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We study cooperative games with communication structure, represented by an undirected
graph. Players in the game are able to cooperate only if they can form a network in
the graph. A single-valued solution, the average tree solution, is proposed for this class
of games. The average tree solution is defined to be the average of all these payoff
vectors. It is shown that if a game has a complete communication structure, then the
proposed solution coincides with the Shapley value, and that if the game has a cycle-free
communication structure, it is the solution proposed by Herings, van der Laan and Talman
in 2008. We introduce the notion of link-convexity, under which the game is shown to
have a non-empty core and the average tree solution lies in the core. In general, link-
convexity is weaker than convexity. For games with a cycle-free communication structure,
link-convexity is even weaker than super-additivity.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

A situation in which sets of players can realize joint payoff by cooperating can be formulated as a cooperative game
(N, v), where N = {1, . . . ,n} is a finite set of players and v : 2N → R a characteristic function with v(S) the joint payoff that
the players in S ⊂ N can obtain by cooperation. In the standard approach it is assumed that any coalition S can form and
achieve worth v(S). However, there are many situations of interest where cooperation among people depends on how they
can communicate and coordinate.

In a seminal paper, Myerson (1977) formulates games with communication structure by a triple (N, v, L), where N is
a set of players, v : 2N → R a characteristic function, and L ⊂ {{i, j} | i, j ∈ N, i �= j} a set of edges on N representing
communication links between players. A coalition S can only cooperate if the set of nodes S is connected in the graph
(N, L). The Myerson value of a game with communication structure equals the Shapley value of the so-called Myerson
restricted game, induced by the communication structure, and is characterized by component efficiency and fairness.

Alternative characterizations of the Myerson value are given in Myerson (1980) and Borm et al. (1992). In the latter
paper also another solution for games with communication structure has been proposed, the so-called positional value, see
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also Meessen (1988). This value is characterized by component efficiency and balanced total threats, see Slikker (2005).
Recently, Herings et al. (2008) introduced a new solution for the class of games with cycle-free communication structure,
the so-called average tree solution. This solution is characterized by component efficiency and component fairness. The
average tree solution lies in the core if the characteristic function v is superadditive. This property does not hold for the
Myerson value and the positional value.

In this paper we generalize the average tree solution to the class of all games with communication structure. A tree
(N, T ) is a cycle-free directed graph, with T a collection of n − 1 directed edges, such that for exactly one node, the root,
there exists a unique directed path in (N, T ) to every other node. To generalize the average tree solution to the class of
all games with communication structure, we define for every graph (N, L) a collection of admissible spanning trees on the
graph. A spanning tree is admissible if each player has exactly one successor in each component of his subordinates. The
payoff of a player in a given admissible spanning tree is then the marginal contribution of that player when he joins his
subordinates, and the proposed average tree solution is the average of the payoff vectors for all admissible spanning trees.
We show that for games with cycle-free communication structure the average tree solution coincides with the average
tree solution in Herings et al. (2008) and that for games with complete communication structure the average tree solution
coincides with the Shapley value.

We also introduce the notion of link-convexity for games with communication structure. For games with complete com-
munication structure, the notion of link-convexity coincides with convexity, but in general the notion of link-convexity is
weaker than convexity. For games with cycle-free communication structure, link-convexity is even weaker than superad-
ditivity. It is well known that for convex games the Shapley value lies in the core and so the Myerson value lies in the
core of the game when the (restricted) game is convex. We show that for arbitrary games with communication structure,
the average tree solution is in the core if the game is link-convex. This confirms the result of Herings et al. (2008) for a
game with cycle-free communication structure that the average tree solution is in the core if the game is superadditive. We
further illustrate that the Myerson value may not be in the core if the game is link-convex but not convex.

We notice that following this study, Baron et al. (2008) define and axiomatize the average tree solution for any class of
spanning trees. They prove that our set of spanning trees is the largest class of spanning trees such that the corresponding
average tree solution is a Harsanyi solution.

This paper is organized as follows. Section 2 is a preliminary section on games with communication structure. In Sec-
tion 3 the average tree solution for all games with communication structure is introduced. In Section 4 the classes of
cycle-free and complete communication structures are discussed. In Section 5 the notion of link-convexity is introduced and
it is shown that the average tree solution lies in the core if the game is link-convex. Section 6 concludes.

