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Material technology platforms able to modulate the communication with cells at the interface of bioma-
terials are being increasingly experimented. Progress in the fabrication of supports is simultaneously
introducing new surface modification strategies aimed at turning these supports from passive to active
components in engineered preparations. Among these platforms, polymer brushes are arising not only
as coatings determining the physical and (bio)chemical surface properties of biomaterials, but also as
smart linkers between surfaces and biological cues. Their peculiar properties, especially when brushes
are synthesized by ‘‘grafting-from’’ methods, enable closer mimicking of the complex and heterogeneous
biological microenvironments.

Inspired by the growing interest in this field of materials science, we summarize here the most
prominent and recent advances in the synthesis of "grafted-from" polymer brush surfaces to modulate
the response of adhering cells.

� 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

During the last two decades increasing efforts have been dedi-
cated to tailor the chemical, biological and physical properties of
supports and scaffolds meant to function as platforms for the
attachment, proliferation and differentiation of cells [1]. One of
the main goals has been to design interfaces capable of triggering
a specific cell response by including the appropriate biological
functions and by mimicking the natural extracellular matrix
(ECM) counterpart [2]. In addition, the rise of tissue engineering
approaches [3,4] stimulated the application of chemical surface
modification strategies in order to mechanically support the regen-
eration of tissues in a biocompatible and naturally degradable
environment [5]. This often encompassed fabrication strategies to
control and precisely determine interfacial stiffness, wettability
and the loading of biological functions (such as cell adhesive units
or growth factors) [6–9].

These objectives were applied on test surfaces and more struc-
tured supports by applying either chemical modification by physical
treatment or self-assembled monolayers (SAMs) with variable
chemistries. The first approach could be applied to a variety of sup-
ports, and often comprised physical and chemical oxidation in order
to gain surface functions or simply tune the wettability. SAMs were
successfully proved to be extremely versatile methods for the pre-
cise tailoring of the surface chemistry of cell platforms [10]. Never-
theless, SAMs suffered restricted applicability on most of the
biodegradable architectures used for housing cell manipulations.
To overcome these limitations and concomitantly broaden the pos-
sibilities of both chemical and physical surface modification, ‘‘mac-
romolecular’’ approaches for the functionalization of biointerfaces
have recently emerged to prominence as extremely promising
methods [11]. This general strategy relied on the surface tethering
of polymeric species which can be assembled, grown or generally
grafted onto the target surfaces via covalent or physical interactions
[12,13]. These assemblies of macromolecules, also termed polymer
brushes [14], were successfully applied to both metallic and organic
surfaces, acting as versatile coatings for a wide variety of applica-
tions in biomaterials science. Dense polymer brush layers present
a number of peculiar properties, which justify their widespread
application in the designing of biointerfaces. The most relevant
can be summarized as: (i) controlled swelling and wettability
(which govern biofouling equilibrium); (ii) multifunctional charac-
ter (to allow bioconjugation); (iii) adjustable macromolecular
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parameters (such as molar mass or grafting density); and (iv) full
compatibility to most of the support chemistries. Both ‘‘grafting-
from’’ [15] and ‘‘grafting-to’’ [16] techniques have been studied
and applied for the preparation of brush platforms for cell adhesion
and proliferation. However, "grafting-from" techniques allowed the
generation of denser assemblies featuring fully tunable structural
properties, such as grafting density and film thickness. With this
aim in mind, controlled surface-initiated polymerization (SIP) and
radical processes, in particular, were increasingly developed and re-
fined during the last decade, providing ‘‘living’’ and ‘‘quasi-living’’
growths of macromolecules from surface-immobilized initiators
[12]. The impossibility to rely on direct methods for the chemical
characterization of "grafted-from" polymer brushes often generated
a certain uncertainty on the macromolecular parameters such as
brush polydispersity and molar mass determination. Despite these
drawbacks, recently developed fabrication methods allowed the
synthesis of "grafted-from" brushes from large area substrates (or
specific areas) which, following chain detachment or etching, pro-
vided sufficient amounts of polymer solutions for characterization
[17–20].

Thus, thanks to the ongoing advances in controlled SIP, it is pos-
sible to enable not only a precise control over brush chain length
(brush thickness), but also over brush polydispersities and chain
end-functions exposed at the interface [21,22]. Specifically, atom
transfer radical (ATRP) [23,24], initiator-transfer terminator (INIF-
ERTER) [25] and reversible addition-fragmentation chain transfer
(RAFT) [26] polymerizations have been the most widely applied
for the modification of organic and inorganic supports. With these
methods not only homopolymer but also block- and random-co-
polyomer brushes [27–32] were successfully fabricated featuring
a large number of chemistries and different macromolecular archi-
tectures, such as graft- or hyperbranched co-polyomers [33].

