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ORIGINAL RESEARCH Open Access

De Novo and Supervised Endophenotyping
Using Network-Guided Ensemble Learning
Simon J. Larsen,1,* Harald H.H.W. Schmidt,2 and Jan Baumbach1,3

Abstract
Introduction: Precision medicine requires the accurate identification of genes and pathways that mechanisti-
cally define a disease phenotype. Modern omics may deliver this, but has until now yielded only few translational
successes. While gene signatures derived from single omics analysis have proven useful for disease diagnosis and
prognosis, they often do not explain the underlying mechanism.
Methods: We here present Grand Forest, an ensemble learning method that extends random forests and inte-
grates experimental data with molecular interaction networks to discover relevant endophenotypes and their
defining gene modules. Our method covers two application scenarios: a supervised method for finding modules
associated with outcome and an unsupervised method for finding de novo patient subgroups.
Results: We applied the supervised Grand Forest methodology to five disease-related transcriptome data sets
and compared the results with four state-of-the-art methods. Grand Forest consistently found gene modules
with greater biomedical relevance, reproducibility, and interaction density, but fewer differentially expressed
genes. Using the unsupervised method to discover gene modules from unlabeled data, lung cancer patients
could be de novo stratified into clinically relevant molecular subgroups. Further analysis revealed that known dis-
ease genes were only marginally over-represented among differentially expressed genes, and that our method
was driven mainly by network topology.
Conclusion: With Grand Forest, we developed a novel approach to disease module discovery and demonstrated
it identifies biologically relevant gene modules and patient subgroups. We conclude that differential expression
was not effective for identifying driving genes and that the results were likely confounded by bias in the network
data. We caution readers to consider these issues when applying network-based methods to gene expression
analysis. Grand Forest is available at https://grandforest.compbio.sdu.dk.
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Introduction
The increasingly large amounts of functional genomic
data currently available in public databases such as
the Gene Expression Omnibus (GEO) and through ex-
tensive data collection efforts such as The Cancer
Genome Atlas have enabled large-scale integrative ana-
lyses aiming to discover mutations and expression pat-

terns associated with a specific disease. A key aim in
precision medicine has been the identification of molec-
ular subtypes from molecular profiling data. By classify-
ing patients as different subtypes, the aim is to stratify
patients into groups with distinct clinical traits, such
as expected survival time, risk of disease recurrence,
or response to treatment. To this end, significant effort
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has been put into identification of gene signatures—
small sets of genes that exhibit a distinct expression or
mutation pattern associated with a specific pheno-
type.1–4 Despite proving useful for prognosis, different
breast cancer signatures have little overlap in genes
and have been shown to be inconsistent across data
sets.5 Furthermore, most random gene signatures of
100 or more genes were found to be significantly asso-
ciated with outcomes in breast cancer, despite having
no relationship with the disease itself.6 This demon-
strates a major limitation of gene expression-based
analysis: a change in phenotype may lead to gross global
changes in the transcriptome, and thus, the genes that
are best suited for distinguishing different symptoms
or outcomes are not necessarily important for develop-
ment or progression of the disease itself.

To cope with the inherently noisy and overdeter-
mined nature of molecular profiling data, many re-
searchers have proposed integrating experimental
data with secondary data, in the form of biological in-
teraction networks, to produce more stable and bio-
logically meaningful models. This is commonly
achieved either through searching for functional en-
richment in known pathways7,8 or finding enriched
gene modules in global interaction networks (de
novo pathways).9–14 The latter approach is especially
promising as it may help uncover previously un-
known molecular interactions and mechanisms not
currently reported in databases such as the Kyoto
Encyclopedia of Genes and Genomes (KEGG) and
Reactome. Machine learning methods are also in-
creasingly often utilized to develop more sophisticated
models from biological data, for instance, in analyzing
expression patterns,15 regulatory network inference,16

protein–protein interaction (PPI) prediction,17 and
elucidating genotype–phenotype relationships.18,19

In this work, we present a novel kind of module dis-
covery method called Grand Forest (graph-guided ran-
dom forest). Besides the experimental data to be
analyzed (e.g., gene expression or methylation data),
our method also integrates a network describing the
pairwise relationship between the features comprising
the data set (e.g., PPIs). When building the decision
tree forest, a connected subnetwork is randomly sam-
pled from the full network for each decision tree, and
each decision tree is allowed to use only the features
contained in its corresponding subnetwork. Further-
more, each tree is built under the constraint that each
split variable in the tree must be a neighbor of the var-
iable in the split directly above it in the decision tree.

