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Abstract

Shrinkage estimators of the covariance matrix are known to improve the sta-
bility over time of the Global Minimum Variance Portfolio (GMVP), as they are
less error-prone. However, the improvement over the empirical covariance matrix
is not optimal for small values of n, the estimation sample size. For typical asset
allocation problems, with n small, this paper aims to introduce a new framework
useful to improve the stability of the GMVP based on shrinkage estimators of the
covariance matrix. First, we show analytically that the weights of any GMVP
can be shrunk - within the framework of the ridge regression - towards the ones of
the equally-weighted portfolio in order to reduce sampling error. Second, monte
carlo simulations and empirical applications show that applying our methodol-
ogy to the GMVP based on shrinkage estimators of the covariance matrix, leads
to more stable portfolio weights, sharp decreases in portfolio turnovers, and often
statistically lower (resp. higher) out-of-sample variances (resp. sharpe ratios).
These results illustrate that double shrinkage estimation of the GMVP can be
bene�cial for realistic small estimation sample sizes.
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1 Introduction

Sampling error (also denoted as the estimation risk) constitutes a major drawback

for optimal portfolio procedures based on the mean-variance methodology. For exam-

ple, an investor implementing the well-known Markowitz procedure to determine his

optimal portfolio would usually substitute for the mean and the covariance matrix of

asset returns, their empirical counterparts (sample mean and covariance matrix). As

these inputs are estimators it results that the estimation uncertainty usually leads to

sub-optimal portfolios for which the asset weights are noisy and instable over time.1

Hence, the problem can be split into two types of uncertainty: the one resulting

from the estimation of the asset returns mean and the other one stemming of the

estimation of the asset returns covariance matrix. It seems that the �rst origin is

more severe than the second one since it is more di¢ cult to estimate means than

covariance matrices (see Merton [1980], Nelson [1992], Chopra and Ziemba [1993]).

Therefore, several papers propose to invest in the Global Minimum Variance Portfolio

(GMVP) the left-most point on the e¢ cient frontier. This portfolio has the appealing

property to rely exclusively on estimates of the covariance matrix (see Baker and

Haugen [1991], Jagannathan and Ma [2003]).

Nevertheless, the GMVP still su¤ers from a second source of uncertainty, i.e. the

one resulting from the estimation of the covariance matrix. To even better grasp this

type of sampling error, it is important to recall that the optimal allocation of the

GMVP depends on the eigenvalues structure of the covariance matrix. Now it is well

1For a discussion on the importance of sampling error regarding the instability of mean-variance
portfolios, see Jobson and Korkie [1980, 1981a], Frost and Savarino [1986, 1988], Jorion [1985, 1986],
Michaud [1989], Best and Grauer [1991], Black and Litterman [1992], DeMiguel et al. [2009a].
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known that for p=n ! c > 0 with p the number of assets and n the sample size,

the eigenvalues of the sample covariance matrix will be more dispersed than the true

unobservable ones (see Marcenko and Pastur [1967]), and the eigenvectors will not

be consistent (see Johnstone and Lu [2004]). Therefore, unless p=n! 0, errors in the

sample covariance matrix will a¤ect the corresponding GMVP, leading to unstable

portfolio weights. Such a drawback is quite often encountered in empirical works

when the number of observations is relatively small with respect to the number of

assets.

In order to tackle this problem, Ledoit and Wolf [2003, 2004a, 2004b] propose

to regularize the sample covariance matrix prior to the optimization via Bayes-Stein

shrinkage estimators.2 The idea behind this approach consists in introducing a bal-

ance between sampling error and speci�cation error (bias) by shrinking the sample

covariance matrix towards a target characterized by a low level of estimation risk.

Hence, it is possible to signi�cantly reduce the amount of sampling error in the sample

covariance matrix without adding too much speci�cation error. However, shrinkage

estimators of the GMVP are not optimal for small values of n and can under-perform

in �nite sample.3 An illustration is given by Jagannathan and Ma [2003] who show

that the GMVP computed using a randomly weighted average of the sample and the

single index covariance matrices can perform as well as the shrinkage estimator of

2Note that other methods of reducing sampling error when computing the GMVP include the use
of factor models (the single index model, the Fama and French [1993] three-factor model, etc.), the
normed-constrained approach in DeMiguel et al. (2009b), or the imposition of shortsale constraints.
This latter approach is widely discussed by Jagannathan and Ma [2003] who show that shrinkage
of the sample covariance matrix can be achieved by imposing a shortsale constraint on the portfolio
weights.

3By the term "shrinkage estimators of the GMVP", we mean the GMVP computed using Bayes-
Stein shrinkage estimators of the covariance matrix.
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the GMVP in Ledoit and Wolf [2003].4

Hence, for small sample sizes, this paper aims at proposing a new method to fur-

ther reduce sampling error by shrinking once again traditional shrinkage estimators

of the GMVP. To achieve this goal, we prove theoretically5 that penalized regressions

(ridge, lasso or elastic net) aiming at reducing sampling variability of parameters esti-

mates can lower the problems induced by the estimation risk in computing shrinkage

estimators of the GMVP. Therefore we introduce some new estimators of the GMVP

which draw from an equality restricted ridge regression (see Grob [2003]). These

estimators result from a double shrinkage operation in the sense that they shrink to-

wards the equally-weighted portfolio traditional shrinkage estimators of the GMVP.

Based on the theoretical results in Grob [2003], we give conditions under which the

weights of the double shrinkage estimators of the GMVP dominate in the sense of

Mean Square Error (MSE) the weights of the traditional shrinkage estimators of the

GMVP.

Monte carlo simulations and empirical applications illustrate that our double

shrinkage methodology leads to more stable portfolio weights, sharp decreases in port-

folio turnovers, and often statistically lower (resp. higher) out-of-sample variances

(resp. Sharpe ratios). The results hold for realistic small sample sizes and indicate

that double shrinkage estimation of the GMVP is highly bene�cial for practitioners.

The remainder of the paper is organized as follows. Section 2 introduces the

4This GMVP is based on a shrinkage covariance matrix obtained by combining the sample and
the single index covariance matrices, using a shrinkage data-dependent weighting scheme.

