!t! ((m− 1)!)n(1−(
1
2

)t). So

|Mf |
|Mua

| > n!
2(n− 2)!

· 3
4
· 1
n

> 3(n− 1)
8

> 1,

where the last inequality follows since n > 4. This is a contradiction and
therefore f(p) = a.

Finally, consider the case t = 1 (and still a /∈ {x, y}). Suppose f(p) 6= a.
Consider, for i ∈ S, an i-deviation w of p with y... = w(i) and ...f(p)...a... =
w(i). By the previous paragraph f(w) = a and therefore f is manipulable
at w by i towards p. By Remark 1 applied to the profile w it follows that
|Mf | > n!

(n−2)!2! ((m − 1)!)n(1 − (
1
2

)2), and similarly as above this implies that
|Mf | > |Mua |. This is a contradiction and therefore f(B2) = {a}.

Lemmas 2, 5, and 6 imply that any minimally manipulable rule f ∈ F is constant
on B2. By copying the proof of Theorem 1 we have the following result.

Theorem 2 Let n > m > 3. Let f ∈ F . Then |Mf | 6 |Mg| for all g ∈ F if
and only if f is a unanimity rule with status quo.

The following consequence of Theorem 2 is immediate.

Corollary 1 Let n > m > 3. Let f ∈ F . Then |Mf | 6 |Mg| for all unanimous
g ∈ F if and only if f is a unanimity rule with status quo.

5 Conclusion

In Theorem 2 we have characterized all minimally manipulable tops-only, sur-
jective and anonymous social choice rules—hence all minimally manipulable
surjective and anonymous voting rules—under the assumption that there are
more agents (voters) than alternatives (candidates). Although this covers many
cases of interest, it is also worthwhile to investigate the case where the number

11



of agents is not larger than the number of alternatives. The combinatorial ar-
guments used to derive the results in the preceding sections can no longer be
used since they depend on the assumption n > m.

In the appendix we present some results for the case of two agents. It
turns out, indeed, that unanimity rules with status quo are no longer per se the
minimally manipulable ones among all tops-only, surjective (or even unanimous)
and anonymous social choice rules. We do not have a complete characterization
for this case. We do, however, have a complete characterization (for n = 2) if we
strengthen unanimity to Pareto optimality. An alternative is Pareto dominated
in a profile of preferences if there is another alternative that is ranked higher by
all agents. A choice rule is Pareto optimal if it never picks a Pareto dominated
alternative.

Let R = a1a2...am be a linear ordering of the alternatives. Let the choice
rule fR : L(A){1,2} → A assign to every profile p the element of topset(p) which
is ranked higher under R, i.e., the element with the lower number. Obviously, fR

is tops-only, anonymous, and Pareto optimal. The following theorem is proved
in the appendix.

Theorem 3 Let n = 2 and m > 3. Let f be a Pareto optimal, anonymous and
tops-only choice rule such that for all Pareto-optimal, tops-only and anonymous
choice rules g we have |Mf | 6 |Mg|. Then f = fR for some linear ordering R
of A.

Pareto optimality is, obviously, preferable to unanimity and so it is worthwhile
to investigate minimal manipulability under this stronger condition. This is left
to future research.

A Appendix: The case of two agents

In this appendix we assume throughout that n = 2 and m > 3. Note that
for a unanimity rule with status quo ua we now have |Mua | < 1

2n(m− 1)(m−
2)((m− 1)!)n since there are profiles which can be manipulated by both agents
and therefore are counted twice in (1). In Example 1 below we establish the
exact value of |Mua |.

A.1 Unanimous choice rules

Let f a be unanimous, anonymous and tops-only choice rule. For an alternative
a define the opportunity set Of (a) = {f(p) : p ∈ L(A)N , a ∈ topset(p)}. Then

Mf = {p ∈ L(A)N : there are i ∈ N, a ∈ topset(p), b ∈ Of (a) such that
b 6= f(p) and p(i) = ...b...f(p)...}.