This constraint enforces that the set of variables in
each decision tree form a connected subnetwork in
the interaction network and that each split always fol-
lows a split on an adjacent gene. By estimating feature
importance from the trained model, we are then able to
extract a highly connected gene set that explains the
phenotype. The subnetwork induced by the most im-
portant genes is then extracted and returned as result.
We introduce two application scenarios: a supervised
and an unsupervised analysis workflow (Fig. 1). Our
method extends significantly on previous ideas from
Dutkowski and Ideker20 (see Supplementary Text S1
for details).

We first apply the supervised Grand Forest method
to whole-genome gene expression data from patients
diagnosed with breast cancer, lung cancer, Hunting-
ton’s disease, ulcerative colitis, and amyotrophic lateral
sclerosis (ALS) and show that our method is able to
discover subnetwork modules with greater biological
relevance than other existing, network-based, disease-
gene module detection tools while also being less sen-
sitive to the sampling of the patient population. We
then demonstrate that our method can also be applied
to unsupervised endophenotyping, applying it to ana-
lyze a lung cancer data set. Unlike most other module
discovery tools, Grand Forest does not employ statisti-
cal hypothesis tests or differential expression analysis
to score the individual genes and, as such, does not
make any assumptions on the underlying distribution
of the expression data. The use of decision trees may
also make it possible to discover interaction effects be-
tween genes. Furthermore, Grand Forest can be applied
directly to both categorical and numerical clinical var-
iables, as well as right-censored survival data. Hence, its
supervised version can—in addition to classification—
also be utilized for network module-based regression as
well as survival analysis, which makes it, to our knowl-
edge, the first such tool available. In addition, it is the
first method supporting unsupervised (i.e., de novo)
stratification of patients into groups while simulta-
neously extracting subnetworks whose genetic expres-
sion explains the difference between the identified
groups.

Comparison of the modules reported by each
method revealed that Grand Forest generally selected
modules with high interaction density, but lower dif-
ferential expression, compared with other methods,
suggesting that disease-associated genes were selected
mainly due to network topology. Furthermore, known
disease-associated genes were observed to be only

Larsen, et al.; Systems Medicine 2020, 3.1
http://online.liebertpub.com/doi/10.1089/sysm.2019.0008

9

http://


marginally over-represented among differentially
expressed genes. We conclude that one should exer-
cise caution when applying network-based methods
for identifying disease gene modules from gene ex-
pression data and be aware of the limitations of
gene expression analysis as well as possible biases in
molecular interaction networks.

Grand Forest is freely available at https://grandforest
.compbio.sdu.dk where we provide the source code, a
package for the R programming language, and an easy-
to-use online analysis platform.

Methods
Graph-guided random forest algorithm
Random forest is an ensemble learning method that
works by generating a large ensemble of decision
trees.21,22 It is based on the random decision forests
method,23 but extended to use the random subspace
method (also known as feature bagging). It has
achieved widespread use in biomedical research as it
works well for data sets with many more features
than samples, can be applied to data with a mix of
continuous and categorical variables, and works for

FIG. 1. Overview of the supervised and unsupervised Grand Forest workflows. In the supervised workflow,
expression data are integrated with an interaction network to identify a gene module associated with a
response variable, that is, survival time. In the unsupervised workflow, a model is trained to recognize
unlabeled patients from a generated background distribution. From the trained model, highly informative
genes are then selected and used to stratify patients into groups with different endophenotypes.
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multiclass problems. Furthermore, it provides several
measures for estimating feature importance, making it
possible to identify important genes in molecular pro-
filing data.24,25 We refer to the original articles by
Breiman and Cutler for a description of the random
forest algorithm.21.22