2. TU-games with communication structure

A transferable utility cooperative game with communication structure is represented by (N, v, L) with N = {1, . . . ,n} a
finite set of players, v : 2N → R a characteristic function, and (N, L) an undirected graph with node set the set of players N
and a set of edges L, being a subset of {{i, j} | i �= j, i, j ∈ N}. The set L stands for the collection of communication links
between players.

A sequence of different nodes (i1, . . . , ik′ ) is called a path from i1 to ik′ in the graph (N, L) if {ik, ik+1} ∈ L for k =
1, . . . ,k′ − 1. A coalition of players S ∈ 2N forms a network in the graph (N, L) if S is connected in the graph, i.e., for
any i, j ∈ S , i �= j, there is a path in S from i to j. Notice that the empty set and all singleton coalitions are networks by
definition. A coalition S of players is called a component in the graph (N, L) if S forms a network and S cannot form a
larger network with any other player j ∈ N \ S . A sequence of at least three different nodes (i1, . . . , ik′ ) is called a cycle in
the graph (N, L) if (1) it is a path in (N, L) and (2) {ik′ , i1} ∈ L. A graph (N, L) is cycle-free if it does not contain any cycle.
For given graph (N, L), each K ∈ 2N induces the subgraph (K , L(K )), with L(K ) = {{i, j} ∈ L | i, j ∈ K } the set of links on K .
For K ∈ 2N , let C L(K ) denote the collection of all networks in the graph (K , L(K )) and let Ĉ L(K ) denote the collection of all
components in (K , L(K )).

A directed graph on N is a pair (N, D) such that D ⊂ {(i, j) ∈ N × N | i �= j} is a collection of directed edges. A player i is
a predecessor of j and j a successor of i in D if (i, j) ∈ D . A sequence of different nodes (i1, . . . , ik′ ) is called a directed path
from i1 to ik′ in the directed graph (N, D) if (ik, ik+1) ∈ D for k = 1, . . . ,k′ − 1. A tree (N, T ) is a directed graph, with T a
collection of exactly n −1 directed edges, such that from exactly one node, called the root, there is a unique directed path to
every other node. A player j is a subordinate of i in T if T contains a directed path from i to j. Given an undirected graph
(N, L), a tree (N, T ) is a spanning tree of (N, L) if (i, j) ∈ T implies {i, j} ∈ L, i.e., any directed edge in T is an undirected
edge in L.

In the game (N, v, L), a coalition S of players can only cooperate and realize the worth v(S) if S forms a network. In the
rest of the paper, we assume without loss of generality that N is connected, so N itself forms a network and can realize its
worth v(N). Otherwise, the analysis can be done analogously for each component in the graph (N, L). When each pair of
players can communicate, i.e., L = {{i, j} | i �= j, i, j ∈ N}, (N, v, L) is said to be a game with complete communication structure
and often denoted by (N, v).

A payoff vector x ∈ Rn of (N, v, L) is an n-dimensional vector giving a payoff xi ∈ R to every player i ∈ N . We write
x(S) = ∑

i∈S xi for S ∈ C L(N). A payoff vector x is efficient if x(N) = v(N). A solution for games with communication structure
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is a mapping F that assigns to every game with communication structure (N, v, L) a set of payoff vectors F (N, v, L) ⊂ Rn .
A solution F is efficient if for any (N, v, L) every element of F (N, v, L) is efficient.

The best-known set-valued solution for games (N, v) is the core, see Gillies (1953), which assigns to every game (N, v)

the set C(N, v) = {x ∈ Rn | x(N) = v(N), and x(S) � v(S), for all S ∈ 2N } of undominated efficient payoff vectors. For games
with communication structure (N, v, L) the core becomes equal to the set C(N, v, L) given by

C(N, v, L) = {
x ∈ Rn | x(N) = v(N), and x(S) � v(S), for all S ∈ C L(N)

}
. (1)

It holds that C(N, v, L) is equal to C(N, v L), where v L is the characteristic function of the Myerson restricted game (N, v L)

induced by (N, v, L) and defined for S ∈ 2N by v L(S) = ∑
K∈Ĉ L (S) v(K ).