For alternatives a and b let Mf (a, b) = {p ∈ Mf : topset(p) = {a, b}} be the
set of profiles at which f is manipulable and a and b are the top alternatives.
Let Ã = {{a, b} : a, b ∈ A and a 6= b} be the set of all non-ordered pairs of A.
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As f is tops-only and anonymous, |Mf | =
∑
{a,b}∈Ã |Mf (a, b)|. Therefore we

shall have a closer look at the sets Mf (a, b). Let a and b be alternatives with
a 6= b and consider profiles p with topset(p) = {a, b}. Since f is tops-only and
anonymous the outcome at all these profiles is the same, say c. We distinguish
the following situations.

(a) If c /∈ {a, b} and if a ∈ Of (b) or b ∈ Of (a), then all profiles q with
topset(q) = {a, b} are in Mf (a, b), yielding |Mf (a, b)| = 2 · ((m− 1)!)2. In
this case set δf (a, b) = 1.

(b) If c /∈ {a, b} and a /∈ Of (b) and b /∈ Of (a), then all profiles q such that
N = {i, j} and for some x ∈ Of (a)\{c} or for some y ∈ Of (b)\{c} with
q(i) = b...x...c... or q(j) = a...y...c... are manipulable. This implies that
|Mf (a, b)| = 2 · ((m− 1)!)2 · (1− 1

|Of (a)|·|Of (b)| ). In this case set δf (a, b) =
1− 1

|Of (a)|·|Of (b)| .

(c) If c = a and b ∈ Of (a), then all profiles q with topset(q) = {a, b} are in
Mf (a, b), yielding |Mf (a, b)| = 2 · ((m−1)!)2. In this case set δf (a, b) = 1.

(d) If c = a and b /∈ Of (a), then all profiles q such that N = {i, j} and for some
x ∈ Of (a)\{a} with q(i) = b...x...c... are manipulable. This yields that
|Mf (a, b)| = 2·((m−1)!)2 ·(1− 1

|Of (a)| ).In this case set δf (a, b) = 1− 1
|Of (a)| .

Using the notation in cases (a)–(d) we have that |Mf | = 2 ·((m−1)!)2 ·∑{a,b}∈Ã

δf (a, b). Consider a reflexive and antisymmetric relation Ra on A such that a
is the unique best alternative on A with respect to Ra, i.e., for all alterna-
tives x 6= a we have (a, x) ∈ Ra and (x, a) /∈ Ra. The relation Ra induces a
unanimous anonymous and tops-only choice rule fRa , defined for all profiles p
with topset(p) = {x, y} as follows: fRa(p) = x if (x, y) ∈ Ra, fRa(p) = y if
(y, x) ∈ Ra and fRa(p) = a in all other cases. Observe that the rule fR defined
in Section 5 is a special case.

Example 1 Let Ra = {(x, y) ∈ A×A : x ∈ {y, a}}. Then fRa is the unanimity
rule ua. Moreover, OfRa (x) = {a, x} for all alternatives x. For alternatives x
and y with x 6= y we have δfRa (x, y) = 0 if a ∈ {x, y}, and by (b): δfRa (x, y) =
(1− 1

2·2 ) = 3
4 if a /∈ {x, y}. This implies that |Mua | = 2 ·((m−1)!)2 · (m−1)(m−2)

2 ·
3
4 = 3

4 · (m− 1)(m− 2) · ((m− 1)!)2.