The Grand Forest algorithm works similarly to the ran-
dom forest algorithm, but differs in the way split variables
are selected during decision tree building. Grand Forest
takes as input a design matrix X = fxi, 1, . . . , xi, pgn

i = 1,
response variables Y = y1, . . . , yn, and a simple graph
G = (V , E), where each vertex vi 2 V corresponds to
the column i in X and E is a set of two sets of vertices
from V. The algorithm builds a forest of decision trees
on the training set, using the graph G to guide the fea-
ture bagging procedure and split variable selection.
The graph is only used during training and does not
affect the prediction procedure, which is carried out
like it would in the standard random forest algorithm.
Each decision tree is trained on a random sample with
replacement of the training data. The algorithm is
outlined in Figure 2.

Feature bagging
Grand Forest uses the topology of the feature interac-
tion graph G to perform feature bagging. Each decision
tree is trained on a subset of m response variables,
where each set of variables induces a connected sub-
graph in G. This subgraph is computed only once
for each decision tree and used in all splits in that
tree. Each subgraph is generated by first selecting a
vertex vs uniformly at random from all vertices. A
subgraph is then grown by performing a breadth-
first search traversal starting at vs until m vertices
have been selected or until there are no more vertices
to visit. When a new vertex is visited, its neighbors are
added to the queue in random order to further ran-
domize the sampling. See Supplementary Text S2.1
for a detailed overview.

Split variable selection
When building decision trees, splits are formed by
selecting a variable and a value to split the partition
on, which maximizes some split criteria, for example,
the decrease in Gini impurity for classification forests.
The first split in each decision tree is selected among
all features in the feature subgraph. In subsequent
splits, each split variable must be selected only from
the variables that are connected to the parent node in
the decision tree (Supplementary Fig. S1). This

FIG. 2. Overview of the Grand Forest
algorithm. (1) The method takes as input a
matrix of expression values for two or more
classes and a network modeling the pairwise
interactions between genes. (2) A large number
of connected subnetworks are randomly
sampled from the full network. (3) A decision
tree is trained for each subnetwork under the
constraint that genes in two adjacent splits in
the decision tree must also be adjacent in the
subnetwork. (4) Global feature importance is
computed as mean estimated importance over
all decision trees. (5) The subnetwork induced
by the most important features is extracted as a
disease module.
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requirement ensures that the set of variables in each
decision tree induces a connected subgraph in the full
feature network.

Feature importance
In Grand Forest, we use the mean decrease in Gini im-
purity to estimate feature importance. Gini impurity
was chosen over other methods, such as permutation
importance, because we are not concerned with how
important a gene is for predictive performance, but
rather how much information it provides at the time
of the split, conditioned on the splits preceding it.

Implementation
Our implementation of Grand Forest is based on rang-
er26 and is written in C + + with bindings to R. The fea-
ture graph is only used when selecting features as
possible split variables and does not affect the splitting
procedure itself. Because of this, it is trivial to general-
ize the method to other variations of random forest.
Besides random forest for classification, ranger also im-
plements regression forests,21 probability forests,27 and
survival forests.28 By extension, Grand Forest has been
implemented to support these methods as well. The
source code is available through GitHub (https://
github.com/SimonLarsen/grandforest).

Unsupervised analysis using Grand Forest
The Grand Forest algorithm is used for unsupervised
learning using an approach proposed by Breiman.22

The method is based on the following assumption:
if the data item is structured in some way, it should
be distinguishable from a randomized version of
itself. Given a design matrix X, we compute a syn-
thetic matrix X¢ with the same number of rows and
columns by randomly sampling values for the corre-
sponding variable in X. Sampling can be done either
with or without replacement. In this work, we sam-

pled with replacement. A combined design matrix
X� is then built by concatenating the rows from X
and X¢, and the vector of response variables is defined
as Y = fyig2n

i = 1, where yi = 1 if row i came from X and
yi = 0 otherwise.