5This is done via the generalization of Kempf and Memmel [2006]. We prove that the weights of
any shrinkage estimator of the GMVP can be recovered through the classical least-squares regression
applied to a pseudo data set.
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regression-based approach for the computation of shrinkage estimators of the GMVP.

In Section 3, we develop the double shrinkage methodology for the estimation of

the GMVP and present the main theoretical results. Monte carlo simulations and

empirical applications illustrating the relevance of our methodology are presented in

section 4. The last Section concludes.

2 Least squares regression and shrinkage estimators of
the GMVP

Consider an investor facing the choice of a portfolio among the universe of p �nancial

risky assets. At time t, denote by rt = (r1t; r2t; :::; rpt)
0 the (p; 1) vector of asset

returns with covariance matrix the (p; p) matrix �. In the traditional minimum-

variance optimization, the optimal portfolio weights are de�ned as follows

$ = argmin
x

x0�x; (1)

under the constraint #x = 1, with x the (p; 1) vector of portfolio weights, and # a

vector (1; p) whose entries are ones. The explicit solution is given by6

$ =
��1#0

#��1#0
: (2)

For the investor, the variance �2 of the GMVP equals

�2 = $0�$ =
1

#��1#0
: (3)

Theoretically, (2-3) illustrate that the weights and the variance of the GMVP

depend on the covariance matrix � which is unobservable. In practice, to get a
6Note that equation (1) de�nes the solution of the GMVP which di¤ers from the Constrained

Minimum Variance Portfolio (CMVP), solution of (1) under some speci�ed constraints. For example,
prohibition of short sale or the desire of investors to �x upper bounds on portfolio weigths.
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feasible evaluation of these quantities, one replaces the unknown matrix � by an

estimator b�. More precisely, the two-step estimator of $ and �2 are given by

b$ =
b��1#0
#b��1#0 ; b�2 = 1

#b��1#0 : (4)

Under the assumption that rt is independent and identically distributed, and

follows a multivariate normal distribution with mean � and covariance matrix �, a

natural estimator (maximum likelihood) of � is the empirical or sample covariance

matrix which is the most e¢ cient estimator and de�ned by

b� = b�emp = 1

n

nX
t=1

(rt � b�) (rt � b�)0 ; (5)

with n the available sample size and b� the sample mean. However substituting the
true covariance matrix by its empirical counterpart renders the GMVP highly instable

as the sample covariance matrix is a very noisy estimator. Hence, most of the times in

empirical applications (where the estimation sample size n is relatively low compared

to the dimension of the assets p) we observe large values for the estimated coe¢ cients

of the sample covariance matrix whereas their true values are small (see Jobson and

Korkie [1980]). The Bayes-Stein shrinkage techniques constitute common solutions

to reduce sampling error by combining the sample covariance matrix b�emp with a
prior estimator b�prior

b�bs = �b�prior + (1� �) b�emp; (6)

where � is a scalar shrinkage parameter lying between zero and one. The prior

estimator of the covariance matrix is a structured one that is less in�uenced by

sampling error. Ledoit and Wolf [2003, 2004a, 2004b] analyse several prior (or target)

6



matrices as the one derived from the single index model, the constant correlation

matrix and a multiple of the identity matrix. The goal of the shrinkage technique

is to reduce the mean square error of the estimator of the covariance matrix via

balancing bias and variance. The resulting GMVP is obtained by replacing b�bs by b�
in (4), yielding

b$bs = b��1bs #0
#b��1bs #0 ; b�2bs = 1

#b��1bs #0 : (7)

Although shrinkage estimators of the GMVP in (7) are less error-prone, we show in

this paper that the remaining7 sampling error a¤ecting the stability of these portfolios

can be further reduced via an additional shrinkage operation. The core of the double

shrinkage approach relies on an alternative regression-based approach to compute

b$bs based on a given shrinkage estimator b�bs of the covariance matrix �. To present
the regression approach, let Z = [z1; :::; zp] of dimension (p; p) be the square root of

b�bs, that is, Z 0Z = b�bs. Denote Z(i) = [zi � z1; :::; zi � zi�1; 0p; zi � zi+1; :::; zi � zp]
the matrix of dimension (p; p) where 0p is a vector (p; 1) whose entries are zeros, with

i 2 f1; :::; pg. Note that the rth column of Z(i) is equal to the di¤erence between zi

and the rth column of Z. Let us consider the following least squares regression

b� = argmin
�

u0u = argmin
�

(Y �X�)0 (Y �X�) ; (8)

where X =
�
Z 0(i); Z

0
(k)

�0
i 6= k is a matrix of dimension (2p; p), Y = (z0i; z

0
k)
0 a

vector of dimension (2p; 1), � =
�
�1; :::; �p

�0 a vector (p; 1) of parameters, and u the
(2p; 1) vector of noise. The next proposition recasts the computation of the shrinkage

estimators of the GMVP within the classical least squares regression problem.
7The remaining sampling error can be related to the lack of precision due to the scarcity of data

in the estimation of the shrinkage parameter � in the equation (6).
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Proposition 1 The Ordinary Least Squares (OLS) estimate of � in equation (8)

corresponds to the weights of the shrinkage estimator of the GMVP, i.e.,

b� = b$bs and
P2p
s=1 bu2s = 2b�2bs: (9)

See Appendix A for the proof. The proposition states that an OLS regression ap-

plied to a pseudo data leads to a solution that corresponds exactly to the shrinkage

estimator of the GMVP in (7). Besides, the residuals sum of squares of the regression

equation (8) equals two times the variance of the shrinkage estimator of the GMVP.

This result can be viewed as a generalization of proposition 2 in Kempf and Memmel

[2006] who �nd identical results for the classical GMVP based on the empirical co-

variance matrix. Our result is nevertheless more general as it holds for any GMVP

that relies on a given estimator of the covariance matrix which is invertible. This

is in particular the case for the shrinkage estimator of the GMVP. In the next sec-

tion, we rely on equation (8) to introduce our double shrinkage methodology for the

estimation of the GMVP.

