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Abstract Solid cancers are spatially and temporally heterogeneous. This limits the use of
invasive biopsy based molecular assays but gives huge potential for medical imaging, which
has the ability to capture intra-tumoural heterogeneity in a non-invasive way. During the past
decades, medical imaging innovations with new hardware, new imaging agents and standard-
ised protocols, allows the field to move towards quantitative imaging. Therefore, also the
development of automated and reproducible analysis methodologies to extract more informa-
tion from image-based features is a requirement. Radiomics – the high-throughput extraction
of large amounts of image features from radiographic images – addresses this problem and is
one of the approaches that hold great promises but need further validation in multi-centric
settings and in the laboratory.
� 2011 Elsevier Ltd. All rights reserved.
lsevier Ltd. All rights reserved.
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1. Introduction

The use and role of medical imaging technologies in
clinical oncology has greatly expanded from primarily
a diagnostic tool to include a more central role in the
context of individualised medicine over the past decade
(Fig. 1). It is expected that imaging contains comple-
mentary and interchangeable information compared to
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Fig. 1. Different sources of information, e.g. demographics, imaging, pathology, toxicity, biomarkers, genomics and proteomics, can be used for
selecting the optimal treatment.
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other sources, e.g. demographics, pathology, blood bio-
markers, genomics and that combining these sources of
information will improve individualised treatment selec-
tion and monitoring.1

Cancer can be probed in many ways depending on
the non-invasive imaging device used or the mode by
which it operates (Fig. 2). Classically, anatomical com-
puted tomography (CT) imaging is a often used modal-
ity, acquiring images of the ‘anatome’ in high resolution
(e.g. 1 mm3). CT imaging is now routinely used and is
playing an essential role in all phases of cancer manage-
ment, including prediction, screening, biopsy guidance
for detection, treatment planning, treatment guidance
and treatment response evaluation.2,3 CT is used in the
assessment of structural features of cancer but it is not
perceived to portray functional or molecular details of
solid tumours. Functional imaging concerns physiologi-
cal processes and functions such as diffusion, perfusion
and glucose uptake. Here, commonly used methodolo-
gies are dynamic contract enhanced-magnetic resonance
imaging (DCE-MRI), assessing tumour perfusion and
fluoro-2-deoxy-D-glucose (FDG) positron emission
tomography (PET) imaging, assessing tumour metabo-
lism, which both often are found to have prognostic
value.4–6 Finally, another modality is molecular imag-
ing, visualising at the level of specific pathways or
macro-molecule in vivo. For example, there are molecu-
lar markers assessing tumour hypoxia or labelled anti-
bodies, assessing receptor expression levels of a
tumour.1,7

Over the past decades, medical imaging has pro-
gressed in four distinct ways:

� Innovations in medical devices (hardware): This con-
cerns improvements in imaging hardware and the
development of combined modality machines. For
example, in the last decade we moved from single
slice CT to multiple slices CT and CT/PET. More
recent developments are dual-source and dual-
energy CT. These techniques significantly increase
the temporal resolution for 4-D CT reconstructions
allowing visualisation of fine structures in tissues,



Fig. 2. Multilevel imaging: anatomical, functional, and molecular imaging.
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also in several stages in the cardiac or respiration
phase. Moreover, dual-energy CT can be used to
improve identification of tissue composition and
density.
� Innovations in imaging agents: Innovations in imaging

agents (or imaging biomarker, imaging probe, radio-
tracer), i.e. molecular substances injected in the body
and used as an indicator of a specific biological
process occurring in the body. This is achieved by
contrast agents, i.e. an imaging agent using positive
emission tomography (radiotracer). A common use
is to find indications of pathological processes, e.g.
hypoxia markers using PET imaging.
� Standardised protocol allowing quantitative imaging:

Historically radiology has been a qualitative science,
perhaps with the exception of the quantitative use
of CT based electron densities in radiotherapy treat-
ment planning. The use of standardised protocols like
common MRI spin-echo sequences helps to allow
multicentric use of imaging as well as transforming
radiology to a more quantitative, highly reproducible
science.
� Innovations in imaging analysis: The analysis of med-

ical images has a large impact on the conclusions of
the derived images. More and more software is
becoming available, allowing for more quantification
and standardisation. This has been illustrated by the
development of the computer-assisted detection
(CAD systems) that improves the performance of
detecting cancer in mammography or in lung
diseases.8

Radiomics focuses on improvements of image anal-
ysis, using an automated high-throughput extraction of
large amounts (200+) of quantitative features of med-
ical images and belongs to the last category of innova-
tions in medical imaging analysis. The hypothesis is
that quantitative analysis of medical image data



Fig. 3. (A) Two representative 3-D representations of a round tumour (top) and spiky tumour (bottom) measured by computed tomography (CT)
imaging. (B) Texture differences between non-small cell lung cancer (NSCLC) tumours measured using CT imaging, more heterogeneous (top) and
more homogeneous (bottom). (C) Differences of FDG-PET uptake, showing heterogeneous uptake.

Fig. 4. The Radiomics workflow. On the medical images, segmentation is performed to define the tumour region. From this region the features are
extracted, e.g. features based on tumour intensity, texture and shape. Finally, these features are used for analysis, e.g. the features are assessed for
their prognostic power, or linked with stage, or gene expression.
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through automatic or semi-automatic software of a
given imaging modality can provide more and better
information than that of a physician. This is supported
by the fact that patients exhibit differences in tumour
shape and texture measurable by different imaging
modalities (Fig. 3).

