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Abstract

An important strategic element in the planning process of a railway operator is the development of a line plan, i.e., a

set of routes (paths) on the network of tracks, operated at a given hourly frequency. The models described in the lit-

erature have thus far considered only lines that halt at all stations along their route. In this paper we introduce several

models for solving line planning problems in which lines can have different halting patterns. Correctness and equiva-

lence proofs for these models are given, as well as an evaluation using several real-life instances.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The planning problem faced by every railway operator consists of several consecutive stages, ranging
from strategic decisions concerning, e.g., the acquisition of rolling stock, to operational traffic control. Stra-
tegic problems are largely driven by estimates for the long-term demand. Together with infrastructure data,
such as the railway tracks and stations, these demand data are input for the strategic line planning problem
considered in this paper. It involves the selection of paths in the railway network on which train connec-
tions are operated. Thus, the line planning problem focuses on determining a subset of all possible paths
(lines) that together make up the line plan, such that the provided transportation capacity is sufficient to
meet the passenger demand. Relevant objectives are the provided service towards the passengers and the
operational costs for the railway operator.
0377-2217/$ - see front matter � 2004 Elsevier B.V. All rights reserved.
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Fig. 1. The different stages in the planning process.
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Successive decision stages, as shown in Fig. 1, are the more detailed planning problems such as the con-
struction of timetables [9,10,14], traffic planning (route assignment, platform assignment) [16], rolling stock
planning [1,12,13], crew scheduling [3,8] and shunting planning [5,6,15].
Besides the operated paths, a line plan also specifies the hourly frequencies of the lines and their halting

patterns. The halting pattern defines the stations along a line�s route at which it halts. Halting patterns for
train lines can be divided into classes, called types, such as Regional, Interregional and Intercity. The line
planning models described in the literature have thus far considered all lines to be of the same type (see
[2,4,7]). Solving problems with more than one type was done by a priori assigning the passengers to the
different train types, thus splitting the original problem into separate problems for every type. This alloca-
tion was determined, for example, by the procedure System Split (see [11]). In this paper, we introduce sev-
eral generalisations of the previous models to simultaneously solve cost-optimising line planning problems
with multiple train types.
Traditionally, the objective when constructing a line plan has been to find a set of lines that maximises

the number of direct travellers, as in Bussieck [2]. This is an obvious objective from a service perspective,
since it maximises the number of travellers that do not have to change trains during their journey. However,
this objective tends to generate geographically long train lines, since the longer the lines, the more direct
connections are provided. Such long lines often have large fluctuations in the number of passengers on dif-
ferent parts of their route. Therefore, long train lines can result in unused capacity on the less busy tracks,
and can thus be inefficient and expensive. As an alternative objective, similar to Claessens et al. [4], Bussieck
[2] and Goossens et al. [7], this paper focuses on models for minimising the operational costs of a line plan.
The next section recalls the single-type line planning problem, and introduces new definitions for the

multi-type model. In Section 3 we discuss how to formulate the multi-type model by using an intermediate
problem, called the edge capacity problem. For this problem we consider a number of model formula-
tions in Section 4. Apart from a multi-commodity flow formulation, we develop two alternative mathemat-
ical formulations and prove their equivalence. In Section 5 we describe a computational study, based on
instances of the Dutch railway operator NS Reizigers.
2. Modelling

The concept of a line is fundamental in a railway system for passenger transportation. A line specifies a
route between an origin and a destination station and the subsequent stops, combined with an operated
hourly frequency. The line plan is the set of operated lines. The line plan does not incorporate the exact
timetable for the operated lines, though we assume that the timetable will be cyclic with a cycle time of
one hour, i.e., that the line plan is repeated every hour. Note that this still allows for lines to be operated
with a frequency of for example 2, i.e., twice per hour. The models described here focus on finding a line
plan that minimises the induced operational costs (see [2,4,7]).
Before discussing models for simultaneously solving multi-type line planning problems (MLPP), let us

first recall the single-type cost-optimising line planning problem (LPP).
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2.1. The cost-optimising line planning problem

To formulate LPP, we introduce the track graphG=(V,E) consisting of the set of vertices (stations)V, and
the connecting edges (tracks) E. To later distinguish between different kinds of edges, we refer to the edges in
the track graph as track edges. In addition, we are given a set of potential lines L. Every line l2L corresponds
to a set of track edges that make up a simple path between the end vertices of l. We later define the notion of
types of lines, but for now we consider all lines in L to be of the same type. The consecutive stops of line l are
given by the stations corresponding to the vertices along its path. For every line we have to decide whether to
deploy it, and, if so, at what hourly frequency. The operational hourly costs of a line plan can be described by
a function of fixed and variable costs per used train and per carriage. To estimate these costs, we have to de-
cide for every line not only at what hourly frequency it will be operated, but also with howmany carriages per
train. Indeed, the rolling stock is one of the largest cost drivers of a railway operator.
The set of possible frequencies for the lines is denoted by F�{1,2, . . .}, the possible number of carriages

per train by C�{1,2, . . .}. For formulating the line planning problem as an integer linear programming
problem, we introduce a binary variable for every (l, f,c)2N, with the set of triples as N:¼L·F·C. Every
i2N is used for referring to a particular combination (li, fi,ci). For convenience, we also introduce the set
N(e)˝N for every track edge e as N(e)={i2N:e2 li}. Now the LPP can be formulated as follows:
zLPP ¼ min
X
i2N

wixi ð1Þ

s.t.
X
i2NðeÞ

ficixi P he 8e 2 E; ð2Þ

X
i2N jli¼l

xi 6 1 8l 2 L; ð3Þ

xi 2 f0; 1g 8i 2 N ; ð4Þ
where the decision variables xi for i=(li, fi, ci)2N are used to model
xi ¼
1 if line li is operated at frequency fi ; with ci carriages per train;

0 otherwise:

�
ð5Þ
The objective function coefficients wi represent, in general, the costs of operating the line associated with
variable xi. In this paper, the induced operational costs are defined only on the costs per carriage. The
capacities of lines in a line plan are assumed to be identical in both directions, i.e., from origin to destina-
tion, and vice versa. This assumption is widely adopted by many authors (see [2,4]). To operate line l at an
hourly frequency of f it is necessary to run at least Øcpl Æ fø trains, where cpl is the total time in minutes that a
train of line l needs to complete its journey, return to its origin station and start its next trip, divided by
sixty. Now, the hourly costs of operating a line l of type t at frequency f, and with c carriages per train
can be calculated as
wi ¼ dcpl 
 f e 
 c 
 wcarfix ðtÞ; ð6Þ
where wcarfix ðtÞ represents the hourly costs of operating one carriage of a line of type t. Note that we consider
all carriages for lines of one specific type to be identical.
Restrictions (2) impose the lower bound he on the number of carriages crossing edge e per hour. Typi-

cally, he is the smallest number of carriages necessary for transporting all passengers that want to cross edge
e. The constraints (3) ensure that every line is operated in at most one configuration. Note that, in contrast
to other authors, we do not consider any lower bound restrictions on the number of train connections
between adjacent stations.