A Grand Forest model is trained on the design ma-
trix X� and response variables Y guided by some graph
G. The most important features are selected by rank-
ing all features based on some importance measure
and selecting all features above some cutoff. These
features are assumed to contain a high amount of in-
formation and are thus good for clustering the data set
into clusters. The final clustering is performed by clus-
tering the original design matrix X based only on the
top features identified by the Grand Forest model.

Gene expression data preparation
Gene expression data sets were obtained through the
GEO. The data sets are available through the following
accession IDs: breast cancer (GSE20685, n = 327),29

non-small cell lung cancer (GSE30219, n = 268),30 ul-
cerative colitis (GSE11223, n = 202),31 Huntington’s
disease (GSE3790, n = 54),32 and ALS (GSE112680,
n = 164).33 All five datasets are from microarrays
(Table 1 and Supplementary Table S1). Processed,
probe-level expression values were obtained as series
matrix files. Probes were mapped to NCBI Entrez
gene IDs using the corresponding platform data tables
provided through GEO. For genes mapping to multi-
ple probes, the median probe value was used.

The lung cancer data set contained samples from both
small cell and non-small cell patients. Only non-small
cell cancer samples were used because their molecular
pathways (as described in KEGG) are different, and
non-small cell was the most common type in the data
set (Supplementary Table S2). The Huntington’s disease
data set contained samples from different brain regions.
Only samples from the caudate nucleus were used

Table 1. Data Sets Used in the Evaluation

Cohort Ref. Platform Samples

Survival

Median follow-up Deaths Cases Controls

ALS 33 GPL10558 164 2.34 years 31 21a 23a

Breast cancer 29 GPL570 327 8.1years 83 79a 79a

Lung cancer 30 GPL570 268 4.67 years 177 125a 125a

Ulcerative colitis 31 GPL1708 202 N/A N/A 129 73
Huntington’s 32 GPL96 53 N/A N/A 22 32

Platform column contains the GEO platform ID.
aThese case/control labels are used only by GXNA due to not supporting noncategorical outcomes.
ALS, amyotrophic lateral sclerosis; GEO, Gene Expression Omnibus; GXNA, Gene eXpression Network Analysis; N/A, not applicable.
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because this region was found to have the largest change
in gene expression resulting from Huntington’s disease
in the original publication by Hodges et al.

For ALS, breast cancer, and lung cancer data sets, we
used the right-censored survival time as the outcome
variable. For the ulcerative colitis (UC) data set, we
used the disease status (UC or no UC) as the outcome
variable. For the Huntington’s disease (HD) data set,
we separated the subjects into a control group (no
HD) and a case group (Vonsattel grades 2–4). Samples
with Vonsattel grade 0–1 were discarded.

The Gene eXpression Network Analysis (GXNA)
method requires samples to be stratified into discrete
classes. For ulcerative colitis and Huntington’s disease,
we used the classes described above. For the survival
data sets, patients were stratified into high- and low-
risk groups of approximately equal size. We used a cut-
off of 62 months in lung cancer and 10.6 years in breast
cancer and 4 years in ALS. Patients who could not be
placed in either group due to censoring or lack of
follow-up were discarded. See Table 1 for an overview.

Statistical significance tests
For the survival data sets (breast and lung cancers), the
statistical significance of each gene was computed using
a Cox proportional hazards regression model. For the
regression (Alzheimer’s disease) and classification
data sets (ulcerative colitis and Huntington’s disease),
significance was estimated using a linear model with
the R/Bioconductor package limma.34

Network data preparation
We collected network data from the Integrated Inter-
actions Database (IID)35 (version 2017-04). IID inte-
grates experimentally validated PPIs from multiple
major databases, such as BioGRID, IntAct, and
HPRD, as well as interactions from orthologs and
computational prediction. Gene identifiers were map-
ped from UniProt IDs to Entrez gene IDs using the
human genome-wide annotation package in Biocon-
ductor (version 3.4.1).36 After removing self-loops
and duplicated edges, the resulting network contained
17,487 genes and 891,969 interactions. Biological net-
works generated by aggregating interactions from lit-
erature are associated with study bias arising from
disease-related genes being studied more often.37,38

The IID network was chosen over other networks,
such as BioGRID and HPRD, constructed solely
from manual curation of literature, to minimize the
effect of study bias on the results.