All these methods were used for the synthesis of polymer brush
biointerfaces to repel unspecific protein adsorption or successfully
deplete bacteria attachment onto surfaces thanks to the excellent
antibiofouling properties of densely packed, highly hydrated
brushes [34]. Some of these characteristics were also exploited to
broaden the utilization of polymer brush coatings to form ‘‘intelli-
gent’’ surfaces, closely mimicking ECM characteristics, for the
manipulation of cells [35]. In this regard, we focus here on reviewing
the fabrication and application of polymer brush layers as a platform
to study cell activity with the aim of integrating brush coatings with-
in new formulations for the engineering of biomaterials.

The spotlight of this study is centred on "grafting-from" meth-
ods for the synthesis of thick brushes, given their versatility and
universal effectiveness. Starting from poly(ethylene glycol) (PEG)-
based brush systems by SIP, which have historically been among
the first systems to be used for biomedical applications, we will
summarize the most relevant brush surfaces presenting different
chemistries, which were applied as cell-sensitive substrates. We
will then describe the latest developments in the synthesis of ther-
moresponsive brush interfaces, which have been successfully em-
ployed for reversible cell adhesion, cell separation and cell sheet
engineering. The last section of this review reports the most recent
advances in the designing of polymer brush coatings for stem cell
manipulations. Particular attention will be devoted in this last sec-
tion to the application of well-determined brush chemistries and
the employment of their peculiar physical properties for tissue
engineering and regenerative medicine.
2. Bioactive polymer brushes: from PEGs to multifunctional
grafts

With the adjective ‘‘bioactive’’ referring to polymer brush sur-
faces, we define those assemblies of densely grafted macromole-
cules which, due to their peculiar chemistries and/or physical
characteristics, are able to determine the response of adhering cells
towards particular metabolic or morphological behavior. This high
potential of brush coatings is a direct consequence of their tunable
chemical and physical properties, which make them ideal plat-
forms to simulate distinct interfacial environments that could mi-
mic those of natural ECM.

Among the wide variety of hydrophilic polymers which have
been tested to date for the fabrication of brush biointerfaces, the
‘‘gold standard’’ is represented by PEG and its derivatives, grafted
through diverse strategies on a number of solid supports. Given
its high hydrophilicity, PEG-based adsorbates were classically ap-
plied to confer a biopassive character to metallic and non-metallic
surfaces. Linear, hyperbranched and dendronized PEG films were
thus produced in order to provide inert interfaces in biological
media [36–38]. Nevertheless, the requirement of enhanced biocon-
jugation of biological cues to promote biospecific cell responses on
otherwise inert PEG surfaces increasingly triggered the use of rad-
ically polymerizable PEG- or oligo(ethylene glycol) (OEG)-contain-
ing (macro)monomers to be applied together with SIP in the
synthesis of thick, dense and functional brush coatings [39]. These
species, compared to end-functional or co-polyomer PEG-based
adsorbates, could be easily grafted from initiator-activated sup-
ports either by surface-initiated aqueous ATRP or by other radical
methods [39–48]. The use of hydroxyl-terminated OEG and PEG
methacrylate/acrylate species thus allowed the fabrication of
brush films with multiple anchoring points, the concentration
of which could furthermore be adjusted by varying the degree of
polymerization and thus the chain length and brush film thickness
[43]. In addition, the length of the PEG side unit could be varied by
appropriately choosing the (macro)monomer type to obtain differ-
ent swelling and mechanical properties of the films [41]. This mod-
ularity associated with its inert character resulted in great interest
in PEG-based brushes as a potential blank platform onto which dif-
ferent biological moieties could be engineered to study how the
biological microenvironment can be decoupled.

OEG-polymethacrylate (POEGMA) brushes were reported to
form cell adhesive polymer bioconjugates via either chain ends
or side chain coupling of cell-cues like RGD peptides or fibronectin
(FN) [41], growth factors (GFs) [49], or collagen type I [43]. On end-
functionalized surface-grafted POEGMA brushes bioadhesive pro-
teins were exposed at the ECM interface keeping the underlying
brush un-functionalized. By this method Klok et al. proved a rele-
vant effect of the brush architecture, i.e. PEG side chain length, on
the morphology of adhering human umbilical vascular endothelial
cells (HUVECs) [41] (Fig. 1). In this study RGD-functionalized POE-
GMA brushes featuring different OEG side chain lengths were re-
ported to induce different densities of focal adhesion complexes,
and thus integrin–ligand affinities, as a result of diverse brush
swelling.

