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Abstract. We develop a new stochastic algorithm for solving pseudomonotone stochastic var-
iational inequalities. Ourmethod builds on Tseng’s forward-backward-forward algorithm, which
is known in the deterministic literature to be a valuable alternative to Korpelevich’s extragradient
method when solving variational inequalities over a convex and closed set governed by
pseudomonotone Lipschitz continuous operators. The main computational advantage of
Tseng’s algorithm is that it relies only on a single projection step and two independent queries
of a stochastic oracle. Our algorithm incorporates aminibatch samplingmechanism and leads to
almost sure convergence to an optimal solution. To the best of our knowledge, this is the first
stochastic look-ahead algorithm achieving this by using only a single projection at each iteration.
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1. Introduction
In this paper, we consider the following variational inequality problem, denoted as VI(T,X ), or simply VI:
given a nonempty closed and convex set X ⊆ Rd and a single-valued map T : Rd → Rd, find x∗ ∈ X such that

T x∗( )
, x − x∗〈 〉 ≥ 0, for all x ∈ X . (1)

We call S(T,X ) ≡ X∗ the set of (Stampacchia) solutions of VI(T,X ). The variational inequality problem (1)
arises in many interesting applications in economics, game theory, and engineering (Scutari et al. 2010,
Juditsky et al. 2011, Ravat and Shanbhag 2011, Kannan and Shanbhag 2012, Mertikopoulos and Staudigl 2018)
and includes as a special case first-order optimality conditions for nonlinear optimization by choosing T � ∇f
for some smooth function f . If X is unbounded, it can also be used to formulate complementarity problems,
systems of equations, saddle-point problems, and many equilibrium problems. We refer the reader to
Facchinei and Pang (2003) for an extensive review of applications in engineering and economics.

In many instances, the problem VI arises as the expected value of an underlying stochastic optimization
problem whose primitives are defined on a probability space (Ω,F ,P) carrying a random variable ξ : (Ω,F ) →
(Ξ,A) taking values in a measurable space (Ξ,A) and inducing a law P � P ◦ ξ−1. Given the random element ξ,
consider the measurable mapping F : X × Ξ → Rd, defining an integrable random vector F(x, ξ) : Ω → Rd via
the composition F(x, ξ)(ω) � F(x, ξ(ω)). The stochastic variational inequality problem on which we focus in this
paper is denoted by SVI and defined as follows.
Definition 1. Let the operator T : Rd → Rd be defined by

T x( ) :� Eξ F x, ξ( )[ ] :�
∫
Ω

F x, ξ ω( )( ) dP ω( ) �
∫
Ξ

F x, z( ) dP z( ). (2)

1
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Find x∗ ∈ X satisfying (1).

This definition is known as the expected value formulation of the stochastic variational inequality problem. The
expected value formulation goes back to the seminal work of King and Rockafellar (1993). By its very
definition, if the operator T defined in (2) is known, then the expected value formulation can be solved by any
standard solution technique for deterministic variational inequalities. However, in practice, the operator T is
usually not directly accessible, either because of excessive computations involved in performing the integral or
because T itself is the solution of an embedded subproblem. Hence, in most situations of interest, the solution
of SVI relies on random samples of the operator F(x, ξ). In this context, two methodologies are currently
available. The sample average approximation approach replaces the expected value formulation with an
empirical estimator of the form

T̂N x( ) � 1
N

∑N
j�1

F x, ξj
( )

and uses the resulting deterministic map T̂N as the input in one existing algorithm of choice. We refer to
Shapiro et al. (2009) for this solution approach in connection with Monte Carlo simulation. This approach is
the standard choice in expected residual minimization problems when P is unknown but accessible via a
Monte Carlo approach.

A different methodology is the stochastic approximation (SA) approach, where samples are obtained in an
online fashion, and key terms in a deterministic algorithm, such as gradients, are replaced by unbiased
estimators by drawing a fresh random variable whenever needed. The mechanism to draw a fresh sample
from P is usually named a stochastic oracle (SO), which report generates a stochastic error F(x, ξ) − T(x).

Until very recently, the SA approach has only been used for the expected value formulation under very
restrictive assumptions. To the best of our knowledge, the first formulation of an SA approach for a stochastic
VI problem was made by Jiang and Xu (2008), under the assumption of strong monotonicity and continuity of
the operator T. There, a proximal point algorithm of the form

Xn+1 � ΠX Xn + αnF Xn, ξn( )[ ] (3)
is considered, where ΠX denotes the Euclidean projection onto X , (ξn)n≥0 is a sample of P, and (αn)n≥0 is a
sequence of positive step sizes. Almost sure convergence of the iterates is proven for small step sizes, as-
suming that T is Lipschitz continuous and strongly monotone, and the stochastic error is uniformly bounded
in mean square. Relaxing strong monotonicity to plain monotonicity, the paper by Yousefian et al. (2017)
incorporated a Tikhonov regularization scheme into the SA algorithm (3) and proved almost sure convergence
of the generated stochastic process. The only established method guaranteeing almost sure convergence under
the significantly weaker assumption of pseudomonotonicty of the mean operator is the extragradient approach of
Iusem et al. (2017) and Kannan and Shanbhag (2019). The original extragradient scheme of Korpelevich (1976)
consists of two projection steps using two evaluations of the deterministic map T at generated test points yn
and xn. Extending this to the SO case, we arrive at the Stochastic Extragradient (SEG) method

Yn � ΠX Xn − αnAn+1[ ],
Xn+1 � ΠX Xn − αnBn+1[ ], (4)

where (An)n≥1, (Bn)n≥1 are stochastic estimators of T(Xn) and T(Yn), respectively. Iusem et al. (2017) construct
these estimators by relying on a dynamic sampling strategy, where noise reduction of the estimators is
achieved via a minibatch sampling of the stochastic operators F(Xn, ξ) and F(Yn, ξ). Within this minibatch
formulation, almost sure convergence of the stochastic process (Xn)n∈N to the solution set can be proven even
with constant-step-size implementations of SEG. In addition, optimal convergence rates of O(1/N) in terms of
the mean squared residual of the VI are obtained.1

1.1. Our Contribution
We briefly summarize the main contributions of this work. The most costly part of SEG is the two separate
projection steps performed at each single iteration of the method. We show in this paper that a stochastic
version of Tseng’s forward-backward-forward method (Tseng 2000), which we call the stochastic forward-
backward-forward (SFBF) algorithm, preserves the strong trajectory-based convergence results, whereas the
saving of one projection step allows us to beat SEG significantly in terms of computational overhead and runtime.
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In terms of convergence properties, the SFBF algorithm developed in this paper has the same good properties as
SEG. However, SFBF is potentially more efficient than SEG in each iteration because it relies only on a single
Euclidean projection step. The price to pay for this is that we obtain an infeasible method (as is typical for primal-
dual schemes) with a lower computational complexity count at the positive side. With infeasibility of a method
we mean that parts of the algorithm’s outputs may not satisfy state-space constraints present in the underlying
optimization problem. Although feasibility is a big concern in many applications (in particular in engineering
and economics, where such constraints may represent technological constraints), it is not really a big problem
for our method. Our numerical scheme will always provide one sequence respecting state-space constraints,
and we will show that this feasible shadow sequence is an equally good proposal for an approximate solution.
We will make this somewhat loose statement precise later in this paper. Additionally, the theoretically allowed
range for step sizes is by the constant factor

̅̅
3

√
times larger than the theoretically allowed largest step size in

SEG. This constant factor gain results in significant improvements in terms of the convergence speed. This will
be illustrated with extensive numerical evidence reported in Section 6.

2. Preliminaries
2.1. Notation
For x, y ∈ Rd, we denote by x, y

〈 〉
the standard inner product and by ‖x‖ ≡ ‖x‖2 :� x, x〈 〉12 the corresponding

norm. For p ∈ [1,∞], the �p norm on Rd is defined for x � (x1, ·, xp) as ‖x‖p :� (∑n
i�1 |xi|p)

1
p. For a nonempty, closed,

and convex set E ⊆ Rd, the Euclidean projector is defined as ΠE(x) :� arg miny∈E‖y − x‖ for x ∈ Rd. All random
elements are defined on a given probability space (Ω,F ,P). An E-valued random variable is a (F ,E)-mea-
surable mapping f : Ω → E; we write f ∈ L0(Ω,F ,P;E). For every p ∈ [1,∞], define the equivalence class of
random variables f ∈ L0(Ω,F ,P;E) with E(‖ f ‖p)1/p < ∞ as Lp(Ω,F ,P;E). If G ⊆ F , the conditional expectation of
the random variable f ∈ Lp(Ω,F ,P;E) is denoted by E[ f |G]. For f1, . . . , fk ∈ Lp(Ω,F ,P;E), we denote the sigma-
algebra generated by these random variables by σ( f1, . . . , fk); this is the smallest sigma-algebra measuring the
random variables f1, . . . , fk. Let (Ω,F ,F � (F n)n≥0,P) be a complete stochastic basis. We denote by �0(F) the set
of random sequences (ξn)n≥1 such for each n ∈ N, ξn ∈ L0(Ω,F n,P;R). For p ∈ [1,∞], we set

�p F( ) �Δ ξn( )n≥1∈ �0 F( )|∑
n≥1

|ξn|p < ∞, P–almost surely (a.s.)
{ }

.

The following properties of the Euclidean projection onto a closed convex set are well known.

Lemma 1. Let K ⊆ Rd be a nonempty, closed, and convex set. Then
a. The Euclidean orthogonal projection ΠK(x) is the unique point of K satisfying x −ΠK(x), y −ΠK(x)〈 〉 ≤ 0 for

all y ∈ K;
b. For all x ∈ Rd and y ∈ K, we have ‖ΠK(x) − y‖2 + ‖ΠK(x) − x‖2 ≤ ‖x − y‖2;
c. For all x, y ∈ Rd, ‖ΠK(x) −ΠK(y)‖ ≤ ‖x − y‖;
d. Given α > 0 and T : K → Rd, the set of solutions of the variational problem VI(T,K) can be expressed

as S(T,K) � {x ∈ Rd|x � ΠK(x − αT(x))}.
Remark 1. In the literature on variational inequalities, there exists an alternative solution concept known asweak, or
Minty, solutions. In this paper, we are only interested in strong, or Stampacchia, solutions of VI(T,K), defined by
inequality (1). For the problems of interest in this paper, Minty and Stampacchia solutions coincide (Cottle and
Yao 1992).

Another useful fact we use in this paper is the following elementary identity.

Lemma 2 (Pythagorean Identity). For all x, xn, xn+1 ∈ Rd, we have

‖xn+1 − x‖2 + ‖xn+1 − xn‖2 − ‖xn − x‖2 � 2 xn+1 − xn, xn+1 − x〈 〉.

2.2. Probabilistic Tools
We recall the Minkowski inequality: for f , g ∈ Lp(Ω,F ,P;E),G ⊆ F and p ∈ [1,∞], we have

E ‖ f + g‖p|G[ ]1/p≤ E ‖ f ‖p|G[ ]1/p +E ‖g‖p|G[ ]1/p. (5)
For the convergence analysis, we will make use of the following classical lemma (Polyak 1987, lemma
11, p. 50).
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Lemma 3 (Robbins–Siegmund). Let (Ω,F ,F � (F n)n≥0,P) be a discrete stochastic basis. Let (vn)n≥1, (un)n≥1 ∈ �0+(F) and(θn)n≥1, (βn)n≥1 ∈ �1+(F) be such that for all n ≥ 0,

E vn+1|F n[ ] ≤ 1 + θn( )vn − un + βn, P − a.s.

Then (vn)n≥0 converges a.s) to a random variable v, and (un)n≥1 ∈ �1+(F).
Finally, we need the celebrated Burkholder–Davis–Gundy inequality (Stroock 2011).