Results
Enrichment of known pathways
To evaluate the results produced by Grand Forest, we
extracted gene modules from gene expression data
from patients diagnosed with breast cancer, non-small
cell lung cancer, ulcerative colitis, Huntington’s disease,
and ALS. As response variables, we used the overall
survival time in breast cancer, lung cancer, and ALS
and disease status (case vs. control) in ulcerative colitis
and Huntington’s disease, respectively. The interaction
network was constructed from experimentally validated
and computationally predicted interactions obtained
from the IID (see Methods).

We evaluated the biological relevance of the
extracted gene modules by investigating how congru-
ent the genes in the extracted modules were with pub-
lished curated molecular pathways related to the
phenotype of each data set. Reference gene sets were
extracted from KEGG.39 For breast cancer, lung can-
cer, Huntington’s disease, and ALS, we extracted the
disease-specific pathway for each disease. Because
KEGG has not published a specific pathway for ul-
cerative colitis, we instead aggregated all genes
from the three pathways indicated as associated
with UC: inflammatory bowel disease, cytokine–cytokine
receptor interaction, and the Jak-STAT signaling
pathway (Supplementary Table S3).

To evaluate Grand Forest’s ability to find meaningful
gene modules, we compared our results for all five data
sets against the results obtained using four, state-of-
the-art, network-based module discovery tools:
BioNet,12 KeyPathwayMiner (KPM),13 GXNA,11 and
GiGa.10 These tools were selected based on results of
a recent evaluation by Batra et al.14

For each method, we extracted gene modules in each
data set over a range of parameters chosen such that
they generate modules in a range between *25 and
100 genes (Supplementary Table S4). Statistical signifi-
cance of enrichment was computed using a hypergeo-
metric overrepresentation test (Supplementary Text
S2.2). Grand Forest significantly outperformed all
tools on all data sets (Fig. 3a). The difference was espe-
cially pronounced in the two cancer data sets, where
Grand Forest achieved a highly significant enrichment
(median p-values of 6.13e�15 and 4.64e�9, respective-
ly), while the other methods found little or no overlap
with the associated pathways. Grand Forest performed
worst on the Huntington’s data (median p-value
0:074). All other tools delivered insignificant results
(i.e., median p > 0:05) on all data sets.
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Enrichment of pathways related to cancer hallmarks
To provide further validation of our results in the
breast and lung cancer data sets, we investigated how
strongly associated the extracted gene modules were
with the hallmarks of cancer.40 If the genes selected
by a method are biologically relevant for proliferation
of cancer, we would expect a functional enrichment
of pathways related to these cancer hallmarks. Alcaraz
et al.41 compiled a set of KEGG pathways related to
each hallmark. Based on their findings, we compiled

the relevant genes for each hallmark as the union of
all genes in the pathways related to that hallmark (Sup-
plementary Table S5). Due to the great number of
genes being compared against, we restricted this analy-
sis to only modules of 75 or more genes (see Supple-
mentary Figs. S2 and S3 for all sizes).

Grand Forest achieved a significantly higher enrich-
ment in both breast cancer and lung cancer in all but
one hallmark, namely genome instability and mutation,
where Grand Forest was outperformed by the other

FIG. 3. Enrichment of disease-associated KEGG pathways in extracted gene modules. (a) Enrichment of
disease-associated KEGG pathways for each data set. (b, c) Enrichment of pathways related to the hallmarks of
cancer for modules extracted from breast cancer (b) and non-small cell lung cancer (c) data sets. Only modules
of at least 75 genes were included. Hallmarks: AID, avoiding immune destruction; AIM, activating invasion
and metastasis; DCE, deregulating cellular energetics; EGS, evading growth suppressors; ERI, enabling
replicative immortality; GIM, genome instability and mutation; IA, inducing angiogenesis; RCD, resisting cell
death; SPS, sustaining proliferative signaling; and TPI, tumor-promoting inflammation. Enrichment was
computed using a hypergeometric overrepresentation test. The bold horizontal line indicates p = 0:05