In order to tune the physical properties and the cell adhesive
character of POEGMA brushes, the surface grafting density was also
varied by diluting the initiator of the starting monolayers. By this
approach, polymer grafting densities ranging from 0.02 to
0.35 chains nm�2 were obtained. Subsequent physical adsorption
of RGD-containing peptides showed a consequent variation in pep-
tide loading within the brush from around 0.2 to 0 ng mm�2 in the
case of the most diluted and densest brushes, respectively [45].
This variation in peptide concentration in the brush architecture
thus translated into a different number of adhering MC3T3 cells
among the different peptide-bearing films.

Following similar fabrications based on surface-initiated ATRP,
random co-polyomer brushes of 2-(2-methoxyethoxy)ethyl meth-
acrylate (MEO2MA) and OEGMA [50] were prepared to produce
switchable fouling/non-fouling surfaces for the controlled adhe-
sion and subsequent detachment of various cell types (Fig. 2).



Fig. 1. Immunofluorescence micrographs displaying HUVECs adhering on PHEMA and POEGMA brushes featuring different OEG side chain lengths. Given the increase in
brush swelling with the increasing length of OEGs, ligand–integrin affinity showed a reduction which resulted in a relative decrease in ligand density among the different
brush surfaces tested. Figure adapted with permission from [41].
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These brush surfaces showed a sharp transition from the swollen
hydrophilic to the collapsed hydrophobic state across a physiolog-
ical temperature range (30–35 �C) [51,52]. Thus, cells were har-
vested at 37 �C, allowing stable surface attachment without the
need of any adhesive cue, while they were released by lowering
the culture temperature to 25 �C following a completely reversible
process without any change of cell viability.

These temperature-responsive brushes were applied for the
controlled attachment/detachment of both L929 mouse fibroblast
and MCF-7 breast cancer cells, demonstrating how different cell
lines follow distinct adhesion and desorption mechanisms on
brush-coated surfaces [53].

The temperature-driven transition of some OEG-based amphi-
philic brushes was subsequently exploited for the fabrication of
cell sheets and their isolation, providing a potential study platform
for the generation of artificial epidermis components [54]. This
method allowed the formation of a confluent fibroblast film after
24 h followed by uniform and ready lifting off of the cell sheet by
lowering the temperature below 20 �C, as depicted in Fig. 3.

Despite the widespread application of PEG-based coatings in
the designing of biologically inert and highly functionalizable
brush coatings, a new class of biocompatible polymers based on
poly(2-oxazoline)s (POXs) has recently emerged [55–57]. These
polymers have been increasingly been applied for the synthesis
of drug delivery systems [58] and drug conjugates, and have shown
excellent biocompatibilities and stealth properties in comparison
to PEG standards [59,60]. Consequently, POX-based brushes were
introduced in some recent reports by our group [61–64] and Jordan
et al. [65–67] to fabricate bio-inert and functional coatings. In
these specific applications, POX coatings showed improved anti-
fouling properties and stability against oxidative degradation com-
pared to PEG analogues [63,64]. In addition, a recent study by
Jordan et al. [66] demonstrated how POX-based "grafted-from"
brushes featuring tunable chain end chemistries and POX compo-
sition could effectively function as platforms for the controlled
adhesion of cells.

In addition to PEG-based and POX-based (macro)monomers,
several methacrylate-, acrylate- and acrylamide-based species
were also efficiently grafted by controlled radical SIP in order to
produce platforms for cell adhesion and proliferation. In many
cases, these species allowed extensive conjugation of protein cues
compared to PEG-based monomers, thus amplifying the cell re-
sponse at the brush surface. Among the proposed chemistries,
poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA)
brushes [68–70], poly(glycidil methacrylate) (PGMA) [71],
poly(hydroxyethyl methacrylate) (PHEMA) and poly(hydroxypro-
pyl methacrylate) [72] brush films proved as efficient platforms
for enhancing the bioconjugation of cell adhesive cues and subse-
quent attachment of cells. Specifically, PAA and PMAA were
applied to determine the effects of brush micro- and nanoarchitec-
tures on the response of adhering cells. Chiang et al. [68] studied
PAA brush micropatterns on silicon oxide surfaces as platforms
for the adhesion of RBL mast cells (as shown in Fig. 4). In this re-
port, unfunctionalized PAA grafts were shown to first repel cell
spreading, which was initially concentrated at the silicon oxide
surface. Subsequently, PAA brush patterns were shown to progres-
sively accumulate the FN molecules secreted by the RBL cells with-
in the brush architecture, which induced further spreading of the
cell membrane on the PAA brush with incubation time. This plat-
form also demonstrated the extraordinarily versatile character of
brush films, which, thanks to their multifunctionality, controlled
swelling and quasi-3-D architecture, can efficiently function as
study boards for cell attachment and organization on synthetic
ECM supports.