The best-known single-valued solution for games (N, v) is the Shapley value, see Shapley (1953), which assigns to every
game (N, v) the average φ(N, v) of all n! marginal vectors mπ (v) ∈ Rn of the game (N, v), where π = (π(1), . . . ,π(n)) is
a permutation π : N → N assigning a unique number π(i) ∈ N to every player i ∈ N and mπ (v) = (mπ

1 (v), . . . ,mπ
n (v)) with,

for every j ∈ N , mπ
j (v) = v(π j ∪ { j}) − v(π j) and π j = {i ∈ N | π(i) < π( j)}. The Myerson value, see Myerson (1977), is a

single-valued solution assigning to every (N, v, L) the Shapley value φ(N, v L) of the Myerson restricted game.

3. The average tree solution

To extend and generalize the average tree solution for games with cycle-free communication structure as introduced in
Herings et al. (2008) to the class of all games with communication structure, first notice that when a graph (N, L) is not
cycle-free, not all links are needed to communicate. For a particular player i, every spanning tree on (N, L) having player i
as root describes a possibility in which player i is able to communicate with the other players. We only consider spanning
trees in which any player is linked to just one successor in every component of the set of his subordinates. We first give
the definition of an admissible n-tuple of coalitions.

Definition 1. For given graph (N, L), an n-tuple B = (B1, . . . , Bn) of n subsets of N is admissible if it satisfies the following
conditions:

(1) For all i ∈ N , i ∈ Bi , and for some j ∈ N , B j = N;
(2) For all i ∈ N and K ∈ Ĉ L(Bi \ {i}), we have K = B j and {i, j} ∈ L for some j ∈ N .

Condition (2) of Definition 1 states that for every i ∈ N each component in the subgraph (Bi \ {i}, L(Bi \ {i})) is equal to
Bh for some player h being linked to player i. The same condition also implies that every set Bi is a network. We interpret
Bi as the set of subordinates of player i together with player i himself. We define the directed graph (N, T B) as

T B = {
(i, j) | B j ∈ Ĉ L(Bi \ {i}), i ∈ N

}
. (2)

Lemma 1. For a graph (N, L), let B be an admissible n-tuple of coalitions. Then the following properties hold:

(1) There exists a unique player i ∈ N such that Bi = N;
(2) For all i, j ∈ N, i �= j, either Bi ⊂ B j \ { j}, or B j ⊂ Bi \ {i}, or both Bi ∩ B j = ∅ and Bi ∪ B j /∈ C L(N);
(3) The directed graph (N, T B) is a spanning tree.

Proof. From Condition (1) of Definition 1 it follows that Bi = N for some i ∈ N . By Condition (2) of Definition 1, for every
K ∈ Ĉ L(Bi \ {i}) there exists j ∈ N such that K = B j and {i, j} ∈ L, which leads to edges (i, j) of T B . Next we continue this
procedure with every j chosen in the previous step for which the network B j is not a singleton. We proceed in this way
until all remaining networks are singletons. It follows immediately that T B is a spanning tree, which proves (3). Observe
that, for all j ∈ N, B j \ { j} is the set of subordinates of player j in the spanning tree T B . Therefore, there is a unique i ∈ N
for which Bi = N , which proves (1).

To prove (2) consider two nodes i and j. Because T B is a spanning tree, either Bi ⊂ B j \{ j} or B j ⊂ Bi \{i} or Bi ∩ B j = ∅.

It remains to be shown that Bi ∪ B j is not a network in the last case. Since T B is a spanning tree, there is j′ �= i, j such
that Bi ⊂ B j′ and B j ⊂ B j′ . Let B j′ be the minimal set with these properties. Moreover, there is no ( j′, j′′) ∈ T B such that
both Bi ⊂ B j′′ and B j ⊂ B j′′ , since otherwise B j′′ is a proper subset of B j′ . It follows that Bi and B j belong to different
components of Ĉ L(B j′ \ { j′}), so Bi ∪ B j is not connected. �

In the spanning tree T B , the root player i communicates with a subordinate h in T B through his successor j in the
component K of Ĉ L(N \ {i}) that contains h. Then B j = K and on his turn, player j communicates with his subordinates
through his successors in the components in Ĉ L(B j \ { j}), and so on. The following example illustrates the concept of
admissible n-tuples and their induced spanning trees.
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Example 1. Let (N, L) be given by N = {1,2,3,4} and L = {{1,2}, {2,3}, {3,4}, {4,1}}. Consider the case where B1 = N . By
Condition (2) of Definition 1, for the unique component K = {2,3,4} of the subgraph on {2,3,4}, there exists a player i
such that {1, i} ∈ L and Bi = K . It holds that i = 2 or i = 4. First, take i = 2, then B2 = {2,3,4}. For the unique component
K ′ = {3,4} of the subgraph on B2 \ {2} = {3,4}, there is a player j such that {2, j} ∈ L and B j = K ′ . Clearly, j = 3 and it
follows that B3 = {3,4}. Finally, B4 = B3 \ {3} = {4} is a leaf. Analogously, when i = 4 is taken, B4 = {2,3,4}, B3 = {2,3},
and B2 = {2}. So there are two admissible n-tuple of coalitions with B1 = N . By symmetry, for any i ∈ N there are two
admissible n-tuples of coalitions with Bi = N and thus there are in total 8 admissible n-tuples of coalitions. The two sets
of admissible n-tuple of coalitions with B1 = N induce two spanning trees with player 1 as root, T1 = {(1,2), (2,3), (3,4)}
and T2 = {(1,4), (4,3), (3,2)}. Observe that there are also two other spanning trees with player 1 as root, namely T3 =
{(1,2), (1,4), (2,3)} and T4 = {(1,2), (1,4), (4,3)}, but these spanning trees do not correspond to an admissible n-tuple of
coalitions, because player 1 has two successors in component {2,3,4} of Ĉ L(N \ {1}).

For a game with communication structure (N, v, L), let B L denote the collection of all admissible n-tuples of coalitions
B = (B1, . . . , Bn) for the graph (N, L).

Definition 2. For a game with communication structure (N, v, L), the marginal contribution vector mB(N, v, L) ∈ Rn corre-
sponding to B ∈ B L is the vector of payoffs given by

mB
i (N, v, L) = v(Bi) −

∑
K∈Ĉ L(Bi\{i})

v(K ), i ∈ N.

At mB(N, v, L) every player i ∈ N receives a payoff equal to the worth of network Bi minus the total worth of the
components of (Bi \ {i}, L(Bi \ {i})). With respect to the corresponding spanning tree T B , the marginal contribution gives
to every player the value of the network consisting of himself and his subordinates minus the total payoff assigned to his
subordinates. Notice that a marginal contribution vector mB(N, v, L) is a marginal vector mπ of the restricted game (N, v L)

for any permutation π satisfying Bi \ {i} ⊂ π i for all i ∈ N . We remark that the marginal contribution vector of a spanning
tree that does not belong to the set B L of admissible spanning trees is not guaranteed to be a marginal vector of the
restricted Myerson game. Therefore the spanning trees outside B L are less appropriate.

Definition 3 (Average tree solution). On the class of all games with communication structure (N, v, L), the average tree (AT)
solution assigns the payoff vector AT(N, v, L) given by

AT(N, v, L) = 1

|B L |
∑

B∈B L

mB(N, v, L).

In Baron et al. (2008) it is shown that the average tree solution can be axiomatized, and that the set B L is the largest
class of spanning trees such that the average of the corresponding marginal contribution vectors is a Harsanyi solution. In
addition to the marginal vector property this also justifies our choice of the set of admissible spanning trees from a different
perspective.

4. Special cases

In this section we discuss the average tree solution for games with cycle-free communication structure and complete
communication structure.

Lemma 2. Let (N, L) be a cycle-free graph. Then for every i ∈ N there is exactly one admissible n-tuple of coalitions such that Bi = N.