(���p < 0:001). KEGG, Kyoto Encyclopedia of Genes and Genomes.
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tools in lung cancer (Fig. 3b, c). Grand Forest generally
achieved a highly significant degree of enrichment, with
p-values below 1e�10 in all but two hallmarks.

Stability of selected genes
For the gene modules to be biologically meaningful, the
genes in the extracted subnetwork modules should be
stable and reproducible, that is, not varying significantly
between samples from the same population. We evalu-
ated how stable the modules produced by our method
were compared with other methods, by repeatedly re-
moving 20% of the patients, selected randomly, and
measuring their pairwise similarity between all repeti-
tions with the same parameters. Parameters were chosen
to produce modules of*25, 50, 75, and 100 genes. Gene
set similarity was measured using the Jaccard index
(Supplementary Text S2.3).

We were unable to obtain results for KPM and
BioNet. Neither method provides a way to enforce a
specific module size, and the size instead depends on
the chosen hyperparameters. For both methods, the
size of the extracted modules varied significantly be-
tween repetitions using the same parameters, often by
several orders of magnitude, making it infeasible to ob-
tain appropriately sized modules for each repetition.

Overall, Grand Forest produced more stable results
compared with existing GiGa and GXNA (Fig. 4a) in
all data sets except for Huntington’s disease. The differ-
ence in performance was most significant in breast can-
cer and ALS, where Grand Forest was stable even for
small gene sets, while the other methods produced little
overlap between repetitions. We observed that for the
other methods, stability generally decreased with
smaller module sizes; however, this effect was less pro-
nounced in Grand Forest. These results suggest that the
modules produced by Grand Forest are less sensitive to
the sampling of the patient population. While we can-
not compare it with KPM and BioNet, it is unlikely that
either is more stable given their high sensitivity to
hyperparameters.

Interaction density of selected modules
We evaluated the number of PPIs between genes in the
extracted modules to better understand why the results
produced by Grand Forest differed so much from other
methods. For each module, we extracted the subnet-
work induced by the constituent genes and counted
the number of conserved edges. We observed that
Grand Forest selected significantly more dense mod-
ules than the other methods for breast cancer, ulcera-

tive colitis, and ALS, but similarly dense modules for
lung cancer and Huntington’s disease (Fig. 4b). All
methods selected highly dense modules for lung cancer
and sparse modules for Huntington’s disease.

The observed difference in density may, in part, ex-
plain why the genes selected by Grand Forest were
more congruent with published molecular pathways.
This suggests that a large part of the power comes
from the network rather than the gene expression
data. However, given that all methods produced highly
dense modules in lung cancer, even though only Grand
Forest achieved a significant level of enrichment, this
does not fully explain the difference in performance.

Statistical significance of selected genes
To shed further light on the source of the signal in
data sets, we evaluated how many of the genes in
extracted modules were significantly differentially
expressed. For each module, we counted how many
genes were significantly associated with the outcome
(nominal p < 0:05).

