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Abstract

We study bankruptcy problems in financial networks in the presence of general

bankruptcy laws. The set of clearing payment matrices is shown to be a lattice, which

guarantees the existence of a greatest and a least clearing payment. Multiplicity of

clearing payment matrices is both a theoretical and a practical concern. We present a

new condition for uniqueness that generalizes all the existing conditions proposed in

the literature. Our condition depends on the decomposition of the financial network

into strongly connected components. A strongly connected component which contains

more than one agent is called a cycle and the involved agents are called cyclical

agents. If there is a cycle without successors, then one of the agents in such a cycle

should have a positive endowment. The division rule used by a cyclical agent with

a positive endowment should be positive monotonic and the rule used by a cyclical

agent with a zero endowment should be strictly monotonic. Since division rules

involving priorities are not positive monotonic, uniqueness of the clearing payment

matrix is a much bigger concern for such division rules than for proportional ones.

We also show how uniqueness of clearing payment matrices is related to continuity

of bankruptcy rules.
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1 Introduction

Over the last decades, financial networks have become increasingly interconnected and

the size of mutual financial obligations has become ever larger, thereby making systemic

risk a more and more relevant concern. The standard analysis of systemic risk is based

on the seminal work by Eisenberg and Noe (2001). This model has resulted in a large

and rich literature, either extending it (Cifuentes, Ferrucci, and Shin, 2005; Shin, 2008;

Rogers and Veraart, 2013; Schuldenzucker, Seuken, and Battiston, 2020), or using it to

relate the number and magnitude of defaults to the network topology (Gai and Kapadia,

2010; Elliott, Golub, and Jackson, 2014; Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015;

Glasserman and Young, 2015; Capponi, Chen, and Yao, 2016; Cabrales, Gottardi, and

Vega-Redondo, 2017), or measuring systemic risk (Chen, Iyengar, and Moallemi, 2013;

Demange, 2018). The model has been fruitfully applied to the assessment of the systemic

stability of financial systems, see for instance Elsinger, Lehar, and Summer (2006) for an

application to the Austrian banking system. For overviews of this stream of the literature,

we refer to the excellent surveys by Glasserman and Young (2016) and Jackson and Pernoud

(2021).

In the Eisenberg and Noe (2001) model, agents have endowments that include all the

agents’ tangible and intangible assets but exclude the claims and liabilities agents have

towards the other agents. The mutual claims and liabilities between agents are given

by a liability matrix. The asset value of an agent is obtained as the sum of the agent’s

endowments together with the payments received from the other agents who settle their

liabilities. The equity of an agent is equal to the asset value minus the payments made to

the other agents. It may well be that the asset value of an agent is not sufficient to cover

all the agent’s liabilities, in which case the agent has to default. Specific to the network

setting is that the default of one agent has negative consequences for the asset value of

other agents, which might result in those agents defaulting as well, a phenomenon known

as contagion.

A clearing payment matrix describes how much the agents pay to each other. It needs

to be consistent with the prevailing bankruptcy laws and should satisfy limited liability and

priority of creditors. Limited liability imposes that the clearing payment matrix should

not lead to negative equity for any of the agents. Priority of creditors is satisfied if the

only circumstance under which an agent is allowed to default is when the agent has zero

equity. Eisenberg and Noe (2001) consider the case where the bankruptcy law prescribes

that claimants should be paid an amount that is proportional to their claims and provide

sufficient conditions that lead to a uniquely determined clearing payment matrix.

Although the principle of proportionality is important in actual bankruptcy law, Moulin

(2000), Chatterjee and Eyigungor (2015), and Flores-Szwagrzak(2015) argue priority to be
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another important principle. Kaminski (2000) explains that American bankruptcy law

is a mixed lexicographic-proportional system. In this paper, we study the uniqueness of

clearing payment matrices under general bankruptcy laws. We represent bankruptcy laws

by division rules, which describe how insolvent agents should make payments to their

claimants as a function of their asset value.

We present a system of equations with the property that a payment matrix is a clearing

payment matrix if and only if it is a solution to the system of equations. This system is

then used to establish that the set of clearing payment matrices has a lattice structure,

which implies that there always exists a greatest and a least clearing payment matrix. Our

research question is to find conditions such that the clearing payment matrix is unique,

which implies that the greatest and least clearing payment matrices coincide.

The uniqueness of clearing payment matrices is of great theoretical and practical con-

cern. Without uniqueness of the clearing payment matrix, bankruptcy laws together with

the principles of limited liability and priority of creditors are not sufficient to pin down

the payments that agents should make to each other. As argued in Jackson and Pernoud

(2020), the existence of multiple clearing payment matrices contributes to the fragility of

the financial system as a consequence of endogenous uncertainty. Pessimistic beliefs about

the payments to be received from other agents can become self-fulfilling and lead to a

credit freeze, where agents stop making payments to each other. To make things worse, as

argued in Csòka and Herings (2018), under a large class of decentralized clearing processes,

payments are made according to the least clearing payment matrix.

The uniqueness of the clearing payment matrix turns out to depend on the type of

monotonicity of the division rules. Strict monotonicity requires that an increase in asset

value of a defaulting agent leads to higher payments to all claimants with a non-zero claim.

Positive monotonicity weakens strict monotonicity and requires that an increase in asset

value of a defaulting agent leads to higher payments to all claimants receiving a positive

payment at the original asset value. Proportional division rules are strictly monotonic, but

priority division rules are not even positive monotonic.

Our sufficient condition for uniqueness of the clearing payment matrix depends on the

decomposition of the liability matrix into strongly connected components. A strongly

connected component is a maximal set of agents such that for any two agents in the set

there is a chain of liabilities from one agent to the other, i.e., all agents in a strongly

connected component are successors of each other. A strongly connected component that

consists of more than one agent is called a cycle. An agent that is part of a cycle is called

a cyclical agent.

We demonstrate that the clearing payment matrix is unique if the following three

properties are satisfied. First, every cycle without successors contains at least one agent
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with a positive endowment. Second, any cyclical agent with a positive endowment uses a

positive monotonic division rule. Third, any cyclical agent with a zero endowment uses a

strictly monotonic division rule. Notice that our sufficient condition for uniqueness only

puts assumptions on the cyclical agents.

Our sufficient condition for uniqueness generalizes existing conditions that are found in

the literature, even for the case where all agents use proportional division rules. Eisenberg

and Noe (2001) assume proportional division rules and require the financial network to be

regular: every agent has at least one successor with a positive endowment. Koster (2019)

generalizes this finding and shows that regularity is a sufficient condition for uniqueness of

the clearing payment matrix when all agents use strictly monotonic division rules. Reg-

ularity implies that in every cycle without successors there is at least one agent with a

positive endowment. The other two properties required in our uniqueness condition are

trivially satisfied when all agents use proportional or, more generally, strictly monotonic

division rules.

Glasserman and Young (2015) also study the case of proportional division rules and

obtain uniqueness by assuming the existence of an outside sector, which is such that every

agent has direct or indirect liabilities to an agent in the outside sector. We show how the

outside sector can be represented by a single agent in the network, who has no liabilities

to other agents in the network. It then follows that there are no cycles in the network

without successors. Since, moreover, proportional division rules are strictly monotonic,

our uniqueness condition is trivially satisfied.

Groote Schaarsberg, Reijnierse, and Borm (2018) call a financial network hierarchical

if the liability matrix can be transformed into an upper triangular matrix. They show that

the clearing payment matrix is unique in hierarchical financial networks without further

assumptions on the division rules. Since a financial network is hierarchical if and only if

there are no cycles, their condition for uniqueness is subsumed by ours.