Proof. For some i ∈ N , take Bi = N . Since the graph is cycle-free and connected, player i is linked to exactly one player in
each component of N \{i}. For given K ∈ Ĉ L(N \{i}), let j ∈ K be the unique player such that {i, j} ∈ L. Then, by Condition (2)
of Definition 1, B j = K . Continuing this procedure as long as there are components consisting of more than one player, we
obtain the unique admissible n-tuple of coalitions with Bi = N . �

We show that for games with cycle-free communication structure the average tree solution coincides with the solution
introduced in Herings et al. (2008) for this particular class of games. When (N, L) is cycle-free, let T i , i ∈ N , be the unique
spanning tree with node i as its root. The spanning tree T i determines a marginal contribution vector mi(N, v, L) with
payoff

mi
j(N, v, L) = v

(
K i

j

) −
∑

′ ′ i

v
(

K i
j′
)
, j ∈ N, (3)
{ j |( j, j )∈T }
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where, for j ∈ N , K i
j is the set of nodes consisting of j and all its subordinates in T i . The average tree solution for games

with cycle-free communication structure as introduced in Herings et al. (2008) then yields the average of these n marginal
contribution vectors.

Theorem 1. For a game with cycle-free communication structure (N, v, L) it holds that

AT(N, v, L) = 1

n

∑
i∈N

mi(N, v, L).

Proof. By Lemma 2 we have that for any i ∈ N there is a unique admissible n-tuple of coalitions with Bi = N . Let B(i) be
this n-tuple of coalitions. From the construction in the proof of Lemma 2, it follows immediately that the spanning tree T B(i)

corresponding to B(i) coincides with the unique spanning tree T i having i as its root. Hence mi(N, v, L) = mB(i)(N, v, L) for
all i ∈ N . �

Next we prove that for games with complete communication structure the average tree solution coincides with the
Shapley value.

Lemma 3. Let (N, L) be a complete graph. Then there are n! admissible n-tuples of coalitions.

Proof. For an arbitrarily chosen player i1 ∈ N , we consider the collection of all admissible n-tuples B with Bi1 = N . At each
step k, k = 2, . . . ,n, we take an arbitrarily chosen player ik in Bik−1 \ {ik−1} and set Bik = Bik−1 \ {ik−1}. Since at each step,
any player in the remaining set can be chosen, there are n! admissible n-tuples of coalitions. �
Theorem 2. Let (N, v, L) be a game with complete communication structure. Then the average tree solution is equal to the Shapley
value of (N, v).

Proof. For a game (N, v), the Shapley value φ(N, v) is equal to the average of all n! marginal vectors mπ (v). Let B be
an admissible n-tuple of coalitions constructed in the proof of Lemma 3. For the player ik chosen at step k, the marginal
contribution mB

ik
(N, v, L) is equal to v(Bik )− v(Bik+1 ), where Bin+1 = ∅. We define a bijection between admissible n-tuple of

coalitions B and permutations π by assigning permutation π B , given by π B
ik

= n + 1 − ik , k = 1, . . . ,n, to admissible n-tuple

of coalitions B . By definition of the marginal vector we have that mπ B
(v) = mB(N, v, L). �

5. Core properties

In this section we provide conditions for arbitrary games with communication structure under which the average tree
solution lies in the core. For a game (N, v) it is well-known that the Shapley-value φ(N, v) is in the core C(N, v) if the
game is convex, i.e., v(S) + v(T ) � v(S ∪ T ) + v(S ∩ T ) for every S, T ⊂ N . A game is superadditive if these inequalities
are satisfied for all S and T with S ∩ T = ∅. Superadditivity is insufficient to ensure that a game has a non-empty core.
We say that a game with communication structure (N, v, L) is superadditive if its Myerson restricted game (N, v L) is
superadditive. It can be shown that a superadditive game with cycle-free communication structure has a non-empty core.
In particular, it follows from Demange (2004) that any marginal contribution vector mi(N, v, L) as defined in Eq. (3) is
in C(N, v L). In fact, when v L is superadditive, then v L is permutationally convex for any permutation corresponding to
the spanning tree T i and then, according to Granot and Huberman (1982), mi(N, v, L) is in C(N, v L) for all i ∈ N . So, for
superadditive games with cycle-free communication structure the average tree solution is in C(N, v, L), because the core is
convex. Also for games with cycle-free communication structure, Talman and Yamamoto (2008) provide a condition even
weaker than superadditivity under which the average tree solution is still in the core. We next introduce the notion of
link-convexity, which will be shown to assure that the average tree solution is an element of the core for an arbitrary game
with communication structure.

