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MODELLING DAILY VALUE-AT-RISK USING REALIZED VOLATILITY AND

ARCH TYPE MODELS

Pierre Giot1 and Sébastien Laurent2,3

April 2001

Abstract

In this paper we show how to compute a daily VaR measure for two stock indexes (CAC40

and SP500) using the one-day-ahead forecast of the daily realized volatility. The daily re-

alized volatility is equal to the sum of the squared intraday returns over a given day and

thus uses intraday information to define an aggregated daily volatility measure. While the

VaR specification based on an ARFIMAX(0,d,1)-skewed Student model for the daily realized

volatility provides adequate one-day-ahead VaR forecasts, it does not really improve on the

performance of a VaR model based on the skewed Student APARCH model and estimated

using daily data. Thus, for the two financial assets considered in an univariate framework,

both methods seem to be equivalent. This paper also shows that daily returns standardized by

the square root of the one-day-ahead forecast of the daily realized volatility are not normally

distributed.
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1 Introduction

The recent widespread availability of databases recording the intraday price movements of financial

assets (stocks, indexes, currencies, derivatives) has led to new developments in applied economet-

rics and quantitative finance as far as the modelling of daily and intradaily volatility is concerned.

Focusing solely on the modelling of daily volatility using intraday data, the recent literature sug-

gests at least three possible methods for characterizing volatility and risk at an aggregated level,

which we take to be equal to one day in this paper.

The first possibility is to sample the intraday data on a daily basis so that closing prices are

recorded from which daily returns are computed. In this setting, the notion of intraday price

movements is not an issue, as the method is tantamount to estimating a volatility model on daily

data. One of the most famous example is the ARCH model of Engle (1982) and subsequent ARCH

type models such as the GARCH model of Bollerslev (1986) (see Palm, 1996, for a recent survey).

The second method is based on the notion of realized volatility which was recently introduced

in the literature by Taylor and Xu (1997) and Andersen and Bollerslev (1998) and which is

grounded in the framework of continuous time finance with the notion of quadratic variation of a

martingale. In this case, a daily measure of volatility is computed as an aggregated measure of

volatility defined on intraday returns. More specifically, the daily realized volatility is computed

as the sum of the squared intraday returns for the given trading day. We thus make explicit use of

the intraday returns to compute the realized volatility, from which the daily volatility is modelled.

A third possibility is to estimate a high frequency duration model on price durations for the given

asset, and then use this irregularly time-spaced volatility at the aggregated level. Examples are

Engle and Russell (1997) or Giot (2000). In this paper we focus on the first two methods as our

aggregation level is equal to one day, and it is not clear how duration models could be of any help

in this situation.

The recent literature on realized volatility and the huge literature on daily volatility models

seem to indicate that a researcher or market practitioner faces two distinct possibilities when daily

volatility is to be modelled. Going one way or the other is however not a trivial question. If one

decides to model daily volatility using daily realized volatility, then intraday data are needed so

that corresponding intraday returns can be computed. Even today, intraday data remain relatively

costly and are not readily available for all assets. Furthermore, a large amount of data handling

and computer programming is usually needed to retrieve the needed intraday returns from the

raw data files supplied by the exchanges or data vendors. On the contrary, working with daily

data is relatively simple and the data are broadly available. However, one has the feeling that all

the relevant data are not taken into account, i.e. that by going at the intraday level one could get

a much better model.
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In this paper we aim to address this issue by comparing the performance of a daily ARCH type

model with the performance of a model based on the daily realized volatility when the one-step

ahead Value-at-Risk (VaR) measure is to be computed for a stock or market index. This exercise

is done for two stock indexes (French CAC40 and US SP500 indexes) for which intraday data are

available over a long time period (i.e. at least 5 years). VaR modelling is a natural application of

volatility models as in a parametric framework the VaR measure (which by definition is a quantile

of the conditional distribution is a deterministic function of the volatility. See Jorion (2000) for

a recent review of VaR models. Because we have intraday data over a long time period, we can

retrieve the daily closing prices for the indexes and then compute daily VaR measure using ARCH

type models. When we make use of all the available data and compute intraday returns and

realized volatility, we then have the competing model which uses the intraday information.

Our main results can be summarized in one sentence: yes, an (adequate) ARCH type model

can deliver accurate VaR forecasts and this model performs as well as a competing VaR model

based on the realized volatility. The key issue is to use a daily ARCH type model that clearly

recognizes the full features of the empirical data such as a high kurtosis and skewness in the

observed returns. In this paper we use the asymmetric skewed Student APARCH model (see for

instance Lambert and Laurent, 2001 and Giot and Laurent, 2001), which delivers excellent results

when applied to daily data. It is also true that the model based on the realized volatility delivers

equally adequate VaR forecasts but this comes at the expense of using intraday information. Thus,

for the two indexes under review, the results clearly indicate that modelling the realized volatility

may be useful, but it is far from being the only game in town.

The rest of the paper is organized in the following way. In Section 2, we describe the available

intraday data for the two stock indexes and characterize the stylized facts of the corresponding

realized volatility. In Section 3, we introduce the two competing models (i.e. the skewed Student

APARCH model for the daily returns and the model based on the realized volatility) for computing

the one-step-ahead VaR. These two models are applied to the daily stock index data in Section 4

where we assess their performances. Section 5 concludes.