Lemma 4. Let (Ω,F , (F n)n≥0,P) be a discrete stochastic basis, and let (Un)n≥0 be a vector-valued martingale relative to this
basis. Then, for all p ∈ [1,∞), there exists a universal constant Cp > 0 such that for every N ≥ 1,

E sup
0≤i≤N

‖Ui‖
( )p[ ]1/p

≤ CpE
∑N
i�1

‖Ui −Ui−1‖2
( )p/2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1
p

.

When combined with the Minkowski inequality, we obtain for all p ≥ 2 a constant Cp > 0 such that for
every N ≥ 1,

E sup
0≤i≤N

‖Ui‖
( )p[ ]1/p

≤ Cp

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i�1

E ‖Ui −Ui−1‖p( )2/p
√

.

3. Stochastic Forward-Backward-Forward Algorithm
In this paper, we study a forward-backward-forward algorithm of Tseng type under weak monotonicity
assumptions. The blanket hypotheses we consider throughout our analysis are summarized here.

Assumption 1 (Consistency). The solution set X ∗ ≡ S(T,X ) is nonemtpy

Assumption 2 (Stochastic Model). The set X ⊆ Rd is nonempty, closed, and convex; (Ξ,A) is a measurable space; and
F : Rd × Ξ → Rd is a Carathéodory map.2

Assumption 3 (Lipschitz Continuity). The averaged operator T(·) � Eξ[F(·, ξ)] : Rd → Rd is Lipschitz continuous with
modulus L > 0.

Assumption 4 (Pseudomonotonicity). The averaged operator T(·) � Eξ[F(·, ξ)] is pseudomonotone onRd, which means that

∀x, y ∈ Rd : T x( ), y − x
〈 〉 ≥ 0 ⇒ T y

( )
, y − x

〈 〉 ≥ 0.

At each iteration, the decision maker has access to an SO reporting an approximation of T(x) of the form

T̂n+1 x, ξn+1( ) �Δ 1
mn+1

∑mn+1

i�1
F x, ξ i( )

n+1
( )

, for x ∈ Rd. (6)

The sequence (mn)n≥1 ⊆ N determines the batch size of the stochastic oracle. The random sequence ξn �
(ξ(1)n , . . . , ξ(mn)

n ) is an independent and identically distributed (i.i.d.) draw from P. Approximations of the form
(6) are very common in Monte Carlo simulation approaches, machine learning, and computational statistics
(Atchadé et al. 2017, Bottou et al. 2018, and references therein); they are easy to obtain in case we are able to
sample from the measure P. The forward-backward-forward algorithm requires two queries from the SO in
which minibatch estimators of the averaged map T are revealed. This dynamic sampling strategy requires a
sequence of integers (mn)n≥1 (the batch size) determining the size of the data set to be processed at each it-
eration. The random sample on each minibatch consists of two independent stochastic processes ξn and ηn
drawn from the law P and explicitly given by

ξn �Δ ξ 1( )
n , . . . , ξ mn( )

n

( )
and ηn �Δ η 1( )

n , . . . , η mn( )
n

( )
, ∀n ≥ 1.

Given the current position Xn, algorithm SFBF queries the SO once to obtain the estimator An+1 �Δ T̂n+1(Xn, ξn+1)
and then constructs the random variable Yn � ΠX (Xn − αnAn+1). Next, a second query to SO is made to obtain
the estimator Bn+1 �Δ T̂n+1(Yn, ηn+1), followed by the update Xn+1 � Yn + αn(An+1 − Bn+1). The pseudocode for
SFBF is given in Algorithm 1.

Bot et al.: Mini-Batch Stochastic Forward-Backward-Forward Methods
4 Stochastic Systems, Articles in Advance, pp. 1–28, © 2021 The Author(s)



Algorithm 1 (SFBF)
Require: Step-size sequence αn; batch-size sequence mn.

1: Initialize X # initialization.
2: for n � 1, 2, . . ., do
3: Draw samples ξi and ηi from P (i � 1, . . . ,mn).

4: Oracle returns A ← 1
mn

∑mn

i�1
F(X, ξi) # first oracle query.

5: Set Y ← ΠX (X − αnA) # forward-backward step

6: Oracle returns B ← 1
mn

∑mn

i�1
F(Y, ηi) # second oracle query.

7: Set X ← Y + αn(A − B) # second forward step.
8: end for

Observe that algorithm SFBF is an infeasible method: the iterates (Xn)n≥0 are not necessarily elements of the
admissible set X , but the shadow sequence (Yn)n≥0 is by construction. In the stochastic optimization case, that is,
for instances where An+1 is an unbiased estimator of the gradient of a real-valued function, the process (Yn)n≥0
is seen to be a projected gradient step, where An+1 acts as an unbiased estimator for the stochastic gradient.
This gradient step is used in an extrapolation step to generate the iterate Xn+1. We just mention that related
popular primal-dual splitting schemes such as the Alternating Direction Method of Multipliers (ADMM)
(Boyd et al. 2011, Chen et al. 2018) are infeasible by nature as well. In concrete applications, the infeasibility of
Algorithm 1 is not really a big problem. First, if feasibility is a strict requirement, we can always propose the
shadow sequence (Yn)n≥0 as an approximate solution. This is justified by Proposition 3. Moreover, Theorem 1
shows that the random process (Xn)n≥0 will converge to a solution almost surely. Hence, SFBF is for sure
asymptotically feasible and always contains feasible approximate solutions in case of early stopping.

Assumption 5 (Step-Size Choice). The step-size sequence (αn)n≥0 in Algorithm 1 satisfies

0 < α �Δ inf
n≥0αn ≤ ᾱ �Δ sup

n≥1
αn <

1̅̅
2

√
L
.

For n ≥ 0, we introduce the approximation error

Wn+1 �Δ An+1 − T Xn( ) and Zn+1 �Δ Bn+1 − T Yn( ), (7)
and the sub-sigma-algebras (F n)n≥0, (F̂ n)n≥0, defined by F 0 �Δ σ(X0); F n �Δ σ(X0, ξ1, ξ2, . . . , ξn, η1, . . . , ηn), for
all n ≥ 1; and F̂ n �Δ σ(X0, ξ1, . . . , ξn, ξn+1, η1, . . . , ηn), for all n ≥ 0, respectively. Observe that F n ⊆ F̂ n for all n ≥ 0.
We also define the filtrations F�Δ (F n)n≥0 and F̂�Δ (F̂ n)n≥0. The introduction of these two different sub-sigma-
algebras is important for many reasons. First, observe that they embody the information the learner has about
the optimization problem. Indeed, the sub-sigma-algebra (F n)n≥0 corresponds to the information the decision
maker has at the beginning the nth iteration, whereas (F̂ n)n≥0 is the information the decision maker has after
the first (projection) step of the iteration. Therefore, (Yn)n≥0 is measurable with respect to the sub-sigma-
algebra (F̂ n)n≥0, and (Xn)n≥0 is measurable with respect to the sub-sigma-algebra (F n)n≥0. Second, we see that
the process (Wn)n≥1 is F-adapted, whereas the process (Zn)n≥1 is F̂-adapted, and unbiased approximations
relative to the respective information structures are provided:

E Wn+1|F n[ ] � 0 and E Zn+1|F̂ n
[ ] � 0, ∀n ≥ 0.

Assumption 6 (Batch Size). The batch size sequence (mn)n≥1 satisfies
∑∞

n�1 1
mn

< ∞.

A sufficient condition on the sequence (mn)n≥1 is that for some constant c > 0 and integer n0 > 0, we have

mn � c · n + n0( )1+aln n + n0( )1+b (8)
for a > 0 and b ≥ −1 or a � 0 and b > 0.

The next assumption is essentially the same as the variance control assumption in Iusem et al. (2017).

Assumption 7 (Variance Control). For all x ∈ Rd and p ≥ 1, let

sp x( ) �Δ Eξ ‖F x, ξ( ) − T x( )‖p[ ]1/p.
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There exist p ≥ 2, σ0 ≥ 0 and a measurable locally bounded function σ : X ∗ → R+ such that for all x ∈ Rd and
all x∗ ∈ X ∗,

sp x( ) ≤ σ x∗( ) + σ0‖x − x∗‖. (9)
Before we proceed with the convergence analysis, we want to make some clarifying remarks on this as-

sumption. The most frequently used assumption on the SO’s approximation error, which dates back to the
seminal work of Robbins and Monro (Duflo 1996, Kushner and Yin 1997), asks for a uniformly bounded
variance (UBV), that is,

sup
x∈X

s2 x( ) ≤ σ. (10)

UBV is covered by Assumption 7 when σ0 � 0 and supx∈X ∗ σ(x∗) ≤ σ. For instance, UBV is valid when additive
noise with a finite pth moment is assumed; that is, for some random variable ξ with E[‖ξ‖p]1/p ≤ σ < ∞,
we have

F x, ξ( ) � T x( ) + ξ, P–a.s.

However, assuming a global variance bound is not realistic in cases where the variance of the SO depends on
the position x (Jofré and Thompson 2019, example 1). Assumption 7 is much weaker than UBV because it
exploits the local variance of the SO rather than (potentially hard to estimate) global mean square variance
bounds. Recent papers (Iusem et al. 2017, Jofré and Thompson 2019) make similar assumptions on the variance
of the SO. It is shown there that Assumption 7 is most natural in cases where the feasible set X is unbounded,
and it is always satisfied when the Carathéodory functions F(·, ξ) are random Lipschitz, as illustrated in the
following example.

Example 1. Assume for the Carathéodory map F : Rd × Ξ → Rd that there exists L ∈ Lp(Ω,F ,P;R+) with

‖F x, ξ( ) − F y, ξ
( )‖ ≤ L ξ( )‖x − y‖, ∀x, y ∈ Rd.

Call L the Lipschitz constant of the map x �→ T(x) � Eξ[F(x, ξ)]. Then a repeated application of the Minkowski
inequality shows that for all x ∈ Rd and all x∗ ∈ X∗, we have

sp x( ) ≤ Eξ ‖F x, ξ( ) − F x∗, ξ( )‖p[ ]1/p + sp x∗( ) + ‖T x( ) − T x∗( )‖
≤ Eξ L ξ( )p[ ]1/p + L
( )‖x − x∗‖ + sp x∗( )

.

Let σ(x∗) denote a bound on sp(x∗) and set σ0 �Δ L + Eξ[L(ξ)p]1/p to get a variance bound as required in
Assumption 7.

4. Convergence Analysis
We consider the quadratic residual function defined by

ra x( )2 �Δ ‖x −ΠX x − aT x( )( )‖2, ∀x ∈ Rd.

The reader familiar with the literature on finite-dimensional variational inequalities will recognize this im-
mediately as the energy defined by the natural map Fnata (x) �Δ x −ΠX (x − aT(x)) (Facchinei and Pang 2003,
chapter 10). It is well known that ra(x) is a merit function for VI(T,X ). Moreover, {ra(x); a > 0} is a family of
equivalent merit functions for VI(T,X ) in the sense that rb(x) ≥ ra(x) for all b > a > 0 (Facchinei and Pang 2003,
proposition 10.3.6). Denote

ρn �Δ 1 − 2L2α2
n, ∀n ≥ 0. (11)

We define recursively the process (Vn)n≥0 by V0 �Δ 0 and, for all n ≥ 1,

Vn+1 �Δ Vn + 4 + ρn
( )

α2
n‖Wn+1‖2 + 4α2

n‖Zn+1‖2,
so

ΔVn �Δ Vn+1 − Vn � 4 + ρn
( )

α2
n‖Wn+1‖2 + 4α2

n‖Zn+1‖2, ∀n ≥ 0. (12)
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Additionally, we define for all x ∈ Rd the process (Un(x))n≥0 given by U0(x) �Δ 0, and

Un+1 x( ) �Δ Un x( ) + 2αn Zn+1, x − Yn〈 〉, ∀n ≥ 1,

with corresponding increment

ΔUn x( ) �Δ 2αn Zn+1, x − Yn〈 〉, ∀n ≥ 0.