Fig. 2. Two single-type LPP instances: the regional train instance SP97AR (left), and the intercity train instance SP97IC.
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The track graphs for two single-type instances are shown in Fig. 2. As mentioned in the introduction, to
solve the line planning problems for the individual train types, such as, e.g., intercity trains, the overall pas-
senger flows are a priori split into demands for the separate systems.
The essential difference between LPP and the multi-type problemMLPP is the integration of the different

networks, and thus the possibility of the model to distribute the passengers over the trains of the different
types. An example of a new kind of restriction in a multi-type setting, where trains no longer halt at every
station, is to ensure that passengers are not assigned to trains that pass their destination station without
stopping there. To arrive at a formulation for MLPP, we are going to present a simplified version of this
problem, called the edge capacity problem. Where MLPP decides on the provided capacities for the lines, in
the edge capacity problem the decision variables model the supplied capacities for individual edges. First,
we introduce several new concepts and notations.

2.2. Definitions and notation

On the previously given track graph G=(V,E), we define a commodity k=(sk, tk)2V·V, that can be seen
as travellers that want to travel from their source station sk to their destination tk. A commodity is not al-
lowed to use just any arbitrary path through the network. Instead, every commodity k is restricted to use
the track edges of a given simple path Pk˝E between sk and tk. This is comparable to the restriction en-
forced by the ticket regulations. In general this route is the shortest path. The assumption that there is ex-
actly one fixed route is not important. The essence is that the route is known for every traveller. The
demand for commodity k, i.e., the number of travellers that want to travel from sk to tk, is given by its entry
Hsktk in the square demand matrix H. This demand for commodity k is also denoted by Hk. The matrix H,
also called the Origin–Destination (OD) matrix, is assumed to be symmetric, i.e., that it has the property
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that Hst=Hts for all s and t. The developed models can, however, easily be adapted to suit instances for
which this assumption does not hold.
Every vertex in the track graph is of a certain type. If we denote the set of available types

T={1, . . . ,Tmax}, then every vertex v2V is of type tv2T. In most instances, these types represent the sizes
of the stations: tv=1 for stations in villages up to tv=Tmax for stations serving large metropolitan areas.
Most real-life instances consider three types of stations and train lines. These are usually referred to as Re-
gional (R) or stop trains for type 1, Interregional (IR) for type 2, and Intercity (IC) for type 3. A similar
categorisation is also made for the train lines that will be operated on the network. The route of a train line
through this network is a path-shaped collection of connected tracks. The type of a train line determines the
stations along the line�s route at which the line halts. Train lines of type 1, for example, halt at all stations
they pass. Lines of type 2 skip the small stations of type 1 etc. In general, a train line of type t halts at all
stations v along its route with a type tv P t.

Example 2.1. Consider the track graph in Fig. 3. The network is described by the connected graph
G=(V,E), where V:¼{a,b,c,d,v,w}, and E:¼{{a,b},{b,c}, {c,d}, {d,v},{v,w}}. The type of a station is
given by the number below its vertex. Thus, ta=1, tb=3 etc. In this graph G, we have defined three lines of
different types. Line 1 of type 1, going from station a to station w, halting at all stations in between. Line 2
of type 2, from station b to station w, halting only at stations c and v. Line 3 of type 3 that does not halt at
any station, apart from its origin station b and destination station v. The halting patterns are also shown by
the vertical dashes in the lines that represent the routes of the train lines.

Notice in Example 2.1 that travellers using train line 3 of type 3 to travel from b to v will not halt at any
of the stations in between. We could thus introduce an edge {b,v} of type 3 to show that, due to the types of
the stations in between b and v, train lines of type 3 will not stop at any of the stations between b and v.
That is, they will use edge {b,v} instead. In general, we construct from the track graph G its type graph
GT=(V,ET). With an identical set of vertices, the difference between G and GT lies in the set of edges. In
the type graph we introduce Tmax sets of edges. See Example 2.2. We refer to edges of the type graph as
type edges.

Example 2.2. The track graph G given in Fig. 3 can be transformed into the type graph GT=(V,ET)
displayed in Fig. 4. Note that the structure of the type graph depends on the types of the stations, not of the
lines.

The mapping of the edges in the type graph GT to the original track edges in G is done through the
definition of the route of a type edge e. The route R(e)˝E is the simple path in the original track graph
that is covered by the type edge e. So, in the example above, with type 3 edge {b,v}, we have that
R({b,v})={{b,c}, {c,d}, {d,v}}. The overall set of type edges ET of the type graph is the union of all
the sets of edges of a type t, so ET :¼

S
t2TE

T
t . The edge set E

T
t contains all type edges of type t. We assume

that the lowest set of type edges is equal to the set of track edges, i.e., ET
1 ¼ E. Every edge e of type t, i.e.,
a b c  d

ta = 1 3 12

w

3

v

2

train line 3 of type 3

train line 2 of type 2

train line 1 of type 1

Fig. 3. The track graph G showing the types of the stations and several train lines.



a b c d

ta =1 12

w

3

v

23

Fig. 4. The type graph, based on the track graph from Fig. 3.
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every e 2 ET
t satisfies that its route R(e) contains only internal vertices i for which ti< t. We say that a type

edge g is covered by a type edge f if R(g)˝R(f). Again, e.g., in Example 2.2 the edge {c,v} is covered by
{b,v}.
The sets ET

t for all t2T, together with the corresponding routes of the type edges, are part of the problem
input. In most cases the route for any pair of nodes v and w describes the shortest path from v to w. The sets
ET

t need not be exhaustive, i.e., not every pair of vertices v,w2V for which there exists a simple path has to
be present in ET

t . The graph G
T can be a multi-graph, in the sense that some type edge fv;wg 2 ET

t and
fv;wg 2 ET

t0 for t„ t 0. This is shown in Example 2.2 by the type edges {b,c} and {v,w}.
We assume that the route definitions are consistent, i.e., if the route R(e) of type edge e={i, j}2ET con-

tains two vertices v and w for which there exists a type edge f={v,w}2ET, then also R(f)˝R(e). This is
illustrated in Fig. 4 by the edge e={b,v} of type 3, and the type 2 edge f={c,v}. In addition, we assume
that if there exists an edge g of type t>1 whose route contains a track edge e, then there is also a type edge f
of type t1 whose route is contained in that of g, and that also covers e: e˝R(f)˝R(g). It would be the
same to assume that the complete route R(g) of g can be covered by the routes of edges of type t1, that
are all contained in R(g). Thus, for the type edge g={b,v} we assume the presence of the type 2 edges {b,c}
and {c,v}. Both of these assumptions are not very restrictive.
Using the edges of the type graph, we introduce the set PT

k � ET of type edges for every commodity k.
These paths consist of the type edges that make up the best (highest type) possible route across a commod-
ity�s path Pk from sk to tk. Formally, for all type edges e 2 ET

t it should hold that
e 2 PT
k () RðeÞ � Pk and 9= t0 > t : 9f 2 ET

t0 : RðeÞ � Rðf Þ � Pk: ð7Þ

Hence, in the graph in Fig. 4 the best-edge path for k=(a,w) is PT

k ¼ ffa; bg; fb; vg; fv;wgg where
fa; bg 2 ET

1 ; fb; vg 2 ET
3 and fv;wg 2 ET

2 .
3. Formulating the multi-type line planning problem

This section describes the first step in extending the formulation for LPP to be able to model multiple
train types simultaneously in the MLPP.
Once again, every line l corresponds to a route (a simple path) through the track graph G. The halting