2 Data and stylized facts

2.1 Data

The data are available for two stock indexes on an intraday basis and for a relatively long period

of time which allows VaR modelling and testing. For both assets we consider daily returns (which

are used by the skewed Student APARCH model) and intraday returns defined on a 5-minute and

15-minute time grid (these intraday returns are used to compute the daily realized volatility).
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Our first asset is the French CAC40 stock index for the 1995-1999 years (1249 daily observa-

tions). It is computed by the exchange as a weighted measure of the prices of its components and

is available in the database on an intraday basis with the price index being computed every 30

seconds (approximately). For the time period under review, the opening hours of the French stock

market were 10h am to 5h pm, thus 7 hours of trading per day. With the 5- (15-) minute time

grid, this translates into 84 (28) intraday returns used to compute the daily realized volatility.

Intraday prices at the 5- and 15-minute level are the outcomes of a linear interpolation between

the closest recorded prices below and above the time set in the grid. Correspondingly, all returns

are computed as the first difference in the regularly time-spaced log prices of the index. Because

the exchange is closed from 5h pm to 10h am the next day, the first intraday return (computed at

10h05 when working with a 5-minute time grid for example) is the first difference between the log

price at 10h05 and the log price at 5h pm the day before. Daily returns in percentage are defined

as 100 times the first difference of the log of the closing prices.1

Our second dataset contains 12 years (from January 1989 to December 2000, 3241 daily ob-

servations) of tick-by-tick prices for SP500 futures contracts traded on the Chicago Mercantile

Exchange. Such SP500 futures contracts can be traded from 8h30 am to 15h10 pm Chicago time,

i.e. from 9h30 am to 16h10 pm New York time. To conveniently define 5- and 15-minute returns,

we remove all prices recorded after 16h New York time.2 As for the CAC40 dataset, intraday

prices at the 5- and 15-minute level are the outcomes of a linear interpolation between the closest

recorded prices (for the nearest contract to maturity) below and above the time set in the reg-

ularly time-spaced sampling grid.3 Returns are computed as the first difference in the regularly

time-spaced log prices of the index, with the overnight return included in the first intraday return.

Daily returns in percentage are defined as 100 times the first difference of the log of the closing

prices.

2.2 Realized volatility: stylized facts

Estimating and forecasting volatility is a key issue in empirical finance. After the introduction

of the ARCH model by Engle (1982) or the Stochastic Volatility (SV) model (see Taylor, 1994)

and their various extensions, a new generation of conditional volatility models has been advocated

recently by Taylor and Xu (1997) and Andersen and Bollerslev (1998), i.e. models making used

of the realized volatility. The origin of this concept is not so recent as it would seem at first sight.

Merton (1980) already mentioned that, provided data sampled at a high frequency are available,

1By definition and using the properties of the log distribution, the sum of the intraday returns is equal to the

observed daily return based on the closing prices.
2Thus the last recorded price for the futures at 16h corresponds more or less to the closing price of the ‘cash’

SP500 index computed from its constituents traded on the NYSE or NASDAQ.
3The choice of the nearest contract to maturity means that we always select very liquid futures contracts.
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the sum of squared realizations can be used to estimate the variance of an i.i.d. random variable.

Taylor and Xu (1997) and Andersen and Bollerslev (1998) (among others) show that daily realized

volatility may be constructed simply by summing up intraday squared returns. Assuming that a

day can be divided in N equidistant periods and if ri,t denotes the intradaily return of the ith

interval of day t, it follows that the daily volatility for day t can be written as:

[
N∑

i=1

ri,t

]2

=
N∑

i=1

r2
i,t + 2

N∑

i=1

N∑

j=i+1

rj,trj−i,t. (1)

If the returns have mean zero and are uncorrelated, E

[
N∑

i=1

r2
i,t

]
is a consistent (see Andersen,

Bollerslev, Diebold, and Labys, 1999) and unbiased estimator of the daily variance σ2
t .4 Because

all squared returns on the right side of this equation are observed when intraday data are available,[
N∑

i=1

ri,t

]2

is called the daily realized volatility.

By summing sufficiently many high-frequency squared returns we may then obtain an error

free measure of the daily volatility. However, choosing a very high sampling frequency (30-seconds,

1-minute, etc.) may introduce a bias in the variance estimate due to market microstructure effects

(bid-ask bounces, price discreteness or non-synchronous trading). As a trade off between these

two biases, Andersen, Bollerslev, Diebold, and Labys (1999a) propose the use of 5-minute returns

to compute daily realized volatility. Using the FTSE-100 stock market index (on the period

1990-2000), Oomen (2001) shows that the realized volatility measure increases when the sampling

interval decreases while the summation of the cross terms in (1) decreases. Comparing the average

daily realized volatility and the autocovariance bias factor, Oomen (2001) argues that the optimal

sampling frequency for his dataset suggests using 25-minute returns. For our two datasets, a

sampling frequency of about 15-minute was found to be optimal.5 By way of illustration, we also

present results for 5-minute returns.

Although the empirical work on realized volatility is still in its infancy, some stylized facts have

already been ascertained and we highlight these with our datasets.

• First, the unconditional distribution of the realized volatility is highly skewed and kurtosed.

On the other hand, the unconditional distribution of the logarithmic realized volatility is

nearly gaussian, while standard tests reject the normality assumption. Figures 1 and 2
4Areal and Taylor (2000) show that even if this estimator is consistent and unbiased, it has not the least variance

when N is finite. These authors propose to weight the intraday squared returns by a factor proportional to the

intraday activity. This deflator may be obtained easily by applying Taylor and Xu’s (1997) variance multiplier or

the Flexible Fourier Function (FFF) of Andersen and Bollerslev (1997). Due to the strong similarity of the results

with the ‘non weighted squared returns’, we will not report the results using Areal and Taylor’s (2000) approach.
5To find the optimal sampling frequency, Oomen (2001) proposes to plot both the sum of squared intra-daily

returns and the autocovariance bias factor versus the sampling frequency. The “optimal” sampling frequency is

chosen as the highest available frequency for which the autocovariance bias term has disappeared.
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display the level and the unconditional distribution of the logarithmic realized volatility of

the CAC40 and SP500 stock indexes based on 15-minute returns. From Figure 2, both

series appear slightly skewed (the unconditional skewness are respectively 0.62 and 0.38)

and kurtosed (the unconditional kurtosis are respectively equal to 4.25 and 3.37).