For any reference point x ∈ Rd, we see that E[ΔUn(x)|F̂ n] � 0 for all n ≥ 0; that is, the process (Un(x))n≥0 is a
martingale with respect to the filtration F̂. Because F n ⊆ F̂ n, the tower property implies that

E ΔUn x( )|F n[ ] � 0, ∀x ∈ Rd ∀n ≥ 0, (13)
showing that it is also a F-martingale. The process (Vn)n≥0 is increasing, with increments ΔVn, whose expected
value is determined by the variance of the approximation error of the SO feedback. In terms of these increment
processes, we establish the following fundamental recursion.

Lemma 5. For all x∗ ∈ X∗ and all n ≥ 0, we have

‖Xn+1 − x∗‖2 ≤ ‖Xn − x∗‖2 − ρn

2
rαn Xn( )2 + ΔUn x∗( ) + ΔVn, P–a.s. (14)

Proof. This recursive relation follows via several simple algebraic steps. Let x∗ ∈ X∗ and n ≥ 0 be fixed.

Step 1. We have

T x∗( )
, y − x∗〈 〉 ≥ 0, ∀y ∈ X .

Using that αn > 0 and the pseudomonotonicity of T, we see that

αnT Yn( ),Yn − x∗〈 〉 ≥ 0.

Using the Doob decomposition in Equation (7), we can rewrite this inequality as

αnBn+1,Yn − x∗〈 〉 ≥ αn Zn+1,Yn − x∗〈 〉
. (15)

Because Yn � ΠX (Xn − αnAn+1), from Lemma 1(a), we conclude that

x∗ − Yn,Yn − Xn + αnAn+1
〈 〉 ≥ 0. (16)

Adding (15) and (16) gives

αn An+1 − Bn+1( ) − Xn + Yn, x∗ − Yn
〈 〉 ≥ αn Zn+1,Yn − x∗〈 〉

,

which is equivalent to

x∗ − Yn,Xn+1 − Xn
〈 〉 ≥ αn Zn+1,Yn − x∗〈 〉

. (17)

Step 2. Using (17), we get

Xn+1 − Xn,Xn+1 − x∗〈 〉 � Xn+1 − Xn,Yn − x∗〈 〉 + Xn+1 − Xn,Xn+1 − Yn〈 〉
≤ αnZn+1, x∗ − Yn

〈 〉 + ‖Xn+1 − Xn‖2
+ Xn+1 − Xn,Xn − Yn〈 〉

� αnZn+1, x∗ − Yn
〈 〉 + ‖Xn+1 − Xn‖2 − ‖Xn − Yn‖2
+ αn An+1 − Bn+1,Xn − Yn〈 〉,

where we have used the definition of Xn+1 in the preceding equality. The Pythagorean identity Lemma 2
gives us

‖Xn+1 − x∗‖2 � ‖Xn − x∗‖2 − ‖Xn+1 − Xn‖2 + 2 Xn+1 − Xn,Xn+1 − x∗〈 〉
≤ ‖Xn − x∗‖2 + ‖Xn+1 − Xn‖2 − 2‖Xn − Yn‖2

+ 2 αnZn+1, x∗ − Yn
〈 〉 + 2αn An+1 − Bn+1,Xn − Yn〈 〉.
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Step 3. Using again the definition of Xn+1, we see that

‖Xn+1 − Xn‖2 � ‖Yn + αn An+1 − Bn+1( ) − Xn‖2
� ‖Xn − Yn‖2 + α2

n‖An+1 − Bn+1‖2 + 2αn An+1 − Bn+1,Yn − Xn〈 〉
≤ ‖Xn − Yn‖2 + 2α2

n‖T Xn( ) − T Yn( )‖2 + 2α2
n‖Wn+1 − Zn+1‖2

+ 2αn An+1 − Bn+1,Yn − Xn〈 〉
≤ ‖Xn − Yn‖2 + 2L2α2

n‖Xn − Yn‖2 + 4α2
n‖Wn+1‖2 + 4α2

n‖Zn+1‖2
+ 2αn An+1 − Bn+1,Yn − Xn〈 〉.

The first inequality is the Cauchy–Schwarz inequality. The second inequality follows from the L-Lipschitz
continuity of the averaged operator T (Assumption 3) and again the Cauchy–Schwarz inequality. Combining this
with the last inequality obtained in Step 2, we see that

‖Xn+1 − x∗‖2 ≤ ‖Xn − x∗‖2 − 1 − 2L2α2
n

( )‖Xn − Yn‖2 + 4α2
n‖Wn+1‖2

+ 4α2
n‖Zn+1‖2 + 2 αnZn+1, x∗ − Yn

〈 〉
.

Step 4. By the definition of the squared residual function, the definition of Yn and Lemma 1(c), we have

rαn Xn( )2 � ‖Xn −ΠX Xn − αnT Xn( )( )‖2
≤ 2‖Xn − Yn‖2 + 2‖Yn −ΠX Xn − αnT Xn( )( )‖2
� 2‖Xn − Yn‖2 + 2‖ΠX Xn − αnAn+1( ) −ΠX Xn − αnT Xn( )( ‖2
≤ 2‖Xn − Yn‖2 + 2‖αnWn+1‖2.

Hence,

−2‖Xn − Yn‖2 ≤ 2α2
n‖Wn+1‖2 − rαn Xn( )2. (18)

Step 5. Combining (18) with the last inequality from Step 3 and recalling Assumption 5, we conclude that

‖Xn+1 − x∗‖2 ≤ ‖Xn − x∗‖2 − 1
2

1 − 2L2α2
n

( )
rαn Xn( )2 + 1 − 2L2α2

n

( )
α2
n‖Wn+1‖2

+ 4α2
n‖Wn+1‖2 + 4αn‖Zn+1‖2 + 2 αnZn+1, x∗ − Yn

〈 〉
� ‖Xn − x∗‖2 − ρn

2
rαn Xn( )2 + 4 + ρn

( )
αn( )2‖Wn+1‖2 + 4α2

n‖Zn+1‖2
+ 2 αnZn+1, x∗ − Yn

〈 〉
.

The definitions of the increments associated with the martingale (Un(x∗))n≥0 and the nondecreasing process
(Vn)n≥0 give the claimed result. □

Remark 2. One can notice that in the preceding proof that the pseudomonotonicity of T is used only in Step 1 in
order to obtain relation (15). Thus, as happened in Dang and Lan (2015) and Solodov and Svaiter (1999), the
pseudomonotonicity of T can actually be replaced by the weaker assumption

T x( ), x − x∗〈 〉 ≥ 0, ∀x ∈ X , x∗ ∈ X ∗.

See also Mertikopoulos and Zhou (2018) for a similar condition.

In the following, we let p ≥ 2 be the exponent as specified in Assumption 7. Taking the conditional ex-
pectations in (14) and using the martingale property (13), we see that for all n ≥ 0,

E ‖Xn+1 − x∗‖2|F n

[ ]
≤ ‖Xn − x∗‖2 − ρn

2
rαn Xn( )2 +E ΔVn|F n[ ]. (19)

In order to prove convergence of the process (Xn)n≥0, we aim to deduce a stochastic quasi-Fejér relation. For
that, we need to understand the properties of the conditional expectation

E ΔVn|F n[ ] � 4 + ρn
( )

α2
nE ‖Wn+1‖2|F n

[ ] + 4α2
nE ‖Zn+1‖2|F n

[ ] ∀n ≥ 0.
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Let q ∈ [1,∞]. The monotonicity of Lq(P) �Δ Lq(Ω,F ,P;R) norms gives E[ΔVn|F n] ≤ E[|ΔVn|q|F n]1q for all n ≥ 0. By
the Minkowski inequality,

E |ΔVn|q|F n[ ]1q ≤ 4 + ρn
( )

α2
nE ‖Wn+1‖2q|F n

[ ]1/q + 4α2
nE ‖Zn+1‖2q|F n

[ ]1/q
, ∀n ≥ 0.

The next lemma provides the required bounds for these expressions and highlights the implicit variance
reduction of our method.

Lemma 6. Let p′ ∈ [2, p]. For all n ≥ 0, we have P–a.s.

E ‖Wn+1‖p′ |F n
[ ] 1

p′ ≤ Cp′ σ x∗( ) + σ0‖Xn − x∗‖( )̅̅̅̅̅̅̅
mn+1

√ (20)

and

E ‖Zn+1‖p′ |F n
[ ] 1

p′ ≤ Cp′̅̅̅̅̅̅̅
mn+1

√ σ x∗( ) + σ0E ‖Yn − x∗‖p′ |F n

[ ] 1
p′

( )
. (21)

In particular, in case of (10) with σ0 � 0 and supx∈X∗ σ(x∗) ≤ σ̂, both approximation errors are bounded in Lp
′ (P) by the

common factor Cp′ σ̂̅̅̅̅̅
mn+1

√ .

Proof. See Appendix A. □

Let p′ ≥ 2 and n ≥ 0. Then we have

E ‖Yn − x∗‖p′ |F n

[ ] 1
p′≤ 1 + αnL( )‖Xn − x∗‖ + αnE ‖Wn+1‖p′ |F n

[ ]1/p′
.

Hence, combining this with (20) for p′ ∈ [2, p] as in Lemma 6, we see that

E ‖Yn − x∗‖p′ |F n

[ ] 1
p′≤ 1 + αnL( )‖Xn − x∗‖ + αn

Cp′ σ x∗( ) + σ0‖Xn − x∗‖( )̅̅̅̅̅̅̅
mn+1

√

� 1 + αnL + αn
Cp′σ0̅̅̅̅̅̅̅
mn+1

√
( )

‖Xn − x∗‖ + αn
Cp′σ x∗( )̅̅̅̅̅̅̅

mn+1
√ . (22)

Plugging this inequality into (21), after rearranging the terms, we see that

E ‖Zn+1‖p′ |F n
[ ] 1

p′≤Cp′σ x∗( )̅̅̅̅̅̅̅
mn+1

√ 1 + αn
σ0Cp′̅̅̅̅̅̅̅
mn+1

√
( )

+ ‖Xn − x∗‖ Cp′σ0̅̅̅̅̅̅̅
mn+1

√ 1 + αnL + αn
Cp′σ0̅̅̅̅̅̅̅
mn+1

√
( )

.

We denote

Gn,p �Δ Cp̅̅̅̅̅̅̅
mn+1

√ , (23)

such that for all n ≥ 0 and p′ ∈ [2, p], we obtain the expressions

E ‖Wn+1‖p′ |F n
[ ] 1

p′ ≤ Gn,p′ σ x∗( ) + σ0‖Xn − x∗‖( )
, (24)

E ‖Zn+1‖p′ |F n
[ ] 1

p′≤ σ x∗( )
Gn,p′ 1 + αnσ0Gn,p′

( ) + σ0Gn,p′ ‖Xn − x∗‖ 1 + αnL + αnσ0Gn,p′
( )

, (25)
E ‖Yn − x∗‖p′ |F n

[ ] 1
p′≤ 1 + αnL + αnσ0Gn,p′

( )‖Xn − x∗‖ + αnσ x∗( )
Gn,p′ . (26)

In case of a UBV (10), we obtain from the preceding estimates’ simple upper bounds by setting σ0 � 0 and
replacing σ(x∗) with the uniform upper bound σ̂. We next use these derived expressions to obtain Lq(P) bounds
for the error increments (ΔUn(x∗))n≥1 and (ΔVn)n≥1 when q ∈ [1, p/2].
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Lemma 7. Let Assumption 7 be fulfilled with p ≥ 2. For p′ ∈ [2, p], q � p′
2 ≥ 1, and all n ≥ 0, we have

E |ΔVn|q|F n[ ]1q ≤ α2
nG

2
n,p′σ x∗( )2 2 4 + ρn

( ) + 16 + 16α2
nσ

2
0G

2
n,p′

[ ]
+ α2

nG
2
n,p′σ

2
0‖Xn − x∗‖2 2 4 + ρn

( ) + 8 1 + αnL + αnσ0Gn,p′
( )2[ ]

(27)

and

E |ΔUn x∗( )|q|F n
[ ]1

q

≤ 2α2
nG

2
n,p′σ x∗( )2 1 + αnGn,p′σ0

( )
+ 2αnGn,p′σ x∗( )‖Xn − x∗‖ 1 + αnL + αnσ0Gn,p′ 3 + 2αnL( ) + 2α2

nσ
2
0G

2
n,p′

[ ]
+ 2αnGn,p′σ0‖Xn − x∗‖2 1 + αnL + αnσ0Gn,p′

( )2. (28)
If (10) holds with variance bound σ̂, then these upper bounds simplify to

E |ΔVn|q|F n[ ]1q ≤ α2
nσ̂

2G2
n,p′ 8 + ρn

( ) (29)
and, respectively,

E |ΔUn x∗( )|q|F n
[ ]1

q ≤ 2αnσ̂Gn,p′ 1 + Lαn( )‖Xn − x∗‖ + 2α2
nσ̂

2G2
n,p′ . (30)

Proof. Let n ≥ 0. For q ≥ 1, we know that

E |ΔVn|q|F n[ ]1q ≤ 4 + ρn
( )

α2
nE ‖Wn+1‖p′ |F n

[ ] 2
p′ + 4α2

nE ‖Zn+1‖p′ |F n
[ ] 2

p′ .