In other reports, multifunctional surfaces fabricated by grafted-
from polymer brushes were exploited to mediate surface attach-
ment of cells through reversible coupling of carbohydrate species.
Glucose-containing molecules and biopolymers often play a key
role in cell–ECM interactions, which are specifically related to the
metabolism of cancer cells. Since boronic acid is a typical ligand for
carbohydrate-bearing species, boronate-containing polymer
brushes featuring N-acryloyl-m-aminophenylboronic acid were
thermally grafted from both flat and nanostructured silicon sur-
faces in order to complex glucose-based biomolecules and subse-
quently mediate the adhesion of various cells lineages.
Specifically, the controlled attachment of murine hybridoma
(M2139), human acute myeloid leukaemia (KG1) and breast cancer
cells (MCF-7) was successfully accomplished [73].

Multiple binding capability expressed by dense brushes has
proved to be an effective alternative means to stimulate cell adhe-
sion (with phenylboronic acid (PBA) in the anion form, at high pH
values) through carbohydrate-mediated adhesion, and allowed
subsequent ‘‘fast’’ release of the adhered cells in the presence of
brush-capping glucose preparations complemented within the cell
culture medium. The rate of responsiveness of this particular
reversible brush–cell interaction was increased by varying the pH



Fig. 2. The chemical composition of both ATRP initiator molecules assembled on Au surfaces and the subsequently grafted thermoresponsive OEGMA-based random co-
polymer (a). The surface-grafted POEGMA brushes were subsequently used for the reversible adhesion of L929 mouse fibroblasts across the brush LCST, as shown in the
reported optical micrographs in (b). Adapted from Ref. [50].

Fig. 3. Schematic depicting the thermoresponsive transition of poly[tri(ethylene glycol) monoethyl ether methacrylate] (P(TEGMA-EE)) brushes and the subsequent
formation of a confluent fibroblast cell sheet. Adapted from Ref. [54].
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Fig. 4. RBL cells spreading on micropatterned PAA brushes and accumulating plasma membrane on the brush structures. The fluorescent micrographs show three different
fluorescent markers specific for different membrane components, namely A488-IgE that binds to FceRI (A) showed as green staining, TR-DPPE that partitions into the
membrane lipid bilayer (B) (red staining) and A488-CTxB that binds to ganglioside GM1 (C) evidenced as green staining. Adapted with permission from [68].
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of the medium, thus influencing the complexing ability of PBA moi-
eties [74,75] (Fig. 5). Additionally, fully reversible and fast attach-
ment–detachment cycles (which maintained high cell viability)
were obtained by applying these brush coatings to high aspect-ra-
tio surfaces like silicon-oxide nanowires, which has previously
been proved to maximize the cell–surface interactions and re-
sponse [73] (Fig. 5a,b).

The enhancement of biochemical interaction by multifunctional
polymer brushes in comparison to monomolecular layers or SAMs
was also exemplarily demonstrated by Sun and co-workers [76,77],
Fig. 5. The pH and glucose dual-responsive character of poly(acrylamidophenylboronic ac
the uncharged boronic acid functions at the brush surface triggering cell adhesion via co
the presence of glucose species, brush PBA functions are rendered unreactive towards
nature of these cell sensitive surfaces is reported in (c–e), while the full reversibility of the
glucose concentration variations in (f). Figure adapted with permission from [73].
who focused on the effects of chirality on cell behavior at surfaces.
In these studies, the authors first showed how cells respond to dif-
ferent stereochemistry of SAMs, modulating their adhesion due to
the intrinsic chiral character of the amino acids constituting
the cell membrane proteins [76]. Secondly, they successfully
demonstrated how the stereospecific adhesion of fibroblasts
was substantially amplified by grafted-from brushes of poly
N-acryloyl-L(D)-amino acid. In particular, cells responded to L-films
by enhanced spreading and attachment with lower apoptosis in
comparison to the corresponding D-films [77]. The concept of
id) (PAAPBA) brushes grafted from silicon nanowire surfaces (a, b). At low pH values
mplexes with sialic acid at the cell membranes; at high pH values instead, and/or in
membrane functions and cells are released from the surface. The dual-responsive
process is exemplified by monitoring the cell density following consecutive pH and