• Secondly, the (logarithmic) realized volatility appears to be fractionally integrated. Indeed,

Figure 3 displays the first 200 autocorrelations of the logarithmic realized volatility of the

CAC40 and SP500 stock indexes based on 15-minute returns. This figure shows that a shock

on volatility dies out very slowly, which is neither in accordance with an ARMA structure

(which implies an exponential decay) nor with a unit root process (ADF tests, not reported

to save space, all clearly reject the unit root assumption). This is in line with the previous

findings of Ding, Granger, and Engle (1993) and Baillie, Bollerslev, and Mikkelsen (1996)

(among others) who suggest the modelling of conditional variance of high frequency financial

data by the use of an (Asymmetric) Power GARCH (APARCH) or Fractionally Integrated

GARCH (FIGARCH) models.

To gain a first insight in the degree of persistence of a shock on the (logarithmic) realized

volatility, we computed the Geweke and Porter-Hudak (1983) (GPH) log-periodogram esti-

mate for the fractional integration parameter d.6 If d ∈ (0, 1/2), the process is stationary,

has a long memory and is said to be persistent. If d ∈ (−1/2, 0), the process has a short

memory and is said to be antipersistent.7 The estimated d are equal to 0.437 (0.038) and

0.430 (0.026) respectively for the CAC40 and SP500 stock indexes based on 15-minute8 re-

turns (standard errors are given in parentheses). Thus d is fairly close to the ‘typical value’

of 0.4 (see Andersen, Bollerslev, Diebold, and Labys, 1999, Ebens, 1999 among others) and

just significantly lower that 0.5 at the 5% critical level, suggesting that these series might

be covariance-stationary.

• Finally, according to Ebens (1999) who analyzes the Dow Jones Industrial portfolio over the

January 1993 to May 1998 period, the (logarithmic) realized volatility of stock indexes are

non-linear in returns. To show this, consider the following Least-Squares (LS) regression:

lnRVt = c0 + c1rt−1 + c2r
−
t−1 + ut, where lnRVt is the logarithm of the realized volatility, rt

is the daily return on day t, r−t is equal to 0 when rt > 0 and is equal to rt when rt < 0 and

ut is a white noise. Figure 4 displays the fitted values of these LS regressions (solid lines) for

the CAC40 (top panel) and SP500 (bottom panel) stock indexes based on 15-minute returns

6The number of low frequency periodogram points used in the estimation is set to T
4
5 , see Hurvich, Deo, and

Brodsky (1998).
7Furthermore, if d ≤ −1/2, the process is non invertible and if d ≥ 1/2, the process is not stationary but mean

reverting if d < 1.
8Results for the 5-minute returns are very similar and are thus not reported.
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as well as a nonparametric estimation (dashed lines).9 These graphs suggest that a negative

shock on the returns is more likely to be associated with a high volatility (the next day) than

for a positive shock.10 This feature is also well known for ARCH type models and is known

as the leverage effect11 (see Black, 1976; French, Schwert, and Stambaugh, 1987; Pagan and

Schwert, 1990, Zakoian, 1994).

3 Two competing VaR models

Realized volatility was reviewed in the preceding section and we can now introduce a model for

the daily VaR based on this measure. Subsection 3.2 is devoted to this topic. As the goal of the

paper is to compare the performance of an ARCH type model directly applied to the daily data

with the performance of a model based on the realized volatility, we also need to characterize the

skewed Student APARCH model for the daily data. This is done in Subsection 3.1.

In both cases the link between the forecasted one-day-ahead volatility and the one-day-ahead

VaR is immediate. Indeed, both models are parametric conditional models for volatility and

the corresponding VaR measures are easily computed as the product of the square root of the

conditional volatility and the quantile at α% of the underlying distribution for the standardized

error term.12 Thus, for example, if the forecasted volatility at time t− 1 is ĥ2
t and one assumes a

normal distribution for the error term, then the forecasted one-day-ahead VaR in t− 1 is equal to

zαĥt, with zα being the left quantile at α% for the normal distribution.

3.1 The skewed Student APARCH model

To model daily returns rt, with t = 1 . . . T , we use an AR(3)-APARCH(1,1) model:13

rt = ρ0 + ρ1rt−1 + ρ2rt−2 + ρ3rt−3 + εt (2)

εt = htzt with zt ∼ D(0, 1, κ) (3)

9Quite similar to Ebens (1999), the nonparametric regression estimates are obtained using the Nadaraya-Watson

estimator with the Epanechnikov kernel while the bandwidth parameters are determined using cross-validation

scores. The plot regions are restricted to returns in the -5 to 5 interval, even if all the sample size was used when

estimating this nonparametric regression.
10The R2 of these LS regressions are respectively 11.5 and 17.5%, which is very similar to the ones reported by

Ebens (1999).
11Past negative (resp. positive) shocks have a different impact on current realized volatility than past positive

shocks.
12In this paper we consider a forecast for the demeaned VaR which only depends on the level of the volatility.
13Based on information criteria and standard serial correlation tests, the AR(3)-APARCH(1,1) specification was

found to be adequate in describing our two series. In order to save space, we only report the results concerning the

more parsimonious specification.
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hδ
t = ω + α1 (|εt−1| − αnεt−1)