Definition 4 (Link-convexity). A game with communication structure (N, v, L) is link-convex if

v(S) + v(T ) � v(S ∪ T ) +
∑

K∈Ĉ L(S∩T )

v(K ),

for any S, T ⊂ N that satisfy

(1) S , T , S \ T , T \ S , and (S \ T ) ∪ (T \ S) are non-empty networks;
(2) N \ S or N \ T is a network.
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Notice that Condition (1) of Definition 4 implies that S ∪ T is a non-empty network.
Link-convexity reduces to convexity for the class of games with complete communication structure because for those

games all subsets of N are networks and convexity is satisfied trivially when S , T , S \ T , or T \ S equals the empty set. We
illustrate the notion by an example.

Example 2 (Cycle graph). We consider the graph (N, L) with L = {{i, i + 1} | i = 1, . . . ,n}, where n + 1 = 1. In this case any
non-empty network has form S = [i, j], where [i, j] denotes the set {i, i + 1, i + 2, . . . , j} if j � i and [i, j] denotes the set
{i, i + 1, . . . ,n,1, . . . , j} if j < i. Observe that for any S = [i, j], the set N \ S is a network. By Condition (1) of Definition 4
we must have that both S and T are non-empty networks, so for some i, i′, j, j′ , S = [i, i′] and T = [ j, j′]. Then both N \ S
and N \ T are networks, so Condition (2) of Definition 4 is redundant. Without loss of generality assume that j � i. Then
the condition that S \ T and T \ S are non-empty, requires that j > i. Now, if j �= i′ + 1 then we must have that j′ = i − 1,
otherwise (S \ T ) ∪ (T \ S) is not a network. Therefore, for the game with cyclic communication structure the link-convexity
property requires that v(S) + v(T ) � v(S ∪ T ) + v(S ∩ T ) for all sets S = [i, i′] and T = [ j, j′] such that j > i and further
j = i′ + 1 or j′ = i − 1.

Theorem 3. If the game with communication structure (N, v, L) is link-convex, then AT (N, v, L) ∈ C(N, v, L).

Proof. Consider any B ∈ B L and S ∈ C L(N). We write mB = mB(N, v, L). We show that
∑

i∈S mB
i � v(S), from which it

follows that mB ∈ C(N, v, L), which proves the result because the core is a convex set.
Consider the subgraph (S, T B(S)). It has components S1, . . . , Sk′ which are all trees, with roots r1, . . . , rk′ . Without loss of

generality, let r1, . . . , rk′ be such that k1 < k2 implies Brk1 ⊂ Brk2 or Brk1 ∩ Brk2 = ∅. For k = 0, . . . ,k′ , let Bk = Br1 ∪ · · · ∪ Brk ,

so it follows that B0 = ∅.
For k = 1, . . . ,k′ , those successors of Sk in the tree T B that lie outside S are denoted by Frk . Recall that the successors

of a player are his immediate subordinates. We write R = {r1, . . . , rk′ } and I = ⋃
r∈R Fr . We define a tree T ∗ with root rk′ on

the nodes in R ∪ I , where the successors of a node r ∈ R are given by Fr and the successors of a node i ∈ I are given by

Fi = {
r ∈ R | Br ⊂ Bi and �r′ ∈ R \ {r} such that Br ⊂ Br′ ⊂ Bi

}
.

Consider some k ∈ {1, . . . ,k′} and write Frk = {i1, . . . , i�′ }. If Frk = ∅, then we define �′ to be zero. When �′ � 1, then, for
� = 1, . . . , �′ , the two sets S ∪ Bk−1 ∪ (Bi1 ∪ · · · ∪ Bi�−1 ) and Bi� satisfy Conditions (1) and (2) of Definition 4. Notice that the
components of their possibly empty intersection are the networks Br for r ∈ Fi� and that Bi� \ (

⋃
r∈Fi�

Br) is linked to Sk .