Fig. 6. Fabrication of stratified PMAA brushes by sequential INIFERTER SIP alternated with coupling of RGD sequences (a); the response of MC3T3 cells upon adhesion to
PMAA-RGD interfaces (b) and PMAA brush layers ‘‘burying’’ the biofunctional films (c). The cells were shown to adapt their morphology in response to the accessibility of the
ligands. Adapted with permission from [69].
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polymer brush multifunctionality was also applied and extended
with the fabrication of layered brush structures and block-co-poly-
omer brushes as platforms for cell adhesion. These brush films
were fabricated, for example, by Navarro et al. [69], who used
the sequential photografting of methacrylic acid to obtain verti-
cally structured PMAA brushes. PMAA brush films were first
grafted by the INIFERTER SIP method, and subsequently function-
alized with cell-adhesive RGD sequences. By the final reinitiation
of SIP, the cell-adhesive brush layer could be ‘‘buried’’ under an
additional PMAA layer. The thus vertically structured films were
shown to induce different MC3T3 cell morphologies upon adhe-
sion, where cells spread uniformly on RGD-rich interfaces while
readapting their morphologies to more rounded ones when
adhering on brush-covered RGD–brush conjugates (Fig. 6).

A step forward in the application of brush platforms beyond the
promotion of cell adhesion and proliferation was accomplished by
incorporating functions and/or biological cues which stimulate cell
differentiation towards determined tissue types. This strategy
brought the already well-developed bioconjugate brush films to
more closely mimic ECM environments, thus stimulating the
behavior of adhering cells first on flat surfaces [43] and later on
surface-structured implants [78]. Following these approaches,
GFs were covalently linked to poly(OEGMA-r-HEMA) brush sur-
faces along with cell adhesive cues in order to induce the differen-
tiation of the pre-osteoblastic MC3T3-E1 cells [49]. Alternatively,
random-co-polyomer brushes presenting both functionalizable
HEMA monomers for adhesive peptides immobilization and
phosphate-bearing methacrylates (MEP) to promote matrix miner-
alization were grafted and subsequently incubated in the presence
of MC3T3-E1 (Fig. 7). By adjusting the co-monomers’ relative con-
centrations, poly(HEMA-r-MEP) brushes kept biospecific charac-
teristics and allowed efficient conjugation of GGGRGDS peptide
sequences, thus enabling cell attachment on the brush surface.
MEP functions concomitantly stimulated matrix mineralization
by mimicking the natural composition of bone ECM [79].

The development of multifunctional brush platforms capable of
directing the differentiation of cells quickly developed towards the
application of pluripotent stem cells. This encompassed the appli-
cation of chemically structured polymer brushes and stem cells on
both flat study platforms and 3-D supports or implants for tissue
regeneration. These topics are specifically addressed in Section 3
below.

3. Thermoresponsive poly-N-(isopropyl acrylamide) (PNIPAM)
brushes for cell manipulations

The peculiar thermoresponsive properties of PNIPAM, i.e. a low-
er critical solution temperature (LCST) within physiological condi-
tions at 30–32 �C, have been exploited to fabricate polymer brush
films alternatively presenting hydrophilic and hydrophobic charac-
ters by varying the temperature of the incubation medium
[21,80,81]. An increase in temperature above LCST is accompanied
by a coil-to-globule transition of PNIPAM-grafted chains, which al-
lows the surface attachment of proteins from the culture medium



Fig. 7. Fabrication of ‘‘osteoconductive’’ P(HEMA-co-MEP) brushes by SI-ATRP (a) and Alzarin red assay showing an increase in matrix mineralization of MC3T3-E1 cells
adhered on P(HEMA-co-MEP) brush surfaces with the relative concentration of MEP co-monomer (indicated by the percentage at the top of the relative micrograph) (b).
Adapted with permission from [79].
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[82–88]. Thus, PNIPAM brushes undergo a transition from antibio-
fouling below their LCST to biofouling above it [89]. This transition
was increasingly exploited during the last decade to control the
adhesion of different cell types by producing reversibly adhesive
substrates for culturing. In particularly, PNIPAM brushes were ap-
plied to develop ‘‘cell sheet engineering’’ by Yang et al. [90], provid-
ing an effective strategy for the fabrication of confluent assemblies
of cells on thermally collapsed films which were subsequently re-
leased from the surface as self-standing sheets by simply lowering
the culture temperature to below the LCST [91–99]. In these stud-
ies, the application of surface-grafted polymers presenting tunable
cell-adhesive properties represented a substantial advance in com-
parison to the commonly used enzymatic treatments, which par-
tially damage cells, ECMs and the cell-to-cell connections formed
during culturing on solid substrates. As proven in several recent re-
ports [91–100], cell attachment on PNIPAM brushes at 37 �C (above
the LCST) was caused by the collapse of grafted chains which favor
primary and ternary adsorption of the cell adhesive protein cues
present in the culture medium. This adsorption processes take place
at the underlying substrate or SAM supporting the brush layer (also
termed the ‘‘grafting surface’’), and by chain–protein interaction
within the brush (Fig. 8) [101,102]. Furthermore, these mechanisms
were found to be favored over secondary adsorption, which in-
volves protein attachment at the external brush–medium interface.
Thus, adjustment of the brush grafting density and the chain length
by the surface dilution of the initiator molecules and the application
Fig. 8. Schematic depicting the different modes of protein adsorption on polymer
brush surfaces: (A) primary adsorption at the grafting surface; (B) ternary adsorption
due to polymer–protein interactions within the brush structure; (C) secondary
adsorption at the brush–medium interface. Adapted with permission from [100].
of controlled radical SIPs (such as RAFT [91] or ATRP [97]) allowed
the tuning of both cell attachment and detachment across the LCST.