3 Ridge regression and double shrinkage estimation of
the GMVP

The OLS estimator b� in equation (8) is an unbiased estimator of � if the residual
vector u satis�es the assumption E (u) = 0. This estimator has also the desirable

property to be of minimal variance (between the class of all unbiased estimators

linear with respect to Y ) under the assumption that u is spherical (Gauss-Markov

Theorem). Nevertheless, it is well known that introducing a small amount of bias

in the OLS estimator can lead to a signi�cant reduction of its variance and thus
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its Mean Square Error (MSE), improving hence parameter stability and predictive

performance. This is in particular the case for high dimensional problems where the

size of the matrix X is large. The fall in variance is generally achieved by penalizing

the least squares criterion in equation (8)

� = argmin
�

(Y �X�)0 (Y �X�) + f� (�) ; (10)

with f� (�) the penalty function. Three particular penalty functions are generally

used. They correspond to the so-called ridge regression (see Hoerl and Kennard

[1970]), the lasso or least absolute shrinkage and selection operator (see Tibshirani

[1996]), and the elastic net (see Zou and Hastie [2005]), with the following equivalences

Ridge: f� (�) = �
pX
j=1

�2j ; � � 0; (11)

Lasso: f� (�) = �
pX
j=1

���j�� ; � � 0; (12)

Elastic net: f� (�) = �2

pX
j=1

�2j + �1

pX
j=1

���j�� ; �1; �2 � 0; (13)

where �, �1 and �2 are tuning parameters. The solution of the ridge regression has

a closed form expression given by

� =
�
X 0X + �Ip

��1
X 0Y: (14)

For � = 0 we get the OLS estimator and increasing � shrinks the OLS estimator

which is unbiased but noisy towards zero which is a biased but noise-free estimator.

The intrinsic limit of the ridge regression is that none coe¢ cient estimate is set

exactly to zero. This characteristic is not desirable when the parsimony of the model is
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required beyond the accuracy of predictions. Lasso and elastic net methods tackle this

issue by setting exactly to zero some coe¢ cients, leading thus to more parsimonious

models, especially when the number of predictors is large.

Nevertheless, in this paper, we decide to focus exclusively on the ridge regulariza-

tion method. Our choice is motivated by the fact that it constitutes the only method

to o¤er an explicit solution. Besides we will show later on that it turns out to be more

convenient in order to incorporate the restriction associated with optimal portfolio,

i.e. #� = 1, where # is the (1; p) vector whose entries are ones. As underlined by

Grob [2003], when the ridge estimator is assumed to satisfy a given restriction, here

#� = 1, it is no longer appropriate to shrink the OLS estimator towards the zero

vector (which evidently violates the restriction) but towards a vector �0 satisfying

the restriction. This approach called the modi�ed ridge estimation was proposed by

Swindel [1976]. The estimator has the following form

�S =
�
X 0X + �Ip

��1 �
X 0Y + ��0

�
; (15)

where the subscript "S" refers to Swindel. In fact, this estimator corresponds to the

OLS estimator for � = 0 and to �0 when � ! 1. A straightforward candidate for

�0 is the shortest vector satisfying the restriction #�0 = 1, i.e. �0 = #
0 �##0��1. In

our framework, this vector is identical to the (p; 1) vector whose entries respectively

equal 1=p. Therefore, the estimator �S representing the optimal portfolio weights in

equation (15) shrinks the GMVP, for which the weights are given by b� in equation
(8) towards the equally-weighted portfolio, with weights �0.

One can notice that while extreme values of the ridge parameter (� = 0 or �!1)
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lead to optimal portfolio weights �S that satisfy the constraint #�S = 1, there is no

guarantee that it remains the case for intermediate values of �. Thus, the expression

of �S has be to modi�ed in order to ensure that the constraint is met for any �.

To this aim, let us remark that the Swindel [1976] estimator �S is the solution of

an OLS regression applied to an augmented data set. More precisely, if we denote

X� =
�
X 0;

p
�Ip

�0
and Y� =

�
Y 0; �00

�0, with simple algebraic calculus, one can show
that �S is the solution of the following least squares regression

�S = argmin
�

u0�u� = argmin
�

(Y� �X��)0 (Y� �X��) : (16)

Therefore, if we denote �RS the corresponding restricted ridge estimator, with

the subscript "RS" meaning that the Swindel estimator is restricted, it follows that

�RS = argmin
�

(Y� �X��)0 (Y� �X��) s.t. #� = 1, (17)

that is,

�RS = �S �
�
X 0
�X�

��1
#0
h
#
�
X 0
�X�

��1
#0
i�1 �

#�S � 1
�
; (18)

applying the usual formula of the equality restricted OLS (see Draper and Smith

[1981, p. 122]). It appears by replacing the augmented matrix X� by its expression

that (18) reduces to

�RS = �S � S�1� #0
�
#S�1� #0

��1 �
#�S � 1

�
; (19)

with S� = X 0X + �Ip. The estimator �RS is a special case of the restricted ridge

estimator in Grob [2003]. In such a case, �RS meets the restriction, i.e., #�RS = 1,

8�, and for � = 0; �RS equals b�, the weights of the shrinkage estimator of the GMVP
in equation (9). The next proposition provides the limiting value of �RS for �!1.
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Proposition 2 The optimal portfolio weights �RS in equation (19) is such that

lim
�!1

�RS = �0:

The proof follows from theorem 1 in Grob [2003]. The vector �RS is our double

shrinkage estimator of the GMVP. It shrinks any shrinkage estimator of the GMVP

(with weights b� or equivalently b$bs) towards the noise-free equally-weighted portfolio.
Conditions under which the double shrinkage e¤ect leads to sampling error reduction

can be derived. Let us note that the MSE of b� equals
MSE

�
�; b�� = trace h�2 �X 0X

��1i
; (20)

with �2 the variance of the noise term in equation (8). Furthermore, it can be proved

(see Grob [2003]) that the MSE of the shrinkage estimator �RS is

MSE
�
�; �RS

�
= trace

�
�2M�X

0XM� + �
2M���

0M�

�
; (21)

where M� = S�1� � S�1� #0
�
#S�1� #0

��1
#S�1� . The following proposition gives condi-

tions under which the estimator �RS of the optimal portfolio weights dominates in

the sense of the MSE the estimator b�.
Proposition 3 For �RS and b� as de�ned respectively in equations (19) and (8), if
p > 2 and

0 < � � 2�2

�0Q�
;

with Q = Ip � #0
�
##0
��1

#, then

MSE
�
�; �RS

�
< MSE

�
�; b�� :
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See Appendix A for the proof. The proposition states that as soon as the num-

ber of assets is more than two and the ridge parameter � lies between the interval�
0; 2�2=�0Q�

�
, sampling error is reduced by the restricted ridge estimator �RS .