δ + β1h
δ
t−1, (4)

where ρ0, ρ1, ρ2, ρ3, ω, α1, αn, β1, δ and κ are the parameters to be estimated. κ is a vector of

parameters relevant for specifying the shape of the density D(.). δ (δ > 0) plays the role of a

Box-Cox transformation of ht, while αn (−1 < αn < 1) reflects the so-called leverage effect. A

positive (resp. negative) value of αn indicates that past negative (resp. positive) shocks have a

larger impact on current conditional volatility than past positive shocks (see Black, 1976; French,

Schwert, and Stambaugh, 1987; Pagan and Schwert, 1990). The properties of the APARCH

model have been studied recently by He and Terasvirta (1999a, 1999b). This specification is also

motivated by a stylized fact first presented by Taylor (1986) who observed that absolute returns

(|rt|) of financial time series are positively autocorrelated, even at long lags. Ding, Granger, and

Engle (1993) found that, the closer δ is to 1, the larger the memory of the process.

In VaR applications, the choice of an appropriate distribution for D(.) is an important issue. As

in Giot and Laurent (2001), we use the skewed Student distribution introduced by Fernández and

Steel (1998).14 According to Lambert and Laurent (2001) and provided that υ > 2, the innovation

process zt is said to be (standardized) skewed Student distributed, i.e. zt ∼ SKST (0, 1, ξ, υ), if:

f(zt|ξ, υ) =





2
ξ+ 1

ξ

sg [ξ (szt + m) |υ] if zt < −m
s

2
ξ+ 1

ξ

sg [(szt + m) /ξ|υ] if zt ≥ −m
s

, (5)

where g(.|υ) is a symmetric (unit variance) Student density and ξ is the asymmetry coefficient.15,

16 Parameters m and s2 are respectively the mean and the variance of the non-standardized skewed

Student:

m =
Γ

(
υ−1

2

)√
υ − 2√

πΓ
(

υ
2

)
(

ξ − 1
ξ

)
(6)

and

s2 =
(

ξ2 +
1
ξ2
− 1

)
−m2. (7)

In short, ξ models the asymmetry, while υ accounts for the tail thickness. See Lambert and

Laurent (2001) for a discussion of the link between these two parameters and the skewness and

the kurtosis.
14Giot and Laurent (2001) show that an AR-APARCH model with a skewed Student density succeeds in correctly

forecasting (both in- and out-of-sample) the VaR of the CAC40, DAX, NASDAQ, NIKKEI and SMI stock indexes

on a daily basis. Models based on the normal or Student distributions clearly underperform when applied to the

same datasets.
15The asymmetry coefficient ξ > 0 is defined such that the ratio of probability masses above and below the mean

is
Pr(ε≥0|ξ)
Pr(ε<0|ξ) = ξ2. Note also that the density f(ε|1/ξ, υ) is the symmetric of f(ε|ξ, υ) with respect to the mean.

Therefore, working with ln(ξ) might be preferable to indicate the sign of the skewness.
16If D(0, 1, κ) in (3) is the (standardized) skewed Student density, κ is then defined as (ln(ξ), υ).
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Because of the direct relationship between the VaR and the quantile in parametric VaR models,

the one-day-ahead VaRs for long and short positions are given by F−1
α,ξ,υĥt and F−1

1−α,ξ,υĥt, with

F−1
α,ξ,υ being the left quantile at α for the skewed Student distribution with υ degrees of freedom

and asymmetry coefficient ξ; F−1
1−α,ξ,υ is the corresponding right quantile.17 As formally defined

in Giot and Laurent (2001), the long side of the daily VaR is defined as the VaR level for traders

having long positions in the relevant equity index: this is the ‘usual’ VaR where traders incur

losses when negative returns are observed. Correspondingly, the short side of the daily VaR is

the VaR level for traders having short positions, i.e. traders who incur losses when stock prices

increase.

3.2 Forecasting realized volatility

Regarding the realized volatility, the main findings of Section 2 are that the logarithmic realized

volatility is approximately normal, appears fractionally integrated and correlated with past nega-

tive shocks. To take these properties into account, let us consider the following ARFIMAX(0,d,1)

model (initially developed by Granger, 1980 and Granger and Joyeux, 1980 among others):18

(1− L)d(lnRVt − µ0 − µ1rt−1 − µ2r
−
t−1) = (1 + θ1L)εt (8)

(1− L)d =
∑∞

k=0
Γ(d+1)

Γ(k+1) Γ(d−k+1)L
k ,

where L is the lag operator, µ0, µ1, µ2, θ1 and d are parameters to be estimated, lnRVt is the

logarithm of the realized volatility computed from the intraday returns observed for day t, rt is

the daily return on day t, r−t takes the value 0 when rt > 0 and the value rt when rt < 0.

Estimation of (8) is carried out by exact maximum likelihood (Sowel, 1992) under the normality

assumption using ARFIMA 1.0 (see Ooms and Doornik, 1998 and Doornik and Ooms, 1999) and

conditional sum-of-squares maximum likelihood19 (Hosking, 1981) using G@RCH 2.0 (see Laurent

and Peters, 2001). Due to the strong similarity between the outcomes of the two estimation

procedures, we only report the results obtained with the first method.