Our uniqueness condition is quite weak when all agents use proportional division rules,

since then it only requires that in cycles without successors at least one agent has a positive

endowment. On the contrary, when agents use priority division rules, we present an ex-

ample with a multiplicity of clearing payment matrices even when all agents have positive

endowments.

In the baseline model of Eisenberg and Noe (2001), multiplicity of clearing payment

matrices has no real effects in the sense that all clearing payment matrices lead to the same

values for the agents’ equities. This is caused by a number of simplifying assumptions, like

the absence of costs of default. Another simplifying assumption is that there is a single time

period in the model, which essentially assumes that markets are complete and uncertain

future endowments can be replaced by their net present values. We show by means of an
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example that in a more realistic setting with multiple time periods, multiplicity of clearing

payment matrices has real effects, even in the absence of costs of default.

We conclude the paper by examining bankruptcy rules, which are defined by associating

to each financial network its greatest clearing payment matrix. Continuity is an attractive

property of bankruptcy rules as it implies that small changes to the financial network

induce small changes in the resulting payment matrix. We show that uniqueness of clearing

payment matrices is a sufficient condition for continuity of bankruptcy rules. On the other

hand, we demonstrate by means of an example how multiplicity of payment matrices leads

to a lack of continuity.

This paper is organized as follows. Section 2 presents the model of financial networks,

the various forms of monotonicity of division rules, and the definition of a clearing payment

matrix. Section 3 is devoted to the lattice structure of the set of clearing payment matrices.

Section 4 presents an example to show that under priority division rules multiplicity of

payment matrices can occur even when all endowments are positive. This section also

presents the main result of the paper: the sufficient condition for clearing payment matrices

to be unique. Section 5 discusses the relation to other conditions for uniqueness that are

found in the literature. We discuss the real consequences of multiplicity of clearing payment

matrices in settings with time and uncertainty in Section 6 and examine the continuity of

bankruptcy rules in Section 7. Finally, Section 8 presents a short conclusion.

2 Financial Networks

A financial network N is a quadruple (I, z, L, d) with the following interpretation. The set

of agents in the financial network is given by the finite set I. The vector z ∈ RI
+ represents

the non-negative endowments of the agents, which includes all the agents’ tangible and

intangible assets, but excludes the claims and liabilities agents have towards each other.

The liability matrix L ∈ RI×I
+ describes the mutual claims of the agents. Its entry Lij is

the liability of agent i towards agent j or, equivalently, the claim of agent j on agent i. In

general, it can occur that agent i has a liability towards agent j and vice versa, so it may

happen that simultaneously Lij > 0 and Lji > 0. We make the normalizing assumption

that Lii = 0. The total liabilities of agent i ∈ I are denoted by Li =
∑

j∈I Lij.

The determination of the payments to the agents takes place by means of division

rules, d = (di)i∈I . A division rule di describes which payments agent i makes to claimants

in I as a function of the estate Ei ∈ R+ of agent i. More formally, the division rule of

agent i ∈ I is a function di : R+ → RI
+ such that, for every j ∈ I, dij(Ei) ≤ Lij and∑

j∈I d
i
j(Ei) = min{Ei, Li}. Since Lii = 0, it follows from the definition of a division rule

that dii(Ei) = 0. We assume that, for every i ∈ I, di is monotonic, i.e., for every j ∈ I, for
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every Ei, E
′
i ∈ R+ such that Ei ≤ E ′i, it holds that dij(Ei) ≤ dij(E

′
i). It is well-known that

if di is monotonic, then it is continuous, see for instance Thomson (2003).

Next, we define additional monotonicity conditions that will be useful in the analysis

of the uniqueness of clearing payment matrices. The asset value at which agent i starts to

make payments to an agent j ∈ I with Lij > 0 is denoted by aij, so dij(Ei) = 0 if Ei ≤ aij
and dij(Ei) > 0 if Ei > aij.

Definition 2.1. Let N = (I, z, L, d) be a financial network. The division rule di : R+ →
RI

+ of agent i ∈ I is strictly monotonic if, for every j ∈ I such that Lij > 0, for every

Ei, E
′
i ∈ R+ such that 0 ≤ Ei < E ′i ≤ Li, it holds that dij(Ei) < dij(E

′
i). It is positive

monotonic if, for every j ∈ I such that Lij > 0, for every Ei, E
′
i ∈ R+ such that aij ≤ Ei <

E ′i ≤ Li, it holds that dij(Ei) < dij(E
′
i).

Strict monotonicity requires that an increase in the asset value of a defaulting agent

leads to higher payments to all claimants with a non-zero claim. Positive monotonicity

weakens strict monotonicity and requires that an increase in asset value of a defaulting

agent leads to higher payments to all claimants receiving a positive payment at the original

asset value.

Some well-known examples of division rules are the proportional rule, the priority rule,

the constrained equal awards rule, and the constrained equal losses rule, defined as follows.

The division rule di of agent i ∈ I is equal to the proportional rule, if it assigns to

claimant j ∈ I the amount

dij(Ei) =

{
0, if Lij = 0,

min{Lij

Li
Ei, Lij}, otherwise.

Under the proportional division rule, the estate is divided in a proportional way over the

claimants, up to the value of their claims.

The division rule di of agent i ∈ I is equal to a priority rule if there exists a permutation

π : I → {1, . . . , |I|} such that the amount assigned to claimant j ∈ I is equal to

dij(Ei) = max{0,min{Lij, Ei −
∑

{k∈I|π(k)<π(j)}

Lik}},

where {k ∈ I|π(k) < π(j)} is the set of agents ranked before j according to π. Under the

priority division rule, the claim of agent j1 = π−1(1) is the first one to be paid, if there is

any remaining estate, i.e. Ei − Lij1 > 0, then the claim of agent j2 = π−1(2) is paid next,

and so on.

Another example of a division rule is the constrained equal awards rule. If Ei > Li,

then define λi = maxj∈I Lij. Otherwise, define λi ∈ [0,maxj∈I Lij] as the unique solution
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to ∑
j∈I

min{Lij, λ} = Ei.

The constrained equal awards rule assigns to claimant j ∈ I the amount

dij(Ei) = min{Lij, λi}.

Under the constrained equal awards rule, all claimants get the same amount, up to the

value of their claim.

The constrained equal losses division rule is the dual of the constrained equal awards

rule and imposes that all claimants face the same loss, up to the value of their claim. If

Ei > Li, then define µi = 0. Otherwise, define µi ∈ [0,maxj∈I Lij] as the unique solution

to ∑
j∈I

max{Lij − µi, 0} = Ei.

The constrained equal losses division rule of agent i assigns to claimant j ∈ I the amount

dij(Ei) = max{Lij − µi, 0}.

It is easily verified that the proportional division rule is strictly monotonic. The con-

strained equal losses rule is not strictly monotonic, but it is positive monotonic. The

priority rules and the constrained equal awards rule are not even positive monotonic.

The analysis of financial networks is complicated because of the mutual liability struc-

ture and the contagion effects of default. The determination of the value of the estate Ei

of agent i ∈ I is endogenous as this value depends on the payments that are collected from

the claims agent i has on the other agents.

Let M be the set of all matrices in RI×I
+ with a zero diagonal. For M ∈M and i ∈ I,

let Mi ∈ RI denote row i of M. For Mi,M
′
i ∈ RI , we write Mi < M ′

i if Mij ≤ M ′
ij for all

j ∈ I and there is j′ ∈ I such that Mij′ < M ′
ij′ . Notice that the liability matrix L is an

element of M.