The choice of the tuning parameter � appears hence crucial in such a framework.

This issue has been investigated within the ordinary ridge regression by several stud-

ies: the inspection of the so-called ridge trace (see Hoerl and Kennard [1970]), the

examination of the Variance In�ation Factors (VIF) as a function of � (see Chatterjee

and Price [1977], Neter et al. [1983]), and CV or cross validation (see Allen [1971,

1974], Golub et al. [1979]). In our equality restricted ridge regression framework, an

explicit solution for �opt the optimal value of � is provided by Theorem 5 in Grob

[2003]. Under the assumption that QX 0XQ = Q, �opt is obtained by minimizing the

MSE of the restricted ridge estimator in equation (21) with respect to �, yielding

�opt =
(p� 1)�2

�0Q�
: (22)

An ad hoc estimator of �opt can be used even if the assumption QX 0XQ = Q is

not satis�ed. This estimator is obtained by replacing �2 and � by suitable estimators

and has the following expression

b�opt = (p� 1) b�2b�0Qb� ; (23)

where b� is the weights of the classical shrinkage estimator of the GMVP, and b�2 the
estimator of �2, i.e.,

b�2 = 1

p+ 1

P2p
s=1 bu2s. (24)

Note that b�opt is an increasing function of b�2. Since b�2 is related to b�2 (see
proposition 1), this means that more shrinkage is required to reduce sampling error

13



when the variance of the classical shrinkage estimator of the GMVP is high.8 It

is worth mentioning that our double shrinkage estimator �RS of the GMVP can be

interpreted as a norm-constrained portfolio as introduced by DeMiguel et al. (2009b).

The following proposition makes this statement clear.

Proposition 4 For a given value of �, there exists a parameter � > 0 such that the

solution of the following norm-constrained optimization problem

e$ = argmin
x

x0b�bsx; (25)

subject to (x� �0)0 (x� �0) � � and #x = 1, is identical to the restricted ridge

solution �RS, that is e$ = �RS.

The proof is straightforward. Indeed, from proposition 1 which establishes the

equality between b� and b$bs, we can rewrite the constrained program (25) as follows

e$ = argmin
�

(Y �X�)0 (Y �X�) ; (26)

subject to (� � �0)0 (� � �0) � � and #� = 1, or equivalently

e$ = argmin
�

(Y �X�)0 (Y �X�) + �
pX
j=1

�
�j � �0j

�2
; (27)

subject to #� = 1, with � � 0 a parameter inversely related to �. The last program

corresponds exactly to the formulation of the restricted ridge regression with solution

�RS .

8As noted by Grob [2003], an iterated estimation procedure can be considered for b�opt, where
instead of b�0Qb� one uses �0RSQ�RS , and in each step � is chosen as the estimate of � from the
previous step. However, we do not follow this strategy in the sequel, because simulations and
empirical applications (not reported) show that it leads to over-shrinkage.
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From proposition 4, it appears that the application of our double shrinkage

methodology can be conducted by solving the program (25) using any optimization

algorithm. Nevertheless, three points should be underlined to stress the relevance

of the equivalent formulation via our restricted ridge regression. First, our solution

�RS (see equation 19) has a closed-form expression and can be empirically obtained

without any software optimization algorithm. Second, by recasting the solution of

the program (25) within a regression framework, we address statistically the issue of

bias-variance trade-o¤. In this line, the proposition 3 gives the necessary condition

under which the double shrinkage e¤ect leads to sampling error reduction. Third, we

give an explicit solution for the choice of the tuning parameter � that makes statisti-

cally the compromise between bias and variance using the MSE as criterion, whereas

DeMiguel et al. [2009b] recommand the use of cross-validation (with the in-sample

variance as criterion) to �nd the value of � in the program (25).

4 Monte carlo simulations and empirical applications

In this section, we evaluate on simulated and real data sets the relevance of our

double shrinkage methodology when applied to three (3) shrinkage estimators of the

GMVP. The considered GMVP are the ones that use as estimators for �, shrinkage

estimators of the covariance matrix in Ledoit and Wolf [2004a, 2004b] where b�prior
corresponds respectively to the constant correlation matrix, the diagonal matrix and

the multiple of the identity matrix.9 For each of these estimators of the covariance

9We do not consider the shrinkage estimator in Ledoit and Wolf [2003] where b�prior corresponds
to the covariance matrix from the single index model. In fact, it has been shown (see Ledoit and
Wolf [2004a]) that this estimator leads to similar results compared to the one with the constant
correlation matrix as prior.
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matrix, a "rolling-window" procedure is implemented to compare the investment

strategies respectively based on the corresponding shrinkage estimator of the GMVP

(with weights b� or equivalently b$bs) and its double shrinkage version (with weights
given by �RS).

