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Optimality of equal versus unequal cluster sizes in the context of multilevel
intervention studies is examined. A Monte Carlo study is done to examine to what
degree asymptotic results on the optimality hold for realistic sample sizes and
for different estimation methods. The relative D-criterion, comparing equal versus
unequal cluster sizes, almost always exceeded 85%, implying that loss of information
due to unequal cluster sizes can be compensated for by increasing the number of
clusters by 18%. The simulation results are in line with asymptotic results, showing
that, for realistic sample sizes and various estimation methods, the asymptotic results
can be used in planning multilevel intervention studies.

Keywords D-optimality; Ds-optimality; Mean squared error; Multilevel
intervention studies; Relative efficiency; (Restricted) maximum likelihood;
Unequal cluster sizes.

Mathematics Subject Classification Primary 62K05; Secondary 65C05.

1. Introduction

Many study designs evaluating the effect of an intervention are characterized by a
nesting of subjects within clusters. Examples are the effect of a prevention program
for citizens nested within cities or the effect of medication applied to patients
nested within hospitals. Depending on whether such clusters are randomized to
the intervention or whether persons within such clusters are randomized to the
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intervention, we will call these designs cluster randomized trials and multicenter
trials, respectively. The data obtained with such designs are often analyzed with
multilevel analysis or mixed effects regression (Verbeke and Molenberghs, 2000).

In planning cluster randomized trials and multicenter studies, several design
issues are important: (1) randomization at person or randomization at the cluster
level, (2) the choice of the number of clusters, and (3) the choice of the number of
persons within each cluster. Formulas for optimal numbers of persons and optimal
numbers of clusters have been derived in several studies (e.g., Headrick and Zumbo,
2005; Liu, 2003; Moerbeek et al., 2001; Raudenbush, 1997; Raudenbush and Liu,
2000). These formulas assume the number of persons in each cluster are all equal.
In practice, however, equal cluster sizes are rarely feasible. This may be due to
variation in actual cluster size, but also due to non response or dropout.

The issue that we want to examine is whether, and to what extent, unequal
cluster sizes are less efficient. There are asymptotic results for cluster randomized
trials, showing that equal cluster sizes are asymptotically optimal for estimating
fixed effects (Ankenman et al., 2003; Giovagnoli and Sebastiani, 1989). This implies
that unequal cluster sizes lead to loss of power. Ankenman et al. (2003) also show
that equal cluster sizes are asymptotically optimal for the variance components if
the intraclass correlation is larger than 0.50. For multicenter studies, equal cluster
sizes are also optimal asymptotically, when estimating fixed effects, but this result
is obtained assuming that there is no correlation between random intercept and
random slope (Van Breukelen et al., 2007).

In the present study, we will first complement these studies by providing
asymptotic results for both cluster randomized and multicenter trials. Second, we
will examine to what extent the results on the efficiency of unequal vs. equal cluster
sizes hold in case the number of clusters and the number of persons within a cluster
are of realistic sizes. This will be done using an extensive Monte Carlo simulation
study.

The article is structured as follows. Section 2 presents the multilevel model or
mixed effects regression model for both cluster and person randomization. In Sec. 3,
several criteria for evaluating the performance of equal vs. unequal cluster sizes will
be presented. Section 4 provides the explicit expressions for the asymptotic relative
efficiencies for both cluster randomized trials and multicenter trials. Section 5
delineates the design of the simulation study that examines the relative efficiency of
equal versus unequal cluster sizes in case of realistic sample sizes and will report
upon the results of this simulation. The article closes with some implications for the
planning phase of cluster randomized trials and multicenter trials. Issues for further
research are also discussed.