2. The workflow of Radiomics: a (semi) high-throughput

approach

Fig. 4 depicts the processes involved in the Radiomics
workflow. The first step involves the acquisition of high
quality and standardised imaging, for diagnostic or
planning purposes. From this image, the macroscopic
tumour is defined, either with an automated segmenta-
tion method or alternatively by an experienced radiolo-
gist or radiation oncologist. Quantitative imaging
features are subsequently extracted from the previously
defined tumour region. These features involve descrip-
tors of intensity distribution, spatial relationships
between the various intensity levels, texture heterogene-
ity patterns, descriptors of shape and of the relations of
the tumour with the surrounding tissues (i.e. attachment
to the pleural wall in lung, differentiation). The extracted
image traits are then subjected to a feature selection pro-
cedure. The most informative features are identified
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based on their independence from other traits, reproduc-
ibility and prominence on the data. The selected features
are then analysed for their relationship with treatment
outcomes or gene expression. The ultimate goal is to
provide accurate risk stratification by incorporating
the imaging traits into predictive models for treatment
outcome and to evaluate their added value to commonly
used predictors.
3. The Radiomics hypothesis: inferring proteo-genomic

and phenotypic information from radiological images

The underlying hypothesis of Radiomics is that
advanced image analysis on conventional and novel
medical imaging could capture additional information
not currently used, and more specifically, that genomic
and proteomics patterns can be expressed in terms of
macroscopic image-based features. If proven, we can
infer phenotypes or gene–protein signatures, possibly
containing prognostic information, from the quantita-
tive analysis of medical image data.

This hypothesis is supported by image-guided biop-
sies, which demonstrated that tumours show spatial dif-
ferences in protein expressions.9 More specifically, it has
been demonstrated that major differences in protein
expression patterns within a tumour can be correlated
to radiographic findings (or radiophenotypes) such as
contrast-enhanced and non-enhanced regions based on
CT data.10 The authors suggest that image-guided pro-
teomics holds promise for characterising tissues prior
to treatment decisions and without imaging there is
indeed a risk that the optimum treatment decision could
be neglected (i.e. the use or not of a targeted agent).
Also, Kuo et al. reported the association of CT-derived
imaging traits with histo-pathologic markers, and sev-
eral pre-defined gene expression modules on liver can-
cer.11,12 In ovarian carcinoma, an imaging feature
describing the enhancement fraction as proportion of
enhancing tumour tissue on a pre-treatment CT scan,
was found predictive for outcome after first line chemo-
therapy.13 In lung cancer, CT derived information has
been limited to pre-treatment assessment of tumour vol-
ume and as response evaluation defined as tumour size
reduction.14 For PET imaging, the maximum and med-
ian FDG uptake has often been investigated, indicating
strong prognostic power.6,19 However, more complex
descriptions of FDG uptake are only investigated on a
limited scale. There was a study of El Naqa et al.15,
investigating the predictive power of intensity–volume
histogram (IVH) metrics, shape and texture features to
assess response to treatment of a limited set of patients
with head and neck and cervix cancers. Tixier et al. also
explored the potential of SUV based, shape and texture
features extracted from baseline FDG-PET, images, to
assess response to therapy and prognosis in order to pre-
dict response to combined chemo-radiation treatment in
oesophageal cancer.16 Also, textural features in FDG
PET images exhibited small variations due to different
acquisition modes and reconstruction parameters.17

These examples open the question of whether quantita-
tive extraction of additional imaging features on con-
ventional imaging improves the ability of currently
used parameters to predict or monitor response to
treatment.

Furthermore, Radiomics can be linked with the con-
cept of radio-genomics, which assumes that imaging fea-
tures are related to gene signatures. An interesting
finding in recent literature is that tumours with more
genomic heterogeneity are more likely to develop a resis-
tance to treatment and to metastasise.18 This links to the
concept that more heterogeneous tumours have a worse
prognosis. According to the Radiomics hypothesis, the
genomic heterogeneity could translate to an expression
in an intra-tumoural heterogeneity that could be
assessed through imaging and that would ultimately
exhibit worse prognosis. This hypothesis has been sus-
tained by Jackson et al.19 and as well as by Diehn
et al.20 who quite convincingly showed that proliferation
and hypoxia gene expression patterns can be predicted
by mass effect and tumour contrast enhancement,
respectively. They also showed that a specific imaging
pattern could predict overexpression of epidermal
growth factor receptor (EGFR), a known therapeutic
target. Moreover, in their analysis the presence of cer-
tain image features was highly predictive of outcome.
The authors concluded that imaging in this case MR
provided an ‘in vivo portrait’ of genome-wide gene
expression in glioblastoma multiform. Similar findings
have been found in hepatocellular carcinomas by Segal
et al.21, showing that the combination of only 28 imag-
ing traits was sufficient to reconstruct the variation of
116 gene expression modules.

These types of studies will need to be extended, by
including more patients with external validation datasets,
more tumour types that exhibit phenotypes such as inva-
siveness. This will be the focus of the QuIC-ConCePT
consortium, to confirm experimentally the Radiomics
hypothesis, namely to establish a causal relationship
between gene expression patterns and image features.
4. Conclusions

Solid cancers have extraordinarily spatial and tempo-
ral heterogeneity at different levels: genes, proteins, cells,
microenvironment, tissues and organs. This limits the
use of biopsy based molecular assays but in contrast
gives a huge potential for non-invasive imaging, which
has the ability to capture intra-tumoural heterogeneity
in a non-invasive way. Medical imaging innovations
with new hardware, new imaging agents and standard-
ised protocol now allow for quantitative imaging but
require the development of ‘smart’ automated software
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to extract more information from image-based features.
Radiomics – the high-throughput extraction of image
features from radiographic images – is one approach
that holds great promises but needs further validation
in a multi-centric setting and in the laboratory.
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