Harnessing Topographical Cues for Tissue Engineering

Citation for published version (APA):

Document status and date:
Published: 01/08/2016

DOI:
10.1089/ten.tea.2016.0188

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 14 Sep. 2023
Harnessing Topographical Cues for Tissue Engineering

Aurélie Carlier, PhD, and Eben Alsberg, PhD


Despite the fact that it has been extensively shown that surface topographies greatly affect cell behavior, they have only been recently explored for applications in tissue engineering (first publication in Tissue Engineering in 2007). In this special collection, we will highlight articles that exploit the power of surface topography for applications in retinal regeneration, nerve regeneration, cartilage repair, bone repair, dermal wound healing, and vascularization.

For example, Yao et al. fabricated a biodegradable PCL scaffold with varying surface topographies using microfabrication techniques. They showed that the PCL scaffolds induced the differentiation of mouse retinal progenitor cells toward a photoreceptor fate in vitro and that the tissue-engineered constructs could be delivered into the subretinal space of mice with minimal disturbance. Moreover, functional integration was assessed by the expression of photoreceptor markers (i.e., Crx, Recoverin, and Rhodopsin). Yoon et al. demonstrated that microgrooves with radial arrangement more efficiently recruited osteoblasts, correlating with the upregulation of cell migration signaling molecules (i.e., E-cadherin, Rac1, and PI3K). In vivo, these implants resulted in improved bone repair in mouse calvarial defect models. Interestingly, Chaterji et al. used nanotopographies to engineer an in vitro testing environment that is able to induce various vascular smooth muscle cell phenotypes corresponding to healthy, diseased, and aged arterial beds.

To fully harness the potential of surface topographies, future research should address the challenges associated with topographical diversity, combinatorial complexity of biomaterial properties, and more fully understanding the cell signaling pathways that are involved in topographical sensing. First, most studies to date focus on limited topographical shapes such as pits, pillars, or grooves. However, using computational tools, libraries of surface topographies can be designed and microfabricated to increase the diversity of patterns and the identification of hit surfaces. Alternatively, diverse surface topographies can be inspired by nature-derived surface structures, such as shark skin, which prevents bacteria attachment and biofilm formation.

Second, only a small number of biomaterial properties are typically analyzed simultaneously, neglecting potential synergies or even antagonistic effects between multiple biomaterial properties (stiffness, surface topography, composition, cell adhesivity, etc.). The same applies to the soluble biochemical environment where, for example, limited growth factor types and concentrations are explored. In this respect, the study of Chaterji et al. nicely demonstrates the synergistic effects of nanotopographical cues and substrate stiffness on vascular smooth muscle function. Due to the complex interplay between cells and substrates and the daunting number of ways in which biomaterials can be modified, combinatorial screening approaches, typically used in the pharmaceutical industry for drug discovery, are an exciting avenue to tackle this combinatorial complexity (“materiomics”). Finally, to further optimize and advance current topographical designs, a fundamental understanding of the mechanisms of action underlying topography-induced cellular behavior is required. In this respect, Stukel et al. and Miyoshi et al. provide an informative overview of this area of investigation.

In conclusion, there are many exciting ideas on how to diversify surface topographies and tailor them together with other properties to accelerate the transition of biomaterials from passive space-filling scaffolds to bioactive, cell-instructive materials.
References


Address correspondence to:

Aurélie Carlier, PhD
Laboratory for Cell Biology-Inspired Tissue Engineering
MERLN Institute for Technology-Inspired Regenerative Medicine
Maastricht University
Universiteitsplein 40
6229 ER Maastricht–room C3.557
PO Box 616
Maastricht 6200 MD
The Netherlands

E-mail: a.carlier@maastrichtuniversity.nl

Received: May 9, 2016
Accepted: July 1, 2016
Online Publication Date: August 1, 2016