Specifically, at high grafting densities protein adsorption is min-
imized both below and above the LCST due to hydration and, gen-
erally, to the osmotic pressure penalty that proteins have to
overcome in adhering to an unperturbed brush surface [100]. In
these cases, few cells could adhere to the collapsed PNIPAM brush
except after long incubation times, particularly when the fabrica-
tion of confluent cell sheets was targeted. In contrast, cells detach-
ment at temperatures below the LCST was favored by high grafting
densities and longer chains due to the greater hydration and bior-
epellency of these brush systems when they are completely swol-
len [91].

These brush effects on cell adhesion and release across the LCST
were all found to depend on the disjoining force between the pro-
tein-mediated surface attachment of cells and the osmotic pres-
sure counterpart exerted by a reversibly collapsed or swollen
brush interface [100]. The balance of these two forces, thus, deter-
mined the adhesion/release of cells from PNIPAM brushes.

Following these fabrication methods, Okano and coworkers suc-
cessfully assembled cell sheets featuring diverse cell types, such as
bovine carotid artery endothelial cells [91] and normal human der-
mal fibroblasts [92]. Epithelial cell sheets fabricated by PNIPAM
brush-mediated attachment/proliferation/detachment were later
successfully applied for corneal reconstruction [103,104] and
transplanted to treat oesophageal ulcerations [105] (Fig. 9).

Reversible cell attachment on thermoresponsive brushes was
also found to depend on the particular cell type. Specifically, if
brush characteristics allowed indistinct adhesion of various cells,
the rate of cell release from the PNIPAM surface at low tempera-
tures depended on the characteristics of that particular cell line
[97]. By exploiting this different behavior and carefully tuning
brush length and grafting densities, different cells, co-cultured in
the same medium were shown to adhere onto collapsed PNIPAM
brushes above the LCST and be selectively released by lowering
the temperature to below it. In this way, PNIPAM brush surfaces
acted as effective cell separating platforms [95,97,98] (Fig. 10).

Several strategies were also applied to modify the chemical
characteristics of PNIPAM brush layers in order to chemically tune



Fig. 9. The fabrication of cell sheets, as reported by Takahashi et al. [91], from different PNIPAM brushes featuring various grafting densities. ‘‘Good’’ and ‘‘N.D.’’ (not detached)
indicate complete cell sheet harvest by reducing the temperature (to 20 �C) and no cell sheet detachment within 24 h by reducing the temperature, respectively. ‘‘Poor’’
indicates that some cell sheets showed complete harvest within 24 h, but others did not. By varying the initiator surface concentration and the RAFT polymerization process,
PNIPAM brushes were shown to present variable grafting densities, ranging from 0.02 to 0.04 chains nm�2, and chain lengths (between �20,000 Da for ‘‘short’’ brushes and
50,000 Da for ‘‘long’’ brushes). Adapted with permission from [91].

Fig. 10. Cell adhesion and detachment from a PNIPAM brush surface with optimized grafting density and chain length (A). The green circles and orange squares in (A)
represent HUVECs and human skeletal muscle myoblast cells (HSMMs), respectively, which adhered on the brush surface and subsequently detached at different rates at low
temperatures. In the micrographs shown in (B), co-cultured cells adhering indistinctly at 37 �C (B-1) are shown, while at lower temperatures HSMMs are released faster than
green fluorescent protein-expressing HUVECs (B-2 to B-4). Adapted with permission from [97].