A payment matrix P ∈ M describes the mutual payments to be made by the agents,

that is, Pij is the monetary amount to be paid by agent i ∈ I to agent j ∈ I. Under

payment matrix P ∈M, the estate Ei of agent i is given by the asset value ai(P ), defined

as

ai(P ) = zi +
∑
j∈I

Pji.
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Subtracting the payments as made by an agent from his asset value yields an agent’s equity.

More formally, the equity ei(P ) of an agent i ∈ I is given by

ei(P ) = ai(P )−
∑
j∈I

Pij = zi +
∑
j∈I

(Pji − Pij).

It follows immediately from the above expression that the sum over agents of their equities

is the same as the sum over agents of their endowments.

We now extend the notions of priority of creditors and limited liability as defined for

proportional division rules by Eisenberg and Noe (2001) and feasibility for general division

rules in a discrete setting by Csóka and Herings (2018) to general division rules in the

continuous setting studied here.

The image Fi of division rule di determines the feasible set of payments. More formally,

we have

Fi = di(R+) = {di(Ei) ∈ RI
+ | Ei ∈ R+}.

A payment matrix P ∈ M is feasible if for every i ∈ I it holds that Pi ∈ Fi. A payment

matrix is feasible if every row i of the matrix belongs to the feasible set of payments of

agent i, that is, payments are made in accordance with the division rules. The set of all

feasible payment matrices is denoted by P , so

P = {P ∈M | ∀i ∈ I, Pi ∈ Fi}.

Definition 2.2. The matrix P ∈M is a clearing payment matrix of the financial network

N = (I, z, L, d) if it satisfies the following three properties:

1. Feasibility: P ∈ P .

2. Limited liability: For every i ∈ I, ei(P ) ≥ 0.

3. Priority of creditors: For every i ∈ I, if Pi < Li, then ei(P ) = 0.

Feasibility states that the payments are in accordance with the division rules. Limited

liability requires that the total payments made by an agent do not exceed the asset value

of the agent. Priority of creditors expresses that default is only allowed if equity is equal

to zero. The analysis of Eisenberg and Noe (2001) corresponds to the case where all agents

use the proportional division rule. Csóka and Herings (2018) address the general case for

a discrete set-up.
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3 The Lattice of Clearing Payment Matrices

A first question is whether a clearing payment matrix always exists and, if so, whether it

is unique. To address these issues, we rewrite the conditions of a clearing payment matrix

as the solution to a system of equations.

The following theorem relates a clearing payment matrix to the solution of a particular

system of equations.

Theorem 3.1. The payment matrix P ∈M is a clearing payment matrix of the financial

network N = (I, z, L, d) if and only if it solves the following system of equations:

Pij = dij(ai(P )), i, j ∈ I.

Proof.

(⇒)

Let P ∈M be a clearing payment matrix of the financial network N. Consider some i ∈ I.
We define P ′i = di(ai(P )). Since Pi ∈ Fi and di is monotonic, it holds that either (a)

Pi < P ′i , or (b) Pi = P ′i , or (c) Pi > P ′i .

Case (a). Pi < P ′i .

We have that

ei(P ) = ai(P )−
∑
j∈I

Pij > ai(P )−
∑
j∈I

P ′ij = ai(P )−
∑
j∈I

dij(ai(P )) ≥ 0,

where the weak inequality follows from the definition of a division rule. From Pi < P ′i ∈ Fi,
it follows that Pi < Li. Since ei(P ) > 0, P does not satisfy priority of creditors. We

conclude that Case (a) cannot occur.

Case (c). Pi > P ′i .

Let Ei ∈ [0, Li] be such that Pi = di(Ei). From di(Ei) = Pi > P ′i = di(ai(P )) and the

monotonicity of di, it follows that ai(P ) < Ei. We have that

Ei =
∑
j∈I

dij(Ei) =
∑
j∈I

Pij = ai(P )− ei(P ) ≤ ai(P ),

where the inequality follows since P satisfies limited liability. This contradicts our earlier

conclusion that ai(P ) < Ei. It follows that Case (c) cannot occur.

We have derived that Case (b) holds, so Pi = P ′i = di(ai(P )).

(⇐)

Let P ∈M be a solution to the system of equations

Pij = dij(ai(P )), i, j ∈ I.

1. Feasibility. It holds that P ∈ P since, for every i ∈ I, Pi = di(ai(P )).
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2. Limited liability. For every i ∈ I, we have that

ei(P ) = ai(P )−
∑
j∈I

Pij = ai(P )−
∑
j∈I

dij(ai(P )) ≥ ai(P )− ai(P ) = 0,

where the weak inequality follows from the definition of a division rule.

3. Priority of creditors. Assume i ∈ I is such that Pi < Li. We have that∑
j∈I

Pij =
∑
j∈I

dij(ai(P )) = min{ai(P ), Li} = ai(P ),

where the second equality follows from the definition of a division rule and the third equality

since Pi < Li, so
∑

j∈I Pij =
∑

j∈I d
i
j(ai(P )) <

∑
j∈I Lij = Li. We have that

ei(P ) = ai(P )−
∑
j∈I

Pij = 0.

2

The system of equations we use to characterize clearing payment matrices is slightly

different from the one used in Eisenberg and Noe (2001) for proportional division rules

and the one in Koster (2019) for general division rules. In those two papers, each |I|-
dimensional row of the payment matrix is represented by a one-dimensional parameter,

like the fraction of total liabilities that are paid in Eisenberg and Noe (2001).

A lattice is a partially ordered non-empty set in which every pair of elements has a

supremum and an infimum. A complete lattice is a lattice in which every non-empty subset

has a supremum and an infimum. The partial order ≤ on M is defined in the usual way:

for P, P ′ ∈ M it holds that P ≤ P ′ if and only if Pij ≤ P ′ij for all (i, j) ∈ I × I. We

prove next that there always exists a least clearing payment matrix and a greatest clearing

payment matrix.

Theorem 3.2. The set of clearing payment matrices of the financial network N = (I, z, L, d)

is a complete lattice. In particular, there exists a least clearing payment matrix P− and a

greatest clearing payment matrix P+.

Proof. Let ϕ : P → P be defined by

ϕij(P ) = dij(ai(P )), P ∈ P , i, j ∈ I.

It follows from Theorem 3.1 that P ∗ is a clearing payment matrix if and only if P ∗ is a

fixed point of ϕ.

The set P is clearly a complete lattice.
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We show that ϕ is monotonic. Let P, P ′ ∈ P be such that P ≤ P ′. For every i ∈ I, it

holds that

ϕi(P ) = di(ai(P )) = di(zi +
∑
j∈I

Pji) ≤ di(zi +
∑
j∈I

P ′ji) = di(ai(P
′)) = ϕi(P

′),

where the inequality follows the fact that di is monotonic.

By Tarski’s fixed point theorem (Tarski, 1955), the set of fixed points of ϕ is a complete

lattice with respect to ≤ . It follows that the set of fixed points has a least and a greatest

element. 2

The literature has a number of results related to Theorem 3.2. Eisenberg and Noe

(2001) have an analogous result when all agent use the proportional division rule. Csóka

and Herings (2018) also prove a similar result, but in a discrete set-up and not allowing

for zero endowments.

Next, as a modest generalization of a result in Groote Schaarsberg, Reijnierse, and

Borm (2018), who assume that all agents use the same division rule, we show that all

clearing payment matrices lead to the same amount of equity.1

Theorem 3.3. If P and P ′ are clearing payment matrices of a financial network N =

(I, z, L, d), then e(P ) = e(P ′).