4.1 Results from simulated data sets

The following strategy is implemented. In a �rst step, we generate a data set of

monthly asset returns fritg of dimension (T; p) where T is the number of months

and p the number of assets. Following Tu and Zhou [2008], we use a real data set

to calibrate the parameters. Database is extracted from Kenneth French�s website

and covers the 49 industry portfolios (p = 49) from July 1963 to December 2009

(555 months). The empirical means and covariance matrix are assumed as the true

parameters in the calibration, and the monthly returns data are simulated from a

multivariate normal distribution with T = 24; 000 (2; 000 years). In a second step

and for each of the three shrinkage estimators of the covariance matrix, the simulated

returns for the �rst n months (with n the length of the estimation window) are used

to compute b� and �RS which are considered as competitive allocations for the month
n+1, and the two corresponding out-of-sample portfolio returns. This step is repeated

by moving each time the estimation window (including the data for a new month and

dropping the data for the earliest month) until the last observation. Note that at the

end of the procedure and for each of the three shrinkage estimators of the covariance

matrix, we have computed T � n portfolio weights b�t and �RS;t t = n; :::; T � 1,

with corresponding out-of-sample returns Rt = b�0trt+1 and Rt = �
0
RS;trt+1 where
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rt+1 is the vector (p; 1) of asset returns at time t + 1. Four criteria are used to

compare the competitive optimal portfolios: the portfolio turnovers and the boxplots

of portfolio weights which provide insights on the temporal stability of each strategy,

the out-of-sample variances and Sharpe ratios. The out-of-sample sharpe ratio cSRb�
corresponding to the estimator b� of the GMVP weights is de�ned as

cSRb� = b�b�b�b� ; (28)

where b�b� and b�2b� measure respectively the mean and the variance of Rt
b�b� = 1

T � n

T�1X
t=n

Rt; (29)

b�2b� = 1

T � n� 1

T�1X
t=n

�
Rt � b�b��2 ; (30)

and the same statistic cSR�RS for the estimator �RS can be computed by replacing
Rt by Rt in equations (29-30). As for the portfolio turnover, it is de�ned as follows

Turnoverb� = 1

T � n� 1

T�1X
t=n

pX
j=1

����b�(j)t+1 � b�(j)t+ ���� ; (31)

where b�(j)t is the weight of the asset number j in the optimal portfolio based on b�t,
b�(j)t+ the same asset weight before rebalancing at t + 1, and b�(j)t+1 the desired asset
weight at time t+1 (after rebalancing). The same expression in equation (31) is used

to de�ne the turnover of the portfolio based on the estimator �RS .

Panel A in Table 1 (see Appendix B) reports for several sample lengths (n) the

out-of-sample portfolio turnovers of each strategy. The �rst line reports the turnovers

of the classical shrinkage estimator of the GMVP (with weights the vector b�) whereas
the turnovers of our double shrinkage estimator of the GMVP (with weights the vec-

tor �RS) are indicated below within brackets. In all cases, the turnover of the classical
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shrinkage estimator of the GMVP is higher than the one obtained implementing our

new estimation. Hence, it turns out that our ridge regression lowers (via the bias-

variance trade-o¤) the time instability of the estimated portfolio weights, leading to a

signi�cant reduction of trades rebalancing across time and assets. As an illustration,

for n = 60, the turnover of the classical shrinkage estimator of the GMVP that relies

on the shrinkage estimator of the covariance matrix (with the constant correlation

matrix as prior) equals 0:86, while it falls to 0:47 when implementing our ridge esti-

mator. Thus, the reduction of the sampling error via the restricted ridge regression

decreases the turnover by almost 50%.

This stability improvement is con�rmed by the analysis of the boxplots of the

estimated portfolio weights over the out-of-sample period. For example, Figure 1 in

Appendix B gives the boxplots of the T � n out-of-sample optimal portfolio weights

for the two competitive investment policies.10 It appears that introducing a small

amount of bias in the estimation process of the GMVP weights signi�cantly increases

its temporal stability. Indeed, while the weights of the classical shrinkage estimator

of the GMVP range approximately from -60% to 86%, the weights of the double

shrinkage estimator of the GMVP range from -30% to 60%.

It is now interesting to check how the stabilization e¤ect a¤ects the out-of-sample

variances and sharpe ratios. To the aim, readers should consider Panels B and C

in Table 1 which report these two statistics across the two competitive investment

strategies. We report in parentheses the p-values of the test of equality between these

10To save space, we only report the boxplots for the case n = 60 and for the shrinkage estimator
of the covariance matrix where the prior matrix corresponds to the constant correlation matrix. All
other �gures are available from the authors upon request.
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investment strategies. For the sharpe ratio the p-value of the di¤erence is computed

following Jobson and Korkie [1981b] and the correction proposed by Memmel [2003].

As for the variances, the comparison is achieved using the Bartlett�s test for equality

of variances which follows asymptotically a chi-square distribution under normality.

Panel B indicates that for realistic estimation sample sizes (n = 60, 120), the double

shrinkage operation does not deteriorate the out-of-sample variances. Indeed, for

these values of n, we notice a decrease in the variances, which is always signi�cant for

n = 60 (5 years). Of course, as the estimation sample size n increases, the variances

of the classical shrinkage estimator of the GMVP decrease, and the bene�t associated

with the additional shrinkage operation disappears. More precisely, even if for large

values of n (n = 240, 720) our ridge regression helps to lower the turnovers, this is

at the cost of an increase in the variances of the optimal portfolios. To summarize,

double shrinkage estimation of the GMVP using our ridge regression is bene�cial

(from the viewpoint of variances) for small sample sizes, which is the case encountered

by practitioners.

Finally, Panel C of Table 1 gathers the results when considering the Sharpe ratio.

It indicates that our double shrinkage approach improves the performances of the

classical estimator of the GMVP. Even if it is not clear in the Table, this positive

e¤ect should decrease with the estimation sample size n, and should asymptotically

disappear.

As a robustness check, we report in Table 2 the same three statistics using cali-

brated parameters stemming from the hundred Fama and French portfolios of �rms
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sorted by size and book-to-market (p = 100) whereas the sample remains unchanged

(from July 1963 to December 2009). Thus, compared to the previous simulation ex-

ercise, the asset space is larger as well as p=n. Results remain in the line of those

reported in the Table 1: �rst, in all con�gurations we observe a decrease in the val-

ues of the turnovers; second, our double shrinkage methodology leads to statistically

lower variances and higher sharpe ratios, except for the case n = 720, i.e. large

sample size.

4.2 Results from empirical data sets

In the previous section, we perform a simulation exercise following DeMiguel et al.

[2009a] according to whom the comparison of two competitive investment strategies

with real data sets does not constitute a proof that one strategy is better than the

other. Indeed, such a conclusion might be spuriously driven by the existence of

small-�rm e¤ect, calendar e¤ects, momentum, mean-reversion, fat tails, or other

anomalies that have been documented in the literature. Nevertheless, practitioners

always appreciate to evaluate the relevance of a new methodology with real data.