2. The Multilevel Model for Intervention Studies

2.1. Model for Cluster Randomized Trials

Let there be K clusters, half of which are randomly allocated to one of two
conditions: treatment or control. In cluster j (j = 1� � � � � K�, there are nj persons,
with all persons receiving the treatment to which this cluster was allocated. The
total number of persons is N =∑K

j=1 nj . The dependent variable is a quantitative
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outcome, denoted as Yij , for person i in cluster j. The model for analyzing the data
is as follows:

Yij = �0j + �1Xj + �ij� with �0j = �0 + u0j� (1)

where Xj denotes the treatment to which cluster j is allocated, and is coded as +1
for treated and −1 for control clusters. With this coding scheme, �0 represents the
grand mean of the outcome, and �1 is half the treatment effect. The terms �ij and
u0j represent a random person and random cluster effect, which are assumed to be
independently normally distributed with variances �2 and �2

0, respectively. The mean
of these random effects is zero. The model for cluster randomization actually has
four parameters that are estimated: two fixed regression weights, �0 and �1, and two
variance components, �2

0 and �2. A relevant concept is the intraclass correlation,
which is the correlation between the outcome measures for two randomly drawn
persons from the same cluster. This is denoted as � and is equal to � = �2

0/��
2
0 + �2��

2.2. Model for Multicenter Trials

In the case of multicenter trials, there is randomized allocation of persons within
clusters. Some of the persons within a center get the treatment and others do not.
In this case, the model is as follows:

Yij = �0j + �1jXij + �ij� with �0j = �0 + u0j and �1j = �1 + u1j� (2)

where Xij again is coded as +1 for the treatment group and −1 for the control
group. Note that Xij also has a subscript for persons, indicating that this variable
may vary from person to person within a cluster. New to this model is the random
slope effect u1j , which is assumed to be normally distributed with variance �2

1 and
has a covariance �01 with the random intercept u0j . All random effects have a
mean 0.

In the case of person randomization, the expression for the intraclass correlation
is more complicated, and depends on whether we consider the correlation between
the outcomes of two persons within the same cluster and the same treatment, or the
correlation between the outcomes of two persons within the same cluster but with
different treatments. We will give the expression for two persons getting the same
treatment, assuming �01 = 0 	 � = ��2

0 + �2
1�/��

2
0 + �2

1 + �2�. It will furthermore be
useful to define the variance ratio 
 of the intercept variance and the slope variance:

 = �2

0/�
2
1. Note that this model has six parameters: two fixed regression weights, �0

and �1, and four (co)variance components, �2, �2
0� �

2
1, and �01.

The model parameters can be estimated through maximum likelihood (ML)
or restricted maximum likelihood estimation (REML) (Verbeke and Molenberghs,
2000, pp. 42–43). One may obtain negative estimates for the variance components.
If one wants to interpret these parameters as variances, negative estimates should
be reset to zero (truncation), as variances cannot be negative. Truncating negative
estimates to zero, however, leads to biasedness in the estimates. Therefore, others
have argued for a marginal model interpretation of the multilevel model, in which
case negative values for the individual variance components are allowed, as long as
the variance-covariance matrix of the outcome variable is positive definite (Verbeke
and Molenberghs, 2000, p. 53). Both truncation and non truncation of estimators
of the variance components will be considered in this article.
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3. Evaluation Criteria

In comparing equal vs. unequal cluster sizes, different criteria will be examined.
First, we will consider the bias, variance, and mean squared error for the separate
model parameters (Mood et al., 1974, pp. 291–294). We will compare equal and
unequal cluster sizes on these three criteria, by taking ratios. This will be denoted
as relative bias, relative variance, and relative mean squared error, respectively.
For cluster randomization, we are primarily interested in the estimator of the
intervention effect, �1, and the estimator of the random intercept variance, �2

0.
For person randomization, we are primarily interested in the estimator of the
intervention effect, �1, and the estimator of the random slope variance, �2

1, reflecting
the inter-individual variation of this intervention effect.

Focusing on the variances of the estimators involved in the multilevel models
is justified to the extent that the mean squared error consists of the variance of
a parameter estimate (Mood et al., 1974, p. 293). Stated otherwise, focusing on
the variances is justified in case the estimators have small biases. For all model
parameters involved, a commonly used criterion is the determinant of the variance-
covariance matrix of the parameter estimators. This criterion is known as the
D-criterion.