pattern of a line l, i.e., the stations along the route of l at which it stops, is dictated by its type tl2T, similar
to the edges in the type graph. Thus, l is said to use a simple path of type edges in the type graph GT, namely
the path of all type edges e 2 ET

t for which R(e)˝ l. Again, as in LPP, for every line we have to decide
whether to deploy it and, if so, at what hourly frequency, and with how many carriages per train. Now,
however, the possible frequencies and number of carriages of a line depend on its type: valid frequencies
and capacities of lines of type t are given by F ðtÞ � N, and CðtÞ � N respectively. The set N of triples is
now defined as N :={(l, f,c)jl2L, f2F(tl), c2C(tl)}.
As in (5), a binary variable xi for i2N is used to indicate whether line li is operated at frequency fi, with ci

carriages per train. On every type edge e in the network, the total capacity provided by all lines that use this
edge is given by
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X
i2N jli uses e

kðtliÞf icixi; ð8Þ
where k(t) represents the capacity, in number of passengers, of one carriage of lines of type t. If a line is
selected to be in the line plan at a certain configuration, then it thus provides capacity along all the edges
in the type graph GT that it uses.
Instead of formulating MLPP directly, we consider a simplified problem called the edge capacity prob-

lem (ECP). The ECP is described on the track graph G and the associated type graph GT. The problem is to
assign enough capacity to individual edges in the type graph GT, such that all commodities can be trans-
ported simultaneously, while minimising some objective function of the allocated capacity. As such, MLPP
is a generalisation of ECP. We are going to present several formulations of ECP in which variables xðeÞ 2 C
are used to represent the amount of capacity that is assigned to type edge e. It is clear that if we have for-
mulated ECP, then MLPP can be formulated by substituting (8) of MLPP for every variable x(e) of ECP.
In addition, the domain restrictions xðeÞ 2 C have to be replaced by
X
i2N jli¼l

xi 6 1 8l 2 L;

xi 2 f0; 1g 8i 2 N ;
as in (3) and (4). The objective function
P
e2ET

f(x(e)) of ECP can be replaced by
P
i2N
wixi for MLPP, where the

weights wi are defined as in (6).
4. Formulations for the edge capacity problem

We now present three different formulations for ECP.
4.1. The multi-commodity flow formulation (MCF)

Let us introduce two directed graphs, similar to the track graph and the type graph. First, D=(V,A) is
constructed from the track graph G using the arc set A which contains a forward arc (i, j) and a backward
arc (j, i) for every track edge {i, j}2E. Second, the directed graph DT=(V,AT) is built similarly from the
undirected type graph GT by replacing every type edge in ET by two opposing arcs in AT. For dealing with
these directed graphs we define~RðaÞ � A as the directed simple path for an arc a ¼ ði; jÞ 2 AT

t similar to R(e)
for the corresponding type edge e ¼ fi; jg 2 ET

t . The prescribed path Pk2E for commodity k in the original
graph is represented by the directed simple path ~Pk � A.
In general, a feasible multi-commodity flow satisfies the flow conservation constraints
X

j:ði;jÞ2AT

F k
ij 

X
j:ðj;iÞ2AT

F k
ji ¼ bk

i 8i 2 V ; 8k 2 V � V ; ð9Þ
where the flow variables F k
ij represent the number of passengers of the commodity k that use arc (i, j)2A

T

through the directed type graph DT. The right-hand sides bk
i are chosen such that
bk
i ¼

Hsktk if i ¼ sk;

0 if sk 6¼ i 6¼ tk;

Hsktk if i ¼ tk:

8><
>:
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The MCF can thus be modelled as follows:
min
X
e2ET

f ðxðeÞÞ ð10Þ

s:t: xðeÞP
X

k

F k
ij 8t 2 T ; 8ði; jÞ 2 AT

t ; e ¼ fi; jg 2 ET
t ; ð11Þ

X
jjði;jÞ2AT

F k
ij 

X
jjðj;iÞ2AT

F k
ji ¼ bk

i 8i 2 V ; 8k 2 V � V ; ð12Þ

F k
ij ¼ 0 8k 2 V � V ; 8ði; jÞ 2 AT : ~Rðði; jÞÞ 6� ~P sktk ; ð13Þ

F k
ij 2 N 8k 2 V � V ; 8ði; jÞ 2 AT ; ð14Þ

xðeÞ 2 C 8e 2 ET : ð15Þ
From the construction of the directed type graph DT it is evident that there is an exact 1-to-2 relation be-
tween an edge e ¼ fi; jg 2 ET

t for some type t, and a pair of arcs (i, j) and (j, i), both in AT
t (and vice-versa).

This relation is used in constraints (11) to enforce that the capacity assigned to type edge e, x(e), is at least
as large as the flow across both related arcs. The combined capacity of all lines connecting two stations
should be at least as large as the flow in either direction. Consider, for example, a network with two stations
v and w. If 50 people want to travel from v to w, and 60 from w to v, then the combined capacity of the lines
that connect v and w should be at least max{50,60}=60.
The restrictions (12) are the flow conservation constraints for every vertex. Restrictions (13) enforce that

travellers between a and b have to travel using arcs that are within their predetermined path ~Pab. In the
directed type graph DT, we thus restrict k to use only arcs (i, j) for which ~Rðði; jÞÞ � ~Pk. Finally, the set
of feasible values for x(e) is given by the set C � N, which represents the possible capacities of edges.
We will now describe two lemmas that will be used to preprocess problem instances, and to prove the

equivalence of alternative models. Let us first show that a commodity k=(n,m) can be split into a number
of partial commodities if its path ~PT

k consists of more than one arc. Every feasible flow for these partial
commodities can be recombined to a feasible flow for the original commodity k, while the reverse also
holds.

Example 4.1. Let us preview the commodity decomposition principle on the track graph G and the type
graph GT used in Example 2.2. Fig. 5 first of all shows the directed graph DT based on GT. In addition, it
also shows how the commodity k=(a,w) and its best path ~PT

aw are decomposed from
~PT

aw ¼ fða; bÞ;
ðb; vÞ; ðv;wÞg to three separate commodities k(a, b), k(b, v) and k(v,w) and the three best paths ~P

T
kða;bÞ ¼ fða; bÞg,

~PT
kðb;vÞ ¼ fðb; vÞg and ~PT

kðv;wÞ ¼ fðv;wÞg. The commodity decomposition Lemma 4.2 shows that if we have a
feasible flow for the three separate commodities, then it is possible to recombine it into a feasible flow for
the original commodity k, and vice versa.