Thus, we apply the "rolling-window" procedure to the earlier 49 industry portfolios,

and the 100 portfolios formed on size and book-to-market.

Table 3 (see Appendix B) reports the results for the 49 industry portfolios. The

presentation is similar to the ones in Tables 1 and 2 except that we report the three

statistics (turnovers, variances and sharpe ratios) for the equally-weighted portfolio.

There are two reasons for considering this portfolio: �rst, we have shown in proposi-

tion 2 that our ridge regression moves the classical shrinkage estimator of the GMVP
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towards the equally-weighted portfolio. Therefore, it is interesting to compare our

investment strategy to this target portfolio. Second, monte carlo simulations and

empirical applications in DeMiguel et al. [2009a] provide evidence that this portfolio

constitutes a relevant benchmark investment rule as many others investment strate-

gies, even sophisticated, cannot beat it. Panel A in table 3 gives additional evidences

that our double shrinkage methodology leads to large reductions in optimal portfolio

turnovers. From a practical point of view, this result is useful because high turnovers

lead to high transaction costs, which can detract from the overall return of a given in-

vestment policy. As expected the turnovers of the equally-weighted portfolio are very

low and we bene�t from this when shrinking the weights of the classical shrinkage

estimator of the GMVP towards 1=p.

Once again, it is important to stress that the observed drop in the optimal port-

folio turnovers is not coupled with an increase (resp. reduction) in variances (resp.

sharpe ratios). Indeed as reported in Panels B of Table 3, for small values of n

(n = 60, 120), the variances of the double shrinkage estimator of the GMVP fall, and

in all cases except one, the di¤erences are statistically signi�cant.11 It is a notice-

able characteristic that even our ridge regression shrinks the weights of the classical

shrinkage estimator of the GMVP towards 1=p, the out-of-sample variance of the

resulting portfolio does not lie within the variances of the previous portfolios. As an

illustration, for the case n = 60 and when the prior matrix is the identity matrix,

the variances respectively of the classical shrinkage estimator of the GMVP and the

11Here, we follow DeMiguel et al. [2009b], and test the di¤erences in variances using the (non-
studentized) stationary bootstrap of Politis and Romano [1994], with B = 1000 resamples and an
expected block size b = 5. The p-value is computed using the methodology in Ledoit and Wolf [2008].
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equally-weighted portfolio equal 0:00163 and 0:00258, while the variance of the dou-

ble shrinkage estimator of the GMVP is only 0:00140. An opposite result is found

for the sharpe ratios (see Panel C of Table 3) where in all con�gurations the sharpe

ratios of the double shrinkage estimator of the GMVP is higher than the sharpe ra-

tios of both the classical shrinkage estimator of the GMVP and the equality weighted

portfolio. Note that for small samples (n = 60, 120) the di¤erences in sharpe ratios

are always statistically signi�cant except in one single case. These di¤erences are

tested using the studentized circular block bootstrapping methodology12 in Ledoit

and Wolf (2008) where the number of bootstrap replications and the size of each

block are respectively set to B = 1000 and b = 5.

Finally, Table 4 reports the same statistics as in table 3 but for our second data

set, that is, the 100 portfolios formed on size and book-to-market. The results are

identical : our new investment strategy helps to reduce the turnovers, while improving

the out-of-sample variances and sharpe ratios for small samples.

5 Conclusion

This paper contributes to the literature of sampling error reduction in the context of

assets allocation. Sampling error is generally known to o¤set the bene�t of diversi-

�cation due to its impact on the instability of the optimal portfolio weights. In the

minimum variance allocation framework, Bayes-Stein shrinkage estimators of the co-

variance matrix are known to improve the stability of the Global Minimum Variance

12Beyond the Jobson and Korkie [1981b] test used above (see section on monte carlo simulations)
to test for the equality of sharpe ratio, this test procedure is known to be robust to departures from
normality and i.i.d. data. We thank Mickael Wolf for making available the matlab codes (for the
implementation of this test) at http://www.iew.uzh.ch/institute/people/wolf/publication.
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Portfolio (GMVP). Yet the improvement is not optimal over small samples. By re-

casting the computation of the traditional shrinkage estimators of the GMVP within

the linear regression framework, we prove that an additional shrinkage operation via

a restricted ridge regression reduces the variability of these portfolios. More precisely,

we show that the weights of the traditional shrinkage estimators of the GMVP can

be recovered through an ordinary least squares regression applied to a pseudo data

set. Thus stabilization of the weights is obtained by minimizing the residual sum of

squares of this regression subject to a bound on the L2-norm of the coe¢ cients.

Monte carlo simulations and empirical applications con�rm the advantages of the

double shrinkage estimation of the GMVP. Indeed, our results suggest that shrinking

once again the traditional shrinkage estimators of the GMVP helps to stabilize the

optimal portfolio weights, while improving for small estimation sample sizes, the out-

of-sample variances and sharpe ratios. Therefore, it strikes us that double shrinkage

estimation of the GMVP weights constitutes an appealing method for investors in

their quest for optimal portfolio diversi�cation.
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Appendix A: Proofs of propositions

Proof of Proposition 1. First, note that for a given Bayes-Stein shrinkage

covariance matrix b�bs, the corresponding GMVP is de�ned by
b$bs = argmin

x
x0b�bsx sc #x = 1

= argmin
x

x0Z 0Zx sc #x = 1: (32)

Second, b� is the solution of the program given by the equation (8)

b� = argmin
�

2pX
s=1

u2s = argmin
�

2pX
s=1

(Ys �Xs�)2 : (33)

Since Xs =
�
Z 0(i)s; Z

0
(k)s

�0
and Ys = (z0is; z

0
ks)

0, we have

2pX
s=1

u2s =

pX
s=1

�
zis � Z(i)s�

�2
+

pX
s=1

�
zks � Z(k)s�

�2
: (34)

By de�nition, Z(i)s and Z(k)s are respectively equal to

Z(i)s = [zis � z1s; :::; zis � zi�1s; 0; zis � zi+1s; :::; zis � zps] ; (35)