2374 L. Moroni et al. / Acta Biomaterialia 10 (2014) 2367–2378
the temperature-driven attachment/detachment of cells. Specifi-
cally, block-co-polymerization was applied to either introduce
hydrophobic polystyrene segments at the outer brush interfaces
[106] or co-monomers allowing coupling of cell adhesive cues
[107]. Following similar synthetic strategies, RGD-functionalized
PNIPAM-PAA co-polyomer brushes showed enhanced adhesion of
human hepatocellular liver carcinoma cells (HepG2), while co-
polymerization of PNIPAM with 2-carboxyisopropylacrylamide
(CIPAM) allowed the coupling of heparin functions on poly(NI-
PAM-co-CIPAM) brushes [99]. In this last case, the presence of hep-
arin sites triggered the adhesion of cell-adhesive proteins and
growth factors, thus inducing steady attachment and proliferation
of mouse fibroblasts (NIH/3T3) above the polymer’s LCST. Conflu-
ent cell sheets were subsequently released at lower culture
temperatures.

Co-polymerizations of NIPAM with more hydrophilic (such as
CIPAM, acrylic acid or 3-acrylamidopropyl triethylammonium
chloride) and hydrophobic monomers (such as N-tertbutylacryla-
mide) were also applied from silica/glass microparticles in order
to form thermoresponsive dispersible microparticles for cell
culture. These systems were subsequently applied for large-scale
culturing of mammalian cells (like Chinese hamster ovary cells)
on dispersed microcarriers and showed the relevant enhancement
of cell proliferation and subsequent viability in the absence of any
sequential trypsinization [94,96].

In summary, the application of PNIPAM-based brushes to pro-
duce a variety of reversible cell-adhesive platforms opened new
possibilities not only for studying cell behavior at surfaces, but also
to engineer cell sheets ready to transplantation, separate different
cell types and improve the efficiency of cell cultivation methods.
These approaches, featuring the application of a relatively ‘‘old’’
polymer on ‘‘new’’ fabrications, are increasingly revealing new effi-
ciencies for the development of ‘‘intelligent’’ biomaterials.

4. Polymer brushes directing stem cell behavior: next generation
coatings for regenerative medicine

As regenerative medicine strategies are focusing more and more
on instructive biomaterials able to recruit cells in situ and steer
their fate, polymer brushes can find a fertile ground in this field



Fig. 11. Titanium implants (A) resulting in enhanced (B) integration with the surrounding tissues after fibronectin functionalization via POEGMA brushes. This was associated
with (C) a larger amount of bone contact area and by (D) a higher interfacial strength, depending on the ligand valency of the fibronectin domains covalently bound to the
PEOGMA brushes. (E) The use of PMEDSAH- and PSPMA-modified substrates resulted in modulation of the focal adhesion patterns, as shown by vinculin staining after 24 h
from incubation, on different pattern geometries. Adapted with permission from [108] and [114].
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thanks to the flexibility with which they can be designed and syn-
thesized on different substrates. We have previously discussed
several examples where polymer brushes were used as smart link-
ers to present chemical moieties and biological cues to already spe-
cialized cells, thereby influencing their activity. This strategy could
be even more powerful when applied to stem cells, which are
known to be able to differentiate into several types of mature cells
constituting tissues and organs in our body. In this respect, poly-
mer brushes could serve as a powerful platform that has the poten-
tial to determine which tissues are formed, starting from a single
cell source and depending on the precise degree of interaction with
the chosen stem cell population. A few recent studies have shown,
for example, that poly 2-(methacryloyloxy)ethyl]dimethyl-(3-sul-
fopropyl)ammoniumhydroxide (PMEDSAH) and POEGMA brushes
can be used to selectively adhere bone marrow-derived mesenchy-
mal stem cells (MSCs) [108]. While poly[N-(3-sulfopropyl)-N-
(methacryloxyethyl)-N,N-dimethylammoniumbetaine] (PSBMA)
brushes were used only to show preliminarily selective adhesion
of MSCs on the brush-functionalized culture substrates [109], POE-
GMA brushes were used to create functional linkers on medical
grade titanium implants and covalent bind different FN domains
that induced MSCs osteogenic differentiation through enhanced
integrin-mediated adhesion [108]. When implanted in the tibias
of rats, these functionalized implants result in a much better osteo-
integration than unfunctionalized titanium, thus proving that the
brushes are also effective as smart linkers imparting instructive
properties to biomaterials in vivo (Fig. 11).