Lemma 4.2 (Commodity Decomposition). Given a commodity k with demand Hk and arc set ~PT
k , consider

the following decomposition. Every feasible flow for a commodity k with demand Hk can be split into a feasible
flow for j~PT

k j new commodities kf, with f 2 ~PT
k , for which the demand is Hkf =Hk and with best-arc set

~PT
kf ¼ ff g. The reverse—combining of the flows—results again in a feasible flow for k.
a b c d

ta =1 12

w

3

v

23

Fig. 5. The digraph DT based on the network in Fig. 4.
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Proof. For all arcs g=(i, j)2AT that can be used by k, i.e., for which ~RðgÞ � ~Pk, there exists an arc
f ¼ ðn;mÞ 2 ~PT

k in which g is contained (~RðgÞ � ~Rðf Þ). We will prove this lemma by showing that setting
the flows equal to
F kf
ij ¼ F k

ij 8f ; 8ði; jÞj~Rðði; jÞÞ � ~Rðf Þ
and vice versa, satisfies the flow balance restrictions of both instances. Let us start with proving the decom-
position. Note that, constructed in this way, it is sufficient to show that the flow balance constraints for
commodity kf are satisfied at both endpoints of an arc f ¼ ðn;mÞ 2 ~PT

kf :
X
ijðn;iÞ2AT

F
kf
ni ¼ Hk ¼ Hkf and

X
jjðj;mÞ2AT

F
kf
jm ¼ Hk ¼ Hkf :
Equality holds in both cases because f is one of the best-path arcs for k, since this implies that the total flow
of k (and of kf) uses f or arcs covered by f. For internal nodes in ~Rðf Þ, the flow balance constraints are
already satisfied because F k

ij is a feasible flow. Next, consider the reverse, i.e., that the combined flow is
a feasible flow for k. This is true since the flow balance constraints are satisfied because both the total
amount of incoming flow via f1 (H

kf1) and outgoing flow via f2 (H
kf2) are equal to Hk by construction. h

The application of the decomposition part of Lemma 4.2 for all commodities, will result in many com-
modities with the same origin, destination, and prescribed path. The following lemma shows that these sim-
ilar commodities can be aggregated, thereby reducing the total number of commodities in the system.

Lemma 4.3 (Commodity Aggregation). Consider two commodities k1 =(n,m) and k2 =(n,m) with identical

prescribed paths ~Pk1 ¼ ~Pk2 . The demands for the commodities are given by Hk1 and Hk2. Both commodities can

be replaced by a new commodity k with demand Hk =Hk1+Hk2 and path ~Pk ¼ ~Pk1 ¼ ~Pk2 . Conversely, every

feasible flow for k can be disaggregated into feasible flows for k1 and k2.

Proof. Consider a feasible flow for commodity k with demand Hk=Hk1+Hk2. Construct two separate flows
k1 and k2 by labelling Hk1 of the leaving flow units in n red, and Hk2 of them blue. Clearly, these flows are
still feasible flows. The reverse is shown by removing the labels from both commodities. h

By the previous two lemmas, we can assume that all commodities k=(n,m) in an instance of MCF have
the property that ~PT

k ¼ fðn;mÞg. Note that this does not imply that an arc (n,m) can only be used by one
commodity, since commodities are still allowed to be routed using all arcs in their prescribed path.
The results of both lemmas hold because the ECP is only interested in finding a capacity assignment that

minimises the total cost. Any information about the flows according to the original routes of the passengers
is lost by decomposing and aggregating the commodities.

Example 4.4. Let us review the MCF problem on the graph displayed in Fig. 4 on page 7. Originally, this
problem contained 6·5=30 different commodities, i.e., one for every pair of vertices. After applying both
of the lemmas above, we are left with at most jATj=2jETj=18 commodities. However, the type 1 edges
{b,c} and {v,w} can never be part of a best path because of the similar type 2 edges. Therefore, the number
of commodities can be reduced to 14.

Next, we use the previous two lemmas to show that we can assume that there exists an optimal flow that
is symmetric. This is shown by using induction on the number of train types Tmax. In the induction step,
where we assume that we can construct a symmetric solution for Tmax= t*, we show how to transform a
non-symmetric flow across the arcs of type Tmax= t*+1 into a symmetric flow.

Corollary 4.5. Consider an arbitrary instance of MCF. If, for some arc (i, j) of type Tmax there exists a

commodity k for which ði; jÞ 2 ~PT
k , then k is also the only commodity with this property.
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Proof. Recall the definition of PT
k , and thus of

~PT
k , in (7). Since arc (i, j) is of type Tmax, there do not exist

any arcs (i 0, j 0) „ (i, j) of any type t > Tmax. h

Theorem 4.6 (Symmetric Flow). If the demand matrix H is symmetric, then, for any solution (X *,F *) of

MCF, there exists a solution (X*,F) with the same objective function value, and with the property that
F nm

ij ¼ F mn
ji , i.e., that F is a symmetric flow.

Proof. We prove this theorem using induction on the number of types Tmax. Initially, consider Tmax=1.
Since there is only one type, and the prescribed path is simple, every commodity has one unique path in
the type graph from its origin to its destination. Therefore, in case Tmax=1, F * will be symmetric, given
that H is symmetric.
Next, assume that the theorem holds for Tmax= t *. We show that this implies that it also holds for

Tmax= t*+1. From Corollary 4.5 we know that for every arc of type Tmax, there is at most one commodity
that is allowed to use this arc. If such a commodity does not exist, then we are done. Hence assume that
there exists one commodity for arc (i, j) and one for arc (j, i). Thus, for the type edge fi; jg 2 ET

t�þ1, Eq. (11)
tells us
xðfi; jgÞP
X

k

F k
ij ¼ F ij

ij and xðfi; jgÞP
X

k

F k
ji ¼ F ji

ji:
Suppose the two opposing flows defined for this type edge are not symmetric. So, without loss of generality,
assume F ij

ij < F ji
ji. We can now find F ji

ji  F ij
ij units of flow of commodity (i, j) and, according to Lemma 4.3,

reassign them to the arc (i, j), making the flow on (i, j) and (j, i) equal. The capacity restriction for x({i, j}) in
(11) will still be satisfied. Since we have only redirected flow away from the other arcs that could be used by
(i, j), this also holds for the type edges below {i, j}. The resulting flow is feasible for MCF, and is symmetric
on all edges of type t*+1 by repetition. Now, let us construct a new MCF instance with only t* types from
which the arcs of type t*+1 have been removed and the demands for commodities (i, j) have been decreased
by F ij

ij for every ði; jÞ 2 AT
t�þ1. Clearly, the previous flow on all but the arcs of type t*+1 is a feasible flow for

this new instance. Therefore, by the induction hypothesis, this MCF can be made symmetric. The overall
cost will now be

P
e2ET

t�þ1
f ðx�ðeÞÞ þ

P
t6 t�

P
e2ET

t
f ðx�ðeÞÞ ¼

P
e2ET f ðx�ðeÞÞ. h

In view of Theorem 4.6 we will no longer distinguish the commodities (n,m) and (m,n), or the arcs
(i, j) and (j, i), since we have shown that we can assume that F nm

ij ¼ F mn
ji . Therefore, we will no longer use

the directed graphs D and DT.
Before we introduce alternative model formulations for ECP, let us first make some general remarks

about the structure of the undirected track graph and the type graph.

Lemma 4.7. Consider a track graph G=(V, E) that is a path. Now, for every track edge e2E and type t2T,

there is at most one type edge f of type t for which e2R(f).