When εt ∼ N(0, σ2), we have by definition that exp(εt) ∼ logN(0, σ2) (where logN denotes

the log-normal distribution). Thus, the conditional realized volatility (or in-sample one-step-ahead

forecast of the volatility) is computed according to:

R̂V t|t−1 = exp
(

lnRVt − ε̂t|t−1 +
1
2
σ̂2

)
, (9)

17The quantile function of the (standardized) skewed Student has been derived in Lambert and Laurent (2001)

as a mixture of two Student quantile functions. See also Giot and Laurent (2001).
18As in the previous section, the choice of this specification is based on information criteria and standard serial

correlation tests.
19The finite sample properties of this estimator have been investigated by Chung and Baillie (1993).
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where ε̂t|t−1 denotes the estimated value of εt by (8) and σ̂2 is the estimated variance of εt in the

same equation.

To compute a one-day-ahead forecast for the VaR of the daily returns rt using the conditional

realized volatility, we specify the following AR(3) model:

r∗t = rt/
√

h∗t (10)

r∗t = ρ∗0 + ρ∗1r
∗
t−1 + ρ∗2r

∗
t−2 + ρ∗3r

∗
t−3 + ε∗t (11)

ε∗t ∼ D(0, σ2,∗, κ∗) (12)

where now h∗t = R̂V t|t−1 and ρ∗0, ρ∗1, ρ∗2, ρ∗3, σ2,∗ and κ∗ are parameters to be estimated. As in

(3), κ∗ stands for a vector of parameters determining the shape of the density D(.), while σ2,∗

is the variance of ε∗t . This specification is almost identical to the one introduced in Subsection

3.1, but now the conditional volatility for the daily returns is equal to the conditional realized

volatility R̂V t|t−1. As in Subsection 3.1, an adequate distribution for D(.) should be selected.

The recent empirical literature has stressed that the normal distribution is a good candidate for

D(.) when h∗t = RVt, i.e. when one uses realized volatility computed at the end of day t (or

ex-post realized volatility). Because we wish to forecast the one-day-ahead VaR, h∗t = R̂V t|t−1 is

substituted to h∗t = RVt in our framework. In Section 4, we show that this invalidates the choice

of the normal distribution as an adequate distribution for D(.). Therefore, we suggest the use of

the skewed Student distribution. For reason of comparison we also present results for the normal

distribution.20 In both cases, the one-day-ahead (demeaned) VaR for long and short positions are

given as the product of the quantile at α% for each distribution with
√

R̂V t|t−1.

3.3 Assessing the VaR performance of the models

Using a procedure that is now standard in the VaR literature, we assess the models’ performance

by first computing their empirical failure rate (both for the left and right tails of the distribution

of returns) and then performing a Kupiec LR test. By definition, the failure rate is the number of

times returns exceed (in absolute value) the forecasted one-day-ahead VaR. If the VaR model is

correctly specified, the failure rate should be equal to the prespecified VaR level α%. Because the

computation of the empirical failure rate defines a sequence of yes/no observations, it is possible to

test H0 : f = α against H1 : f 6= α, where f is the failure rate (estimated by f̂ , the empirical failure

rate).21 At the 5% level and if T yes/no observations are available, an approximate confidence

20Note that if D(.) is the normal density, then κ∗ is a null vector, while the choice of the skewed Student

distribution for D(.) implies that κ∗ = (ln(ξ∗), υ∗).
21In the literature on VaR models, this test is called the Kupiec LR test, if the hypothesis is tested using a

likelihood ratio test. See Kupiec (1995).
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interval for f̂ is also given by
[
f̂ − 1.96

√
f̂(1− f̂)/T , f̂ + 1.96

√
f̂(1− f̂)/T

]
.

4 Empirical application

In this section, we report estimation results for the two models presented in Section 3. We first

focus on the skewed Student APARCH model which is applied to the daily returns; the second

model uses the intraday returns via the computation of the realized volatility. Both models are

used to forecast the one-day-ahead VaR for the two stock indexes and their performance is assessed

by comparing their empirical failure rate with the theoretical threshold.

4.1 VaR, daily returns and the skewed Student APARCH

Our first setting uses daily data only and computes the one-day-ahead daily VaR using these

daily observations. The skewed Student APARCH and corresponding one-day-ahead VaR were

defined in Subsection 3.1. Tables 1 (estimated parameters) and 2 (assessment of the one-day-ahead

VaR) report estimation results when this model is applied to the CAC40 and SP500 daily returns.

According to the estimated coefficients for the skewed Student APARCH,

- β1 is close to 1 but significantly different from 1 for both indexes, which indicates a high degree

of volatility persistence.22 Furthermore both APARCH models are stationary in the sense

that α1E(|z| − γz) + β1 is lower than 1. See Ding, Granger, and Engle (1993) and Lambert

and Laurent (2001) for more details on the computation of α1E(|z|−γz)+β1, which depends

on the assumption made on the stochastic innovation.

- δ is close to 2 for the CAC40 and close to 1 for the SP500: the APARCH models the conditional

variance for the CAC40 and the conditional standard deviation for the SP500;

- αn is significantly positive: negative returns lead to higher subsequent volatility than positive

returns (asymmetry in the conditional variance);

- υ is much larger for the CAC40 than for the SP500: daily returns defined on the U.S. data

display a much larger kurtosis and exhibit fatter tails than returns for the French data;

- ln(ξ) is negative in both specifications, albeit not significant from zero for the SP500 and barely

significant for the CAC40.23

22Tse (1998) extended the APARCH by including a pure long memory feature (FIAPARCH). Likelihood ratio

tests between the APARCH and the FIAPARCH clearly reject the FIAPARCH specification.
23This indicates that, at least for the U.S. data, there is no real need for a skewed Student APARCH; nevertheless,

as this specification encompasses the simpler Student APARCH, we stick with the more general model (owing to

the large number of observations, the loss of degrees of freedom is minimal).
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- the APARCH dynamical structure succeeds in taking into account all the dynamical structure

exhibited by the volatility as the Ljung-Box Q(20) on the squared standardized residuals is

not significant at the 5% level for both models.

