Methods of Monitoring Training Load and Their Relationships to Changes in Fitness and Performance in Competitive Road Cyclists

Dajo Sanders, Grant Abt, Matthijs K.C. Hesselink, Tony Myers, and Ibrahim Akubat

Purpose: To assess the dose-response relationships between different training-load methods and aerobic fitness and performance in competitive road cyclists. Method: Training data from 15 well-trained competitive cyclists were collected during a 10-wk (December–March) preseason training period. Before and after the training period, participants underwent a laboratory incremental exercise test with gas-exchange and lactate measures and a performance assessment using an 8-min time trial (8MT). Internal training load was calculated using Banister TRIMP, Edwards TRIMP, individualized TRIMP (iTRIMP), Lucia TRIMP (luTRIMP), and session rating of perceived exertion (sRPE). External load was measured using Training Stress Score (TSS).

Results: Large to very large relationships (r = .54–.81) between training load and changes in submaximal fitness variables (power at 2 and 4 mmol/L) were observed for all training-load calculation methods. The strongest relationships with changes in aerobic fitness variables were observed for iTRIMP (r = .81 [95% CI .51–.93, r = .77 [95% CI .43–.92]) and TSS (r = .75 [95% CI .31–.93], r = .79 [95% CI .40–.94]). The strongest dose-response relationships with changes in the 8MT test were observed for iTRIMP (r = .63 [95% CI .17–.86]) and luTRIMP (r = .70 [95% CI .29–.89]). Conclusions: Training-load quantification methods that integrate individual physiological characteristics have the strongest dose-response relationships, suggesting this to be an essential factor in the quantification of training load in cycling.

Keywords: heart rate, power output, endurance, cycling, training impulse

Competitive road cycling is a sport that involves a large volume of training and competition. As a consequence, cyclists experience high physiological and psychological demands during training and competition. It is important that the training program include a balance between training and rest to prevent both undertraining and overtraining and increase the chance of achieving the desired performance. As such, it is important for coaches to monitor cyclists’ training load to determine whether a training variable requires adjustment. Fortunately, the proliferation of mobile power meters and heart-rate monitors, together with advanced training-analysis software (eg, TrainingPeaks), has made monitoring such data accessible.

However, while access to data are now easier than ever, there is still considerable uncertainty around the validity of these data for quantifying load, particularly the dose-response validity. Although quantifying training load is an essential part of the training-monitoring process, the best methods for describing the dose-response validity in cycling are unknown. Banister proposed a training-load quantification method termed training impulse (TRIMP), which is an integration of training duration, mean heart rate (HR) of the training session and an exponential factor to weight the intensity of exercise. Since then the TRIMP method has been redefined, including 2 summated-zone TRIMP methods proposed by Edwards and Lucia et al, where the time spent in predefined HR zones is weighted using linear weighting factors. Manzi et al proposed the individualized TRIMP (iTRIMP) method, where the individual’s HR–blood lactate relationship is used to calculate the exponential factor for weighting exercise intensity. In cycling, besides HR-based TRIMP methods, other methods of quantifying training load have been used based on session rating of perceived exertion (sRPE) or power output (Training Stress Score™[TSS]). In order for a training-load measure to be valid and have practical application, the method used must be related to an outcome of importance. In most sports these are fitness, fatigue, or performance. Hence the chosen training-load measure should be selected on its ability to inform a dose-response relationship between the training load and the outcome of interest. To have an impact on performance, coaches must have an idea of the nature of the relationship between the prescribed exercise dose and the expected training outcome or response. This information allows them to be more proactive when manipulating the training dose instead of reacting to a response (eg, performance test). Studies evaluating this dose-response relationship are valuable since a better understanding of the dose-response relationship between training load, performance, fitness, and/or fatigue benefits applied practice.