In terms of this D-criterion, we can compare equal cluster sizes to unequal
cluster sizes. Let �f denote the vector of the f fixed parameters and let �r denote
the vector of r variance components. Then we define �T = ��Tf � �

T
r � as the vector

of all, p = f + r, parameters in the model. Note that for the model for cluster
randomization p = 4, whereas for person randomization p = 6 or p = 5 (when
�01 = 0).

Let  denote the design of a study. The covariance matrix of the estimators �̂,
given a design , is denoted as cov��̂ � �. Let Det�cov��̂ � �� denote the determinant
of this variance-covariance matrix of the estimators �̂. In what follows, let ∗ denote
a design with equal cluster sizes and let  denote a design with unequal cluster sizes,
but with the same number of clusters, K� and the same total sample size, N� as
*. The relative efficiency (RE) of design  compared to design * in terms of the
D-criterion is:

RE�D� =
(
Det�cov��̂ � ∗��
Det�cov��̂ � ��

)1/p

� (3)

In case we are interested in either the fixed parameters or the variance components
of the model, separately, we can employ the Ds-criterion. This is similar to the
D-criterion but then applied to a subset of the model parameters (Atkinson and
Donev, 1996, p. 109). The RE in terms of the Ds-criterion can be defined for the
fixed parameters, �f , and for the variance components, �r , as follows:

RE�Ds�fixed�� =
(
Det�cov��̂f � ∗��
Det�cov��̂f � ��

)1/f

and

RE�Ds�random�� =
(
Det�cov��̂r � ∗��
Det�cov��̂r � ��

)1/r

�

(4)
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The inverse of the RE gives the number of times that design , with unequal cluster
sizes, has to be replicated in order to give the same statistical information about the
parameters as the design *, with equal cluster sizes.

The D-criterion and Ds-criterion are chosen for two reasons. First, a design
that minimizes the D-criterion or Ds-criterion in fact minimizes the area of the
simultaneous confidence interval of the parameters (Atkinson and Donev, 1996,
pp. 106–107). Second, D-optimal designs are independent of the scale of the
variables contained in the design matrices (Atkinson and Donev, 1996).

4. Asymptotic Relative Efficiencies

Since asymptotically there are no correlations between ML estimators of the fixed
parameters and the variance components (see, e.g., McCulloch and Searle, 2001,
p. 176), the relation between the relative efficiencies in terms of the D-criterion and
the Ds-criterion for the fixed parameters and the variance components is as follows:

RE�D� = √
RE�Ds�fixed��×RE�Ds�random��� (5)

4.1. Cluster Randomized Trials

For cluster randomized trials, we can derive asymptotic expressions for the relative
efficiencies in terms of the Ds-criterion. Let n̄ denote the average cluster size of
the K clusters and let wj be defined as: wj =

(
�2
0 + �2/nj

)−1
. For the case of equal

cluster sizes, we have nj = n̄, and the weight wj is denoted as we. In Van Breukelen
et al. (2007) and Appendix A1, respectively, it is shown that the expressions for the
relative efficiencies based on the Ds-criteria are as follows:

RE�Ds�fixed�� =
(
n̄+ �1− ��/�

n̄

)
× 1

K

K∑
j=1

(
nj

nj + �1− ��/�

)
� and (6)

RE�Ds�random�� =

√√√√√N
∑K

j=1 w
2
j −

(∑K
j=1 wj

)2

K�N − K�w2
e

� (7)

Van Breukelen et al. (2007) and Appendix A1, respectively, also show that
the asymptotic relative efficiencies for the individual parameter estimators are:
RE��̂0� = RE��̂1� = RE�Ds�fixed�� and RE��̂2

0� ≈ �RE�Ds�random���2�

4.2. Multicenter Trials

For multicenter trials, the asymptotic results for the relative efficiency for the
fixed parameter estimators are quite elaborate and therefore are only given in
the Appendix (Appendix A2). These can be used in numerically evaluating the
asymptotic relative efficiency of a design. No results were derived for the relative
efficiency with respect to the variance components.