For the skewed Student APARCH model, the P-values for the null hypothesis fl = α (VaR for

the left tail of the distribution of returns) and fs = α (VaR for the right tail of the distribution of

returns) given in Table 2 confirm that this volatility model succeeds in correctly forecasting the

one-day-ahead VaR for most of the probability levels α. Indeed, the P-values are larger than 0.05

for all configurations except the VaR for short positions on the SP500 (with α ranging from 0.25%

to 1%). Broadly speaking these results are similar to those of Giot and Laurent (2001) reported

for five stock market indexes.

4.2 VaR, intraday returns and daily realized volatility

In our second framework we explicitly use the intradaily (5- and 15-minute) returns to compute

the daily realized volatility. We first estimate an ARFIMAX(0,d,1) model on the logarithmic

realized volatility lnRVt as in equation (8). In a second step, we standardize the daily returns rt

by the one-day-ahead forecast of the realized volatility R̂V t|t−1 as in equation (10) and compute

the one-day-ahead VaR using an AR(3) model on the r∗t = rt/
√

h∗t . As explained below, the

choice of the distribution for D(.) is of paramount importance. Table 3 presents estimation results

for the ARFIMA specification:

- First, the ARFIMA specification seems to be adequate in modelling the dynamics of lnRVt.

Indeed, the Ljung-Box statistics indicate that all serial correlation in the error term has

been removed (at the conventional levels of significance). Parameter d is well above 0 but is

not significantly lower that 0.5, indicating that, in contrast to the GPH test of Subsection

2.2, the logarithm of the realized volatility is not covariance-stationary;24

- µ1 and µ2 are respectively non significant and significantly positive: negative returns lead to

higher subsequent volatility than positive returns (asymmetry in the conditional variance

similar to the APARCH model).

Estimation results for the skewed Student AR(3) model are presented in Table 4. As indicated

by the Ljung-Box Q2(20) on the standardized residuals of this model, the r∗t = rt/
√

R̂V t|t−1

do not display time dependence in volatility. This justifies the use of a ‘static’ skewed Student

AR(3) model. Of course, this is expected as the time dependence in volatility has been captured

24However as argued by Andersson (2000), one has to be careful with the notion of long memory because

“(surprisingly) negative moving average parameters (θ1 is significantly below 0 for both indexes), which alone make

no memory contribution, absorb a substantial amount of memory induced by fractional integration.”
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by the previous ARFIMA model on the dynamics of lnRVt. In the usual ARCH framework, the

r∗t = rt/
√

R̂V t|t−1 would play the role of standardized residuals. This is somewhat true as we do

standardize the returns by the square root of forecasted realized volatility.

While the recent literature has stressed that ex-post standardized returns have an almost

normal distribution (see Andersen, Bollerslev, Diebold, and Labys, 1999b), this is certainly not

true for ex-ante standardized returns. The estimated parameters ln(ξ∗) and υ∗ reported in Table

4 suggest that the ex-post standardized returns of the CAC40 are slightly skewed and kurtosed

while the SP500 is kurtosed but symmetric. These results are in line with those reported in Table

1 (skewed-Student APARCH on daily returns).25 Furthermore, assessing the VaR performance

of a normal model (i.e. choosing the normal distribution for D(.) instead of the skewed Student

distribution) for the ex-ante standardized returns gives the results shown in the first line of each

cell of Table 5:

- for the left tail of the distribution of returns (long VaR), the P-values for the null hypothesis

fl = α are smaller than 0.05 when α is below 1%: the empirical failure rate is significantly

higher than α for low VaR levels;

- for the right tail of the distribution of returns (short VaR), the performance of the model is

satisfactory;

- there are no real differences between the results for the 5- and 15-minute returns.

However, using the skewed Student distribution instead gives much better results (second line

of each cell of Table 5). For the CAC40 data, all P-values are larger than 0.05, both for the long

and short VaR. For the SP500 data, all P-values are larger than 0.05 except for the short VaR at

level α = 1% and α = 0.25%. Thus the switch from the normal distribution to the skewed Student

distribution yields a significant improvement in the VaR performance of the model.

Finally we also give density plots (empirical vs the normal distribution) for the ex-ante and ex-

post standardized returns in Figure 5. While the tails of the ex-post standardized returns closely
25Note that one has to be careful when computing the empirical skewness and the kurtosis on the raw data.

Indeed, Table 4 also reports theses statistics (lines 1 and 2 for both series). For instance, the empirical skewness

of the 5-minute (ex-post) standardized returns of the CAC40 and SP500 equal respectively -0.198 and -1.093. To

test the departure from normality, it is common to use the t-test sk√
6
T

where sk is the empirical skewness and T

the number of observations. Based on the result of this test one could be tempted to conclude that the SP500 is

highly skewed while the CAC40 is hardly skewed (which contradicts the results obtained with the skewed-Student

density, see lines 4 and 5 of Table 4). However, as shown by De Ceuster and Trappers (1992) and Peiró (1999),

this test is not appropriate when the series is fat-tailed. For a sample size of 2000 observations, De Ceuster and

Trappers (1992) tabulate that the 95% confidence intervals of the skewness of Student-t distributed observations

with a kurtosis of 3.5 and 18 are respectively (−0.131; 0.127) and (−0.814; 0.787), i.e. the higher the kurtosis, the

larger the confidence bands of the skewness.
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track those of the normal distribution, ex-ante standardized returns feature fat tails, especially for

the U.S. data. Estimation results and descriptive statistics given in Table 4 tell the same story.