Proof. Without loss of generality, we can rename the vertices and track edges of G such that V={1, . . .,n}
and E={{v,v+1}jv2{1, . . .,n1}}, since G is a path. The proof is by contradiction. Assume that, for an
arbitrary type t, there are two distinct type edges f={v,w} and g={i, j} in ET

t that cover e. Without loss of
generality, we can assume not only that v<w and i< j and v 6 i<w, but also that either w< j (crossing) or
j<w (non-crossing). Note that if w= j, then we could reverse the numbering of the vertices. The first case
implies that tw P t since f 2 ET

t , while the fact that w is an internal vertex of R(g) implies that it is of type
less than t. Similar reasoning can be applied in the second case. h

Corollary 4.8. For any two distinct type edges f and g both of type t with R(f)\R(g)„;, the graph induced by

R(f)[R(g) is not a path.
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Proof. Assume that the graph induced by the track edges in R(f)[R(g) is a path. Since R(f)\R(g)„;, we
know that there is at least one track edge e for which e2R(f) and e2R(g). This is not possible according to
Lemma 4.7. h

Corollary 4.9. There does not exist a type edge h of type t 0 that covers two type edges f and g of type t< t 0 for
which R(f)\R(g)„;.

Proof. By contradiction, assume that R(h) is a path. Clearly, this implies that also R(f)[R(g) is a path.
However, this contradicts Corollary 4.8. h

Lemma 4.10. Consider a track edge e2E, and an arbitrary type edge g of type t with e2R(g). Now, for every

type t 0< t there exists a unique type edge f of type t 0 with e2R(f)˝R(g).

Proof. First, consider the case where t 0= t1. Now, existence is immediate from the assumptions. Unique-
ness follows from Corollary 4.9. Moreover, since the existence and uniqueness also hold for this type edge
of type t 0, there thus exists a unique type edge for every type t 0< t, by repetition. h

Thus, we have shown that there cannot exist a type edge h that covers two overlapping type edges
f ; g 2 ET

t of the same type, simply because the original track edges covered by f and g cannot be a path
according to Corollary 4.8.

4.2. The integer programming formulation (IPXY)

Solving ECP problems using the MCF formulation requires a large number of variables and restrictions.
It introduces a flow variable for all the available arcs in the path for every commodity, requiring flow con-
servation constraints for all the nodes along this path. We will now describe an integer programming
model, using fewer variables, and show the equivalence of both models.
Compared to the MCF formulation with its completely disaggregated flow, the IPXY formulation is

based on constraining only the capacities of the edges in the type graph. For ease of notation, let us intro-
duce ~HðeÞ as the number of travellers for whom type edge e is part of their best path PT

k . Thus, we define
~HðeÞ ¼

P
kje2PT

k
Hk for every type edge e. We also introduce additional variables ye for every type edge

e 2 ET
t with t>1. They represent the number of travellers over all pairs (a,b) that could have used type edge

e across this particular part of their path Pab, but do not. Capacity will be reserved for them on the under-
lying type edges.

Example 4.11. Consider the type graph in Fig. 6. The (b,v)-travellers can either use the type 3 edge f from
b to v, or they are assigned to the two underlying type 2 edges {b,c} and e={c,v} using the variable yf.
Whether they will actually use these type 2 edges depends on the individual values of the variables y{b, c} and
ye through which they can be assigned to the underlying type 1 edges. In this example, the capacity
restrictions for the type 3 edge f and for the type 2 edge e will be
xðf ÞP ~Hðf Þ  yf and xðeÞP ~HðeÞ þ yf  ye:
a b c d

t =1 12

w

3

v

2

ye

yf
x(e)

x(f)

3a

Fig. 6. Travellers are possibly assigned to underlying type edges.
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The idea illustrated in Example 4.11 can be generalised to the following model, referred to as IPXY.
min
X
e2Et

f ðxðeÞÞ ð16Þ

s:t: xðeÞP ~HðeÞ þ
X

f2ET
2
jRðeÞ�Rðf Þ

yf 8e 2 ET
1 ; ð17Þ

xðeÞP ~HðeÞ þ
X

f2ET
tþ1jRðeÞ�Rðf Þ

yf  ye 81 < t < Tmax; e 2 ET
t ; ð18Þ

xðeÞP ~HðeÞ  ye 8e 2 ET
T max; ð19Þ

xðeÞ 2 C 8e 2 ET ; ð20Þ
ye 2 N 81 < t6 Tmax; e 2 ET

t : ð21Þ
If we enforce that all ye=0, then all capacities x(e) must suffice to transport all travellers using only the
type edges in their best path. The model, however, can decide to use different type edges (still part of the
prescribed path) through the use of the variables ye. These ye variables model the number of people that
were assigned to use type edge e of type t, but instead will be assigned to underlying type edges of type
t1. Note that in this way, these travellers may then again be reassigned to edges of type t2, etc. The
structure of the constraints for the type edges depends on the types of the edges. For an edge e of type
t=1 in (17), there are no possibilities for rerouting passengers through ye, since there are no edges of lower
type. A similar argument for edges of type Tmax in (19) makes it clear that we can only reassign passengers
from these edges, not to them.
Next, we will prove the equivalence between MCF and IPXY. To do so, let us first make the following

observations concerning feasible flows.

Observation 4.12. For an arbitrary commodity k and an arbitrary type edge e 2 ET
t that is allowed for this

commodity, i.e., with R(e)˝Pk, exactly one of the following holds:
e 2 PT
k or 9t0 > t : 9f 2 ET

t0 : RðeÞ � Rðf Þ � Pk:
Thus, either a type edge e is part of the best path for commodity k, or there exists a type edge f of higher
type that can also be used by k at this part of his path.

Next, Observation 4.13 considers the sum of the demand for all commodities that are allowed to use
some track edge e. It is easy to see that, for any feasible flow F, this is equal to the sum of all the flows
across e, i.e., to the sum of the flows on the track edge e, and on all type edges f of a type t>1 for which
e2R(f).
Observation 4.13. For every feasible flow F of MCF, the following holds for every edge e of type 1:
~HðeÞ þ
X

f2ET
t>1je�Rðf Þ

~Hðf Þ ¼
X

kjRðeÞ�Pk

F k
e þ

X
f2ET

t>1je�Rðf Þ

X
k

F k
f 8e 2 ET

1 :
Lemma 4.14. Every solution (X,F) of MCF can be transformed into a solution (X,Y) of IPXY with the same

objective function value.

Proof. We prove this lemma by induction on Tmax. First, consider the case in which Tmax=1. From Obser-
vation 4.13 we know that ~HðeÞ ¼

P
kjRðeÞ�Pk

F k
e for all type edges e 2 ET

1 , and thus that
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xðeÞP
X

k

F k
e ¼

X
kjRðeÞ�Pk

F k
e ¼ ~HðeÞ 8e 2 ET

1 :
As induction hypothesis, let us now assume that the lemma holds for Tmax= t*, and consider the case with
Tmax= t*+1. For any edge e of type t*+1 we construct ye ¼ ~HðeÞ 

P
kF

k
e. Note that e 2 ET

t�þ1. Note that
e 2 ET

t�þ1 implies that ye is non-negative. Clearly, now
xðeÞP
X

k

F k
e ¼ ~HðeÞ  ye 8e 2 ET

t�þ1:
The final step is to reduce the problem from t*+1 types to t* types by removing all the type edges of type
t*+1 and the associated variables from the problem. The original solution (X,F) is now also feasible for the
MCF of the reduced problem with Tmax= t*. Therefore, we can apply the induction hypothesis and thus
prove this lemma. h

Lemma 4.15. Every solution (X,Y) of IPXY can be transformed into a solution (X, F) of MCF with the same

objective function value.