Now it follows from link-convexity that for � = 1, . . . , �′,

v
(

S ∪ Bk−1 ∪ (Bi1 ∪ · · · ∪ Bi�−1)
) + v(Bi� ) � v

(
S ∪ Bk−1 ∪ (Bi1 ∪ · · · ∪ Bi� )

) +
∑

r∈Fi�

v(Br).

By repeated application of this argument and since Sk ∪ Bk−1 ∪ (
⋃

i∈Frk
Bi) = Bk , it follows that for k = 1, . . . ,k′ ,

v
(

S ∪ Bk−1) +
∑
i∈Frk

v(Bi) � v
(

S ∪ Bk) +
∑
i∈Frk

∑
r∈Fi

v(Br).

Notice that this formula is also valid if Frk = ∅, since then S ∪ Bk−1 = S ∪ Bk.

By repeated application of the last inequality, we find that

v(S) +
k′∑

k=1

∑
i∈Frk

v(Bi) � v
(

S ∪ Bk′) +
k′∑

k=1

∑
i∈Frk

∑
r∈Fi

v(Br).

Since S ∪ Bk′ = Brk′ and T ∗ is a tree, it follows that every Brk , k = 1, . . . ,k′ − 1, appears exactly once in the right-hand side,
and we obtain

v(S) +
k′∑

k=1

∑
i∈Frk

v(Bi) �
k′∑

k=1

v(Brk ). (4)

For k = 1, . . . ,k′ , Brk = Sk ∪ (
⋃

i∈Frk
Bi), so

∑
i∈S

mB
i =

k′∑
k=1

[
v(Brk ) −

∑
i∈Frk

v(Bi)

]
. (5)

From Eqs. (4) and (5) it follows that v(S) �
∑

i∈S mB
i , which completes the proof. �
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Corollary 1. If a game with communication structure (N, v, L) is link-convex, then the core C(N, v, L) is non-empty.

For games with complete communication structure link-convexity and convexity coincide with each other. The next
lemma shows that under weaker conditions than superadditivity, a game with cycle-free communication structure is link-
convex.

Theorem 4. A game with cycle-free communication structure (N, v, L) is link-convex if and only if for every S ∈ C L(N) it holds that

v(S) + v(T ) � v(S ∪ T ) for all T ∈ Ĉ L(N \ S).

Proof. Let S, T ⊂ N satisfy the conditions in Definition 4 with N \ T being a network. We first show that S ∩ T = ∅. Suppose
S ∩ T �= ∅. Take any i′ ∈ S ∩ T . Since S \ T and T \ S are non-empty and (S \ T )∪ (T \ S) is a non-empty network, there exists
i ∈ S \ T and j ∈ T \ S such that {i, j} ∈ L. Since both S and T are networks, there exists a path in S connecting i and i′ and
there exists a path in T connecting j and i′ . This contradicts the fact that (N, v, L) is a game with cycle-free communication
structure.

From S ∩ T = ∅, it follows that S ⊂ N \ T . Since both N \ T and S ∪ T are networks, S ⊂ N \ T , and (N, L) is cycle-free,
we must have T ∈ Ĉ L(N \ S). �

The lemma shows that the condition v(S)+ v(T ) � v(S ∪ T ) only has to hold for any network S and any network T that
is a component of (N \ S, L(N \ S)). Notice that for a game with cycle-free communication structure superadditivity requires
that v(S) + v(T ) � v(S ∪ T ) for any disjoint S and T such that S , T , and S ∪ T are networks.

Corollary 2. A game with cycle-free communication structure (N, v, L) is link-convex if v is superadditive.

The following example illustrates that link-convexity is strictly weaker than superadditivity and also that the Myerson
value may not be in the core if the game is link-convex.

Example 3 (Path graph). We consider the cycle-free graph on (N, L) with L = {{ j, j + 1} | j = 1, . . . ,n − 1}. Any non-empty
network S is of the form S = [i, j], 1 � i � j � n, where [i, j] = {i, . . . , j}. By Theorem 4, link-convexity requires v(S) +
v(T ) � v(S ∪ T ) for all coalitions S and T such that S = [i, j] and T = [1, i − 1] or T = [ j + 1,k].