Z(k)s = [zks � z1s; :::; zks � zk�1s; 0; zks � zk+1s; :::; zks � zps] : (36)

Replacing these expressions in (34) and after simple calculus, one gets

2pX
s=1

u2s =

pX
s=1

0BB@
0BB@1� pX

j=1
j 6=i

�j

1CCA zis + pX
j=1
j 6=i

�jz
2
js

1CCA+ pX
s=1

0BB@
0BB@1� pX

j=1
j 6=k

�j

1CCA zks + pX
j=1
j 6=k

�jz
2
js

1CCA :
(37)

Inserting the equality #� = 1 in the above equation leads to

2pX
s=1

u2s =

pX
s=1

�
�1z1s + :::+ �pzps

�2
+

pX
s=1

�
�1z1s + :::+ �pzps

�2
= �0Z 0Z� + �0Z 0Z�

= 2�0Z 0Z�: (38)
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It follows that b� is the solution of the minimisation program
b� = argmin

�
�0Z 0Z�, (39)

which is equivalent to the program (32) and b� = b$bs. Moreover, from equation (38)

we have

2pX
s=1

bu2s = 2b�0Z 0Zb�
= 2b$0bsb�b$bs
= 2b�2bs: (40)

Proof of Proposition 3. From proposition 1, we know that the estimator b� in
equation (8) is equal to the weights of the shrinkage estimator of the GMVP in (7),

i.e., b� = b$bs. Thus, b� = (X 0X)�1X 0Y satis�es the restriction #b� = 1. It follows

that b� = b�R, with b�R the corresponding restricted OLS estimator
b�R = b� � �X 0X

��1
#0
h
#
�
X 0X

��1
#0
i�1 �

#b� � 1� : (41)

Then, comparing MSE
�
�; b�� and MSE��; �RS� amounts to compare MSE��; b�R�

and MSE
�
�; �RS

�
. The rest of the proof follows from theorem 4 in Grob (2003).
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Appendix B: Tables and �gures

Figure 1: Boxplots of GMVP weights based on the shrinkage (towards the constant
correlation matrix) estimator of the covariance matrix
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Table 1: Results with simulated data (calibration with the 49-Industry
portfolios data)

Prior matrix n = 60 n = 120 n = 180 n = 240 n = 720

Panel A: Portfolios turnovers

Const. Corr. 0:8648 0:5144 0:3729 0:3031 0:1840
[0:4718] [0:2483] [0:1737] [0:1426] [0:0902]

Diagonal 0:5778 0:4068 0:3194 0:2723 0:1778
[0:3163] [0:2008] [0:1516] [0:1300] [0:0876]

Identity 0:6204 0:4229 0:3274 0:2775 0:1787
[0:3250] [0:2026] [0:1520] [0:1303] [0:0876]

Panel B : Portfolios variances

Const. Corr. 0:00165 0:00132 0:00118 0:00110 0:00097
[0:00141]
(0:00)

[0:00119]
(0:00)

[0:00114]
(0:00)

[0:00111]
(0:64)

[0:00107]
(0:00)

Diagonal 0:00139 0:00122 0:00113 0:00108 0:00096
[0:00135]
(0:01)

[0:00120]
(0:31)

[0:00116]
(0:10)

[0:00113]
(0:00)

[0:00108]
(0:00)

Identity 0:00148 0:00124 0:00115 0:00108 0:00096
[0:00140]
(0:00)

[0:00122]
(0:08)

[0:00117]
(0:17)

[0:00113]
(0:00)

[0:00108]
(0:00)

Panel C : Portfolios sharpe ratios

Const. Corr. 0:2382 0:2721 0:2755 0:2839 0:2926
[0:2760]
(0:09)

[0:3058]
(0:07)

[0:3113]
(0:00)

[0:3154]
(0:00)

[0:3091]
(0:00)

Diagonal 0:2349 0:2705 0:2747 0:2826 0:2917
[0:2560]
(0:00)

[0:2904]
(0:00)

[0:3004]
(0:00)

[0:3062]
(0:00)

[0:3058]
(0:00)

Identity 0:2351 0:2712 0:2756 0:2845 0:2923
[0:2542]
(0:02)

[0:2899]
(0:00)

[0:3002]
(0:00)

[0:3067]
(0:00)

[0:3058]
(0:00)

Notes: For di¤erent values of n the estimation sample length, this table reports the
monthly turnovers, variances and sharpe ratios for the GMVP that rely on the shrinkage
estimators of the covariance matrix in Ledoit and Wolf [2004a, 2004b]. For each of these
estimators identi�ed by the corresponding prior matrix, we �rst report the statistics for
the traditional shrinkage estimator of the GMVP, followed in bracket by the same statistic
for the double shrinkage estimator of the GMVP. Concerning the variances and the sharpe
ratios, the third reported value (in parenthese) is the p-value of the di¤erence between the
two reported values.
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Table 2: Results with simulated data (calibration with the 100 portfolios
sorted on size and book-to-market data)

Prior matrix n = 60 n = 120 n = 180 n = 240 n = 720

Panel A: Portfolios turnovers

Const. Corr. 2:1721 2:0497 1:4204 1:0581 0:4832
[1:5547] [1:0864] [0:6747] [0:4828] [0:2166]

Diagonal 1:3661 1:1972 0:9762 0:8168 0:4536
[0:8587] [0:6224] [0:4656] [0:3744] [0:2032]

Identity 1:6179 1:4804 1:1560 0:9307 0:4696
[1:0746] [0:7818] [0:5534] [0:4267] [0:2102]

Panel B : Portfolios variances

Const. Corr. 0:00188 0:00192 0:00158 0:00138 0:00100
[0:00161]
(0:00)

[0:00140]
(0:00)

[0:00121]
(0:00)

[0:00113]
(0:00)

[0:00102]
(0:09)

Diagonal 0:00154 0:00146 0:00134 0:00125 0:00098
[0:00141]
(0:00)

[0:00125]
(0:00)

[0:00117]
(0:00)

[0:00113]
(0:00)

[0:00103]
(0:00)