The dose-response relationship can be evaluated by assessing changes in fitness and/or performance during a period of training monitoring. This has previously been shown in a study by Manzi et al with 8 recreational long-distance runners. Those authors reported that speed at 2 mmol/L and 4 mmol/L significantly increased after training and was very largely related to weekly iTRIMP (r = .87 [95%CI .41–.97], .74 [95%CI .07–.95]). Furthermore, there were very large inverse relationships between iTRIMP and both 5000-m (r = −.77 [95%CI .95 to −.15]) and 10,000-m (r = −.82 [95%CI −.96 to −.27]) running times. Weaker relationships were observed between Banister TRIMP (bTRIMP) and speed improvements at 2 mmol/L and 4 mmol/L (r = .61 [95%CI −.91 to −.17], .59 [95%CI...
 Even though internal-training-load methods such as bTRIMP,10 Lucia TRIMP (luTRIMP),3 and sRPE11 and external training-load methods such as TSS12 are mentioned in the literature, there is little evidence of a dose-response relationship between these measures and training outcomes. Other measures of training load such as Edwards TRIMP (eTRIMP) and iTRIMP have been applied in other sports but not in cycling. Accordingly, this study examined the dose-response relationships between different training-load measures and changes in fitness and performance in well-trained competitive cyclists using a field-based approach.

Methods

Participants
Fifteen male competitive road cyclists (mean [SD] age 22 [2.5] y, height 187.7 [4.2] cm, body mass 74.2 [4.7] kg) volunteered to participate in the study. All were well-trained competitive cyclists, riding for Dutch club teams and Union Cycliste Internationale professional B teams, and active in national and international competitions. The participants had been active as competitive cyclists for at least 2 years, with a mean of 10 (4) years of competitive experience (including youth competitions). Written consent was obtained before participation, and institutional ethics approval was granted and in agreement with the Helsinki Declaration.

Research Design
Training data were collected during a 10-week preseason training period (December to February), where the training mainly consisted of low-intensity high-volume training. Before and after the training period, participants underwent a fitness and performance assessment. Riders were tracked and monitored throughout the training period using an online training diary (TrainingPeaks, Boulder, CO, USA). No training prescription was provided to the participants—they adhered to their own training plan or a plan provided by their coach.

Fitness and Performance Assessment
Before and after the training period, participants underwent a laboratory incremental cycling test with gas-exchange and blood lactate measures for the identification of individual HR–blood lactate relationships, lactate thresholds, and maximal oxygen uptake (VO2max). The incremental test started at 100 W and increased 40 W every 4 minutes until volitional exhaustion or when the pedaling cadence fell below 70 rpm and the cyclist was not able to increase cadence. Each cyclist performed the test on his own bicycle, which was placed on an ergometer (Cyclus2 ergometer, RBM Electronics, Leipzig, Germany). All tests were performed under similar environmental conditions (17–18°C, 45–55% relative humidity). HR was recorded every 5 seconds using a portable HR monitor (Cyclus2; RBM Electronics, Leipzig, Germany). The highest 30-second mean HR obtained during the incremental test was used as a measure of maximal HR (HRmax). Capillary blood samples were taken from a fingertip at the end of every 4-minute stage and directly analyzed using a portable lactate analyzer (Lactate Pro, Arkray KDK, Japan). As a measure of aerobic fitness, power outputs at 2 mmol/L and 4 mmol/L blood lactate were calculated using publicly available software.13 The last completed stage was used as the measure of maximum aerobic power output (Wmax). If the stage was not completed, Wmax was calculated based on the fraction of the completed stage where volitional exhaustion occurred.14 Gas-exchange measures were obtained using an indirect calorimeter (Omnical, Maastricht Instruments, Maastricht, Netherlands) that was calibrated before testing according to the manufacturer’s instructions. The test was performed until complete exhaustion to estimate VO2max. After the test, breath-by-breath values were visually inspected and VO2max was defined as the highest 30-second mean obtained during the test.

As an assessment of performance, the participants performed an 8-minute all-out time trial (8MT) in the field before and after the training period. The 8MT was performed directly after a controlled warm-up (10–20 min at <60% power output at 4 mmol/L, 5 min at 90% power output at 4 mmol/L, 5 min at <60% power output at 4 mmol/L), with the intensity for the warm-up based on the results of the pretraining laboratory test. Mean power output during the time trial was used as the performance measure.