Proof. Let P+ be the greatest clearing payment matrix, which exists because of

Theorem 3.2, and let P be an arbitrary clearing payment matrix of N. Let i ∈ I. If

ei(P ) > 0, then

0 < ei(P ) = ai(P )− Li ≤ ai(P
+)− Li ≤ ei(P

+).

If ei(P ) = 0, then ei(P
+) ≥ ei(P ) since P+ satisfies limited liability.

We have that e(P ) ≤ e(P+). From
∑

i∈I ei(P ) =
∑

i∈I ei(P
+) =

∑
i∈I zi and e(P ) ≤

e(P+), it follows that e(P ) = e(P+). 2

The result of Theorem 3.3 depends crucially on the fact that there is no smallest unit

of account. Csóka and Herings (2018) show that in discrete set-ups, for instance resulting

from the presence of a smallest unit of account, equity is in general not unique.

4 Uniqueness of Clearing Payment Matrices

Our next research question concerns the uniqueness of a clearing payment matrix.

1Groote Schaarsberg, Reijnierse, and Borm (2018) define a division rule as a function of the estate and

the vector of liabilities, so treat the vector of liabilities as a variable.
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Theorem 2 of Eisenberg and Noe (2001) implies that in a financial network where all

agents have positive endowments and use proportional division rules, the clearing payment

matrix is unique. Surprisingly, when replacing proportional division rules by priority divi-

sion rules, the clearing payment matrix need not be unique as Example 4.1 demonstrates.

Example 4.1. Let N = (I, z, L, d) be a financial network with three agents, I = {1, 2, 3},
all using the priority division rule corresponding to π = (3, 2, 1). Table 1 presents the

endowments, the liabilities, the least clearing payment matrix P−, the greatest clearing

payment matrix P+, and the induced asset values and equities. The set of defaulting

z L P− a(P−) e(P−)

1 0 2 1 0 0 1 1 0

1 2 0 1 0 0 1 1 0

1 0 0 0 0 0 0 3 3

z L P+ a(P+) e(P+)

1 0 2 1 0 2 1 3 0

1 2 0 1 2 0 1 3 0

1 0 0 0 0 0 0 3 3

Table 1: The clearing payment matrices P− and P+ and their induced asset values and

equities in Example 4.1.

agents are different in P− and P+. Whereas in P− both agent 1 and agent 2 defaults, in

P+ no agent defaults.

In Example 4.1, the solvent agent, agent 3, makes the same payments in P− and P+.

Both defaulting agents in P−, agents 1 and 2, make different payments in P− and P+. The

next two propositions generalize these insights.

Proposition 4.2. Let N = (I, z, L, d) be a financial network and let P− and P+ be the

least and greatest clearing payment matrix of N, respectively. If i ∈ I satisfies P−i < P+
i ,

then ei(P
−) = ei(P

+) = 0.

Proof. Let i ∈ I be such that ei(P
+) > 0. By Theorem 3.3 it holds that ei(P

−) =

ei(P
+) > 0. Feasibility and priority of creditors now imply that P−i = P+

i = Li. Therefore,

if i ∈ I satisfies P−i < P+
i , then ei(P

+) = 0, and by Theorem 3.3, ei(P
−) = 0. 2

According to Proposition 4.2, if an agent makes different payments in two clearing pay-

ment matrices, then this agent has zero equity. The next proposition shows how differences

in payments by some agents propagate in the financial network.
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Proposition 4.3. Let N = (I, z, L, d) be a financial network, P− and P+ be the least and

greatest clearing payment matrix of N, respectively, and i1 ∈ I be such that P−i1 < P+
i1
. Let

(i1, . . . , ik′) be a sequence of agents in I such that, for every k = 1, . . . , k′ − 1,

dik is positive monotonic,

eik(P+) = 0,

P+
ikik+1

> 0.

Then, for every k = 1, . . . , k′ − 1, it holds that P−ikik+1
< P+

ikik+1
.

Proof. Let E−, E+ ∈ RI
+ be such that, for every i ∈ I, E−i ≤ E+

i ≤ Li, and

P−i = di(E−i ),

P+
i = di(E+

i ).

For every k = 1, . . . , k′ − 1, it holds by Theorem 3.3 that eik(P−) = eik(P+) and, since dik

is positive monotonic and P+
ikik+1

> 0, it holds that E+
ik
> aikik+1

.

We now show by induction that

E−ik < E+
ik
, k = 1, . . . , k′ − 1. (4.1)

For k = 1, E−i1 < E+
i1

follows from P−i1 < P+
i1
.

Assume that, for some k ≤ k′− 2, it holds that E−ik < E+
ik
. We show that E−ik+1

< E+
ik+1

.

Since eik+1
(P−) = eik+1

(P+) = 0, it holds that∑
j∈I

d
ik+1

j (E−k+1) = zik+1
+
∑
j∈I

djik+1
(E−j ), (4.2)∑

j∈I

d
ik+1

j (E+
k+1) = zik+1

+
∑
j∈I

djik+1
(E+

j ). (4.3)

We argue that the right-hand side of (4.3) is greater than that of (4.2). Since E− ≤ E+,

we have that

djik+1
(E+

j ) ≥ djik+1
(E−j ), j ∈ I.

It holds by the induction hypothesis, positive monotonicity of dik and E+
ik
> aikik+1

that

dikik+1
(E+

ik
) > dikik+1

(E−ik).

The left-hand side of (4.3) is then also greater than that of (4.2), so∑
j∈I

d
ik+1

j (E+
k+1) >

∑
j∈I

d
ik+1

j (E−k+1),
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implying that

E−ik+1
< E+

ik+1
.

It now follows that, for every k = 1, . . . , k′ − 1, P−ikik+1
= dikik+1

(E−ik) < dikik+1
(E+

ik
) = P+

ikik+1
.

2

Proposition 4.3 makes clear that if an agent makes different payments in two clearing

payment matrices and this agent makes directly or indirectly a positive payment to some

other defaulting agents, then there is also multiplicity of payments by these other defaulting

agents, at least when division rules are positive monotonic.

A sequence of k′ ≥ 2 distinct agents (i1, . . . , ik′) is a directed path in a matrix M ∈ M
if, for every k ∈ {1, . . . , k′ − 1}, Mikik+1

> 0. Agent j ∈ I is connected to agent i ∈ I in M

if there is a directed path (i1, . . . , ik′) in M such that i1 = i and ik′ = j.

Let N = (I, z, L, d) be a financial network. A set of agents S ⊂ I is said to be a strongly

connected component in L if any two distinct agents in S are connected to each other in L

and the set S is maximal with regard to this property.

For every i ∈ I, let O(i) denote the strongly connected component in L to which i

belongs. The collection O = {O(i) | i ∈ I} is a partition of I. We construct the directed

graph (O, D) by defining

D = {(O,O′) ∈ O ×O | ∃i ∈ O, ∃j ∈ O′, Lij > 0},

so, for two distinct elements O,O′ ∈ O, there is an arc from O to O′ if there is i ∈ O and

j ∈ O′ such that Lij > 0. The successors of O ∈ O in the directed graph (O, D) are given by

the strongly connected components that are connected to O in (O, D). The directed graph

(O, D) has no cycles. We can therefore order the sets in O and write O = {O1, . . . , OR},
where (Or, Or′) ∈ D implies r < r′. In general, this order is not uniquely determined.