Using (24) and (25) and rearranging terms, we obtain (27). By contrast, we have by definition

E |ΔUn x∗( )|q|F̂ n
[ ]1

q ≤ 2αn‖Yn − x∗‖ · E ‖Zn+1‖ q|F̂ n
[ ]1

q

≤ 2αn‖Yn − x∗‖ · E ‖Zn+1‖ p′ |F̂ n
[ ] 1

p′

≤ 2αn‖Yn − x∗‖Gn,p′σ x∗( ) + 2αnGn,p′σ0‖Yn − x∗‖2,
where the first estimate follows from the Cauchy–Schwarz inequality, the second uses the monotonicity of the
Lq(P) norms, and the third uses Equation (A.4). Applying the operator E[·|F n] on both sides, and again using
the monotonicity of the Lq(P) norms, we obtain

E |ΔUn x∗( )|q|F n
[ ]1

q ≤ 2αnGn,p′σ x∗( )
E ‖Yn − x∗‖q|F n
[ ]1

q

+ 2αnGn,p′σ0E ‖Yn − x∗‖p′ |F n

[ ] 2
p′

≤ 2αnGn,p′σ x∗( )
E ‖Yn − x∗‖p′ |F n

[ ] 1
p′

+ 2αnGn,p′σ0E ‖Yn − x∗‖p′ |F n

[ ] 2
p′ .

After applying (26) and rearranging terms, we arrive at the (28).

In case UBV (10) holds with uniform variance bound σ̂, the upper bound for |ΔVn+1|q follows immedi-
ately from the defining expression (12) using the uniform bounds Cp′ σ̂̅̅̅̅̅

mn+1
√ � Gn,p′ σ̂ for the quadratic error terms

‖Wn+1‖2 and ‖Zn+1‖2. The corresponding bound for |ΔUn(x∗)|q is obtained from (28) by setting σ0 � 0 and
replacing σ(x∗) with its uniform upper bound σ̂. □

Based on the preceding estimates, we can now derive the announced stochastic quasi-Fejér inequality for the
sequence (‖Xn − x∗‖2)n≥0.
Proposition 1. For all x∗ ∈ X∗ and all n ≥ 0, we have

E ‖Xn+1 − x∗‖2|F n

[ ]
≤ ‖Xn − x∗‖2 − ρn

2
rαn Xn( )2 + κn

mn+1
σ20‖Xn − x∗‖2 + σ x∗( )2[ ]

, (31)
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where

κn �Δ α2
nC

2
2 2 4 + ρn

( ) + 16 1 + αnL + αnσ0Gn,2( )2
[ ]

.

If (10) holds with uniform variance bound σ̂, then

E ‖Xn+1 − x∗‖2|F n

[ ]
≤ ‖Xn − x∗‖2 − ρn

2
rαn Xn( )2 + κnσ̂2

mn+1
, (32)

where now κn � α2
nC

2
2(8 + ρn).

Proof. Let x∗ ∈ X∗ and n ≥ 0. Our point of departure is (19), together with (27). From here we derive that

E ‖Xn+1 − x∗‖2|F n

[ ]
≤ ‖Xn − x∗‖2 − ρn

2
rαn Xn( )2

+ α2
nG

2
n,2σ x∗( )2 2 4 + ρn

( ) + 16 + 16α2
nσ

2
0G

2
n,2

[ ]
+ α2

nG
2
n,2σ

2
0‖Xn − x∗‖2 2 4 + ρn

( ) + 8 1 + αnL + αnσ0Gn,p2
( )2[ ]

≤ ‖Xn − x∗‖2 − ρn

2
rαn Xn( )2

+ σ20‖Xn − x∗‖2 + σ x∗( )2( )
2 4 + ρn
( ) + 16 1 + αnL + αnσ0Gn,2( )2

[ ]
α2
nG

2
n,2.

In the preceding equality, we used that 2(4 + ρn) + 8(1 + αnL + αnσ0Gn,2)2 ≤ 2(4 + ρn) + 16(1 + αnL + αnσ0Gn,2)2
and that 2(4 + ρn) + 16 + 16α2

nσ
2
0G

2
n,2 ≤ 2(4 + ρn) + 16(1 + αnL + αnσ0Gn,2)2. Recalling that Gn,2 � C2/

̅̅̅̅̅̅̅
mn+1

√
, the

proof is complete.

In the case where UBV (10) holds, we just combine (19) with (29) to obtain the claimed result. □

Remark 3. The scaling factor κn only depends on the step size αn, the Lipschitz constant L, and the variance bound
on the SO oracle. Let ᾱ�Δ supn≥0 αn and α�Δ infn≥0 αn (both finite and positive according to Assumption 5). Using the
definition of ρn in (11), we can bound

κn � α2
nC

2
2 2 4 + ρn

( ) + 16 1 + αnL + αnσ0C2̅̅̅̅̅̅̅
mn+1

√
( )2[ ]

≤ α2
nC

2
2 10 + 32 1 + αnL( )2 + 32α2

nσ
2
0

C2
2

mn+1

[ ]

≤ ᾱ2C2
2c1 1 + ᾱ2σ20C

2
2

mn+1

[ ]
, ∀n ≥ 0,

where c1 > 1 is a constant. Combined with the batch-size condition (8), we obtain the existence of constants c0
and c1 such that

κn ≤ c1 1 + ᾱ2σ20C
2
2

c0 n + n0( )1+aln n + n0( )1+b
( )

for all n � n0. Such nonasymptotic bounds will be used in the estimation of the rate of convergence of
the algorithm.

Next, we prove that the process (Xn)n≥0 converges a.s. to a random variable X with values in the set X∗. This
will be obtained as a consequence of the classical Robbins–Siegmund theorem (Lemma 3) and recent results on
the convergence of stochastic quasi-Féjer monotone sequences (Combettes and Pesquet 2015, proposition 2.3).

Given a stochastic process ( fn)n≥0 ⊆ L0(Ω,F ,P;Rd), we define the (random) set of cluster points

Lim f
( )

ω( ) �Δ x ∈ Rd| ∃ nj
( ) ↑ ∞( )

: lim
nj→∞ fnj ω( ) � x

{ }
.

Theorem1. Consider the stochastic process (Xn,Yn)n≥0 generated by algorithm SFBF under Assumptions 1–7. Then (Xn)n≥0
converges as n → ∞ a.s. to a limit random variable X with values in X∗, and limn→∞ E[rαn (Xn)2] � 0.
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Proof. We fix an element x∗ ∈ X∗. Let δn(x∗) �Δ ‖Xn − x∗‖2, un �Δ ρn
2 rαn(Xn)2, θn �Δ κnσ20

mn+1 and βn � κnσ(x∗)2
mn+1 so that (31) can

be rewritten for all n ≥ 0 as

E δn+1 x∗( )|F n
[ ] ≤ 1 + θn( )δn x∗( ) − un + βn, P–a.s.

Hence, by Lemma 3, there exists a random variable δ̂(x∗) ∈ [0,∞) such that (δn(x∗))n≥1 → δ̂(x∗) a.s. as n → ∞,
and P[∑n≥0 un < ∞] � 1. In particular, (Xn)n≥0 is bounded for almost every ω ∈ Ω. Because

∑
n≥0 un �∑

n≥0 ρnrαn(Xn)2 ≥ ρ̂
∑

n≥0 rαn (Xn)2, where ρ̂ � 1 − 2ᾱ2L2 > 0, it follows that limn→∞ rαn(Xn) � 0, P−a.s.
We next show that for all ω ∈ Ω, all limit points of (Xn(ω))n≥0 are points in X ∗ and then apply proposition 2.3(iii)

in Combettes and Pesquet (2015) to conclude that (Xn)n converges a.s. to a random variable X with values
in X∗. Let ω ∈ Ω be such that Xn(ω) is bounded. Because (αn)n≥0 is bounded as well, we can construct subse-
quences (αnj)j≥0 and (Xnj (ω))j≥0 such that limj→∞ αnj � α ∈ [α, ᾱ] and limj→∞ Xnj (ω) � χ(ω). Additionally, we have
limj→∞ rαnj

(Xnj (ω)) � 0, so

lim
j→∞Xnj ω( ) � lim

j→∞ΠX Xnj ω( ) − αnjT Xnj ω( )
( )( )

.

Therefore, by continuity of the projection operator and of the averaged map T, Lemma 1(d) allows us
to conclude that χ(ω) ∈ X∗. Because the subsequence is arbitrary, it follows that Lim((Xn)n≥0)(ω) ⊆ X∗ for
P–almost all ω ∈ Ω. Now apply proposition 2.3(iv) of Combettes and Pesquet (2015) to conclude
that Xn → X ∈ L0(Ω,F ,P;X∗) P−a.s.

To prove that rαn(Xn) converges to zero in mean square as n → ∞, observe first that

E δn+1 x∗( )[ ] ≤ E δn x∗( )[ ] − ρn

2
E rαn Xn( )2[ ] + κn

mn+1
σ20E δn x∗( )[ ] + σ x∗( )2( )

∀n ≥ 0.

Let zn � E[δn(x∗)],un � ρn
2 E[rαn(Xn)2] and θn and βn be defined as in the preceding paragraph. The deterministic

version of Lemma 3 gives (un)n≥1 ∈ �1+(N). Hence, limn→∞ E[rαn (Xn)2] � 0. □

Theorem 1 considerably strengthens similar results obtained via different splitting techniques. For SEG (10),
asymptotic convergence of the iterates in the sense of Theorem 1 is established in theorem 3 of Iusem
et al. (2017). However, different from algorithm SFBF, SEG requires two costly projection steps, with the same
number of SO calls. This makes algorithm SFBF a potentially more efficient tool, and we will demonstrate that this
is actually the case empirically and theoretically. Under strong monotonicity assumptions, a version of Theorem 1
has been established recently for a stochastic version of the classical forward-backward splitting technique in
Rosasco et al. (2016), assuming a similar variance structure on the SO as we do. Theorem 1 shows convergence
of the SFBF algorithm under the much weaker assumption of pseudomonotonicity of the mean operator T.

We close this section by reporting an improved stochastic quasi-Fejér property in terms of the distance to the
solution set X∗.
Proposition 2. Suppose that Assumptions 1–7 hold. For x∗ ∈ X∗, set σ̂(x∗) �Δ max{σ(x∗), σ0}, and define dist(x,
X∗) �Δ infy∈X∗ ‖y − x‖ � ‖ΠX∗(x) − x‖. For all n ≥ 0, it holds that

E dist Xn+1,X∗( )2|F n
[ ] ≤ dist Xn,X∗( )2 − ρn

2
rαn Xn( )2+κnσ̂ ΠX∗ Xn( )( )2

mn+1
1 + dist Xn,X∗( )2
[ ]

.