Training Load
Training load was calculated using different methods based on either HR, power output, or RPE. bTRIMP was calculated based on training duration, HR, and a weighting factor using the following formula:

\[bTRIMP = \text{duration training (min)} \times \Delta HR \times 0.64e^{1.92x} \]

where \(\Delta HR = (HR_{ex} - HR_{rest})/(HR_{max} - HR_{rest}) \), \(e \) is the base of the Napierian logarithms, 1.92 = a generic constant for males, and \(x = \Delta HR.15 \) eTRIMP was calculated based on the time spent in 5 predefined HR zones multiplied by a zone-specific arbitrary weighting factor. HR zones were based on percentages of HRmax (zone 1, 50–59% HRmax = weighting factor = 1; zone 2, 60–69% HRmax = weighting factor = 2; zone 3, 70–79% HRmax = weighting factor = 3; zone 4, 80–89% HRmax = weighting factor = 4; zone 5, 90–100% HRmax = weighting factor = 5). Time spent in each zone is multiplied by the weighting factor and then summed to provide a total eTRIMP score.4 luTRIMP was calculated based on the time spent in 3 predefined HR zones. Zones were defined using fixed blood lactate concentrations with zone 1 below LT1 (2 mmol/L), zone 2 between LT1 and LT2 (4 mmol/L) and zone 3 above LT2, a different approach than the original luTRIMP, which used ventilatory thresholds to identify the zones.5 Zones were given coefficients of 1, 2, and 3, respectively. Time spent in each zone is multiplied by the coefficient and then summed to provide a total luTRIMP score.5 iTRIMP was calculated by weighting exercise intensity according to an individual’s own HR–blood lactate relationship and then using this to weight every HR rather than creating zones. An accumulated iTRIMP can then be calculated by summing the iTRIMP value for each HR data point. The individual weighting factor was calculated for each participant with the best-fitting method using exponential models as per the method of Manzi et al.6

As a subjective measure of internal training load, sRPE was calculated using the participant’s RPE (CR-10 scale) and session duration. The RPE was obtained 30 minutes after the training session based on the question “How hard was your workout?” Training load for the session was then quantified by multiplying the RPE by the duration of the session (min).7

As a measure of external training load, TSS was calculated using power output derived from portable power meters during every training session on the bike. TSS is calculated using the following formula:
where t is the time, NP is normalized power, IF is an intensity factor, and FTP is the individual’s functional threshold power. The 8MT was used to estimate participants’ FTP, where 90% of the mean FTP was determined using Pearson product–moment correlation coefficients. Uncertainties in the correlation coefficients are presented as 95% confidence intervals. Interpretation of the strength of the correlation coefficients is based on guidelines provided by Hopkins: trivial, .1 to .29 small, .3 to .49 moderate, .50 to .69 large, .70 to .89 very large, .90 to .99 nearly perfect, 1.00 perfect.

Statistical Analysis

Descriptive results are presented as mean (SD). Before analysis the assumption of normality was verified by using the Shapiro–Wilk W test. Differences in (aerobic) fitness variables between the pretesting and posttesting were assessed with paired-sample t tests. Standardized effect size is reported as Cohen’s d, using the pooled SD as the denominator. Qualitative interpretation of the standardized effect. Dose-response relationships between the different training-load measures and percentage changes in aerobic fitness and performance variables are presented in Table 2. There were very large relationships observed between the training-load measures and percentage changes in aerobic fitness and performance variables are presented in Table 2. There were very large relationships observed between the training-load measures and percentage changes in aerobic fitness and performance variables.

Results

A total of 728 cycling training sessions were analyzed for the 15 participants during the 10-week training period. Due to technological problems with some power meters, there are missing power output data for 3 participants. For those participants, training load was calculated using HR and sRPE data only. Mean weekly training load during the 10-week training period was measured at 1005 (229) arbitrary units (AU) for iTRIMP, 1090 (220) AU for bTRIMP, 891 (200) AU for luTRIMP, 2142 (432) AU for eTRIMP, 729 (193) AU for TSS, and 4086 (1460) AU for sRPE.

There was a moderate increase in \tilde{V}O$_{2}$max (+5%, $P = .002$, ES = 0.73) and power output at 2 mmol/L (+7%, $P < .001$, ES = 0.72) after the training period. Small increases in power output at 4 mmol/L (+4%, $P < .001$, ES = 0.56), W$_{\text{max}}$ (+3%, $P = .009$, ES = 0.38), mean power output (+1%, $P = .490$, ES = 0.25), and mean relative power output (W/kg) (+3%, $P = .124$, ES = 0.46) during the 8MT performance test were observed after the training period (Table 1).

Dose-response relationships between the different training-load measures and percentage changes in aerobic fitness and performance variables were presented in Table 2. There were very large relationships observed between the training-load measures and percentage changes in aerobic fitness and performance variables.