Example 2 Let the alternatives in A be numbered, say a1, a2, . . . , am. Con-
sider the linear ordering Ra = Ra1 = a1a2a3...am. Then the choice rule fRa

picks the lowest numbered alternative among the set of top alternatives at a pro-
file. This is the choice rule introduced before in Section 5. Clearly OfRa (at) =
{a1, a2, ..., at} and for alternatives ai and aj with i < j, δfRa (ai, aj) = 0 if
a ∈ {ai, aj} and, by (d), δfRa (ai, aj) = (1 − 1

i ) otherwise. This implies that
|MfRa | = 2 · ((m− 1)!)2 ·∑m−1

k=2 (m− k)k−1
k .
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Example 3 Let the alternatives be numbered as in the previous example. Con-
sider Ra = {(ai, aj) : i 6 j or (i, j) = (3, 2)}. So Ra is equal to the ordering of
the previous example except for the fact that a2 is indifferent to a3. For alterna-
tives ai and aj with i < j, δhRa (ai, aj) = 0 if a ∈ {ai, aj}. By (d), δhRa (ai, aj) =
(1− 1

i ) if 3 /∈ {i, j}, δhRa (ai, aj) = (1− 1
2 ) if i = 3 and δhRa (a2, a3) = (1− 1

2·2 ).
So |MhRa | = 2 · ((m − 1)!)2( 3

4 + 2(m − 3) 1
2 +

∑m−1
k=4 (m − k)k−1

k ). For later
reference let this rule be denoted by g̃.

Let R be a linear ordering of A. Then for 3 6 m 6 12 it follows that |Mua
| >

|MfR
|, but for m > 12 it follows that |Mua | < |MfR

|. Note also that |MfR
| >

|Mg̃| whenever 3
4 +2(m− 3)1

2 < (m− 2)1
2 +(m− 3) 2

3 . This is precisely the case
if m > 5. It is straightforward although tedious to show that for n = 2 and
m ∈ {3, 4}, |MfR

| = min{|Mh| : h is tops-only, unanimous and anonymous},
but, thus, this result does not extend to m > 5. For large m, unanimity rules
with status quo a might again be minimally manipulable.

A.2 Pareto optimal choice rules

In this subsection we prove Theorem 3.

Proof. By Pareto optimality, anonymity, and tops-onliness, for profiles p with
topset(p) = {a, b}, we have that f(p) ∈ {a, b}. So f induces a complete and
antisymmetric relation R on A, defined for all alternatives a and b as follows:
(a, b) ∈ R if f(p) = a for some profile p with topset(p) = {a, b}. Now it is
straightforward to see that in calculating |Mf (a, b)| for some (a, b) ∈ R with
a 6= b, only case (d) above applies, so |Mf (a, b)| = 2 · ((m− 1)!)2 · (1− 1

|Of (a)| ).
It is therefore sufficient to show that a transitive R yields the smallest |MhR |.
Let a and b be two alternatives with a 6= b and |Of (a)| 6 |Of (b)|. It is sufficient
to prove that (a, b) ∈ R. To the contrary suppose (b, a) ∈ R. Let R be equal to
R except for the pair (b, a) which is swapped, i.e., R = (R∪ {(a, b)})−{(b, a)}.
We derive the contradiction |Mf | > |MhR

| (which completes the proof). Now
OhR

(a) = Of (a)−{b}, OhR
(b) = Of (b)∪{b}, |OhR

(a)| = | Of (a)|−1, |OhR
(b)| =

| Of (b)|+ 1 and

|Mf | − |MhR
| =


 ∑

(b,x)∈R,x/∈{a,b}
(1− 1

|Of (b)| )− (1− 1
|Of (b)|+ 1

)




+


 ∑

(a,x)∈R,x 6=a

(1− 1
|Of (a)| )− (1− 1

|Of (a)| − 1
)




+(1− 1
|Of (b)| )− (1− 1

|Of (a)| − 1
)

= (m− |Of (b)| − 1) · −1
|Of (b)| · (|Of (b)|+ 1)

+(m− |Of (a)|) · 1
|Of (a)| · (|Of (a)| − 1)
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+
1

|Of (a)| − 1
− 1
|Of (b)|

> 0.

The last inequality follows since |Of (a)| 6 |Of (b)|. So, (m − |Of (b)| − 1) 6
(m− |Of (a)|), 1

|Of (b)|·(|Of (b)|+1) 6 1
|Of (a)|·(|Of (a)|−1) and 1

|Of (b)| < 1
|Of (a)|−1 .
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