If UBV (10) holds, then we get for all n ≥ 0 the uniform bound

E dist Xn+1,X∗( )2|F n
[ ] ≤ dist Xn,X∗( )2 − ρn

2
rαn Xn( )2 + κnσ̂2

mn+1
,

with κn � α2
nC

2
2(8 + ρn).

Proof. Let πn(ω) � ΠX∗(Xn(ω)) for all n ≥ 0 and all ω ∈ Ω. Because the projection operator onto the closed and
convex set X∗ is nonexpansive, we have (πn)n≥0 ∈ �0(F). For all n ≥ 0, we have

E dist Xn+1,X∗( )2|F n
[ ] ≤ E ‖Xn+1 − πn‖2|F n

[ ]
≤ ‖Xn − πn‖2 − ρn

2
rαn Xn( ) + κn

mn+1
σ20‖Xn − πn‖2 + σ πn( )2[ ]

≤ dist Xn,X∗( )2 − ρn

2
rαn Xn( ) + κnσ̂2 πn( )

mn+1
dist Xn,X∗( )2+1[ ]

,

where the second inequality uses Proposition 1. □
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We are now in a position to make our claim precise that we can always provide the current iterate of the
shadow sequence (Yn)n≥0 as the approximate solution of our SVI.

Proposition 3. Consider the stochastic process (Xn,Yn)n≥0 generated by algorithm SFBF under Assumptions 1–7. Let
(πn)n≥0 be the X∗-valued F-adapted stochastic process defined by πn � ΠX∗(Xn) for all n ≥ 0. Define the sequences
(γn)n≥0, (βn)n≥0 by γn � 1 + αnL + αn

C2σ0̅̅̅̅̅
mn+1

√ and βn � αn
C2σ(πn)̅̅̅̅̅

mn+1
√ . If βn → 0 a.s., then (Yn)n converges a.s. to an X∗-valued

random variable Y.

Proof. Let d(x) �Δ dist(x,X∗), and consider the stochastic process (cn)n≥0 defined as cn �Δ E[d(Yn)2|F n]1/2. Further-
more, we define the X∗-valued random process by πn �Δ ΠX∗(Xn). From (22), we see that

cn ≤ E ‖Yn − πn‖2|F n
[ ]1

2

≤ 1 + αnL + αn
C2σ0̅̅̅̅̅̅̅
mn+1

√
( )

d Xn( ) + αn
C2σ πn( )̅̅̅̅̅̅̅

mn+1
√

� γnd Xn( ) + βn.

Taking expectations on both sides,

E cn[ ] ≤ γnE d Xn( )[ ] + E βn
[ ]

.

By Theorem 1, Xn → X a.s., an X∗-valued random variable. Therefore, we know that limn→∞ E[d(Xn)] � 0. By
hypothesis, βn → 0 a.s., so lim supn→∞ E[cn] ≤ 0. Now c2n � E[d(Yn)2|F n], and by Jensen’s inequality,

E c2n
[ ] � E d Yn( )2[ ] ≤ E cn[ ]2.

Hence, lim supn→∞ E[d(Yn)2] ≤ 0, and consequently, d(Yn) → 0 a.s. The convergence to an X∗-valued limit
random variable then follows from proposition 2.3 in Combettes and Pesquet (2015). □

We remark that the assumption βn → 0 a.s. is rather mild. A sufficient condition is that (βn)n≥0 ∈ �1+(F). It
trivially holds under the UBV assumption on the SO’s variance.

5. Complexity Analysis and Rates
The next two propositions provide explicit norm bounds on the iterates (Xn)n≥0. These bounds are going to be
crucial to assess the convergence rate and per-iteration complexity of the proposed algorithm. To be sure, the
formal appearance of the complexity estimates derived in this section is naturally similar to that of the
corresponding bounds derived in Iusem et al. (2017). However, the key observation we would like to em-
phasize here is that an explicit comparison between the constants involved in the upper bounds obtained for
algorithm SFBF with those appearing in (10) shows that the constants are consistently smaller. This indicates
that the SFBF algorithm should empirically outperform SEG (10). This fact is consistently observed in all our
numerical experiments, and as we show in Section 6, actually this promised gain can be quite significant.

Proposition 4. Suppose that Assumptions 1–7 hold. For all x∗ ∈ X∗, let

σ̂ x∗( )�Δ max σ x∗( )
, σ0

{ }
, (33)

a x∗( )�Δ σ̂2 x∗( )
ᾱ2C2

2c1. (34)
Choose n0 ∈ N and γ > 0 such that ∑

n≥n0

1
mn+1

≤ γ (35)

and

β x∗( )�Δ γa x∗( ) + γ2a x∗( )2∈ 0, 1( ). (36)
Then

sup
n≥n0+1

E ‖Xn − x∗‖2
[ ]

≤ E ‖Xn0 − x∗‖2[ ] + 1
1 − β x∗( ) . (37)
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Proof. Because of Assumption 6, for every γ > 0, we can find an index n0 ∈ N such that (35) holds. Consequently,
we fix n0 ∈ N to be the smallest positive integer so that (35) holds. For all n ≥ 0, we denote ψn(x∗) �Δ E[‖Xn − x∗‖2].
From Proposition 1, we obtain

ψn+1 x∗( ) ≤ ψn x∗( ) − ρn

2
E rαn Xn( )2[ ] + κn

mn+1
σ20ψn x∗( ) + σ x∗( )2[ ]

, ∀n ≥ 0.

Recall from Remark 3 that

κn ≤ ᾱ2C2
2c1 1 + ᾱ2σ20C

2
2

mn+1

( )
≤ ᾱ2C2

2c1 1 + a x∗( )
c1mn+1

( )
.

Using this bound, for all n ≥ n0 + 1, the previous display telescopes to

ψn x∗( ) ≤ ψn0 x∗( ) + ∑n−1
k�n0

1 + ψk x∗( )( ) a x∗( )
mk+1

+ ∑n−1
k�n0

1 + ψk x∗
( )( ) a x∗( )2

c1m2
k+1

.

For p > ψn0(x∗), define τp(x∗) �Δ inf{n ≥ n0 + 1|ψn(x∗) ≥ p} ∈ N ∪ {+∞}. We claim that there exists p̂ > ψn0(x∗)
such that τp̂(x∗) � ∞. Assuming that this is not the case, then we must have that τp(x∗) < ∞ for all p > ψn0(x∗).
Therefore, by definition of τp(x∗) and (35), we get

p ≤ ψτp x∗( ) x∗
( ) ≤ ψn0 x∗( ) + ∑τp x∗( )−1

k�n0
1 + ψk x∗( )( ) a x∗( )

mk+1

+ ∑τp x∗( )−1
k�n0

1 + ψk x∗( )( ) 1
c1

a x∗( )
mk+1

( )2
≤ ψn0 x∗( ) + 1 + p

( )
γa x∗( ) + 1 + p

( )γ2a x∗( )2
c1

.

Rearranging and using c1 > 1 as well as (36), we get

p ≤ ψn0 x∗( ) + 1

1 − γa x∗( ) − γ2

c1
a x∗( )2

≤ ψn0 x∗( ) + 1
1 − γa x∗( ) − γ2a x∗( )2 .

Because p > ψn0(x∗) has been chosen arbitrarily, we can let p → ∞ and obtain a contradiction. Therefore, there
exists p̂ > ψn0(x∗) such that p̄�Δ supn≥n0+1 ψn(x∗) ≤ p̂ < ∞. From here we get, for all n ≥ n0 + 1,

ψn x∗( ) ≤ ψn0 x∗( ) + ∑n−1
k�n0

1 + ψk x∗
( )( )a x∗( )

mk+1
+ ∑n−1

k�n0
1 + ψk x∗( )( ) 1

c1

a x∗( )
mk+1

( )2
≤ ψn0 x∗( ) + 1 + p̄

( )
γa x∗( ) + 1 + p̄

( )γ2a x∗( )2
c1

.

Taking the supremum over n ≥ n0 + 1 and shifting back to the original expressions of the involved data, we get

p̄ � sup
n≥n0+1

E ‖Xn − x∗‖2
[ ]

≤ E ‖Xn0 − x∗‖2[ ] + 1
1 − β x∗( ) ,

which further leads to (37). □

In the case where the local variance of the SO is uniformly bounded over the solution set X∗, we obtain
much sharper results, allowing us to bound the distance of the iterates away from the solution set.

Proposition 5. Suppose that Assumptions 1–7 hold. Suppose that the variance over the solution set X∗ is bounded:
σ̂(x∗) �Δ max{σ(x∗), σ0} ≤ σ̂, for all x∗ ∈ X∗. Define

a�Δ ᾱ2σ̂2C2
2c1. (38)
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Let φ ∈ (0,
̅̅
5

√ −1
2 ), and choose n0 ≥ 1 such that

∑
i≥n0 1

mi+1 ≤
φ
a. Then

sup
n≥n0+1

E dist Xn,X∗( )2[ ] ≤ 1 + E dist Xn0 ,X∗( )2[ ]
1 − φ − φ2 . (39)

Proof. We denote by d(x) �Δ dist(x,X∗) : Rd → R+ the distance function of the solution set X∗. Because X∗ is a
nonempty, closed, and convex subset of Rd, the function d(Xn) : Ω → R+ given by ω �→ d(Xn)(ω) �Δ dist(Xn(ω),X∗)
is F n-measurable for all n ≥ 0. Indeed, letting πn(ω) �Δ ΠX∗(Xn(ω)) for all n ≥ 0, then, first, (πn)n≥0 ∈ �0+(F), and
second, d(Xn)(ω) � ‖Xn(ω) − πn(ω)‖ is a well-defined random process in �0+(F), being a composition of continuous
and measurable functions. Therefore, for all n ≥ 0,

E d Xn+1( )2|F n
[ ] ≤ E ‖Xn+1 − πn‖2|F n

[ ]
≤ ‖Xn − πn‖2 − ρn

2
E rαn Xn( )2[ ] + κn

mn+1
σ20d Xn( )2+σ πn( )2( )

.

Call ψn �Δ
̅̅̅̅̅̅̅̅̅̅̅̅̅
E[d(Xn)2]

√
for all n ≥ 0. Taking expectations in the previous display and using the assumed uniform

bound of the variance, we arrive at

ψ2
n+1 ≤ ψ2

n −
ρn

2
E rαn Xn( )2[ ] + σ̂2κn

mn+1
1 + ψ2

n

( )
, ∀n ≥ 0.

From Remark 3, we know that

κn ≤ ᾱ2C2
2c1 1 + ᾱ2σ̂2C2

2

mn+1

( )
,

so σ̂2κn ≤ a(1 + a
mn+1c1) for all n ≥ 0. Hence, for all n ≥ n0 + 1,

ψ2
n ≤ ψ2

n0 +
∑n−1
k�n0

1 + ψ2
k

( ) a
mk+1

+ ∑n−1
k�n0

1 + ψ2
k

( ) a2

c1m2
k+1

.

From here proceed, mutatis mutandis, as in the proof of Proposition 4. □

We next give explicit estimates of the rate of convergence and the SO complexity of algorithm SFBF. The
reported results are very similar to the extragradient method, with the important remark that all numerical
constants can be improved under our forward-backward-forward scheme. For that purpose, it is sufficient to
consider algorithm SFBF with a constant step size αn � α ∈ (0, 1̅̅

2
√

L
) for all n ≥ 0.3 As in Iusem et al. (2017), we

can provide nonasymptotic convergence rates for the sequence (E[rα(Xn)2])n≥0.
For all n ≥ 0, x∗ ∈ X∗ and φ ∈ (0,

̅̅
5

√ −1
2 ), define

Γn �Δ
∑n
i�0

1
mi+1

, Γ2n �Δ
∑n
i�0

1
m2

i+1
,

ρ � 1 − 2α2L2, δn x∗( )�Δ ‖Xn − x∗‖2,
and H x∗,n,φ( )�Δ 1 +max0≤i≤n E δi x∗( )[ ]

1 − φ − φ2 .