Table 1 Physiological and Performance Measures Before and After the 10-Week Training Period

<table>
<thead>
<tr>
<th>Measure</th>
<th>Pretesting mean (SD)</th>
<th>Posttesting mean (SD)</th>
<th>Mean difference [95%CI]</th>
<th>ES [95% CI]</th>
<th>Qualitative outcomea</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{V}O$_{2}$max (mL · kg$^{-1}$ · min$^{-1}$)</td>
<td>62 (4)</td>
<td>65 (4)</td>
<td>3.2** [1.4–4.9]</td>
<td>0.73 [0.31–1.14]</td>
<td>Very likely moderate effect</td>
</tr>
<tr>
<td>Power output at 2 mmol/L (W)</td>
<td>282 (28)</td>
<td>303 (32)</td>
<td>22** [12–31]</td>
<td>0.72 [0.40–1.04]</td>
<td>Most likely moderate effect</td>
</tr>
<tr>
<td>Power output at 4 mmol/L (W)</td>
<td>324 (26)</td>
<td>339 (30)</td>
<td>16** [9–22]</td>
<td>0.56 [0.31–0.91]</td>
<td>Most likely small effect</td>
</tr>
<tr>
<td>Maximal power output (W)</td>
<td>384 (31)</td>
<td>397 (34)</td>
<td>12** [4–21]</td>
<td>0.38 [0.11–0.65]</td>
<td>Likely small effect</td>
</tr>
<tr>
<td>8MT power output (W)</td>
<td>382 (40)</td>
<td>393 (35)</td>
<td>4 [–8 to 16]</td>
<td>0.25 [–0.51 to 1.01]</td>
<td>Unclear small effect</td>
</tr>
<tr>
<td>8MT power output (W/kg)</td>
<td>5.15 (0.37)</td>
<td>5.35 (0.49)</td>
<td>0.14 [–0.43 to 0.32]</td>
<td>0.46 [–0.14 to 1.06]</td>
<td>Likely small effect</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; ES, effect size; \tilde{V}O$_{2}$max, maximal oxygen uptake; 8MT, 8-min time trial.

*With reference to a smallest worthwhile change of 0.2 × standardized effect.

Significant at the .05 level (2-tailed). *Significant at the .01 level (2-tailed).

Table 2 Relationship Between Training-Load Measures and Percentage Changes in Fitness Variables and Performance

<table>
<thead>
<tr>
<th>Measure</th>
<th>sRPE</th>
<th>iTRIMP</th>
<th>bTRIMP</th>
<th>eTRIMP</th>
<th>luTRIMP</th>
<th>TSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>%ΔPO 2 mmol/L</td>
<td>.54*</td>
<td>.81**</td>
<td>.52*</td>
<td>.64*</td>
<td>.67**</td>
<td>.75**</td>
</tr>
<tr>
<td>%ΔPO 4 mmol/L</td>
<td>.60*</td>
<td>.77**</td>
<td>.67**</td>
<td>.73**</td>
<td>.72**</td>
<td>.79**</td>
</tr>
<tr>
<td>%ΔV$_{O2}$max</td>
<td>.36 [–19 to 74]</td>
<td>.08 [–45 to 57]</td>
<td>.37 [–18 to 74]</td>
<td>.39 [–15 to 75]</td>
<td>.20 [35 to 65]</td>
<td>.25 [–38 to 72]</td>
</tr>
<tr>
<td>%ΔW$_{\text{max}}$</td>
<td>.30 [–25 to 70]</td>
<td>.11 [–43 to 59]</td>
<td>.44 [–09 to 78]</td>
<td>.43 [–11 to 77]</td>
<td>.28 [–27 to 69]</td>
<td>.01 [–57 to 58]</td>
</tr>
<tr>
<td>%ΔPO 8MT</td>
<td>.51 [0–81]</td>
<td>.63* [17–86]</td>
<td>.40 [–14 to 76]</td>
<td>.48 [–04 to 80]</td>
<td>.70** [29–89]</td>
<td>.41 [–21–80]</td>
</tr>
</tbody>
</table>

Note: Pearson product–moment correlation coefficients are presented with 95% confidence intervals.