5. Simulation Study of the Relative Performance for Small Sample Sizes

We will examine, through an extensive Monte Carlo simulation study, to what
extent the asymptotic results hold for numbers of clusters and cluster sizes that
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are small. In addition to the relative variances of the parameter estimates, the
relative biases and relative mean squared errors will be examined. In the case of
multicenter trials, there are no asymptotic results for variance components, so that
the Monte Carlo results provide some insights into the relative efficiency for these
parameter estimators.

5.1. Design

In the Monte Carlo simulations, three factors were systematically varied when
studying cluster randomized trials: (1) the size of the intraclass correlation, (2) the
frequency distribution of the cluster sizes, and (3) the estimation method. In the case
of person randomization, two additional factors were varied: (4) the value of the
variance ratio 
 = �2

0/�
2
1 and (5) the correlation between the random intercept and

random slope ��01�. Table 1 summarizes the choices made for these factors, their
motivation is given in what follows.

5.1.1. Intraclass Correlation. The variance components, �2
0 for cluster randomiza-

tion, and �2
0 + �2

1 for person randomization, took values ranging from 1–30, with
the error variance �2 simultaneously varying from 99–70, to keep the total variance
constant (at 100). As a result, the intraclass correlation, �, ranged by steps of size
0.01 from 0.01–0.30, which encompasses realistic values as encountered in cross-
sectional studies (Smeeth and Siu-Woon, 2002).

5.1.2. Frequency Distribution. To examine the effect of unequal cluster sizes,
five different frequency distributions of cluster sizes were studied: (1) a uniform
distribution; (2) a unimodal distribution; (3) a bimodal distribution; (4) a positively
and (5) negatively skewed distribution. Three cluster sizes were assumed, with a
large range of cluster sizes, namely 36 (28 in the case of a negatively skewed
distribution, in order to prevent negative cluster sizes). Since n̄ = 24, for symmetrical

Table 1
Overview of the conditions of the Monte Carlo simulations

Factor Levels

Intraclass correlation � = 0�01 upto 0.30, with steps of 0.01
Distribution of cluster sizes1 Uniform distribution, unimodal distribution,

bimodal distribution, positively skewed
distribution, negatively skewed distribution

Estimation method ML with truncation, ML without truncation
REML with truncation, REML without
truncation

Only for person randomization
Intercept-slope correlation 0.0, 0.50, and −0�50
Variance ratio2 1

Note 1. A more detailed description of the different distributions can be found in Table 2.
Note 2. Since a numerical investigation based on asymptotic results showed that a variance

ratio of 1 yielded the minimum relative efficiency in terms of Ds(fixed), the Monte Carlo
simulations for small samples were limited to a variance ratio of 1.
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Table 2
Distributions of cluster sizes examined in the Monte Carlo simulations

Cluster sizes Cluster frequencies

Distribution1�2 ga gb gc fa fb fc

Uniform distribution 6 24 42 14 14 14
Unimodal distribution 6 24 42 8 26 8
Bimodal distribution 6 24 42 18 6 18
Positively skewed distribution 12 30 48 20 16 6
Negatively skewed distribution 4 18 32 6 12 24

Note 1: fa = number of clusters of size ga (small), fb = number of clusters of size gb
(medium), fc = number of clusters of size gc (large)
Note 2: Cluster sizes and cluster frequencies are chosen such that the total number of

clusters is equal to 42, the average cluster size is 24, the difference between the largest and
smallest cluster size is equal to 36 (except for the negatively skewed distribution, where the
range is 28 to prevent ga < 0) and all cluster size frequencies and cluster sizes are even.

distributions this implies that the smallest n = 6 and the largest n = 42. Note that
the cluster sizes were deliberately chosen to be small, to study the applicability of
the asymptotic results.

A numerical study based on the asymptotic relative efficiencies showed that as
the range of cluster sizes increases, the relative efficiency becomes smaller. Since we
are primarily interested in the minimum value of relative performance, only large
ranges were considered. An overview of the cluster sizes and their frequency of
occurrence is given in Table 2.

5.1.3. Estimation Methods. Four different, commonly used, estimation methods
were considered: Maximum Likelihood (ML) estimation and Restricted Maximum
Likelihood (REML) estimation, combined with either truncation of negative
estimates of the variance components to 0, or without such truncation.