Proof. From Lemmas 4.2 and 4.3 it is clear that we should show that feasible flows can be constructed from
(X,Y) for artificial commodities k={v,w} for type edges {v,w}2ET, with demand ~HðkÞ. We will prove this
lemma using induction on Tmax. First, note that for Tmax=1 all constraints of (17) are of the form
xðeÞP ~HðeÞ for all e2ET. Since there is only one type of edges, we can thus set
F k
e ¼ ~HðeÞ 8k 2 ET ; e 2 PT

k ¼ fkg:

Thus, every commodity corresponds to an edge in ET, and F k

f ¼ 0 for all f„k. Obviously, all flow restric-
tions (11)–(15) are satisfied.
Next, assume that we can construct feasible flows for Tmax= t*. Now we show that it is also possible to

construct feasible flows for Tmax= t*+1. The constraints (19) for the type edges e 2 ET
t�þ1 are
xðeÞP ~HðeÞ  yðeÞ 8e 2 ET
t�þ1:
The total flow across type edge e can thus be found by taking F k
e such that
F k
e ¼ ~HðeÞ  ye:
The remaining demand ye will be routed along the other possible edges: the type edges f 2 ET
t� for which

R(f)˝R(e). The last part of this proof is to show that we are now not only able to construct a feasible flow
for the edges of type t*+1, but additionally, also for all other edges. To show that this is possible, note that
by restriction (18) we know that
xðf ÞP ð ~Hðf Þ þ yðeÞÞ  yðf Þ 8f 2 ET
t� :
This implies that, by our induction hypothesis, we can also find a feasible flow for the remaining edges of
types t 6 t*. h

The previous two lemmas imply the following theorem.

Theorem 4.16. The problems MCF and IPXY are equivalent.

Lemma 4.17. Consider the relaxation of IPXY in which all ye 2 Rþ. Every solution (X,Y) of this relaxation,

where Y is the vector containing all ye, can be transformed into an integer solution ðX ; ~Y Þ with the same objec-
tive function value.
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Proof. We show that setting all ye to the rounded down value ~ye � byec results in a feasible solution ðX ; ~Y Þ.
First, consider this rounding scheme for type edges e of type t=Tmax. The integrality of x(e) and ~HðeÞ en-
sures that xðeÞP ~HðeÞ  byec. Since ~ye 6 ye, all other restrictions also remain satisfied. Next, consider the
edges of type t=Tmax1. Clearly, in (18) the sum of all ~yf of the type edges f 2 ET

tþ1jRðeÞ � Rðf Þ is integer.
Therefore, by applying similar reasoning as before, we see that the rounding scheme preserves the feasibility
of the constructed solution for the remaining edges of types Tmax1 through t ¼ 1. h
4.3. The integer programming formulation (IPX)

In the IPXY model, we introduced additional ye variables to model the rerouting of commodities over
other edges in the type graph. In this section, we describe an alternative model. This model does not use
the rerouting variables ye, but instead guides the routing by imposing additional restrictions.
Let us first review an example of this model for Tmax=2.

Example 4.18. Consider the network displayed in Fig. 7. For every edge in the track graph, we consider all
combinations of type edges that can be used to cross this edge. In this light, the following constraints are
necessary, and, as we show later, also sufficient to model ECP. For the track edge e, and the crossing type
edges f1 and f2:
xðeÞP ~HðeÞ;
xðeÞ þ xðf 1ÞP ~HðeÞ þ ~Hðf 1Þ;
xðeÞ þ xðf 1Þ þ xðf 2ÞP ~HðeÞ þ ~Hðf 1Þ þ ~Hðf 2Þ;
xðeÞ þ xðf 2ÞP ~HðeÞ þ ~Hðf 2Þ:
For the track edge g, and the crossing type edge f1:
xðgÞP ~HðgÞ;
xðgÞ þ xðf 1ÞP ~HðgÞ þ ~Hðf 1Þ:
For the track edge h, and the crossing type edge f2:
xðhÞP ~HðhÞ;
xðhÞ þ xðf 2ÞP ~HðhÞ þ ~Hðf 2Þ:
For example, the restriction xðgÞ þ xðf 1ÞP ~HðgÞ þ ~Hðf 1Þ enforces that the combined capacity of the
type edges g and f1 must suffice to transport all commodities that can at best use g, plus all that can at best
use f1. Since the only possibility to arrive at c is to use either g or f1, it is clear that this is a necessary restric-
tion.
a

bc d

1

ta=2

22

e

g h

a

bc d

ef 1 f 2

g
12

ta=2

2
h(a) (b)

Fig. 7. The track graph (a) and the type graph (b).
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The integer programming formulation IPX for ECP reads as follows:
min
X
e2ET

f ðxðeÞÞ ð22Þ

s.t. xðeÞ þ
X
t>1

X
f2Se

t

xðf ÞP ~HðeÞ þ
X
t>1

X
f2Se

t

~Hðf Þ 8e 2 ET
1 ; 8Se

2; . . . ;8Se
Tmax

; ð23Þ

xðeÞ 2 C 8e 2 ET ; ð24Þ
where for a given edge e of type 1 the sets Se
t are such that S

e
t �

S
f2Se

t1
fg 2 ET

t jRðf Þ � RðgÞg with Se
1 ¼ feg.

Thus, Se
2 is a subset of all the type 2 edges that cover e. Next, S

e
3 is then a subset of all the type 3 edges that

cover some edge in the current Se
2, etc. Restriction (23) enforces sufficient capacity on type edge e together

with the type edges in the sets Se
t for t=2, . . .,Tmax. Note that a constraint is added for all possible sets

Se
2; . . . ; S

e
T max. For ease of reference, we refer to these restrictions as the capacity-subset (CS) constraints.

Finally, feasible values for x(e) are enforced by the set C � N, which represents the valid capacities that
can be assigned to a type edge.
We will now show that the edge capacities X of any feasible solution of IPXY are also a feasible solution

for IPX.

Lemma 4.19. Every solution (X,Y) of IPXY can be transformed into a solution X for IPX with the same

objective function value.

Proof. We will show that all restrictions of IPX are valid for IPXY. Consider an arbitrary restriction of IPX

for type edge e 2 ET
1 , and with the sets Se

1; . . . ; S
e
T max. Recall the CS restriction (23) for type edge e:
xðeÞP ~HðeÞ þ
X

f2ET
2
jRðeÞ�Rðf Þ

yf :
Now, consider an arbitrary collection Se
2; . . . ; S

e
T max of subsets, i.e., an arbitrary CS constraint. Since all val-

ues ye are non-negative, the following holds:
xðeÞ þ
X
t>1

X
f2Se

t

xðf ÞP ~HðeÞ þ
X

f2ET
2
jRðeÞ�Rðf Þ

yf þ
X
t>1

X
f2Se

t

xðf Þ

P ~HðeÞ þ
X

f2Se
2
jRðeÞ�Rðf Þ

yf þ
X
t>1

X
f2Se

t

~Hðf Þ þ
X

g2Se
tþ1jRðf Þ�RðgÞ

yg  yf

0
@

1
A 
 
 


P ~HðeÞ þ
X
t>1

X
f2Se

t

~Hðf Þ:
To prove the last step we need to show that the ye variables with a negative sign cancel out against the other
ye variables. This is shown as follows:
ff 2 Se
2jRðeÞ � Rðf Þg [

[
t>1
f2Set

fg 2 Se
tþ1jRðf Þ � RðgÞg ¼ ff 2 Se

2g [
[
t>1
f2Set

fg 2 Se
tþ1g �

[
t>1

ff 2 Se
t g:
The equality holds because, by definition, every g 2 Se
tþ1 has some f 2 Se

t for which R(f)˝R(g). Since we
take the union over all f 2 Se

t , the equality follows immediately. This completes the proof. h

The inverse, extending a solution X of IPX with appropriately chosen values for Y, gives a feasible solu-
tion to IPXY, as is shown in Lemma 4.20.
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Lemma 4.20. Every solution X of IPX can be transformed into a solution (X,Y) for IPXY with the same

objective function value.