4.3 Which model is best?

The evidence presented in the two preceding subsections indicates that using an APARCH model

with daily data or a two step approach relying on the new concept of realized volatility leads very

similar results in terms of VaR. It should be emphasized that to have accurate VaR forecasts, one

needs to specify correctly the full conditional density with both methods.

This implies that previous results given in the empirical literature must be qualified. For

example, Ebens (1999) concludes his paper by stating that the GARCH model underperforms

(when volatility must be forecasted) with respect to the model based on the daily realized volatility.

However, the author uses a ‘simple’ GARCH model which neither really accounts for the long

memory property observed in the realized volatility nor the fat-tails or asymmetry of the returns

(even after standardization). Indeed, when estimating the more simple RiskMetrics VaR model

on daily returns (the RiskMetrics model is tantamount to an IGARCH model with pre-specified

coefficients, under the additional assumption of normality), we have the VaR results given in Table

2: its one-day-ahead forecasting performance is rather poor, especially when α is small.26 With a

more ‘sophisticated’ model on the other hand (the skewed Student APARCH model in this paper),

VaR results are much better.

Interestingly and as pointed out in the previous subsection by comparing the results obtained

with the normal and skewed Student distributions for the ex-ante standardized returns, the same

conclusion is true for the more complex model based on the combination of intraday returns and

realized volatility.

5 Conclusion

In this paper we showe how to compute a daily VaR measure for two stock indexes (CAC40

and SP500) using the one-day-ahead forecast of the daily realized volatility. The daily realized

volatility is equal to the sum of the squared intraday returns over a given day and thus uses

intraday information to define an aggregated daily volatility measure. While the VaR forecasts

which use this method perform adequately over our sample, we also show that a more simple

model based solely on daily returns delivers good results too. Indeed, while the VaR specification

based on an ARFIMAX(0,d,1)-skewed Student model for the daily realized volatility provides

adequate one-day-ahead VaR forecasts, it does not really improve on the performance of a VaR
26Although the results are not reported in the paper, we also estimated a normal GARCH(1,1) model and its

performance was not much better than the RiskMetrics specification.
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model based on the skewed Student APARCH model and estimated using daily data. Thus,

for the two financial assets considered in an univariate framework, the two methods seem to be

rather equivalent. Another important conclusion of this paper is that daily returns standardized

by the square root of the one-day-ahead forecast of the daily realized volatility are not normally

distributed.

At this stage, one of the most immediate and promising extension of these techniques is to

consider corresponding multivariate volatility models to forecast the VaR of a portfolio of financial

assets. Multivariate models of the ARCH type are not easy to implement as they often require

the estimation of a large number of parameters. Furthermore, these parameters are present in the

latent volatility specification and this is one of the main difficulty of the problem. Therefore, mul-

tivariate realized volatility models should provide a much easier way to correctly model variances

and correlations across financial assets as they assume that volatility is observed. This paves the

way for the use of ‘usual’ multivariate models (VAR, ECM) directly applied to realized volatility

and correlations.
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Peiró, A. (1999): “Skewness in financial returns,” Journal of Banking and Finance, 23, 847–862.

16



Sowel, F. (1992): “Maximum likelihood estimation of stationary univariate fractionally inte-

grated time series models,” Journal of Econometrics, 53, 165–188.

Taylor, S. (1986): Modelling financial time series. Wiley, New York.

(1994): “Modeling stochastic volatility: A review and comparative study,” Mathematical

Finance, 4, 183–204.

Taylor, S., and X. Xu (1997): “The Incremental Volatility Information in One Million Foreign

Exchange Quotations,” Journal of Empirical Finance, 4, 317–340.

Tse, Y. (1998): “The Conditional Heteroscedasticity of the Yen-Dollar Exchange Rate,” Journal

of Applied Econometrics, 193, 49–55.

Zakoian, J.-M. (1994): “Threshold Heteroskedasticity Models,” Journal of Economic Dynamics

and Control, 15, 931–955.

17



Table 1: Skewed Student APARCH

CAC40 (daily returns) SP500 (daily returns)

ω 0.023 (0.013) 0.006 (0.002)

α1 0.042 (0.015) 0.053 (0.009)

αn 0.452 (0.193) 0.539 (0.105)

β1 0.940 (0.018) 0.954 (0.009)

ln(ξ) -0.075 (0.042) -0.029 (0.024)

υ 12.849 (4.391) 5.462 (0.504)

δ 1.775 (0.568) 0.955 (0.157)

Q2(20) 14.75 17.36

α1E(|z| − γz) + β1 0.975 0.991

Estimation results for the volatility specification of the skewed Student APARCH

model. Robust standard errors are reported in parentheses. Q2(20) is the Ljung-Box

Q-statistic of order 20 computed on the squared standardized residuals.
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Table 2: VaR results for the CAC40 and SP500

(models using daily data)

α 5% 2.5% 1% 0.5% 0.25%

VaR for long positions (CAC40)

RiskMetrics 0.065 0.005 0 0 0

Skewed Student APARCH 0.764 0.170 0.483 0.609 0.498

VaR for long positions (SP500)

RiskMetrics 0.335 0.001 0 0.003 0

Skewed Student APARCH 0.682 0.995 0.543 0.962 0.332

VaR for short positions (CAC40)

RiskMetrics 0.665 0.336 0.671 0.297 0.021

Skewed Student APARCH 0.928 0.336 0.879 0.762 0.948

VaR for short positions (SP500)

RiskMetrics 0.297 0.152 0.035 0.008 0.060

Skewed Student APARCH 0.625 0.906 0.010 0.024 0.010

P-values for the null hypothesis fl = α (i.e. failure rate for the long trading

positions is equal to α, top of the table) and fs = α (i.e. failure rate for the short

trading positions is equal to α, bottom of the table). α is equal successively to

5%, 2.5%, 1%, 0.5% and 0.25%. The RiskMetrics and skewed Student APARCH

models are estimated on the daily returns (i.e. no use is made of the intraday

returns).