An agent i ∈ I is said to be a cyclical agent and the set O(i) is said to be a cycle if

O(i) consists of at least two elements. Agent i is cyclical if and only if there is a directed

path of agents in L starting at agent i such that the last agent on the path has a positive

liability towards agent i. The set of all cyclical agents is denoted by C.

We illustrate the directed graph (O, D) in Example 4.4.

Example 4.4. Consider a financial network with thirteen agents I = {1, 2, . . . , 13}. In

Figure 1, if agent i has a positive liability to agent j, then we draw an arc from i to j.

The collection O = {O1, O2, O3, O4, O5} consists of the strongly connected compo-

nents in L, where O1 = {1}, O2 = {2, 3, 4, 5, 6}, O3 = {7, 8, 12}, O4 = {9}, and O5 =

{10, 11, 13}. The arcs between the strongly connected components are given by D =

{(O1, O3), (O2, O4), (O2, O5)}. The successor of O1 is O3, and the successors of O2 are

O4 and O5. The directed graph (O, D) has no cycles. The sets O2, O3, and O5 are cyclical.
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Figure 1: Agents, liabilities, and the ordered sets O in Example 4.4.

The set of cyclical agents is equal to C = O2∪O3∪O5 = {2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13}. For

r ∈ {1, 2, 3, 4, 5}, agents in Or only have positive liabilities to agents in Or′ with r′ ≥ r. In

this example, we could have chosen a different order on the collection of strongly connected

components. For instance, we could have ordered O = {9} before O′ = {7, 8, 12}.

The next result presents a sufficient condition for the clearing payment matrix to be

unique. This condition only involves the cyclical agents.

Theorem 4.5. Let N = (I, z, L, d) be a financial network such that

1. if O ∈ O is a cycle and has no successors, then
∑

i∈O zi > 0,

2. for every i ∈ C with zi > 0, di is positive monotonic,

3. for every i ∈ C with zi = 0, di is strictly monotonic.

Then N has a unique clearing payment matrix.

Proof. By Theorem 3.2, N has a least clearing payment matrix P− and a greatest

clearing payment matrix P+. Let E−, E+ ∈ RI
+ be such that, for every i ∈ I, E−i ≤ E+

i ≤
Li, and

P−i = di(E−i ),

P+
i = di(E+

i ).
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By Theorem 3.3 it holds that

ei(P
−) = ei(P

+), i ∈ I. (4.4)

Let O = {O1, . . . , OR} be the partition of strongly connected components of L, where

(Or, Or′) ∈ D implies r < r′.

In Step 1 we show equality of the rows in P− and P+ that correspond to cyclical

agents. Steps 2 and 3 use induction to complete the proof. Step 2 considers the base

case for rows in O1 and Step 3 contains the induction step.

Step 1. For every i ∈ C, P−i = P+
i .

Suppose there is i1 ∈ C such that

E−i1 < E+
i1
. (4.5)

We consider all the endowments and incoming payments of the agents in the cycle O(i1)

and distinguish two cases.

Case 1.
∑

j∈O(i1)
zj +

∑
i∈I\O(i1)

∑
j∈O(i1)

P+
ij > 0.

The set of agents S consisting of i1 together with the agents to which i1 makes direct

or indirect payments when the payment matrix is P+ is defined as

S = {i1} ∪ {j ∈ I | j is connected to i1 in P+}.

Suppose
∑

j∈S ej(P
+) = 0. It follows that the agents in S cannot have positive en-

dowments or receive positive payments from agents outside S as otherwise these resources

would end up somewhere in S, so
∑

j∈S zj +
∑

i∈I\S
∑

j∈S P
+
ij = 0. We have that, for every

j ∈ S, zj = 0, and, for every j ∈ S ∩ O(i1), d
j is strictly monotonic. Since E+

i1
> 0, the

strict monotonicity of dj for every j ∈ S ∩O(i1) implies that O(i1) ⊂ S. We have that

0 =
∑
j∈S

zj +
∑
i∈I\S

∑
j∈S

P+
ij ≥

∑
j∈O(i1)

zj +
∑
i∈I\S

∑
j∈O(i1)

P+
ij =

∑
j∈O(i1)

zj +
∑

i∈I\O(i1)

∑
j∈O(i1)

P+
ij > 0,

where the second equality follows from the fact that members of S\O(i1) have no liabilities

to agents in O(i1) and the strict inequality follows from the assumption of Case 1. We

have obtained a contradiction. Consequently, it follows that
∑

j∈S ej(P
+) > 0.

Subcase 1.1.
∑

j∈S∩O(i1)
ej(P

+) > 0.

It holds by Proposition 4.2 that ei1(P
+) = 0. Since all agents in S are connected to i1 in

P+, there is a finite sequence of agents (i1, . . . , ik′) in S ∩O(i1) such that

P+
ikik+1

= dikik+1
(E+

ik
) > 0, k = 1, . . . , k′ − 1,

eik(P+) = 0, k = 1, . . . , k′ − 1,

eik′ (P
+) > 0.
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It follows from Proposition 4.3 that E−ik′−1
< E+

ik′−1
. It therefore holds that

eik′ (P
+)− eik′ (P

−) =
∑

j∈I d
j
ik′

(E+
j )−

∑
j∈I d

ik′
j (E+

k′)−
∑

j∈I d
j
ik′

(E−j ) +
∑

j∈I d
ik′
j (E−k′)

=
∑

j∈I d
j
ik′

(E+
j )−

∑
j∈I d

j
ik′

(E−j )

> 0,

where the second equality follows from E−ik′ = E+
ik′

= Lik′ and the inequality follows

from E− ≤ E+, E−ik′−1
< E+

ik′−1
, positive monotonicity of dik′−1 , and E+

ik′−1
> aik′−1ik′

.

We have obtained a contradiction to (4.4). Consequently, it follows that E−i1 = E+
i1
, so

P−i1 = P+
i1

= di1(E+
i1

).

Subcase 1.2.
∑

j∈S∩O(i1)
ej(P

+) = 0.

Since
∑

j∈S ej(P
+) > 0, it holds that S \ O(i1) 6= ∅. Let i′ ∈ O(i1) and j′ ∈ S \ O(i1) be

such that P+
i′j′ > 0. Now there is a finite path of agents (i1, . . . , ik′) in S such that ik′−1 = i′,

ik′ = j′,

P+
ikik+1

= dikik+1
(E+

ik
) > 0, k = 1, . . . , k′ − 1,

eik(P+) = 0, k = 1, . . . , k′ − 1.

Since ik′−1 ∈ O(i1), it follows that i1, . . . , ik′−1 ∈ O(i1). We can use Proposition 4.3 to

conclude that E−ik′−1
< E+

ik′−1
and therefore P−i′j′ < P+

i′j′ .

We find that∑
j∈S\O(i1)

ej(P
+) =

∑
j∈S\O(i1)

zj +
∑

i∈O(i1)

∑
j∈S\O(i1)

P+
ij +

∑
i∈I\S

∑
j∈S\O(i1)

P+
ij

>
∑

j∈S\O(i1)
zj +

∑
i∈O(i1)

∑
j∈S\O(i1)

P−ij +
∑

i∈I\S
∑

j∈S\O(i1)
P−ij

=
∑

j∈S\O(i1)
ej(P

−),

a contradiction to Theorem 3.3. Consequently, it follows that E−i1 = E+
i1
, so P−i1 = P+

i1
=

di1(E+
i1

).

Case 2.
∑

j∈O(i1)
zj +

∑
i∈I\O(i1)

∑
j∈O(i1)

P+
ij = 0.