5.1.4. Intercept-Slope Correlation. In the case of person randomization, it is
possible to estimate also a random slope for the intervention effect. A numerical
study based on the asymptotic results for the fixed effect parameters showed that
the minimum relative efficiency is smallest for the case of no correlation. To also
get an impression of the relative efficiency, in case there is a correlation between
random intercept and slope, we also consider �01 = 0�50. This also covers the case
of �01 = −0�50, since for a 50/50 allocation ratio, the relative efficiencies of the fixed
parameter estimates are symmetrical in �01 = 0.

5.1.5. Variance Ratio. We assume the variance ratio 
 = �2
0/�

2
1 = 1. Through a

numerical study examining the asymptotical relative efficiency based on Ds (fixed),
involving values of 
 from 0.02–1, with steps of 0.02, and from 1.0–100 with steps
of 2, it was established for different types of distributions, for different intraclass
correlations and for different intercept-slope correlations that 
 = 1 gives the lowest
value of the relative efficiency. Since we are interested in the minimum value for the
relative efficiency, we only consider 
 = 1 in this study.
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For all simulations, we chose realistic numbers of clusters and persons within
clusters: 42 clusters, with an average cluster size of 24. We assumed 50/50 allocation,
that is, 50% of the clusters are assigned to one of two treatment conditions in
case of cluster randomization, and 50% of the persons within a cluster are assigned
to each of the two treatment conditions in case of person randomization. The
fixed intercept, �0, was set at 50, whereas the fixed effect parameter, �1, was set
at 5, without loss of generality, because the covariances of parameter estimators
are asymptotically independent of the fixed effects (see Van Breukelen et al., 2007;
Appendices A1 and A2). The total variance, �2

0 + �2
1 + �2, was, without loss of

generality, set equal to 100.

5.2. Simulation Procedure

For each of the simulation conditions, 10,000 data sets were generated, each
representing the data for 42 clusters consisting of, on average, 24 persons. The
simulations as well as the estimation of the model parameters were performed using
version 1.10.0007 of MLwiN (Rasbash et al., 2000). Both Iterative Generalized
Least Squares and Restricted Iterative Generalized Least Squares were employed to
obtain, respectively, the ML and REML estimates of the model parameters. Both
estimation with and without truncation of the variance component estimates was
carried out.

In model estimation, the convergence criterion was set to 0.001 and there was
no limitation on the maximum number of iterations. In almost all cases, MLwiN
reached convergence. Exceptions occurred for person randomization, in which case
for intraclass correlations smaller than 0.03 and positively skewed cluster size
distributions, a non positive definite variance-covariance matrix of the outcome
variable resulted. No results were obtained for this (small) range of intraclass
correlations.

5.3. Results for Cluster Randomization

5.3.1. Bias, Variance and Mean Squared Error. The squared biases are less than
5% of the mean squared errors, and in most cases, even less than 1%. Hence, the
relative mean squared errors are very close to the relative variances. For cluster
randomization, the most relevant parameters are the intervention effect and the
random intercept variance. The relative mean squared errors for these parameters
are shown in Figs. 1 and 2 for the unimodal and the bimodal distribution, which
give the most extreme results. The differences in estimation methods are mostly
smaller than 0.05. For intraclass correlations smaller than 0.03, the differences
can become larger, but maximally 0.13. Since there are hardly any differences
between ML and REML and between truncation and non truncation of the variance
component estimates, we only show the results for REML and truncation.

Figure 1 shows that, in line with the asymptotic results on the variance of
the effect estimator, unequal cluster sizes yield estimates with higher-mean squared
errors than equal cluster sizes. In most cases, however, the relative mean squared
error of the estimator of the intervention effect exceeds 0.85. Only for the bimodal
distribution, the relative mean squared error can become lower than 0.85, but always
exceeds 0.82. Figure 2 shows, in line with the asymptotic results, that for small
intraclass correlations, the relative mean squared errors of the intercept variance
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Figure 1. Relative mean squared errors of the fixed effect estimator for cluster randomized
trials and REML estimation with truncation. Displayed is also the relative asymptotic
variance of the ML estimator.

may be larger than 1, implying that unequal cluster sizes yield better estimates of the
random intercept variance in these cases. Furthermore, the relative mean squared
errors always exceed 0.80. The exception is again the bimodal distribution, in which
case the relative mean squared error can become lower, but always exceeds 0.77.