Table 3: Asymmetric ARFIMA

CAC40 SP500

5-minute 15-minute 5-minute 15-minute

µ0 -0.019 (0.913) -0.016 (0.729) -0.457 (1.758) -0.565 (1.120)

µ1 0.027 (0.023) 0.029 (0.026) -0.007 (0.017) -0.016 (0.020)

µ2 -0.188 (0.040) -0.187 (0.035) -0.190 (0.028) -0.215 (0.034)

θ1 -0.345 (0.045) -0.341 (0.053) -0.237 (0.022) -0.287 (0.030)

d 0.478 (0.025) 0.463 (0.034) 0.492 (0.010) 0.480 (0.019)

σ2 0.357 0.444 0.289 0.399

Q(20) 20.0 15.6 22.8 15.9

Estimation results for the logarithm of the realized volatility (defined on 5- and 15-

minute returns) using an ARFIMAX(0,d,1) specification. Standard errors are reported

in parentheses. Q(20) is the Ljung-Box Q-statistic of order 20 computed on the residuals.
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Table 4: Ex-ante standardized returns

(w.r.t. forecasted realized volatility)

5-minute returns

CAC40 SP500

Skewness -0.198 -1.093

Kurtosis 3.537 17.861

σ2,∗ 1.073 1.067

ln(ξ∗) -0.078 (0.042) -0.020 (0.024)

υ∗ 14.516 (5.384) 6.055 (0.618)

Q2(20) 15.87 3.17

15-minute returns

CAC40 SP500

Skewness -0.167 -1.107

Kurtosis 3.441 18.247

σ2,∗ 1.024 1.106

ln(ξ∗) -0.073 (0.041) -0.022 (0.024)

υ∗ 15.708 (6.414) 5.987 (0.606)

Q2(20) 15.86 3.01

Descriptive statistics (skewness and kurtosis) and estimation results (σ2,∗, ln(ξ∗)

and υ∗) for the skewed Student AR(3) model on the ex-ante standardized returns

with respect to the daily realized volatility computed on 5- and 15- minute in-

traday returns. Q2(20) is the Ljung-Box Q-statistic of order 20 computed on the

squared standardized residuals.
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Table 5: VaR results for the CAC40 and SP500

(models using intraday data and daily realized volatility on 5- and 15-minute returns)

α 5% 2.5% 1% 0.5% 0.25%

VaR for long positions (CAC40)

Normal 0.323, 0.173 0.087, 0.122 0.026, 0.048 0.018, 0.007 0.021, 0.146

Skewed Student 0.541, 0.265 0.607, 0.607 0.333, 0.482 0.927, 0.927 0.630, 0.499

VaR for long positions (SP500)

Normal 0.086, 0.032 0.572, 0.816 0.051, 0.035 0.001, 0 0.001, 0

Skewed Student 0.800, 0.800 0.432, 0.917 0.775, 0.948 0.840, 0.657 0.974, 0.694

VaR for short positions (CAC40)

Normal 0.217, 0.336 0.250, 0.338 0.470, 0.897 0.495, 0.760 0.949, 0.949

Skewed Student 0.461, 0.722 0.444, 0.444 0.470, 0.897 0.760, 0.760 0.499, 0.499

VaR for short positions (SP500)

Normal 0.059, 0.040 0.575, 0.499 0.948, 0.807 0.963, 0.765 0.332, 0.200

Skewed Student 0.514, 0.739 0.917, 0.740 0.010, 0.052 0.170, 0.051 0.039, 0.010

P-values for the null hypotheses fl = α (i.e. failure rate for the long trading positions is equal to α, top of

the table) and fs = α (i.e. failure rate for the short trading positions is equal to α, bottom of the table). α is

equal successively to 5%, 2.5%, 1%, 0.5% and 0.25%. In each cell, the first (second) number corresponds to

the case where the daily realized volatility is estimated on the 5- (15-) minute returns. Normal and skewed

Student refer to the statistical distribution used to model the daily realized volatility.
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Figure 1: Logarithmic realized volatility of the CAC40 (top panel) and SP500 (bottom panel)

stock indexes based on 15-minute returns.

-2.5 -2 -1.5 -1 -.5 0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

.2

.4

-4 -3.5 -3 -2.5 -2 -1.5 -1 -.5 0 .5 1 1.5 2 2.5 3 3.5

.1

.2

.3

.4

Figure 2: Density estimates (dashed line) and corresponding normal density (solid line) for the

logarithmic realized volatility of the CAC40 (top panel) and SP500 (bottom panel) stock indexes

based on 15-minute returns.
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Figure 3: First 200 autocorrelations for the logarithmic realized volatility of the CAC40 (top

panel) and SP500 (bottom panel) stock indexes based on 15-minute returns. The horizontal lines

show the upper limit 95% Bartlett confidence bands.
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Figure 4: Regression lines for the logarithmic realized volatility (y-axis) of the CAC40 (top panel)

and SP500 (bottom panel) stock indexes based on 15-minute returns against the previous (i.e. one

day before) returns (x-axis).
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Figure 5: The graphs display the density distributions, i.e. empirical (dashed lines) vs normal

(solid lines), for the daily returns standardized with respect to the square root of the ex-post (left

panel) and the ex-ante (right panel) daily realized volatility computed for the CAC40 (top panel)

and SP500 (bottom panel) stock indexes based on 15-minute returns.
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