It follows that
∑

j∈O(i1)
zj = 0. By the first assumption of the theorem, there is Or ∈ O

such that (O(i1), Or) ∈ D. It holds by the third assumption of the theorem that, for every

i ∈ O(i1), d
i is strictly monotonic. Since P+

i1
> 0, we find that, for every i ∈ O(i1),

ai(P
+) > 0, so in particular there is a positive payment to an agent in Or. The amount∑

j∈O(i1)
zj+

∑
i∈I\O(i1)

∑
j∈O(i1)

P+
ij must at least be equal to this positive payment, leading

to a contradiction. Consequently, it follows that E−i1 = E+
i1
, so P−i1 = P+

i1
= di1(E+

i1
).

Step 2. For every i ∈ O1, P
−
i = P+

i .

Case 1. O1 is a singleton.

Let i ∈ I be such that O1 = {i}. If zi ≥ Li, then feasibility and priority of creditors imply

that E−i = E+
i = Li. If zi < Li, then limited liability and priority of creditors imply that

ei(P
−) = ei(P

+) = 0, so E−i = E+
i = zi. It follows in both cases that P−i = P+

i = di(E+
i ).
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Case 2. O1 is a cycle.

This case follows from Step 1.

Step 3. Assume for some r′ < R, for every r ≤ r′, for every i ∈ Or, P
−
i = P+

i . Then,

for every i ∈ Or′+1, P
−
i = P+

i .

Case 1. Or′+1 is a singleton.

Let j ∈ I be such that Or′+1 = {j}. We have that aj(P
−) = aj(P

+) = zj+
∑r′

r=1

∑
i∈Or

P+
ij .

If aj(P
−) = aj(P

+) ≥ Lj, then feasibility and priority of creditors imply that E−j = E+
j =

Lj. If aj(P
−) = aj(P

+) < Lj, then limited liability and priority of creditors imply that

ej(P
−) = ej(P

+) = 0, so E−j = E+
j = aj(P

+). It follows in both cases that P−i = P+
i =

di(E+
i ).

Case 2. Or′+1 is a cycle.

This case follows from Step 1. 2

The sufficient condition for the clearing payment matrix to be unique in Theorem 4.5

is that (1) at least one agent in a cycle without successors has a positive endowment, (2)

the division rules of cyclical agents with positive endowments are positive monotonic, and

(3) the division rules of cyclical agents with zero endowments are strictly monotonic.

5 Relation to Other Uniqueness Conditions in the Lit-

erature

The literature has found a number of conditions to obtain a unique clearing payment ma-

trix. In this section, we show how earlier findings by Eisenberg and Noe (2001), Glasserman

and Young (2015), Csóka and Herings (2017), Groote Schaarsberg, Reijnierse, and Borm

(2018), and Koster (2019) are special cases of the condition presented in Theorem 4.5.

We start with the uniqueness result derived in Eisenberg and Noe (2001). Eisenberg

and Noe (2001) restrict attention to proportional division rules. As mentioned before, such

rules are strictly monotonic. To explain their conditions, we need the definitions of risk

orbit and regular financial network.

Given a financial network N = (I, z, L, d), the set consisting of agent i ∈ I and all

its successors is denoted by O+(i), so the set O+(i) consists of agent i together with all

agents j ∈ I that are connected to agent i in L. Eisenberg and Noe (2001) refer to O+(i)

as the risk orbit of agent i. The set O+(i) is the union of O(i) and the sets in O that are

successors of O(i) in (O, D). The financial network N = (I, z, L, d) is said to be regular if,

for every i ∈ I,
∑

j∈O+(i) zj > 0.2 Regularity rules out the situation where agent i has a

zero endowment and none of the agents to which agent i has direct or indirect liabilities

2The formal definition of a risk orbit in Eisenberg and Noe (2001) does not make clear whether agent
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has a positive endowment. A sufficient condition for regularity is that all agents have

positive endowments. Another sufficient condition for regularity is that one agent has a

positive endowment and O consists of a single set, so there is a single strongly connected

component.

Proposition 5.1 (Eisenberg and Noe (2001)). Let N = (I, z, L, d) be a regular financial

network such that all agents use the proportional division rule. Then N has a unique

clearing payment matrix.

Proof. If O ∈ O is a cycle and has no successors, then, for every i ∈ O, O+(i) = O.

Then regularity implies that
∑

i∈O zi > 0, so Condition (1) of Theorem 4.5 is satisfied.

Since the proportional division rule is strictly monotonic, Conditions (2) and (3) of

Theorem 4.5 are satisfied. 2

Glasserman and Young (2015) extend the Eisenberg and Noe (2001) model by allowing

agents to have liabilities to nodes outside the network. More precisely, bi ≥ 0 corresponds

to the total liabilities of agent i ∈ I to nodes outside the network. Glasserman and Young

(2015) have the following condition for uniqueness of the clearing payment matrix. Every

agent has positive direct or indirect liabilities to nodes outside the network. Using our

notation, for every agent i ∈ I, there is j ∈ O+(i) such that bj > 0.

We continue by embedding the Glasserman and Young (2015) model into the Eisenberg

and Noe (2001) framework and next reformulate their uniqueness condition. To do so, we

represent the nodes outside the network by a single agent 0. The agents inside the network

are represented by the set {1, . . . , n}. We assume, without loss of generality, that z0 = 0.

Agent 0 has no liabilities to nodes in the network, so, for every i ∈ {1, . . . , n}, L0i = 0.

The liabilities of agents in the network to nodes outside the network are now replaced

by liabilities to agent 0, so, for every i ∈ {1, . . . , n}, Li0 = bi. We obtain a financial

network N = (I, z, L, d) by taking I = {0, 1, . . . , n} and, for every i ∈ I, di equal to

the proportional division rule. The uniqueness condition of Glasserman and Young (2015)

can now be formulated as the requirement that, for every i ∈ I, 0 ∈ O+(i). Notice that

O+(0) = {0} by construction.

Proposition 5.2 (Glasserman and Young (2015)). Let N = (I, z, L, d) be a financial

network such that I = {0, 1, . . . , n}, z0 = 0, for every i ∈ I, L0i = 0, and all agents use

i itself is included in its risk orbit when O(i) is not a cycle. The informal discussion later on in the paper

suggests agent i is included. Indeed, Eisenberg and Noe (2001) assert that the assumption that every

agent has a positive endowment is a sufficient condition for regularity, which would not be true without

the inclusion of agent i in its risk orbit. Since the condition of regularity is weaker when agent i is included

in the risk orbit and all the proofs in Eisenberg and Noe (2001) remain valid in this case, we assume here

that agent i is included in its risk orbit.
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the proportional division rule. If, for every i ∈ I, 0 ∈ O+(i), then N has a unique clearing

payment matrix.

Proof. It clearly holds that {0} ∈ O and, by assumption, {0} is a successor of every

O ∈ O \ {{0}}. As there are no cycles without successors, Condition (1) of Theorem 4.5 is

therefore trivially satisfied.

Since the proportional division rule is strictly monotonic, Conditions (2) and (3) of

Theorem 4.5 are satisfied. 2

The conditions of Proposition 5.1 and Proposition 5.2 are quite different. Proposi-

tion 5.1 makes sure that there are positive endowments among every agents and its succes-

sors, whereas Proposition 5.2 makes no assumption regarding the endowments, but assumes

positive liabilities to a designated agent, representing the outside sector.

Groote Schaarsberg, Reijnierse, and Borm (2018) provide a condition for the case where

division rules can be more general than the proportional rule. A financial network is called

hierarchical if, by reordering the agents, the matrix L can be transformed into an upper

triangular matrix, i.e., a matrix with zeros below the diagonal.