For both the intervention effect and the variance of the random intercept,
the relative mean squared errors can be modeled rather adequately by the relative
variances as derived asymptotically. Examining the loss of mean squared error
through these analytical results therefore seems appropriate.

Figure 2. Relative mean squared errors of the intercept variance estimator for cluster
randomized trials and REML estimation with truncation. Displayed is also the relative
asymptotic variance of the ML estimator.
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Figure 3. The relative D-criterion for cluster randomized trials and REML estimation with
truncation. Displayed is also the relative D-criterion based on the asymptotic variances and
covariances of the ML estimators of the model parameters.

5.3.2. D-Criterion and Ds-Criteria. Since the squared biases are small compared
to the variances, we can also consider criteria based only on the variances of the
estimators. The relative efficiencies in terms of the D-criterion are displayed in
Fig. 3, both for the unimodal distribution and the bimodal distribution, which
represent extreme situations. Since for both the D-criterion and the Ds-criterion
there are hardly any differences between the results obtained with different
estimation methods (always smaller than 0.05), only the results for REML in
combination with truncation will be shown.

In Fig. 3, the relative efficiency in terms of the D-criterion is almost always
lower than 1, in line with the asymptotic results. For the bimodal distribution,
the relative efficiency can become as low as 0.85. For most distributions,
however, similar to the results for the unimodal distribution, the relative efficiency
exceeds 0.90.

Figures 4 and 5 show relative efficiencies in terms of the Ds-criterion for
the fixed effects and the variance components, respectively. For the bimodal
distribution, the relative efficiency is lowest but just below 0.85 for the fixed effects
and above 0.85 for the variance components. Note that the relative efficiency for
the variance components can become larger than 1 for values of the intraclass
correlation close to 0. For very small intraclass correlations, unequal cluster sizes
are more efficient when the estimation of variance components is at stake.

Finally, although the derived asymptotic relative efficiencies are somewhat
higher than the simulated small sample relative efficiencies, the simulated relative
efficiencies are rather adequately described by the asymptotic relative efficiencies.

5.4. Results for Person Randomization

5.4.1. Bias, Variance and Mean Squared Error. For the fixed effect estimators, the
share of the squared bias in the mean squared error is less than 1%. Consequently,
the mean squared errors are very close to the variances of the parameter estimators.
The relative mean squared errors for the intervention effect are displayed in Fig. 6
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Figure 4. The relative Ds-criterion of the fixed effect parameters for cluster randomized
trials and REML estimation with truncation. Displayed is also the relative Ds-criterion
based on the asymptotic variances and covariance of the ML estimators of the fixed effect
parameters.

for the extreme distributions (unimodal and bimodal), in case there is no correlation
between random slope and random intercept. Since the results of the different
estimation methods are very similar only the results for REML, with truncation of
the variance component estimates, are shown.

In line with the asymptotic results on the variance of the intervention effect
estimator, Fig. 6 shows that unequal cluster sizes yield estimates with higher mean
squared errors than equal cluster sizes. For most cluster size distributions, the
relative mean squared error of the effect estimator exceeds 0.85. Only for the
bimodal distribution, the relative mean squared error can become somewhat lower
than 0.85. A similar pattern of results was obtained in the case of the intercept-

Figure 5. The relative Ds-criterion of the variance components for cluster randomized trials
and REML estimation with truncation. Displayed is also the relative Ds-criterion based on
the asymptotic variances and covariance of the ML estimators of the variance components.
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Figure 6. Relative mean squared errors of the fixed effect estimator for person randomized
trials and REML estimation with truncation. Displayed is also the relative asymptotic
variance of the ML estimator.

slope correlation �01 = 0�50, the minima of the relative mean squared errors being
somewhat higher.