Identity 0:00164 0:00160 0:00143 0:00131 0:00099
[0:00146]
(0:00)

[0:00129]
(0:00)

[0:00118]
(0:00)

[0:00113]
(0:00)

[0:00102]
(0:00)

Panel C : Portfolios sharpe ratios

Const. Corr. 0:3080 0:2996 0:3344 0:3644 0:4125
[0:3286]
(0:00)

[0:3393]
(0:00)

[0:3671]
(0:00)

[0:3905]
(0:00)

[0:3886]
(0:00)

Diagonal 0:3056 0:3232 0:3489 0:3762 0:4122
[0:3181]
(0:00)

[0:3370]
(0:00)

[0:3583]
(0:00)

[0:3793]
(0:00)

[0:3823]
(0:00)

Identity 0:3082 0:3150 0:3420 0:3696 0:4117
[0:3208]
(0:00)

[0:3387]
(0:00)

[0:3615]
(0:00)

[0:3841]
(0:00)

[0:3850]
(0:00)

Notes: For di¤erent values of n the estimation sample length, this table reports the
monthly turnovers, variances and sharpe ratios for the GMVP that rely on the shrinkage
estimators of the covariance matrix in Ledoit and Wolf [2004a, 2004b]. For each of these
estimators identi�ed by the corresponding prior matrix, we �rst report the statistics for
the traditional shrinkage estimator of the GMVP, followed in bracket by the same statistic
for the double shrinkage estimator of the GMVP. Concerning the variances and the sharpe
ratios, the third reported value (in parenthese) is the p-value of the di¤erence between the
two reported values.
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Table 3: Empirical Results with the 49 Industry portfolios data
Prior matrix n = 60 n = 120 n = 180

Panel A: Portfolios turnovers

Const. Corr. 0:5412 0:3873 0:2999
[0:3171] [0:1950] [0:1425]

Diagonal 0:5871 0:4191 0:3242
[0:3371] [0:2049] [0:1535]

Identity 0:8696 0:5561 0:3950
[0:4876] [0:2553] [0:1790]

Eq. Weighted 0:0333 0:0327 0:0328
Panel B : Portfolios variances

Const. Corr. 0:00135 0:00147 0:00123
[0:00133]
(0:70)

[0:00135]
(0:04)

[0:00119]
(0:67)

Diagonal 0:00133 0:00146 0:00122
[0:00124]
(0:03)

[0:00135]
(0:01)

[0:00119]
(0:67)

Identity 0:00163 0:00160 0:00129
[0:00140]
(0:00)

[0:00138]
(0:00)

[0:00120]
(0:13)

Eq. Weighted 0:00258 0:00253 0:00236
Panel C : Portfolios sharpe ratios

Const. Corr. 0:2072 0:2013 0:2774
[0:2250]
(0:33)

[0:2450]
(0:02)

[0:3051]
(0:26)

Diagonal 0:2100 0:2070 0:2746
[0:2436]
(0:02)

[0:2489]
(0:01)

[0:3075]
(0:14)

Identity 0:1692 0:2000 0:2634
[0:2077]
(0:00)

[0:2441]
(0:00)

[0:3038]
(0:08)

Eq. Weighted 0:1921 0:2126 0:2268

Notes: For di¤erent values of n the estimation sample length, this table reports
the monthly turnovers, variances and sharpe ratios for the GMVP that rely on
the shrinkage estimators of the covariance matrix in Ledoit and Wolf [2004a,
2004b]. For each of these estimators identi�ed by the corresponding prior matrix,
we �rst report the statistics for the traditional shrinkage estimator of the GMVP,
followed in bracket by the same statistic for the double shrinkage estimator of the
GMVP. Concerning the variances and the sharpe ratios, the third reported value
(in parenthese) is the p-value of the di¤erence between the two reported values.
Eq. Weighted refers to the benchmark equality weighted portfolio.
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Table 4: Empirical Results with the 100 portfolios (sorted on size and
book-to-market) data
Prior matrix n = 60 n = 120 n = 180

Panel A: Portfolios turnovers

Const. Corr. 1:1930 1:4473 1:1174
[0:8511] [0:7794] [0:5510]

Diagonal 1:1759 0:9099 0:7207
[0:7707] [0:4539] [0:3295]

Identity 1:5870 1:3837 0:9126
[1:1335] [0:6933] [0:4107]

Eq. Weighted 0:0257 0:0258 0:0247
Panel B : Portfolios variances

Const. Corr. 0:00200 0:00244 0:00168
[0:00179]
(0:00)

[0:00186]
(0:00)

[0:00137]
(0:00)

Diagonal 0:00169 0:00184 0:00137
[0:00154]
(0:00)

[0:00156]
(0:00)

[0:00127]
(0:16)

Identity 0:00186 0:00222 0:00155
[0:00169]
(0:00)

[0:00176]
(0:00)

[0:00136]
(0:06)

Eq. Weighted 0:00281 0:00277 0:00258
Panel C : Portfolios sharpe ratios

Const. Corr. 0:2742 0:2455 0:3336
[0:2915]
(0:04)

[0:2958]
(0:00)

[0:3583]
(0:34)

Diagonal 0:2358 0:2496 0:3383
[0:2574]
(0:03)

[0:2816]
(0:06)

[0:3423]
(0:85)

Identity 0:2382 0:2375 0:3280
[0:2632]
(0:00)

[0:2803]
(0:01)

[0:3403]
(0:63)

Eq. Weighted 0:1659 0:1944 0:2148

Notes: For di¤erent values of n the estimation sample length, this table reports
the monthly turnovers, variances and sharpe ratios for the GMVP that rely on
the shrinkage estimators of the covariance matrix in Ledoit and Wolf [2004a,
2004b]. For each of these estimators identi�ed by the corresponding prior matrix,
we �rst report the statistics for the traditional shrinkage estimator of the GMVP,
followed in bracket by the same statistic for the double shrinkage estimator of the
GMVP. Concerning the variances and the sharpe ratios, the third reported value
(in parenthese) is the p-value of the di¤erence between the two reported values.
Eq. Weighted refers to the benchmark equality weighted portfolio.
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