Theorem 2. Suppose that Assumptions 1–7 hold. Let x∗ ∈ X∗ be arbitrarily chosen, and consider algorithm SFBF with
constant step size α ∈ (0, 1̅̅

2
√

L
). Choose φ ∈ (0,

̅̅
5

√ −1
2 ) and n0 �Δ n0(x∗) to be the first integer such that∑

i≥n0

1
mi+1

≤ φ

a x∗( ) , (40)

where a(x∗) is defined in (34). Let

Λn x∗,φ( )�Δ 2
ρ

E δ0 x∗( )[ ] + 1 +H x∗,n0,φ( )( )
a x∗( )

Γn + a x∗( )2Γ2n( ){ }
,

Λ∞ x∗,φ( )�Δ sup
n≥0

Λn x∗,φ( )
.
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For all ε > 0, define the stopping time

Nε �Δ inf n ≥ 0|E rα Xn( )2[ ] ≤ ε
{ }

. (41)
Then, either Nε � 0 or

E rα XNε

( )2[ ]
≤ ε <

Λ∞ x∗,φ( )
Nε

. (42)

Proof. Let γ � φ

a(x∗), with the constant a(x∗) defined in (34), and let n0 � n0(x∗), as required in the statement of the
theorem. From Proposition 4, we deduce the bound

sup
n≥n0+1

E δn x∗( )[ ] ≤ 1 + E δn0 x∗( )[ ]
1 − φ − φ2 ≤ H x∗,n0,φ( )

.

Because 1 − φ − φ2 ∈ (0, 1), sup0≤i≤n0 E[δi(x∗)] ≤ H(x∗,n0,φ). Therefore,
sup
n≥0

E δn x∗( )[ ] ≤ H x∗,n0,φ( )
. (43)

Taking expectations in (31), we get

ρ

2
E rα Xn( )2[ ] ≤ E δn x∗( )[ ] − E δn+1 x∗( )[ ] + κn

mn+1
σ x∗( )2 +σ20E δn x∗( )[ ]( )

, ∀n ≥ 0.

Therefore, for all n ≥ 0,

ρ

2

∑n
i�0

E rα Xi( )2[ ] ≤ E δ0 x∗( )[ ] +∑n
i�0

κi

mi+1
σ x∗( )2 +σ20E δi x∗( )[ ]( )

.

Using the variance bound σ̂(x∗) � max{σ(x∗), σ0}, which is well defined given the local boundedness of the
variance, we get first from Remark 3 the bound

κi ≤ α2C2
2c1 1 + α2C2

2σ̂ x∗( )2
mi+1

( )
, ∀i ≥ 0.

Second, recalling that a(x∗) � α2σ̂(x∗)2C2
2c1, it yields, for all n ≥ 0,

ρ

2

∑n
i�0

E rα Xi( )2[ ] ≤ E δ0 x∗( )[ ] +∑n
i�0

a x∗( )
mi+1

1 + E δi x∗( )[ ]( )
+∑n

i�0

1
c1

a x∗( )
mi+1

( )2
1 + E δi x∗( )[ ]( )

≤ E δ0 x∗( )[ ] + 1 +max
0≤i≤nE δi x∗( )[ ]( )

a x∗( )
Γn + a x∗( )2Γ2n( )

.

From (43), we conclude that

ρ

2

∑n
i�0

E rα Xi( )2[ ] ≤ E δ0 x∗( )[ ] + 1 +H x∗,n0,φ( )( )
a x∗( )

Γn + a x∗( )2Γ2n( )
� ρ

2
Λn x∗,φ( )

, ∀n ≥ 0.

In conclusion,

∑n
i�0

E rα Xi( )2[ ] ≤ Λn x∗,φ( )
, ∀n ≥ 0.
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From Theorem 1, we know that for all ε > 0 there exists Mε ∈ N such that E[rα(Xn)2] ≤ ε for all n ≥ Mε. Hence,
the (deterministic) stopping time Nε defined in (41) is either zero or an integer bounded from above. Focusing
on the latter case Nε ≥ 1, then for every 0 ≤ k ≤ Nε − 1, we have

ε < E rα Xi( )2[ ]
.

From here, it follows that

εNε <
∑Nε−1

i�0
E rα Xi( )2[ ] ≤ ΛNε−1 x∗,φ( )

.

Hence,

E rα XNε

( )2[ ]
≤ ε <

Λ∞ x∗,φ( )
Nε

.

The preceding two cases can be compactly summarized to statement (42). □

We next turn to the case where the local variance is uniformly bounded over the solution set. In the
preceding theorem, given x∗ ∈ X∗, the constant Λ∞(x∗,n0(x∗),φ) in the convergence rate depends on the
variance and on the distance of the n0(x∗) initial iterates from x∗, where n0(x∗) and φ are chosen such that (40)
holds. Assuming a uniform bound on the variance of the SO over the solution set X∗, we can obtain much
stronger convergence rate estimates, holding uniformly over the solution set.

Proposition 6. Assume that supx∗∈X ∗ σ̂(x∗) ≤ σ̂, where the function σ̂(·) is defined in (33). Let x∗ ∈ X∗ be arbitrarily chosen,
and consider algorithm SFBF with constant step size α ∈ (0, 1̅̅

2
√

L
). Choose φ ∈ (0,

̅̅
5

√ −1
2 ) and n0 �Δ n0(σ̂) to be the first integer

such that ∑
i≥n0

1
mi+1

≤ φ

a
, (44)

where a � σ̂2α2C2
2c1. Let

Λ̄n σ̂,φ
( )�Δ 2

ρ
E dist X0,X∗( )2[ ] + 1 + H̄ σ̂,n0,φ

( )( )
aΓn + a2Γ2n
( ){ }

,

Λ̄∞ σ̂,φ
( ) � sup

n≥0
Λ̄n φ, σ̂

( )
, and

H̄ σ̂,n0,φ
( ))�Δ 1 +max0≤i≤n0 σ̂( ) E dist Xi,X∗( )[ ]

1 − φ − φ2 .

For all ε > 0, consider the stopping time defined in (41). Then either Nε � 0 or

E rα XNε

( )2[ ]
≤ ε <

Λ̄∞ σ̂,φ
( )
Nε

. (45)

Proof. The proof is almost identical to the proof of Theorem 2, but nowwewill use the estimates from Propositions 2
and 5. We first remark that the upper variance bound σ̂ is the only parameter in this statement; hence, the threshold
index n0 � n0(σ̂) depends on this parameter only. Once we make this choice, we can repeat all the steps involved in
the proof of Theorem 2 verbatim but using Proposition 2 instead of Proposition 1 to conclude that

∑n
i�0

E rα Xi( )2[ ] ≤ E dist X0,X∗( )2[ ] + a
∑n
i�0

1 + E dist Xi,X∗( )2[ ]
mi+1

+ a2
∑n
i�0

1 + E dist Xi,X∗( )2[ ]
m2

i+1
, ∀n ≥ 0.

Proposition 5 gives us

sup
n≥n0+1

E dist Xn,X∗( )2[ ] ≤ 1 + E δ Xn0 ,X∗( )2[ ]
1 − φ − φ2 ≤ H̄ σ̂, n0,φ

( )
,
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from which it follows that

sup
n≥0

E dist Xn,X∗( )2[ ] ≤ H̄ σ̂,n0,φ
( )

.

From here, we conclude just as in the proof of Theorem 2 that

∑n
i�0

E rα Xi( )2[ ] ≤ Λ̄n σ̂,φ
( ) ≤ Λ̄∞ σ̂,φ

( ) ∀n ≥ 0.

Choose ε > 0 arbitrarily and consider the stopping time (41). Then either Nε � 0 or else Nε ≥ 1. Focusing on the
latter case, we argue just as in the proof of Theorem 2 that

εNε <
∑Nε−1

i�0
E rα Xi( )2[ ] ≤ ΛNε−1 x∗,φ( )

.

Hence, if Nε not zero, we must have

E rα XNε

( )2[ ]
≤ ε <

Λ∞ σ̂,φ
( )
Nε

. □

We now turn to the estimate of SO complexity. By this we mean the overall size of the data set that needs to
be processed in order to make the natural residual function smaller than a given tolerance level ε > 0 in mean
square. Hence, using the stopping time (41), we would like to estimate the number

∑Nε
i�0 2mi+1.

For simplicity, we will assume that the local variance function σ(x∗) is uniformly bounded over the solution
set X∗. That is, we assume that there exists σ̂ ∈ (0,∞) such that supx∈X∗ σ̂(x) ≤ σ̂. A more complete argument,
without making this strong assumption, can be given similar to proposition 3.23 in Iusem et al. (2017). We
refrain from doing so because our main aim in this paper is to illustrate the improvement in the convergence
rate when using algorithm SFBF instead of SEG, and the simplest setting is enough for this purpose. We
organize the derivation of an SO complexity estimate in two parts. First, we show that a specific (although
admissible) choice of the sample rate allows us to give an explicit bound on the number of preliminary iterates
n0 �Δ n0(σ̂) needed to apply the general bounds reported in Proposition 6. Building on this insight, we directly
estimate the SO complexity.

As announced, we first establish a bound on the number of iterations we need to meet condition (44).

Lemma 8. Let a be the constant defined in (38), and let φ ∈ (0,
̅̅
5

√ −1
2 ). We choose the sample rate

mi � �θ μ − 1 + i
( )

ln μ + i − 1
( )1+b�, (46)

for i ≥ 1, θ > 0, μ > 1 and b > 0. Then, if n0 is an integer satisfying

n0 ≥ 1 − μ + e
a

φθb

( )1/b

,

we have
∑

i≥n0 1
mi+1 ≤

φ
a.

Proof. For n0 ≥ 1, we compute ∑
i≥n0

1
mi+1

≤ 1
θ

∑
i≥n0

1

i + μ
( )

ln i + μ
( )1+b

≤ 1
θ

∫ ∞

n0−1
1

t + μ
( )

ln t + μ
( )1+b dt

� 1

θb ln n0 − 1 + μ
( )b .

Therefore, if 1
θb ln(n0−1+μ)b ≤

φ
a, we obtain the desired bound. Solving the latter inequality for n0 gives the

claimed result.
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Using the sample rate (46), we will now bound the constant Λ̄(σ̂,φ) and the stopping time Nε. Define
the constants

Aμ,b �Δ α2C2
2c1

b ln μ − 1
( )b , Bμ,b �Δ α4C4

2c
2
1

1 + 2b( ) μ − 1
( )

ln μ − 1
( )1+2b .

Because

Γ∞ ≤ 1
θb

1

ln μ − 1
( )b and Γ2∞ ≤ 1

θ2
1

2b + 1( ) μ − 1
( )

ln μ − 1
( )1+2b ,

we conclude that

aΓ∞ + a2Γ2∞ ≤ max 1, θ−2{ }
Aμ,bσ̂

2 + Bμ,bσ̂
4( )
.

Therefore,

Λ̄ σ̂,φ
( ) ≤ max 1, θ−2{ } 2

ρ
E dist X0,X∗( )2[ ] + 2

ρ
1 + H̄ σ̂,n0,φ

( )( )
Aμ,bσ̂

2 + Bμ,bσ̂
4[ ]{ }

�Δ max 1, θ−2{ }
Q φ, σ̂
( )

.

This yields the following refined uniform bound on the squared residual function.

Corollary 1. For all ε > 0, the stopping time Nε defined in (41) is either zero or

E rα XNε

( )2[ ]
≤ ε <

max 1, θ−2{ }
Q φ, σ̂
( )

Nε
.

We now turn to estimation of the SO complexity. To this end, we have to bound the total number of data
points involved in the Nε batches needed to execute algorithm SFBF, that is, we want to upper bound the sum
2
∑Nε

i�0 mi. Given the definition of the sample rate in (46), we can perform the following computation:

∑Nε+1

i�1
mi ≤ max 1, θ{ } ln Nε + μ + 1

( )1+b ∑Nε+1

i�1
i − 1 + μ
( ) + Nε + 1( )

[ ]

≤ max 1, θ{ } ln Nε + 1 + μ
( )1+b Nε + 1( )

2
Nε + 2μ
( ) + Nε + 1( )

[ ]
.