Proposition 5.3 (Groote Schaarsberg, Reijnierse, and Borm (2018)). Let N = (I, z, L, d)

be a hierarchical financial network.3 Then N has a unique clearing payment matrix.

Proof. If the matrix L can be written in an upper triangular form, then are are no

cycles and no cyclical agents, so the conditions of Theorem 4.5 are trivially satisfied. 2

Even when attention is restricted to proportional division rules, the conditions of Propo-

sition 5.3 are independent from those of Propositions 5.1 and 5.2. Unlike Propositions 5.1

and 5.2, cycles are not allowed. On the other hand, Proposition 5.3 makes no assumptions

on endowments and does not require that all agents have a positive liability to a designated

agent. The proposition also applies to division rules which are not proportional.

Koster (2019) extends the regularity condition of Eisenberg and Noe (2001) from pro-

portional division rules to strictly monotonic division rules.

Proposition 5.4 (Koster (2019)). Let N = (I, z, L, d) be a regular financial network such

that all agents use a strictly monotonic division rule.4 Then N has a unique clearing

payment matrix.

3Groote Schaarsberg, Reijnierse, and Borm (2018) require additionally that all agents use the same

division rule, where a division rule is a function of the estate and the vector of liabilities.
4Koster (2019) requires additionally that all agents use the same division rule, where a division rule is

a function of the estate and the vector of liabilities.
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Proof. If O ∈ O is a cycle and has no successors, then, for every i ∈ O, O+(i) = O.

Then regularity implies that
∑

i∈O zi > 0, so Condition (1) of Theorem 4.5 is satisfied.

Since division rules are assumed to be strictly monotonic, Conditions (2) and (3) of

Theorem 4.5 are satisfied. 2

Proposition 5.4 shows that the conditions of Proposition 5.1 can be extended from

proportional division rules to arbitrary strictly monotonic division rules. The conditions

in Proposition 5.4 are clearly independent from those of Proposition 5.3.

As we noted before, the constrained equal losses division rule does not satisfy strict

monotonicity. Our generalization to positive monotonicity in Theorem 4.5 guarantees that

the clearing payment matrix is unique when all agents use the constrained equal losses

division rule and endowments of cyclical agents are all positive, a result that was also

stated as Theorem 7.8 in Csóka and Herings (2017). This result is in stark contrast with

the case of constrained equal awards division rules as will be demonstrated in Example 6.1

of Section 6. This is surprising since both division rules can be considered as each other’s

dual and share many common features, see Thomson (2003).

6 Time and Uncertainty

In settings with time and uncertainty, the Eisenberg and Noe (2001) analysis is essentially

assuming that markets are complete and uncertain future endowments and liabilities can

be replaced by their net present values. These assumptions are very strong. For instance,

in empirically evaluating the systemic illiquidity of the British bank system, Ferrara, Lang-

field, Liu, and Ota (2019) need to extend the single-period Eisenberg and Noe (2001) set-up

to one with multiple time periods. The next example shows that in such a more realistic

set-up, multiplicity of payment matrices also matters in equity terms. Multiplicity of pay-

ment matrices is therefore payoff relevant in realistic scenarios. This example also shows

that the clearing payment matrix may not be unique in a one-period model when all agents

use constrained equal awards rules.

Example 6.1. We consider a setting with two time periods. In the first period, let N =

(I, z, L, d) be a financial network with three agents I = {1, 2, 3}, all using constrained equal

awards rules. Table 2 presents the endowments, the liabilities, the least clearing payment

matrix P− and the greatest clearing payment matrix P+, and the induced asset values and

equities.

In the second period, all agents receive an additional endowment of 1. Moreover, agent 1

has additional liabilities to agents 2 and 3, which are due in the second period, in the

amounts of 1 and 2, respectively. Unpaid liabilities of period 1 are carried over to the
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z L P− a(P−) e(P−)

1 0 2 1 0 1 1 2 0

1 2 0 1 1 0 1 2 0

1 0 0 0 0 0 0 3 3

z L P+ a(P+) e(P+)

1 0 2 1 0 2 1 3 0

1 2 0 1 2 0 1 3 0

1 0 0 0 0 0 0 3 3

Table 2: The clearing payment matrices P− and P+ and their induced asset values and

equities in Example 6.1.

next period without interest. Final equity of period 1 is also carried over to period 2

without interest. When agents use the least clearing payment matrix P− in the first

period, then the situation at the beginning of the second period is given by the financial

network Ñ = (I, z̃, L̃, d̃) as described in Table 3. The financial network Ñ has a unique

z̃ L̃ P̃ ã(P̃ ) ẽ(P̃ )

1 0 2 2 0 1 1 2 0

1 1 0 0 1 0 0 2 1

4 0 0 0 0 0 0 5 5

Table 3: The clearing payment matrix P̃ and its induced asset value and equity using

constrained equal awards rules in Example 6.1 for the financial network Ñ resulting from

the least clearing payment matrix in the first period.

clearing payment matrix P̃ .

We next examine the use of the greatest clearing payment matrix P+ in the first period.

Table 4 presents the resulting financial network N̂ = (I, ẑ, L̂, d̂) at the beginning of the

second period. The financial network N̂ has a unique clearing payment matrix P̂ . We

ẑ L̂ P̂ â(P̂ ) ê(P̂ )

1 0 1 2 0 0.5 0.5 1 0

1 0 0 0 0 0 0 1.5 1.5

4 0 0 0 0 0 0 4.5 4.5

Table 4: The clearing payment matrix P̂ and its induced asset value and equity using

constrained equal awards rules in Example 6.1 for the financial network N̂ resulting from

the greatest clearing payment matrix in the first period.

conclude that the final equities in the second period in financial network N̂ and different
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from those in the financial network Ñ , and are therefore affected by the clearing payment

matrix that is used in the first period. In fact, agent 2 benefits from the use of the greatest

clearing payment matrix in the first period, the unique clearing payment matrix where

agent 1 does not default in the first period.

7 Bankruptcy Rules

In this section, we fix the set of agents I and the division rules d, but allow the endowments

z and the liability matrix L to vary. To avoid confusion, we make the dependence of the

division rule on the vector of liabilities explicit and write di(E,Li) for the division rule of

agent i ∈ I. We also make the dependence on endowments of the asset value and equity

explicit and write ai(z, P ) and ei(z, P ) for the asset value and equity of agent i ∈ I,

respectively.

We assume that, for every i ∈ I, di is continuous in Li, an assumption that is satisfied

for all commonly used division rules. The set of financial networks, denoted by N , consists

of all pairs of vectors of endowments in RI
+ and liability matrices in M, so

N = RI
+ ×M.

We next define the bankruptcy rule b : N → M by associating the greatest clearing

payment matrix to the financial network N = (z, L) ∈ N .

Definition 7.1. Let I and d be given. The bankruptcy rule b : N →M is given by

b(z, L) = P+, (z, L) ∈ N ,

where P+ is the greatest clearing payment matrix for the financial network (z, L).

In general, each agent could use a different division rule. However, if a bankruptcy

rule is based on the same division rule for each agent, then the name of the bankruptcy

rule can be inherited from the division rules. For instance, if all agents use the constrained

equal awards division rule, then we call the resulting bankruptcy rule the constrained equal

awards bankruptcy rule.