In Fig. 7, the relative mean squared error of the slope variance estimator can
be larger than 1, implying that unequal cluster sizes can yield better estimates of
the slope variance. For most distributions the relative mean squared errors exceed
0.85, the exception being the bimodal distribution, where the relative mean squared
error always exceeds 0.77. Similar results are obtained in case of an intercept-slope
correlation of �01 = 0�50.

For the random slope variance the squared biases can make up more than
10% of the mean squared errors. This occurred when the variance estimators were

Figure 7. Relative mean squared errors of the slope variance estimator for person
randomized trials and REML estimation with truncation.
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Figure 8. The relative D-criterion for person randomized trials and REML estimation
without truncation.

truncated and the intraclass correlation was smaller than 0.03. For non truncation,
the squared biases were less than 5% of the mean squared errors. In what follows, we
will therefore present results for the D-criterion and the Ds-criterion for the variance
component estimators only for non truncation. Since there were small differences
between the different estimation methods for intraclass correlations higher than
0.02, these results are also representative of the other estimation methods.

5.4.2. D-Criterion and Ds-Criteria. The relative efficiencies in terms of the
D-criterion are displayed in Fig. 8, for both the unimodal distribution and the
bimodal distribution. The relative efficiency in terms of the D-criterion can become
larger than 1, for small intraclass correlations. However, for larger intraclass
correlations, unequal cluster sizes are clearly less efficient than equal cluster sizes,
although the relative efficiency is never lower than 0.85. For most distributions,
similar to the results for the unimodal distribution, the relative efficiency even
exceeds 0.90. Similar results were obtained for �01 = 0�50.

Figure 9. The relative Ds-criterion of the fixed effect parameters for person randomized trials
and REML estimation with truncation. Displayed is also the relative Ds-criterion based on the
asymptotic variances and covariance of the ML estimators of the fixed effect parameters.
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Figure 10. The relative Ds-criterion of the variance components for person randomized
trials and REML estimation without truncation.

Figures 9 and 10 show relative efficiencies in terms of the Ds-criterion for
the fixed effects and the variance components, respectively. For the bimodal
distribution, the relative efficiency for the fixed effects is lowest but still exceeds
0.82. For the remaining distributions the relative efficiencies are always near to or
above 0.90. The relative efficiency for the variance components always exceeds 0.85,
and can become larger than 1 for values of the intraclass correlation close to 0.
For very small intraclass correlations, also in the case of person randomization,
unequal cluster sizes turn out to be more efficient when the estimation of variance
components is at stake. The results again are similar in case of �01 = 0�50.

Finally, for the Ds-criterion in case of the fixed effect estimators, the derived
asymptotic relative efficiencies are rather close to the simulated small sample relative
efficiencies.

6. Conclusion and Discussion

The optimality of unequal vs. equal cluster sizes was studied for multilevel
intervention studies with small samples. Asymptotic results on the relative variances
of the intervention effect estimators were given, as well as on efficiencies in terms
of the Ds-criterion for the fixed effects for both cluster and person randomization.
For cluster randomization asymptotic results on the relative variance of variance
component estimators were also given, as well as the relative efficiency in terms
of the D-criterion and the Ds-criterion for the variance components. The degree
to which these results hold for small samples was studied through a Monte Carlo
simulation study. The differences between the estimation methods used turned out
to be very small. More importantly, in most cases the small sample results were
rather adequately described by the asymptotic results, implying that these results
can be used in planning a multilevel intervention study.

The loss of efficiency in terms of the D-criterion and the Ds-criterion for
variance components turned out to be maximally 15%, which means that this loss
can be compensated by sampling 18% more clusters. The loss of efficiency in terms
of the Ds-criterion for the fixed effects turned out to be maximally 18%, which
means that this loss can be compensated by sampling 22% more clusters. The
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relative mean squared errors for the intervention effect turned out to be at least
0.82 for both cluster and person randomization. The relative mean squared error
for the random intercept variance estimator (as examined for the case of cluster
randomization) and for the slope variance estimator (as examined for the case of
person randomization) were at least 0.77.