Polymer brushes could also be used to provide physico-chemi-
cal and biological cues to study fundamental biological processes.
To obtain a large number of cells for tissue engineering and regen-
erative medicine applications, cells need to be expanded. To do
this, it is of pivotal importance to use highly defined culture condi-
tions when using stem cells, so that the original undifferentiated
cell phenotype can be maintained during the expansion. Polymer
brushes can serve this purpose due to the close control that can
be achieved when synthesizing them on a culture substrate. Poly
(OEGMA-co-HEMA) and poly(L-lysine) brushes were used to cul-
ture human induced pluripotent stem cells and mouse fetal liver
stem cells, respectively [110,111]. While the former brushes could
maintain the stem cell phenotype unaltered for at least 10 pas-
sages [110], the latter films could regulate stem cell maintenance
or differentiation into hepatocytes, depending on the brush density
and, consequently, the substrate stiffness [111]. PMEDSAH brushes
were also applied to maintain human embryonic stem cells in
defined culture. Results showed that this was possible for up to
15–20 passages, and typical markers for the stem cell undifferenti-
ated state were expressed at similar levels to when golden stan-
dard culture substrates like Matrigel were used [112]. Similarly,
PSBMA grafting density was demonstrated to affect the degree of
hydration of the underlying culture substrate and was shown to
maintain hematopoietic stem and progenitor cells undifferentiated
at an optimal density of 0.1 mg cm�2 [113].

Tan et al. [114] proposed an elegant approach to pattern de-
fined geometrical micro-domains with different polymer brush
chemistries, and study the influence of selectively adsorbed ECM
domains on epidermal stem cell adhesion, morphology and differ-
entiation. The authors showed that substrates with a negative po-
tential were correlated with a higher degree of cell differentiation,
which was connected to the formation of less focal adhesion de-
spite there being no variations in cell morphology (Fig. 11). A sim-
ilar approach was used to create microengineered epidermis,
which can serve as an in vitro model to study drug toxicity and
the phenomena that occur in the presence of disease cells, such
as cancer cells [115].

Although studies showing the beneficial effect of polymer
brushes to engineer the biological interface with stem cells are just
starting to be published, the potential of polymer brushes is
boundless. By tailoring their chemistry, spatial arrangement and
length, we could envision creating new platform of biomaterials
where more than a cell function can be accurately controlled and
the biological function of more complex heterogeneous systems
could be recapitulated synthetically. This would offer the tremen-
dous possibility of decoupling each variable at the base of cell–cell
and cell–substrate interactions, thus allowing us to understand
regenerative and degenerative phenomena in greater depth, and
could pose the basis for better therapies.
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5. Conclusions and general perspectives

Surface modification strategies featuring the application of
polymer brushes have proved their versatility and applicability
on a wide variety of biomaterials for the manipulation of cells. In
this review, we have summarized the most relevant examples of
these applications. All of the strategies have been shown to exploit
a peculiar feature common to all grafted-from polymer brush sur-
faces: high densities of multifunctional tethered macromolecules
can be tuned to mimic the characteristics and functions of natural
ECM.

If most of the approaches presented have served to fabricate
study boards for cell behavior in specific 2-D environments, direct
applications for 3-D supports and ready-to-use implants are
increasingly envisioned. A fundamental application in this respect
would surely be represented by the engineering of scaffolds for the
regeneration of tissues. This will require the synthesis of brush
coatings on 3-D scaffolds to host and direct tissue (re)formation.
This final goal will require new chemistries, featuring biodegrad-
able and biocompatible brushes. In addition, bioconjugation with
enzymatically degradable units and controlled functionalization
will allow spatial and temporal definition over the interfacial activ-
ity of the brush films [116–121]. Moving towards more and more
complex formulations that have the potential to recapitulate the
heterogeneity of biological systems, polymer brushes could also
be envisioned when biological gradients need to be implemented.
This would open new horizons for the regeneration of functional
tissues and organs where interfacial graded properties are
required. Examples are the interfacial regions connecting tendons
to muscles, ligaments to bones, and cartilage to subchondral bone
for hard tissue regeneration, but also the graded variations within
soft tissues, such as in the composition of skin, arteries and veins.
Ultimately, the application of mixed polymer brushes selectively
exposing different biological cues could be further envisioned. In
this way, it would be possible to create biomaterials that provide
differential cues not only for a targeted tissue regeneration, but
also for its innervation and vascularization, thus progressing from
tissue to organ regeneration with a unique and universal material
technology platform.

Appendix A. Figures with essential colour discrimination

Certain figures in this article, particularly Figs. 1–11 are difficult
to interpret in black and white. The full colour images can be found
in the on-line version, at http://dx.doi.org/10.1016/j.actbio.2014.
02.048).
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