Proof. As in the proof of Lemma 4.14, we will again provide a scheme for constructing a suitable vector Y.
Consider an arbitrary solution X of IPX. Let us choose the value of ye for any type edge e 2 ET

t as
ye ¼ ~HðeÞ  xðeÞ þ
X

f2ET
tþ1:RðeÞ�Rðf Þ

yf

0
@

1
A

þ

; ð25Þ
where (x)+”max (0,x). Recursively, we can thus construct all ye starting at type edges e of type t=Tmax (for
which ET

tþ1 ¼ ;), and ending at e 2 ET
2 . We are now left to prove that
xðeÞP ~HðeÞ þ
X

f2ET
2
jRðeÞ�Rðf Þ

yf 8e 2 ET
1 :
Thus, substituting (25) for all yf, we have to prove the validity of
xðeÞP ~HðeÞ þ
X

f2ET
2
jRðeÞ�Rðf Þ

~Hðf Þ  xðf Þ þ
X

g2ET
3
jRðf Þ�RðgÞ

ð ~HðgÞ  xðgÞ þ 
 
 
Þþ
0
@

1
A

þ

:

To show this, consider the values of the different max-plus parts, i.e., the yf. Being either zero or positive, we
introduce the sets S�

t � ET
t such that S

�
t ¼ ff 2 ET

t jyf > 0g for our arbitrary solution X. Since the capacity
restrictions (23) of the IPX formulation contain all possible combinations of sets S

e
t , we know that all sets S

�
t

are among them. Therefore
~HðeÞ þ
X

f2ET
2
jRðeÞ�Rðf Þ

~Hðf Þ  xðf Þ þ
X

g2ET
3
jRðf Þ�RðgÞ

ð ~HðgÞ  xðgÞ þ 
 
 
Þþ
0
@

1
A

þ

¼ ~HðeÞ þ
X
f2S�

2

~Hðf Þ  xðf Þ þ
X
g2S�

3

ð ~HðgÞ  xðgÞ þ 
 
 
Þ

0
@

1
A

¼ ~HðeÞ þ
X
f2S�

2

ð ~Hðf Þ  xðf ÞÞ þ
X
g2S�

3

ð ~HðgÞ  xðgÞÞ þ 
 
 


¼ ~HðeÞ þ
X
t>1

X
f2S�t

~Hðf Þ 
X
t>1

X
f2S�t

xðf Þ6 xðeÞ:
As in the proof of Lemma 4.14, replacing the nested summations by the separate summations in the second
equation can be done using the results from Lemma 4.10. Since this construction is valid for an arbitrary
solution X, this completes the proof. h

The previous two lemmas imply the following theorem.

Theorem 4.21. The problems IPX and IPXY are equivalent.

The number of CS restrictions (23) is exponential in the number of type edges. However, as we will show
now, we can find the maximally violated CS constraint for every edge e of type 1 in polynomial time.
To solve this separation problem, consider an edge e of type 1, and construct the directed graph T(e) that

contains a node for every type edge that covers e, i.e., a node for every f2ET with e2R(f). The nodes can be
layered according to the types of the associated edges. The graph contains only arcs between nodes of layer
t to layer t1. Let us say that the node in layer t is related to type edge g 2 ET

t , while the node in layer t1
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is related to type edge f 2 ET
t1. There exists an arc between these two nodes if the type edge f is the unique

type edge (according to Lemma 4.10) for which e˝R(f)˝R(g). Thus, every node in T(e) has exactly one
outgoing arc, though possibly many incoming arcs. It is easy to see that T(e) is a directed in-tree rooted
at the node associated with the type edge e.
Next, consider a solution ~X with a value ~xðeÞ for every e2ET. For simplicity, let us refer to the node in

T(e) that is associated with type edge f as node f, etc. With every node f in T(e) we associate a revenue (vio-
lation) ~Hðf Þ  ~xðf Þ. The problem is to find a subtree of T(e) that is rooted at e for which the sum of the
revenues of the nodes in the subtree is maximal. Such a subtree that has a positive revenue, corresponds
to a violated CS inequality.

Lemma 4.22. Consider a layered tree T(e) for an edge e of type 1. Every subtree of T(e) that is rooted at e

corresponds to a CS inequality of (23) for type edge e and with the set Se
t equal to the nodes in the subtree that

are in layer t, for t2{2, . . .,Tmax}.

Proof. We have to show that
Se
t �

[
f2Se

t1

fg 2 ET
t jRðf Þ � RðgÞg
with Se
1 ¼ feg holds. By the construction of T(e), and the fact that the subtree is connected, this result fol-

lows immediately. h

To solve the problem of finding the subtree that maximises the total node revenue we add a label d(f) to
every node f, and initialise it to dðf Þ ¼ ~Hðf Þ  ~xðf Þ.

Algorithm 1. Determine the maximally violated CS constraint on type edge e.
Input:
 A directed in-tree T(e) that is layered, and rooted at node e.

A solution ~x.
1:
 Initialise dðf Þ ¼ ~Hðf Þ  ~xðf Þ for each node f in T(e).

2:
 Initialise t= t*, where t* is the highest type for which there are type edges represented in T(e).

3:
 While t>1 do

4:
 For all nodes g in layer t do
5:
 If dðgÞ > 0 then

6:
 Let f be the unique node in layer t1 to which g is connected.

7:
 Set d(f)‹d(f)+d(g)

8:
 else
9:
 Delete the subtree rooted at g from T(e).

10:
 end if
11:
 end for
12:
 Set t‹ t1.

13:
 end while
In Algorithm 1, we examine the tree T(e) starting at the nodes in layer t*, where t* is the highest type for
which there are type edges represented in T(e). Note that t* can be strictly smaller than Tmax. For every
node g in layer t that has a positive label d(g), let f be the unique node in layer t1 to which g is connected.
For these nodes g with d(g)>0, set d(f)‹d(f)+d(g). Otherwise, if d(g) 6 0, delete the subtree rooted at g
from T(e). Note that the remaining graph T(e) is still a directed in-tree rooted at e. Now, set t‹ t1, and
proceed with the next layer as before.
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After t1 iterations, we arrive at layer 1 that contains only node e. All that is left of T(e) is the subtree of
the original tree, rooted at e that has a total revenue of d(e). Note that the running time of the algorithm is
OðTmaxjET jÞ, and therefore polynomial in the size of the input.

Lemma 4.23. When processing layer t in Algorithm 1, the value of d(f) for any node at layer t is the maximum

revenue of any subtree of the original T(e) that is rooted at f.