We endow N with the standard topology, based on the Euclidean topology for endow-

ments and liabilities. Continuity is an attractive property of a bankruptcy rule since it

implies that small changes in the financial network induce small changes in the resulting

payment matrix. Continuity is also used as an axiom in Csóka and Herings (2021) in order

to axiomatize the proportional bankruptcy rule. The next result states that b is continuous

at any financial network with a unique clearing payment matrix.
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Theorem 7.2. Let I and d be given. Let (z, L) ∈ N be such that the financial network

N = (z, L) has a unique clearing payment matrix. Then b is continuous at N.

Proof. Let (Nn)n∈N = (zn, Ln)n∈N be a sequence of financial networks in N that

converges to the financial network N = (z, L). We have to show that the sequence of

payment matrices (P n)n∈N defined by P n = b(zn, Ln) converges to the payment matrix

b(z, L).

The convergence of the sequence (Ln)n∈N implies that it is bounded, which in turn

implies that the sequence (P n)n∈N is bounded. Using the boundedness of the sequence

(P n)n∈N, we can assume without loss of generality that it has a limit P ∈ M. For every

n ∈ N, it holds by Theorem 3.1 that

P n
ij = dij(ai(z

n, P n), Li), i, j ∈ I.

We have that

P ij = lim
n→∞

P n
ij = lim

n→∞
dij(ai(z

n, P n), Li) = dij(ai(z, P ), Li), i, j ∈ I,

where the third equality uses that dij and ai are continuous. It follows by Theorem 3.1

that P is a clearing payment matrix of the financial network N. Since N has a unique

clearing payment matrix by assumption, P is also the greatest clearing payment matrix

and therefore equal to b(z, L) by definition of b. 2

Consider the proportional bankruptcy rule or the constrained equal losses bankruptcy

rule on the domain of financial networks (z, L) where the first condition of Theorem 4.5 is

satisfied. By Theorem 7.2, these bankruptcy rules are continuous. Such a result was also

obtained in Csóka and Herings (2017) for the special case where all initial endowments are

strictly positive. They also present the following example to show that a similar result

does not hold for the constrained equal awards bankruptcy rule.

Example 7.3. Consider the first period in the financial network of Example 6.1 with three

agents I = {1, 2, 3}, each using the constrained equal awards rule. Table 5 presents the

endowments, the liabilities, the payment matrix P+ resulting from the constrained equal

awards bankruptcy rule, and the induced asset values and equities. Agents are all able to

pay their liabilities, though agents 1 and 2 end up with zero equity.

Now, for ε > 0, consider the financial network N ε = (z, Lε) as displayed in Table 6,

where the liabilities of both agents 1 and 2 to agent 3 have gone up by ε.

Since constrained equal awards requires the same payments from agent 1 to agents 2

and 3, up to their claims, agent 1 can pay at most one unit to both agents. The same is
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z L P+ a(z, P+) e(z, P+)

1 0 2 1 0 2 1 3 0

1 2 0 1 2 0 1 3 0

1 0 0 0 0 0 0 3 3

Table 5: The payment matrix, asset values, and equities resulting from constrained equal

awards rules in Example 7.3 for the financial network N = (z, L).

z Lε P ε a(z, P ε) e(z, P ε)

1 0 2 1+ε 0 1 1 2 0

1 2 0 1+ε 1 0 1 2 0

1 0 0 0 0 0 0 3 3

Table 6: The payment matrix, asset values, and equities resulting from constrained equal

awards rules in Example 7.3 for the financial network N ε = (z, Lε).

true for the payments of agent 2 to agents 1 and 3. Under these payments, agents 1 and 2

end up with zero equity and default partially on all their liabilities. We have that

lim
ε↓0

b(zε, Lε) = lim
ε↓0

P ε =

 0 1 1

1 0 1

0 0 0

 6=
 0 2 1

2 0 1

0 0 0

 = P+ = b(z, L),

so while the financial networks N ε converge to N when ε tends to zero, the corresponding

payment matrices do not converge.

The lack of continuity of b in Example 7.3 is not resolved by making another selection

from the set of clearing payment matrices. The financial network N has many clearing

payment matrices compatible with constrained equal awards rules. The greatest clearing

payment matrix is equal to P+ and the least clearing payment matrix is equal to P−, given

by

P− =

 0 1 1

1 0 1

0 0 0


The following example shows that an alternative definition of the constrained equal awards

bankruptcy rule that selects the least clearing payment matrix would not solve the lack of

continuity.

Example 7.4. For ε > 0, consider the financial network N ε = (zε, L) as displayed in

Table 7.
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zε L P ε a(zε, P ε) e(zε, P ε)

1+ε 0 2 1 0 2 1 3 + ε ε

1+ε 2 0 1 2 0 1 3 + ε ε

1 0 0 0 0 0 0 3 3

Table 7: The payment matrix, asset values, and equities resulting from the constrained

equal awards rules in Example 7.4 for the financial network N ε = (zε, L).

The payment matrix P ε is the unique clearing payment matrix in the financial network

N ε under constrained equal awards rules. The financial networks N ε tend to the financial

network N of Example 7.3 as ε goes to zero. The payment matrices P ε are all equal to

b(z, L). Selecting the least clearing payment matrix for N under constrained equal awards

rules instead of the greatest clearing payment matrix b(z, L) would then lead to a violation

of continuity in this example.

8 Conclusion

We consider financial networks where agents are linked to each other with financial con-

tracts. In case of bankruptcy, the payments to other agents are determined by bankruptcy

law. Although the literature has almost exclusively focused on proportional division rules,

in bankruptcy law certain claims are often given priority over other claims. We therefore

allow for general division rules. The set of clearing payment matrices can be shown to

be a lattice, so there always exists a least clearing payment matrix and a greatest clear-

ing payment matrix. Since these clearing payment matrices may not all coincide, we are

interested in conditions that guarantee uniqueness.

Uniqueness of clearing payment matrices depends heavily on the structural properties

of the network of financial liabilities, which can be represented as a directed graph. We

partition the network of financial liabilities into strongly connected components. A strongly

connected component that consists of more than one agent is called a cycle. An agent that

is part of such a component is said to be cyclical.

We provide the following sufficient condition for the clearing payment matrix to be

unique: (1) for every cycle without successors at least one agent has a positive endowment,

(2) the division rules of cyclical agents with positive endowments are positive monotonic,

and (3) the division rules of cyclical agents with zero endowments are strictly monotonic.

Positive monotonicity is a new condition. It requires that if a defaulting agent makes a

positive payment to another agent and the asset value of the former agent increases, then

the payment to the latter agent increases as well. The well-known constrained equal losses

division rule is positive monotonic, but its dual, the constrained equal awards division
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rule is not. The proportional division rule is strictly monotonic and therefore positive

monotonic. Priority-based division rules are not positive monotonic.

Our sufficient condition for uniqueness is easily seen to imply several uniqueness con-

ditions that have been provided before in the literature, which mostly considers only pro-

portional division rules. One case is where all agents have positive endowments. Another

where there are no cyclical agents or all agents have a positive liability to the outside

sector. We show how the outside sector can be represented by an additional agent without

liabilities to the other agents. We demonstrate that priority-based division rules as well

as constrained equal awards division rules may lead to a multiplicity of clearing payment

matrices, even when all endowments are positive.

We define bankruptcy rules by assigning the greatest clearing payment matrix to a

financial network. We show that uniqueness of clearing payment matrices is closely related

to the desirable property of continuity of bankruptcy rules. We show by means of an

example that bankruptcy rules that are based on constrained equal awards division rules

violate continuity. The violation of continuity is not repaired when defining bankruptcy

rules alternatively by assigning the least clearing payment matrix to a financial network.
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