Hence,

2
∑Nε

i�1
mi ≤ max 1, θ{ } Nε + 1( ) Nε + 2μ

( )
ln Nε + 1 + μ
( )1+b+ 2

Nε + 2μ

[ ]
. (47)

Proposition 7. Let ε ∈ (0, 1) be arbitrarily chosen, and let μ ∈ (1, 1/ε). Define

I σ̂,φ
( )�Δ 3

2
ρ
E dist X0,X∗( )2[ ] + 2

( )2
+ 12
ρ2 1 + H̄ σ̂, n0,φ

( )( )2
A2

μ,bσ̂
4 + 12

ρ2 1 + H̄ σ̂,n0,φ
( )( )2

B2
μ,bσ̂

8,

J σ̂,φ
( )�Δ Λ̄∞ σ̂, n0,φ

( ) + 2.

If the sample rate (mi)i≥1 is given by (46), then we can bound the SO complexity by

2
∑Nε+1

i�1
mi ≤

2max 1, θ{ }max 1, θ−4{ }
I σ̂,φ
( )

ln J σ̂,φ
( )

/ε
( )1+b +μ−1

( )
ε2

.
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Proof. The proof is patterned after Iusem et al. (2017). Using Nε < Λ̄∞(φ, σ̂)/ε, we continue from (47) to obtain
the bound

2
∑Nε+1

i�1
mi ≤ max 1, θ{ } Λ̄∞ ˆσ,φ

( ) + 1
( )

Λ̄∞ σ̂,φ
( ) + 2

( )
ε2

ln
Λ̄∞ σ̂,φ

( ) + 2
ε

( )1+b
+μ−1

[ ]

≤ max 1, θ{ } Λ̄∞ σ̂,φ
( ) + 2

( )2
ε2

ln ε−1J σ̂,φ
( )( )1+b +μ−1

[ ]
.

Because

Λ∞ σ̂,φ
( ) + 2

( )2
≤max 1, θ−4

{ } 2
ρ
E dist X0,X∗( )2[ ] + 2

ρ
1 + H̄ σ̂, n0,φ

( )( )
Aμ,bσ̂

2 + Bμ,bσ̂
4[ ] + 2

{ }2
≤max 1, θ−4

{ }
3

2
ρ
E dist X0,X∗( )2[ ] + 2

( )2
+ 12
ρ2 1 + H̄ σ̂, n0,φ

( )( )2
A2

μ,bσ̂
4

+ 12
ρ2 max 1, θ−4

{ }
1 + H̄ σ̂,n0,φ

( )( )2
B2
μ,bσ̂

8

�max 1, θ−4{ }
I σ̂,φ
( )

,

the result follows. □

6. Computational Experiments
We provide three examples to verify our theoretical results and compare our methods with the SEG proposed
in Iusem et al. (2017). All experiments, besides experiment 2, were generated with MATLAB R2017a on a
Linux operating system with a 2.39-GHz processor and 16 GB of memory. Experiment 2 was generated with
Mathematica 11 on a MacBook Pro with a 2.9-GHz processor and 16 GB of memory.

6.1. Fractional Programming and Applications to Communication Networks
Because of its widespread use and applications, fractional programming is instrumental to operations research
and engineering, ranging from network science to signal processing, wireless communications, and many
other related fields (Shen and Yu 2018). The standard form of a stochastic fractional program is as follows:

minimize f x( ) � E
G x; ξ( )
h x;ξ( )

[ ]
,

subject to x ∈ X ,

(48)

where G and h are positive and convex in x for all ξ. It is well known that such problems are pseudoconvex
(Boyd and Vandenberghe 2004), so they fall within the general framework of this paper. In particular, one of
the cases most commonly encountered in practice is when h is linear in x and deterministic; that is,

h x;ξ( ) �Δ h x( ) � a�x + b

for vectors a and b of suitable dimension. Solving this problem directly involves the pseudomonotone operator
T(x) � ∇f (x). Indeed, x∗ ∈ X solves problem (48) if and only if x∗ solves VI(T,X ).

6.1.1. Quadratic Fractional Programming. In our first experiment, we consider functions G of the form

G x, ξ( ) � 1
2
x�Q ξ( )x + c ξ( )�x + q ξ( ),

where Q(ξ) ∈ Rd×d, c(ξ) ∈ Rd, and q(ξ) ∈ R are randomly generated, and Q is further assumed to be positive
semidefinite. More specifically, the problem data for Q are randomly generated as follows:

Q � M�M + I,
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where M is a random matrix of size d × d, and I is the d × d identity matrix. Finally, the vectors a and c are
drawn uniformly at random from (0, 2)d, q is a random number in (1, 2), and b � 1 + 4d.

At each sample of the methods, we generate a sample matrix as

Q ξ( ) � Q + 1
2

V ξ( ) + V ξ( )T( )
,

where V(ξ) is a d × d random matrix with i.i.d. entries drawn from a normal distribution with zero mean and
standard derivation σ � 0.1. Similarly,

c ξ( ) :� c + c1 ξ( ), q ξ( ) � q + q1 ξ( ), (49)
where c1(ξ) and q(ξ) are a random vector and a random number with zero mean and normal distribution with
derivation σ � 0.1, respectively. Also, for the problem’s feasible region, we consider box constraints of the form

X � x ∈ Rd : ai ≤ xi ≤ bi, i � 1, . . . , d
{ }

, (50)
where the lower bound ai is a random vector in (0, 1)d, and the upper bound is bi � ai + 10. We have
implemented the SEG and SFBF algorithms for this problem using the random operator F(x, ξ) � ∇x(G(x,ξ)h(x) ). The
starting point x0 is randomly chosen in (1, 10)d. Both algorithms are run with a constant-step-size policy. We fix
the step size of SFBF and SEG as αFBF � 10/d and αEG � αFBF/

̅̅
3

√
. The step size αEG is the largest one compatible

with the theory developed by Iusem et al. (2017). We choose the batch-size sequence mn+1 � [(n+1)1.5d ] so that
Assumption 6 is satisfied. We stop the algorithms when the residual is below a given tolerance ε. Specifically,
our stopping criterion is

rn �Δ ‖xn −ΠX xn − T xn( )( )‖ ≤ ε � 10−3.

Our numerical experiments involve dimension d ∈ {200, 500, 1,000, 2,000}, and for each value of d, we perform
10 runs and compare the average number of iterations and central processing unit time. The results are
displayed in Table 1 and Figure 1. It can be seen that SFBF is constantly about 1.5 times faster than SEG in both
computational time and number of iterations. An interesting observation is that the number of iterations seems
not to depend on the problem dimension.

6.1.2. Energy Efficiency in Multiantenna Communications. Energy efficiency is one of the most important re-
quirements for mobile systems, and it plays a crucial role in preserving battery life and reducing the carbon
footprint of multiantenna devices (i.e., wireless devices equipped with several antennas to multiplex and
demultiplex received or transmitted signals).

Following Isheden et al. (2012), Feng et al. (2013), and Mertikopoulos and Belmega (2016), the problem can
be formulated as follows: consider K wireless devices (e.g., mobile phones), each equipped with M transmit
antennas and seeking to connect to a common base station with N receiver antennas. In this case, the users’
achievable throughput (received bits per second) is given by the familiar Shannon–Telatar capacity formula
(Telatar 1999)

R X;H( ) � log det I +∑K
k�1

HkXkH†
k

( )
, (51)

where
1. Xk is the M ×M Hermitian input signal covariance matrix of user k, and X � (X1, . . . ,XK) denotes their

aggregate covariance profile. As a covariance matrix, each Xk is Hermitian positive semidefinite.

Table 1. Averaged over 100 Runs for Fractional Problems of Different Size

Dimension: d

SFBF SEG

Number of iterations Time (s) Number of iterations Time (s)

200 29.88 0.0473 43.96 0.0835
500 29.84 0.2647 44.49 0.3793
1,000 30.14 1.1650 44.99 1.7017
2,000 30.54 8.0487 45.68 11.4803
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2. Hk is the N ×M channel matrix of user k, representing the quality of the wireless medium between user k
and the receiver.

3. I is the N ×N identity matrix.
In practice, because of fading and other signal attenuation factors, the channel matrices Hk are random

variables, so the users’ achievable throughput is given by

R X( ) � EH R X;H( )[ ], (52)
where the expectation is taken over the (often unknown) law of H. The system’s energy efficiency (EE) is then
defined as the ratio of the users’ achievable throughput per the unit of power consumed to achieved
throughput; that is,

EE X( ) � R X( )∑K
k�1 Pc

k + Pt
k[ ] , (53)

where Pt
k is the transmit power of the k-th device, and Pc

k > 0 is a constant representing the total power
dissipated in all circuit components of the k-th device (mixer, frequency synthesizer, digital-to-analog con-
verter, etc.), except for transmission. By elementary signal processing considerations, it is given by Pt

k � tr(Xk).
For concision, we will also write Pc � ∑

k Pc
k for the total circuit power dissipated by the system.

The users’ transmit power is further constrained by the maximum output of the transmitting device,
corresponding to a trace constraint of the form

tr Xk( ) ≤ Pmax ∀k � 1, . . . ,K. (54)
Hence, putting all this together, we obtain the stochastic fractional problem

maximize EE X( ) � EH R X;H( )[ ]
Pc +∑K

k�1 tr Xk( )
subject to Xk � 0,

tr Xk( ) ≤ Pmax ∀k � 1, 2, . . . ,K.

(55)

The overall problem dimension is d � KM2. The energy-efficiency objective of this problem (which, formally,
has units of bits per joule) has been widely studied in the literature (Cui et al. 2004, Isheden et al. 2012), and it
captures the fundamental tradeoff between higher spectral efficiency and increased battery life. Importantly,
switching from maximization to minimization, we also see that (55) is of the general form (48), so it can be
solved by applying the SFBF algorithm. In fact, given the costly projection step to the problem’s feasible
region, SFBF seems ideally suited to the task.

Figure 1. Comparison Between the SFBF and SEG Algorithms for Solving Fractional Programming

Note. We represent the residual versus running time (left) and number of iterations (right) for one random example (n = 5,000).
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We do so in a series of numerical experiments reported in Figure 2. Specifically, we consider a network
consisting of K � 16 users, each with M � 4 transmit antennas, and a common receiver with N � 128 receive
antennas. To simulate realistic network conditions, the users’ channel matrices are drawn at each update cycle
from a Cooperation in Science and Technology (COST) Hata radio propagation model with Rayleigh fading
(Hata 1980); to establish a baseline, we also ran an experiment with static, deterministic channels. For
comparison purposes, we ran both SFBF and SEG with the same variance reduction schedule and the same
number of iterations and step sizes chosen as in experiment 1; also, to reduce statistical error, we performed
S � 100 sample runs for each algorithm. As in the case of experiment 1, the SFBF algorithm performs con-
sistently better than SEG, converging to a given target value between 1.5 and 3 times faster.

6.2. Matrix Games
As a numerical illustration, we investigate the performance of the algorithm to compute Nash equilibria in
random matrix games. To be specific, we revisit in this experiment the problem of computing one Nash
equilibrium in random two-player bimatrix games. A bimatrix game presented in its mixed extension consists
of a tuple G � ({I, II}, (uI, uII), (SI,SII)), defined by

• The set of players {I, II},
• Strategy sets SI �Δ {p ∈ R

nI+ |∑nI
i�1 pi � 1},SII �Δ {q ∈ R

nII+ |∑nII
i�1 qi � 1}, and

• Real-valued utility functions uI(p, y) �Δ p�UIq,uII(p, q) �Δ p�UIIq, defined by the matrices (UI,UII), both of
which are real matrices of dimension nI × nII.

Recall that a pair of mixed actions (p∗, q∗) is called a Nash equilibrium of the bimatrix game (UI ,UII) if
p∗i > 0 ⇒ UIq

( )
i� max

1≤j≤nI
UIq
( )

j and

q∗i > 0 ⇒ U�
II p

( )
i� max

1≤j≤nII
U�

II p
( )

j.