Abbreviations: sRPE, session rating of perceived exertion; iTRIMP, individualized training impulse; bTRIMP, Banister training impulse; eTRIMP, Edwards training impulse; luTRIMP, Lucia training impulse; TSS, Training Stress Score; %Δ, percentage change pre vs post; PO power output; V$_{O2}$max, maximal oxygen uptake; 8MT, 8-min time trial; PO/kg, relative power output (W/kg).

*Significant at the .05 level (2-tailed). **Significant at the .01 level (2-tailed).
Figure 1 — Relationship between percentage changes in power output (ΔPO) at (A) 2 and (B) 4 mmol/L lactate and mean weekly individualized TRIMP (iTRIMP) (N = 15).
percentage changes in power output at 2 mmol/L. Large relationships were observed for sRPE, bTRIMP, eTRIMP, and luTRIMP and changes in power output at 2 mmol/L (Figure 2). Percentage changes in power output at 4 mmol/L were very largely related to iTTRIMP (Figure 1[B]), luTRIMP, eTRIMP, and TSS. Large relationships were observed for sRPE and bTRIMP. Large and very large relationships were observed for iTTRIMP and luTRIMP and changes in power output during the 8MT performance test (Figure 3). When examining the dose-response relationship of improvement in relative power output (W/kg) during the 8MT and training load, there were very large relationships for luTRIMP and large relationships for eTRIMP, iTTRIMP, bTRIMP and TSS, and sRPE.

Discussion

The aim of this study was to assess the dose-response relationships between different training-load measures and aerobic fitness and performance in well-trained competitive cyclists. Since the strongest dose-response relationships were observed with individualized training-load measures, the results of this study support the use of a training-load method that integrates individual physiological characteristics (ie, HR–blood lactate relationship, functional threshold power) rather than mean exercise-intensity values or arbitrary weighting factors.

We also observed considerable variation in the dose-response validity of the various methods examined. sRPE and bTRIMP showed the weakest relationships between training load and changes in power output at 2 and 4 mmol/L compared with the other measures of training load. The limitations of both methods could explain why they may be less suited for road cycling. bTRIMP uses mean HR of the training session or competition, which may not be applicable for the stochastic nature of (competitive) road cycling, where there are specific moments where the exercise intensity can be very high or very low depending on terrain, tactical factors, and weather conditions. Even though this stochastic nature may be less during training sessions, these fluctuations in exercise intensity limit the use of bTRIMP as a training-load measure in road cyclists. Furthermore, bTRIMP uses a generic equation for the blood lactate response to exercise, which does not integrate individual physiological characteristics. The complex interaction of many factors (eg, hormone concentrations, personality traits, environmental conditions) that contribute to the RPE may explain the weaker dose-response relationships than with other training-load methods (eg, HR-based TRIMP methods).

We also observed considerable variation in the dose-response validity of the various methods examined. sRPE and bTRIMP showed the weakest relationships between training load and changes in power output at 2 and 4 mmol/L compared with the other measures of training load. The limitations of both methods could explain why they may be less suited for road cycling. bTRIMP uses mean HR of the training session or competition, which may not be applicable for the stochastic nature of (competitive) road cycling, where there are specific moments where the exercise intensity can be very high or very low depending on terrain, tactical factors, and weather conditions. Even though this stochastic nature may be less during training sessions, these fluctuations in exercise intensity limit the use of bTRIMP as a training-load measure in road cyclists. Furthermore, bTRIMP uses a generic equation for the blood lactate response to exercise, which does not integrate individual physiological characteristics. The complex interaction of many factors (eg, hormone concentrations, personality traits, environmental conditions) that contribute to the RPE may explain the weaker dose-response relationships than with other training-load methods (eg, HR-based TRIMP methods).