We observed that Grand Forest generally selected
fewer significant genes compared with other methods
(Fig. 4c). This contrasted greatly with the other meth-
ods, where all modules consisted almost exclusively
of significant genes. This is not surprising given that
the other methods are designed to explicitly maximize
this property in some way, either by maximizing the
number of significant genes or by maximizing some ag-
gregate significance measure. Interestingly, in the four
data sets where Grand Forest selected fewer significant
genes, namely in breast cancer, lung cancer, ulcerative
colitis, and ALS, the difference in performance wrt. en-
richment of KEGG pathways was greatest. This differ-
ence was especially pronounced in breast cancer where
Grand Forest only selected around 25–35% significant
genes while achieving a highly significant degree of en-
richment. We also evaluated how many of the genes in
the associated KEGG pathways were statistically signif-
icant. We observed that in all data sets, a large fraction
of genes were in fact not significantly associated with
the outcome, and the fraction of significant genes in
the reference pathways was overall not significantly
larger than among all genes (Fig. 4d and Supplemen-
tary Fig. S4). Only in Huntington’s disease was a ma-
jority of genes significant (66%). These results suggest
that a statistically significant association of expression
with a phenotype is not necessarily adequate to deter-
mine which genes are important for development or
progression of a disease.
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FIG. 4. Properties of genes selected by each method and frequency of statistically significant genes. (a)
Stability of genes selected by each method for different module sizes. Gene modules were computed over
10 repetitions, sampling 80% of patients randomly. Stability was computed between all pairs of modules of
same size using the Jaccard index. (b) Number of interactions in the induced subnetwork of each module.
(c) Number of genes in modules selected by each method that were significantly differentially expressed
(nominal p < 0:05) with respect to the outcome. (d) Fraction of genes in reference pathways that were
differentially expressed (nominal p < 0:05) in the corresponding gene expression data set with respect to the
outcome.
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De novo endophenotyping of lung adenocarcinoma
Grand Forest can also be applied to unlabeled data to
discover modules of highly interacting genes that
stratify patients into distinct clusters, for example,
molecular subtypes or endophenotypes. Feature im-
portance was estimated without any clinical variables
by modeling the problem as an unsupervised as super-
vised learning problem (see Methods). We then

extracted the gene module comprising the 20 most
important genes (Fig. 5a).

The selected genes induced a highly dense subnetwork
in the interaction network. Among the 20 genes were
three genes found in the KEGG non-small cell lung cancer
pathway: TP53, EGFR, and MAPK1 (p = 2:6e� 5). Fur-
thermore, we found four known oncogenes, MYC,42,43

JUN,44,45 EGFR,46,47 and CTNNB1,48 and two important

FIG. 5. De novo endophenotyping of lung adenocarcinoma based on a 20-gene subnetwork module
extracted with Grand Forest. (a) Subnetwork induced by the genes in the module. Nodes are colored according
to the difference between mean expression in high-risk and low-risk groups. (b) Heatmap of gene expression
for patients clustered into two clusters using only genes in the module. Expression values are mean centered
and scaled with standard deviation. (c, d) Overall survival for patients when clustered using the 20-gene
module (c) and all genes (d).
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tumor suppressor genes, BRCA149 and TP53.50 To evalu-
ate the clinical relevance of the selected genes, we
extracted all adenocarcinoma samples from the lung can-
cer data set (n = 85) and clustered them into two groups
with k-means clustering, using only the expression of
these 20 genes. Because k-means is dependent on ran-
domly chosen initialization, clustering was repeated 20
times and the result with the greatest Silhouette index
was chosen (Supplementary Text S2.4). The clustering
of patients was significantly associated with overall sur-
vival (log-rank, p = 0:0079) (Fig. 5b, c). For comparison,
we also clustered the patients on all genes using the same
procedure. When using all genes, the resulting stratifica-
tion was less associated with overall survival (p = 0:014)
(Fig. 5d).

Discussion and Conclusion
In this study, we introduced Grand Forest, a novel
graph-guided set of ensemble learning methods
based on the well-known random forest strategy to
allow for network-guided supervised and de novo
endophenotyping. Our tool and the implemented ap-
proaches differ significantly from conventional mod-
ule discovery and patient stratification tools. Grand
Forest does not expect the data to follow a specific
distribution, and it does not rely on statistical signif-
icance tests and differential expression analyses, but
instead aims to explain the phenotype using an
ensemble of decision trees. When compared with
traditional module discovery tools across gene ex-
pression data from five diseases, our method
achieved a significantly higher degree of enrichment
of relevant molecular pathways. Results also showed
that Grand Forest was less sensitive to the sampling
of the patient population than GXNA and GiGa,
but a comparison with KPM and BioNet was not
possible. By virtue of being based on decision trees,
our method is also invariant to scaling and robust
to outliers.