The bimatrix game G is symmetric if nI � nII and UI � UII. In symmetric games, it is natural to focus on
symmetric Nash equilibria, which consist of a Nash equilibrium (p∗, q∗) with p∗ � q∗.

Let d�Δ nI + nII , and note that Rd � RnI × RnII , via the usual embedding of a pair (p, q) to a stacked vector in Rd.
Define the d × d matrix

M�Δ 0nI ,nI −UI

−U�
II 0nII ,nII

[ ]
, (56)

Figure 2. Comparison of the Extragradient and Forward–Backward–ForwardMethods in the Energy EfficiencyMaximization
Problem (55)

Notes. On the left, we considered static channels, and we ran the SFBF and SEG algorithms with the same initialization. On the right, we
considered ergodic channels following a Rayleigh fading model, and we performed S � 100 sample runs for each algorithm; we then plotted a
sample run, the sample mean, and the best and worst values at each iteration for each algorithm. In all cases, SFBF exhibits significant
performance gains over SEG.
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and consider the set

X �Δ x1, x2( ) ∈ RnI+ × RnII+ |UIx2 ≤ 1nI and U�
II x1 ≤ 1nII

{ }
. (57)

It is a classical fact that a Nash equilibrium (p∗, q∗) can be computed by finding a pair (x1, x2) �� (nI ,nII ) ∈ X
such that

x�1 1nI −UIx2
( ) � 0 and x�2 1nII −U�

II x1
( ) � 0.

The payoffs of the players in equilibrium can be recovered by looking at v � 1∑nI
j�1 x1,j

,u � 1∑nII
i�1 x2,i

, and the mixed

actions defining equilibrium play are recovered by p � x1 · v, q � x2 · u. It is clear that (nI ,nII ) is always a solution
to the linear complementarity problem

x�1 1nI −UIx2
( ) � 0, 1nI −UIx2 ≥ 0nI ,

x�2 1nII −U�
II x1

( ) � 0, 1nII −U�
II x1 ≥ 0nII .

{
(58)

This the so-called artificial equilibrium of the game and serves as the initial point in the most used algorithm
for computing Nash equilibria in bimatrix games, the Lemke–Howson algorithm, as masterly surveyed by
Von Stengel (2002). Defining the mapping T : Rd � RnI × RnII → Rd � RnI × RnII by

T x( ) �Δ 1nI
1nII

[ ]
+Mx, (59)

we can reformulate the conditions (58) compactly as

x∗ ≥ 0n and T x∗( ) ≥ 0n, x∗,T x∗( )〈 〉 � 0. (60)
To turn this into a stochastic complementarity problem, we consider a stochastic Nash game (Kannan and
Shanbhag 2012, Duvocelle et al. 2018) where the player set and the set of mixed actions are fixed, but the
payoff functions are realizations of random matrices

Un
I � UI ξn( ),Un

II � UII ξn( ),
and (ξn) is a random process in some set Ξ, defined on a probability space (Ω,F ,P). For each n ≥ 1, we look at
that random operator

F x, ξn( ) �Δ 1nI
1nII

[ ]
+M ξn( )x (61)

and run algorithm SFBF.
In our experiments, M is defined as in (56), and d � nI + nII . Each element of the matrices UI,UII is generated

randomly with uniform distribution in (0, 1). To set up the experiments, we generate random matrices
M(ξ) :� M + V(ξ), where V(ξ) is a d × d random matrix with zero mean and normal distribution with deri-
vation σ � 0.1. Because the operator T is Lipschitz continuous with modulus L � ‖M‖, we run SEG and SFBF
with constant step sizes αFBF � 0.99̅̅

2
√

L
and αEG � 0.99̅̅

6
√

L
, respectively. We choose the batch-size sequence mn+1 �

[(n+1)1.5d ] so that Assumption 6 is satisfied. The same stopping criterion as in the previous experiments in
Section 6.1 is used.

From the numerical experiments, we observe that the SFBF algorithm outperforms SEG, being on average
1.7 times faster in computational time and 1.5 times faster in number of iterations. The difference becomes
larger as the problem dimension increases. There are two reasons for these results: first, SEG requires two
projections per iteration, whereas SFBF only requires one, and more important, the step size of SFBF is

̅̅
3

√
times larger than that of SEG.

6.2.1. Zero-SumGames. We compare the performance the SFBF and SEG algorithms for a zero-sum game, that
is, UI � −UT

II. The results are displayed in Table 2, showing the advantage of SFBF over SEG. On average, SFBF
is 1.7 times faster in computational time and 3.4 times faster in number of iterations than SEG.
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6.2.2. Symmetric Game. We compare the performance the SFBF and SEG algorithms for a symmetric game;
that is, UI,UII are symmetric, and UI � UT

II. We choose nI � nII ∈ 50, 100, 150, . . . , 500{ } and d � nI + nII. The
results are displayed in Table 3, showing the advantage of SFBF over SEG. On average, SFBF is 1.4 times faster
in computational time and 1.8 times faster in number of iterations.

Table 2. Averaged over 100 Runs for Zero-Sum Games of Different Size

Dimension: d � nI + nII

SFBF SEG

Iterations Time (s) Iterations Time (s)

nI � nII � 100 84.38 0.4421 172.42 1.4768
nI � nII � 250 214.09 9.2088 372.80 32.4321
nI � nII � 500 430.18 73.9068 749.65 270.5911
nI � nII � 1,000 865.67 672.0806 1,508.50 2,535.50

Table 3. Averaged over 100 Runs for Symmetric Games of Different Size

Dimension: d � nI + nII

SFBF SEG

Iterations Time (s) Iterations Time (s)

nI � nII � 100 52.00 0.3882 68.68 0.6293
nI � nII � 250 97.96 2.589 142.55 5.1276
nI � nII � 500 173.30 10.5297 247.30 21.0797
nI � nII � 1,000 319.92 92.0417 455.48 191.6854

Table 4. Averaged over 100 Runs for Asymmetric Games of Different Size

Dimension: d � nI + nII

SFBF SEG

Iterations Time (s) Iterations Time (s)

nI � 100,nII � 200 100.28 1.9553 155.28 4.8202
nI � 300,nII � 600 293.36 32.3010 466.01 90.2339
nI � 500,nII � 1,000 492.21 136.7019 779.86 394.7606
nI � 1,000, nII � 2,000 992.64 1,597.7266 1,564.12 4,655.9213

Figure 3. Comparison Between the SFBF and SEG Algorithms for Solving an Asymmetric Game

Note. We represent the residual versus running time (left) and number of iterations (right) for one random example nI � 1,000,nII � 2,000.
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6.2.3. Bimatrix Games. We compare the performance the SFBF and SEG algorithms for an asymmetric game.
We choose nI ∈ {100, 200, . . . , 1,000} and nII � 2nI. The results are displayed in Table 4 and Figure 3, showing
the advantage of SFBF over SEG.

7. Conclusion
In this paper, we developed a stochastic version of Tseng’s forward-backward-forward algorithm for solving
stochastic variational inequality problems over nonempty closed and convex sets. As in Iusem et al. (2017), the
current analysis can be generalized to Cartesian VI problems, although this has not been done explicitly. We
show that the known theoretical convergence guarantees of SEG carry over to this setting, but our method
consistently outperforms SEG in terms of convergence rate and complexity. We therefore believe that al-
gorithm SFBF is a serious competitor to SEG in typical primal-dual settings, where feasibility is a minor issue.
Interesting directions for the future are to test the performance of the method in other instances where variance
reduction is of importance, such as in composite optimization involving a large but finite sum of functions.
Another possible extension would be to develop an infinite-dimensional Hilbert space version of the algorithm
and modify the basic SFBF scheme to allow for inertial and relaxation effects. We will investigate these and
other issues in the future.

Appendix A. Proof of Lemma 6
We start with a general result. Let N ∈ N and ξ(1), . . . , ξ(N) be an i.i.d sample from the measure P. Define the process
(MN

i (x))Ni�0 by M0(x) �Δ 0 and for 1 ≤ i ≤ N, by

MN
i x( ) �Δ 1

N

∑i

n�1
F x, ξ n( )( ) − T x( )( )

, ∀x ∈ Rd. (A.1)

Setting Gi �Δ σ(ξ(1), . . . , ξ(i)), 1 ≤ i ≤ N, we see that the process {(MN
i (x),Gi), 1 ≤ i ≤ N} is a martingale starting at zero.

Lemma A.1. Let p ≥ 2 be as specified in Assumption 7. For all 1 ≤ q ≤ p,N ∈ N and x ∈ Rd, we have

E ‖MN
N x( )‖q[ ]1

q ≤ Cq̅̅̅
N

√ σ x∗( ) + σ0‖x − x∗‖( )
. (A.2)

Proof. For i ∈ {1, 2, . . . ,N}, the monotonicity of Lp(P) norms implies that

E ‖ΔMN
i−1 x( )‖q[ ]1

q � 1
N
E ‖F x, ξ i( )( ) − T x( )‖q[ ]1

q

≤ 1
N
E ‖F x, ξ i( )( ) − T x( )‖p[ ]1

p

≤ σ x∗( ) + σ0‖x − x∗‖
N

.

Using this, together with Lemma 4, we get

E ‖MN
N x( )‖q[ ]1/q ≤ Cq

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
k�1

E
F x, ξ k( )( ) − T x( )

N

⃦⃦⃦⃦ ⃦⃦⃦⃦q( )2/q√

≤ Cq

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
N−2 ∑N

k�1
E ‖F x, ξ k( )( ) − T x( )‖q( )2/q

√

≤ Cq σ x∗( ) + σ0‖x − x∗‖( )̅̅̅
N

√ . □

Therefore, to continue the proof of Lemma 6, observe that Mmn+1
mn+1 (Xn) � Wn+1 and Mmn+1

mn+1 (Yn) � Zn+1. Hence, we immediately
obtain from Lemma A.1 that

E ‖Wn+1‖p′ |F n
[ ]1/p′≤ Cp′ σ x∗( ) + σ0‖Xn − x∗‖( )̅̅̅̅̅̅̅

mn+1
√ . (A.3)

To prove (21), we notice that Lemma A.1 implies that

E ‖Zn+1‖p′ |F̂ n
[ ]1/p′≤ Cp′ σ x∗( ) + σ0‖Yn − x∗‖( )̅̅̅̅̅̅̅

mn+1
√ . (A.4)
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The tower property of conditional expectations (recall that F n ⊆ F̂ n) gives

E ‖Zn+1‖p′ |F n
[ ] � E E ‖Zn+1‖p′ |F̂ n

[ ]|F n

{ }
≤ Cp′̅̅̅̅̅̅̅

mn+1
√
( )p′

E σ x∗( ) + σ0‖Yn − x∗‖( )p′ |F n

[ ]
.

Finally, by the Minkowski inequality, we get

E ‖Zn+1‖p′ |F n
[ ]1/p′≤ Cp′̅̅̅̅̅̅̅

mn+1
√ σ x∗( ) + σ0E ‖Yn − x∗‖p′ |F n

[ ]1/p′( )
,

and our proof is complete. □

Endnotes
1 Iusem et al. (2017), as well as our working paper, called this sampling process a variance-reduction strategy. We follow the suggestion of the
associate editor and do not use this potentially confusing terminology anymore and simply use the term minibatch instead.
2The mapping x �→ F(x, ξ) is continuous almost everywhere for ξ ∈ Ξ, and ξ �→ F(x, ξ) is measurable for all x ∈ Rd; ξ is a random variable with
values in Ξ, defined on a probability space (Ω,F ,P).
3The reason for this is that {ra(x); a > 0} is a family of equivalent merit functions of VI(T,X ) (see Facchinei and Pang 2003, proposition 10.3.6, and
the opening to Section 4). Hence, as long as the step-size policy (αn)n≥0 obeys Assumption 5, we obtain the same rate estimates.
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