Nevertheless, the current study observed a stronger dose-response relationship for sRPE than found in previous research by Foster et al’ ($r = .29$) in a population of 56 athletes. Pinot and Grappe11 reported very large correlations ($r = .83–.94$) between increases in training load quantified by sRPE and mean maximal power outputs (5–240 min) achieved during training and competition each year. However, the study by Pinot and Grappe11 was a case study conducted over an extended period of time, so it is hard to compare their results directly with ours. Wallace et al23 reported that correlations between total VO$_2$ and training load were higher for bTRIMP ($r = .85$) and luTRIMP ($r = .83$) than sRPE ($r = .75$), suggesting that HR-based methods relate better to total oxygen consumption than RPE-based methods. Therefore, even though sRPE is an easy-to-use and simple method, HR-based

Figure 2 — Relationship between all the measures of training load and percentage changes in power output at 2 mmol/L lactate. Correlation coefficients (r) are presented with 95% confidence intervals (CI). Interpretation of the strength of the correlation coefficient was based on guidelines provided by Hopkins.19 Abbreviations: sRPE, session rating of perceived exertion; iTTRIMP, individualized TRIMP.
internal-training-load quantification appears to demonstrate higher dose-response validity when related to fitness or performance changes in cycling.22,23 However, in situations where the pattern of HR can be affected by accumulated fatigue, the combination of sRPE and HR-based training-load methods may be useful in providing information about cyclists' fatigue state.22,24 Since this study evaluated the dose-response validity in a preseason preparatory training period, future research should evaluate this in competitive periods where the nature of training differs (ie, more high-intensity training, increased training load) and the athletes are more prone to states of fatigue to see if these relationships are maintained.

There was a moderate relationship between TSS and the changes in mean power output during the 8MT performance test. Wallace et al25 reported higher correlations between a running-based version of TSS and changes in performance ($r = .70$) than with bTRIMP ($r = .60$) and sRPE ($r = .65$). Overall, the dose-response relationships between training-load methods and changes in performance were not as strong as those between training load and aerobic fitness variables. The high variability (ES = 0.25 [95% CI = 0.51 to 1.01]) observed in the improvement of the 8MT may provide explanations for these mixed results. Postrace fatigue and motivational factors could contribute to this variability in the results, as the posttraining 8MT tests were performed when the competitive season had started. Furthermore, the relatively short duration of the performance test may contribute to these results. Time trials of longer duration (20–90 min) have been shown to have strong relationships with incremental-exercise-test variables.26–28 However, shorter tests are easier to integrate into the busy training plan of these athletes and are less physically and mentally demanding. Taking these factors into account, the dose-response relationships with performance in this study should be interpreted with caution.

As highlighted by the mixed results of the performance test, studies in the field with well-trained athletes make collecting training data less controlled than with laboratory-based research designs. However, using a field-based approach provides higher external validity and valuable information for coaches and practitioners working in the field, which may outweigh some of the limitations resulting from such an approach. In addition, different power meters were used in this study for the collection of HR and power data, leading to increased power-output data variability. Even though there is research validating some of the power-meter systems used in this study,29,30 not all power meters are tested for validity and accuracy. Furthermore, confounding factors regarding the interpretation and accuracy of blood lactate concentration measurement to track changes in training status must be taken into account.3 However, despite some of the limitations of blood lactate measurements, the dose-response relationships were shown using widely used methods of assessing endurance-performance variables in cycling.

Practical Applications

An improved understanding of the dose-response relationships between training load and fitness/performance is valuable for coaches and practitioners. To have an impact on performance we must be sure of the nature of the relationship between the prescribed exercise dose and the expected training outcome or response. Practically valuable information can be derived from the dose-response
relationships presented. For example, the dose-response relationships between iTRIMP and aerobic fitness suggest that to maintain improvements in aerobic fitness (ie, power output at 2 mmol/L) the cyclists should accumulate a mean weekly iTRIMP of ~650 AU (Figure 1A). Furthermore, improvements in aerobic fitness will most likely occur when mean weekly iTRIMP >650 AU is implemented in the training plan. Even though this is only indicative data for this specific group of well-trained cyclists, providing coaches with such an evidence-based framework may contribute to optimized training monitoring and design of training programs. Future research should assess the relationships over more-prolonged training periods and possibly with more-frequent performance tests.

Conclusions

In conclusion, this study is the first to show the dose-response relationships between different training-load measures and changes in fitness and performance in well-trained cyclists. The strongest dose-response relationships between training load and changes in submaximal aerobic fitness variables were observed for iTRIMP and TSS, where 56% to 65% of the variance was explained. The dose-response relationships with performance changes were not as strong as the aerobic fitness variables, with the results showing iTRIMP and luTRIMP to have the strongest relationships. Over-all, the results show that training-load quantification methods that integrate individual physiological characteristics have the strongest dose-response relationships, suggesting this to be an essential factor in the quantification of training load in cycling.

References