We observed that despite selecting fewer genes with a
statistically significant association with the clinical vari-
able, Grand Forest extracted modules that were more
congruent with KEGG molecular pathways related to
the disease. However, it appeared that the solutions com-
puted with Grand Forest were largely driven by interac-
tion density rather than expression patterns associated
with disease outcome. This was further demonstrated
by the fact that a large fraction of the genes in the refer-
ence gene sets were not statistically significant. This
demonstrates that a large fold change, or otherwise sig-

nificant association with outcome, is not sufficient to
identify important causal driver genes for a disease.

A commonly raised concern with network-based
methods is that a similar performance can often be
achieved using random networks instead.41,51.52 We
evaluated the performance of Grand Forest on the
five data sets using two randomized network models,
one generated by randomly rewiring edge pairs while
preserving node degree and one generated by rearrang-
ing the node labels in the network. We observed that
rearranging node labels resulted in significantly worse
performance wrt. enrichment of relevant pathways
(Supplementary Fig. S5) and generally did not achieve
a significant level of enrichment. However, rewiring
edges did not significantly affect enrichment, which
confirms our method is heavily reliant on node degree.
Permuting the outcome variables also only had a mod-
est effect on the degree of enrichment for Grand Forest
while (in some cases) even increasing enrichment for
GiGa and GXNA (Supplementary Fig. S6). We further-
more investigated the effect of false negatives and false
positives in the interaction network by repeating the
experiment after removing 25% of edges or adding
25% more random edges in the network, respectively
(Supplementary Figs. S7 and S8). Neither of these
two perturbations significantly affected the results.

Taken together, our results point to a central prob-
lem with module discovery from gene expression
data: methods relying primarily on gene expression
will in many cases not identify disease-driving genes,
while methods relying primarily on network structure
are likely to select disease drivers due to bias in the net-
work alone. This may, in part, be because gene expres-
sion is too far downstream and, as such, expression
changes may often correspond to the cellular response
to the disease rather than the underlying cause. Fur-
thermore, it is likely that Grand Forest selects highly
dense modules because the difference in patient pheno-
type translates to large-scale changes in the transcrip-
tome, which makes it trivial for the algorithm to
build a set of genes that explain the outcome well.
Therefore, the algorithm will often choose hub genes
since they are easier to reach in a graph traversal.
This observation is also in line with previous results
on random gene expression signatures in breast can-
cer.6 Due to the incompleteness and noisy nature of
current PPI networks, it is uncertain whether disease-
associated genes have a large number of reported inter-
actions due to research bias or if genes with many
interactions are often associated with disease due to
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being involved in many key cellular mechanisms. With
this in mind, we advise researchers to use caution when
applying network-guided methods for discovering dis-
ease genes and modules.

To make our method easily available to researchers,
we developed an easy-to-use web server for carrying
out analyses using Grand Forest. The web server allows
users to upload a gene expression data set and analyze
their data using two different workflows: a supervised
workflow and an unsupervised workflow, mirroring
the types of analyses carried out in this article. A set
of commonly used genetic interaction networks is pro-
vided, but users can also upload custom network data.
A gene set enrichment analysis is provided for both
workflows to enable searching for over-represented
Gene Ontology terms, pathways, and disease associa-
tions among the extract genes. Furthermore, users are
also able to extract and visualize networks of drugs
and miRNAs targeting the genes in a module to search
for potentially druggable targets. See Figure 6 for a
graphical overview.

In summary, with Grand Forest, we introduce a new
method for disease-gene module discovery by integrat-
ing genomic profiling data with molecular interaction
networks. We also introduce the first network-based,
de novo endophenotyping methodology, allowing anal-
ysis of unlabeled data. We show that Grand Forest
identifies gene modules closely associated with known
disease genes, but that these results are highly driven
by network topology and likely confounded by inher-
ent bias in the underlying network. Finally, we provide
a comprehensive web server to make our methodology
easily available to researchers.
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