Proof. We show this by induction on the current layer t. For the initial layer at t= t*, the value
dðf Þ ¼ ~Hðf Þ  ~xðf Þ is exactly equal to the total revenue of the subtree rooted at f, i.e., only node f.
Now, assuming that, at some layer t, the claim holds. For an arbitrary node f of layer t1, the algorithm
takes all, and only those subtrees rooted at nodes g in layer t with d(g)>0. Clearly, if d(g) 6 0, then the total
revenue would become no better than if the subtree rooted at g were deleted. On the other hand, if a subtree
with d(g)>0 were deleted, then this would strictly worsen the overall revenue of the subtree rooted at f.
Therefore, d(f) is also the maximal revenue of any subtree rooted at f for any node f in layer t1. This
completes the proof. h

Corollary 4.24. The remaining subtree is the maximal subtree of the original tree T(e) that is rooted at e, with

respect to the total revenue over all nodes.

Proof. This follows immediately from the previous lemma. h

If d(e) is positive, then, according to Corrollary 4.24 and Lemma 4.22 we have found a violated CS con-
straint. Alternatively, if d(e) 6 0, then all CS constraints for the edge e of type 1 are satisfied.

Theorem 4.25. The separation problem for the exponentially many capacity-subset constraints of (23) can be

solved in polynomial time in the size of the input.

Proof. The separation problem for the CS constraints for one edge e of type 1 can be solved in polynomial
time. Since we only have to test this for every edge of type 1, we can thus solve the overall separation prob-
lem for the CS constraints in polynomial time. h
5. Computational results

The three formulations MCF, IPXY, and IPX differ with respect to the necessary number of variables and
constraints for ECP. Table 1 shows worst-case statistics for all formulations.
We have used three real-life instances of MLPP to compare the practical performance of solving them

using the IPXY and IPX formulations, after applying the substitutions mentioned in Section 3. The instances
all concern different parts of the Dutch railway network. We have chosen these instances because of
their different structures of the associated track graphs. The characteristics of the instances can be found
in Table 2.
Table 1

Variable and constraint statistics for the MCF, IPXY and IPX models of ECP

MCF IPXY IPX

# Vars. jET j þ OðjET j2Þ jETj+ jET nET1j jETj
# Cons. j ET j þ OðjET jjV jÞ jETj Oð2jET jÞ



Table 2

Instance characteristics

Instance Tmax jLj jVj jEj jETj

NS3600 3 64 28 27 50

NSNH 3 81 36 37 58

NSRandstad 3 331 122 138 204
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The three networks are visualised in the graphs in Fig. 8. The first two instances are rather small with
respect to the numbers of nodes in the network. We have chosen these instances to compare the practical
use of the two proposed models. At first glance, one might expect that there will be a computational trade-
off between the model structure of IPXY and the additional CS constraints in IPX. The track graph of
(a) (b)

(c)

Fig. 8. The type graphs for the instances NS3600 (a), NSNH (b) and NSRandstad (c).
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NS3600 is a path. This influences the number of type edges in ET. From Lemma 4.7, it is easy to see that, in
the case of a path, the number of edges in ET is at most Tmax Æ jEj. But even more important, the number of
possible subsets for IPX is also at most Tmax Æ jEj, i.e., at most Tmax per track edge e2E. To test the behav-
iour of the number of subset restrictions, we have also included two instances that introduce stations with a
degree higher than 2 in the track graphs.
Every instance was tested using both the IPXY and the IPX formulation. The numerical results were

obtained using CPLEX 7.5 on an AMD Athlon 800 MHz with 512 MB internal memory running Linux,
kernel 2.4.8. All instances where tested with all the CPLEX parameters at their default values. The model
statistics and computational results are shown in Tables 3 and 4 respectively.
The most striking statistics of Table 3 are the number of CS constraints for IPX. The table shows that,

for these real-life instances, the structure and size of the networks call for a number of subsets that is
roughly only linear in the number of type edges jETj. Therefore, we have not implemented the separation
algorithm described in Section 4.3, but simply added all CS constraints at the root node.
The computational results in Table 4 show that none of the IPXY instances could be solved to optimality

within one hour. One possible explanation for this could be the significantly lower root LP values. With
NS3600 for example, the root LP value of the IPX formulation is 7213 (4.08% gap), whereas one hour,
or 1.2 million nodes, of branching on IPXY gives a best lower bound of only 7173 (4.61% gap). Similar con-
Table 3

Statistics for the different instances and models

Instance Model # var. # con. # subsets

NS3600 IPXY 1303 114 –

NS3600 IPX 1280 145 81

NSNH IPXY 1641 139 –

SNH IPX 1620 230 149

NSRandstad IPXY 6686 535 –

NSRandstad IPX 6620 734 403

Table 4

Computational results

Instance Model Best Root LP Best LP Gap (%) # sec. # nodes

NS3600 IPXY 7520 6430 7173 4.61 � 1206968

NS3600 IPX 7520 7213 7520 0 0.81 60

NSNH IPXY 13760 12501 13313 3.25 � 747874

NSNH IPX 13760 13133 13760 0 6.66 407

NSRandstad IPXY 55360 46146 48733 11.97 � 104234

NSRandstad IPX 52480 48880 50510 3.75 � 25008

The dagger (�) indicates that the time limit of 3600 seconds was reached.

Table 5

A comparison between the MLPP solutions, and solutions of using a system split

Instance MLPP LPP Reduction (%)

NS3600 7520 9440 20.3
NSNH 13760 17600 21.8
NSRandstad 52480 62240 15.7
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clusions can also be drawn from the other results. It can be concluded that the results for IPX are more
promising than those for IPXY.
We have also tested the effect of using a system split and solving a separate line planning problem for

every type, compared to solving the line planning problem using MLPP. The system split was made accord-
ing to the best-paths for every commodity. Thus, the capacities must allow all passengers to use lines of
their best (highest) possible type. Using such a system split is equivalent to forcing all ye variables in an
IPXY instance to zero. The results for this system split are shown in Table 5. The reduction in the objective
function value (the total amount of operated capacity) by using MLPP is between 15.7% and 21.8% for the
tested instances. Note once more that these models only minimise the operated capacities and operational
costs, and do not measure, for example, the necessary number of train changes of passengers that travel
through the network.
6. Summary and conclusions

In this paper we have described different integer programming formulations for modelling the MLPP.
Where previous work, e.g., Bussieck [2], Claessens et al. [4], focused on modelling LPP for exactly one type
of trains and stations, we present generalisations of these models within a cost-minimising setting. First, the
general multi-commodity flow formulation is introduced in Section 4.1. This formulation is then used to
prove the validity of the two main formulations IPXY (Section 4.2) and IPX (Section 4.3). Using three
real-life instances we compare the computational results for both formulations. From these tests, we can
conclude that the IPX formulation outperforms IPXY in all of the chosen instances. Even though the number
of restrictions of IPX can be exponential in the size of the instance, we show in Section 4.3 how to identify
violated constraints in polynomial time.
Future research on the topic of multi-type line planning problems will focus on using techniques such as

branch-and-cut to solve even larger instances. In addition, we will consider new classes of model restric-
tions, e.g., track or station utilisation constraints, aiming at improving the practical applicability of the
solutions.
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