Consider the path graph with N = 4 and L = {{1,2}, {2,3}, {3,4}}. The values of the connected coalitions are given by
v({1}) = v({4}) = 0, v({2}) = 2, v({3}) = 4, v([1,2]) = v([2,3]) = 2, v([3,4]) = 4, v([1,3]) = v([2,4]) = 6, and v([1,4]) = 6.
This game is not superadditive, since for the networks S = {2} and T = {3} we have that v([2,3]) = 2 < v({2}) + v({3}) = 6.
Link-convexity only requires that

v
([1, j]) + v

([ j + 1,k]) � v
([1,k]), j = 1,2,3, j + 1 � k � 4,

v
([i, j]) + v

([ j + 1,4]) � v
([i,4]), i = 2,3, i � j < 4.

All these inequalities are satisfied. Observe that this game has a unique core element (0,2,4,0)� .
The average tree solution for this game is equal to the average of the marginal contribution vectors of the spanning trees

induced by the four admissible 4-tuples B1 = (N, {2,3,4}, {3,4}, {4}), B2 = ({1}, N, {3,4}, {4}), B3 = ({1}, {1,2}, N, {4}), and
B4 = ({1}, {1,2}, {1,2,3}, N). All these 4-tuples yield the same marginal contribution vector, (0,2,4,0)� .

To compute the Myerson value of the game, we first determine the Myerson restricted game (N, v L). For S ∈ C L(N)

we have v L(S) = v(S) and for S /∈ C L(N) we have v L({1,3}) = 4, v L({1,4}) = 0, v L({2,4}) = 2, v L({1,3,4}) = 4, and
v L({1,2,4}) = 2.

The Myerson value is equal to the Shapley value of the game (N, v L) and therefore equal to ( 1
3 , 5

3 , 11
3 , 1

3 )� . Notice that
the Myerson value lies outside the core.

6. Concluding remarks

In this paper the average tree solution is proposed for the class of all games with communication structure. This solution
generalizes both the solution introduced by Herings et al. (2008) for the class of games with cycle-free communication
structure and the Shapley value for the class of games with complete communication structure. We introduce the condition
of link-convexity under which the average tree solution is an element of the core. For the class of games with cycle-free
communication structure, link-convexity is weaker than superadditivity. In general, link-convexity is weaker than convexity,
and only coincides with it for games with complete communication structure.

References

Baron, R., Béal, S., Rémilla, E., Solal, P., 2008. Average tree solutions for graph games. Preprint.



P.J.J. Herings et al. / Games and Economic Behavior 68 (2010) 626–633 633
Borm, P., Owen, G., Tijs, S.H., 1992. On the position value for communication situations. SIAM J. Discrete Math. 5, 305–320.
Demange, G., 2004. On group stability in hierarchies and networks. J. Polit. Economy 112, 754–778.
Gillies, D.B., 1953. Some Theorems on n-Person Games. Princeton University Press, Princeton.
Granot, G., Huberman, G., 1982. The relationship between convex games and minimal cost spanning tree games: A case for permutationally convex games.

SIAM J. Algebraic Discrete Methods 3, 288–292.
Herings, P.J.J., van der Laan, G., Talman, A.J.J., 2008. The average tree solution for cycle-free graph games. Games Econ. Behav. 62, 77–92.
Meessen, R., 1988. Communication games. Master Thesis, University of Nijmegen, Nijmegen (in Dutch).
Myerson, R.B., 1977. Graphs and cooperation in games. Math. Oper. Res. 2, 225–229.
Myerson, R.B., 1980. Conference structures and fair allocation rules. Int. J. Game Theory 9, 169–182.
Shapley, L., 1953. A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (Eds.), Contributions to the Theory of Games, vol. II. Princeton University Press,

Princeton, pp. 307–317.
Slikker, M., 2005. A characterization of the position value. Int. J. Game Theory 33, 505–514.
Talman, A.J.J., Yamamoto, Y., 2008. Average tree solution and subcore for acyclic graph games. J. Oper. Res. Soc. Japan 51, 203–212.


	The average tree solution for cooperative games with communication structure
	Introduction
	TU-games with communication structure
	The average tree solution
	Special cases
	Core properties
	Concluding remarks
	References