These results were validated for other realistic cluster size distributions,
involving more than three cluster sizes, involving other values for the model
parameters and involving both cluster and person randomization. Results for
these examples were in line with the results obtained in the present Monte Carlo
simulation study.

Although asymptotic results were derived for a general allocation ratio of p, the
Monte Carlo study only focused on a 50/50 allocation ratio. In case the costs of
allocating a person to an experimental group and a control group are not the same,
unequal allocation ratios may be more efficient (Liu, 2003). Further studying to
which degree the asymptotic results hold for other allocation ratio’s would therefore
be a useful extension of the present study.

Since in many intervention studies a binary outcome measure is used, a final
useful extension of the present study would involve the logistic mixed effects model.
Formulas for the asymptotic relative efficiencies could be derived, which also could
be tested for their practical usefulness through a Monte Carlo simulation study,
similar to the present study.

Appendix A1. Relative Efficiency in Terms of the Ds-Criterion of the
Variance Components in the Case of Cluster Randomized Trials

The model is defined as in Eq. (1). Searle et al. (1992, p. 89), but also Ankenman
et al. (2003, p. 393) give expressions for the asymptotic variance-covariance matrix
of the ML-estimators of the variance components:
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with wj being defined as: wj = 1/
(
�2
0 + �2/nj

)
. Note that the asymptotic variance-

covariance matrix is independent of the allocation ratio used in cluster randomized
trials. Searle et al. (1992, p. 90) remark that the determinant of the matrix in
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Let we be defined as: we = 1/
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to be equal to:

RE�Ds�random�� =

√√√√(
N
∑K

j=1 w
2
j −

(∑K
j=1 wj

)2)
K�N − K�w2

e

� (A.3)



Optimality of Unequal Cluster Sizes 237

The relative efficiency for the random intercept variance can also be derived
from Eq. (A.1). We obtain:
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The right factor in the multiplication lies between �N − K�/N and N/�N − K�.
Note that whenever n̄ is large, these boundaries will be close to one. Hence:
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Appendix A2. Relative Efficiency for the Ds-Criterion
of Fixed Parameters in the Case of Person Randomized Trials

The model is defined as in Eq. (2). Let Xj be the design matrix for cluster j, and
let Vj be the covariance matrix of the outcome variable for cluster j. Let p be the
proportion of persons within each cluster allocated to the treated group, and let
�1− p� be the proportion of persons allocated to the control group. We then have:

Xj =
[

1njp 1njp
1nj�1−p� −1nj�1−p�

]
� and asymptotically also (A.6)
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The asymptotic covariance matrix of the ML estimators of the fixed parameters
can be expressed as (Verbeke and Molenberghs, 2000, p. 56):
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. Making use of a result on inverses of partitioned

matrices (Harville, 1997, p. 99, Theorem 8.5.11), the inverse V−1
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Pre- and postmultiplication of this inverse matrix by the design matrix Xj and
summation across all K clusters yields the inverse of the covariance matrix of fixed
effect parameter estimators:
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The covariance matrix V is then obtained as:

V =
[

v22 −v12

−v12 v11

]
× 1(

v11v22 − v212
) � (A.11)

No simple expressions result for the determinant of this matrix. But the above
expressions can be used in numerically evaluating the relative efficiency of designs
in terms of the Ds-criterion for the fixed effect parameters.

In our simulation study, we studied the situation where the intercept and
slope variances are equal, and the allocation proportion p = 0�5. If we additionally
assume there is no intercept-slope correlation, �01 = 0, one can derive from (A.11)
that:

RE��̂0� = RE��̂1� = RE�Ds(fixed)�� (A.12)
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similar to the relative efficiencies for cluster randomization. In this case also a simple
expression for these relative efficiencies arises, similar to Eq. (6):

RE�Ds(fixed)� =
(
n̄+ 2�1− ��/�

n̄

)
× 1

K

K∑
j=1

(
nj

nj + 2�1− ��/�

)
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with the intraclass correlation, �, however, as defined for multicenter trials.
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