Chapter 7

Summary & General discussion
Adult chronic illnesses, such as cancer, cardiovascular and respiratory diseases are a major burden on human health worldwide (1). Exposure to genotoxins and mutagens are thought to play an important role in the etiology of these diseases (2-6). On the other hand, a healthy diet is though to protect against genotoxins and mutagens and would therefore also protect against these chronic diseases to maintain health. One major dietary group receiving a lot of attention regarding the treatment and prevention of adult chronic diseases are the flavonoids, because of their potent antioxidant capacity (7-10). They comprise a large group of polyphenolic compounds widely distributed in the human diet (9), resulting in an average intake from 65 to 250 mg of mixed flavonoids a day (11). The most predominant flavonoid in the human diet is quercetin, which is present in for instance onions, apples, tea and red wine (9, 12-14). Besides being a potent free radical scavenger, it also chelates iron (15, 16). Genistein is another important flavonoid, with antioxidant properties and is mainly found in soybeans. However, it also has estrogen-like properties due to its structural similarities to 17β-estradiol. Whether it works as an estrogen agonist or antagonist depends on the situation (17, 18).

Due to the health benefits they are presumed to provide, flavonoids are freely available as high dose supplements, with a recommended daily dose ranging between 1-2 gram (19, 20). Additionally, disturbingly is the increase in supplement consumption of woman during pregnancy. In the US 78 % of the pregnant woman take dietary supplements (21), which includes the intake of folic acid. However, folic acid supplementation in adults has been shown to increase the risk on cancer (22). Yet little is known about the biological actions of flavonoids in pregnancy and the short-term and/or long-term effects they exert on the offspring’s health. It is known that flavonoids can cross the placenta and may accumulate in the fetus (23, 24). Therefore research is needed to assess the safety of intake of flavonoid supplements during pregnancy.

Flavonoids during pregnancy: Infant leukemia

Excessive intake of flavonoids could play a role in the onset of infant leukemia as they are efficient topoisomerase II inhibitors (25, 26). Flavonoids could therefore induce DNA double-strand breaks (DSB) and rearrangements in the mixed-lineage leukemia (MLL) gene, which is frequently observed in childhood leukemia (26, 27). In Chapter 2 we mated Atm-ΔSRI heterozygote mice to obtain pups with a different genetic capacity for the DNA repair of DSBs, namely Atm wild-type, Atm-ΔSRI heterozygote and Atm-ΔSRI mutant offspring mice and found that prenatal exposure to flavonoids indeed induced Mll translocations in the bone marrow of both wild-type and Atm-ΔSRI mutant mice. Moreover, Atm-ΔSRI mutant mice did show a higher susceptibility to develop these chromosomal aberrations. We also showed that mice with an impaired DNA repair had an increased risk on developing other malignancies when prenatally exposed to genistein besides an increased risk on infant leukemia, which indicates that the DSB DNA repair pathway is relevant for maintaining genomic integrity in the developing fetus.

The Atm-ΔSRI mutation corresponds to one of the most common Atm mutations found to date in humans and these mice have a phenotype which is distinct from Atm knock-out mice. It is known that Atm-ΔSRI mutant mice have a 50 % chance of developing leukemia and lymphoma without additional exposures (28). The age of tumor onset was
decreased dramatically by prenatal exposure to genistein and quercetin from an average of 18.6 months (28, 29) to only 3 months in our study. Although the number of animals in which leukemia could actually be identified was low in our study, analysis of Mll translocations established in offspring mice prenatally exposed to both flavonoids, suggested that the risk of developing cancer later in life for these animals was elevated.

Flavonoids during pregnancy: Fetal programming

Besides directly increasing cancer susceptibility, flavonoids are also thought to be involved in so-called ‘fetal programming’. This concept defines an attempt of the fetus to adapt to adverse conditions encountered in utero, which results in adaptations that will be detrimental when these conditions will not prevail later in life (30). A clear example of fetal programming by genistein was given by Dolinoy et al. (31), as they showed that prenatal exposure of agouti mice to genistein resulted in a change in coat color, but it also protected the mouse from obesity later in life, which is distinctive for these mice. These effects were caused by epigenetic changes, namely hypermethylation of a repetitive element upstream of the transcription start site of the $Agouti$ gene and the $Agouti$ gene was silenced as a result of this hypermethylation. Formation of altered DNA methylation patterns in cells during fetal development by flavonoid intake may thus have long-lasting effects, because patterns can be transmitted to daughter cells after cell division.

Persistent changes in gene expression

In Chapter 3, the effect of prenatal exposure to genistein on gene expression and global methylation of bone marrow cells of 12 week old male mice was investigated. Prenatal exposure to genistein resulted in a pronounced down-regulation of estrogen responsive genes and of genes involved in inhibiting hematopoiesis, consequently up-regulating erythropoiesis and granulopoiesis in these mice. The effect of genistein on estrogen responsive genes was to some extent expected as genistein has structural similarities with 17β-estradiol, exerting its effect through the estrogen receptor (18). In addition, the effect of genistein on hematopoiesis was also found by Zhou et al. (32) who pretreated mice with genistein for 7 days prior to whole-body irradiation, protecting them from death due to enhanced regeneration of hematopoietic stem cells. We hypothesize that the changes in gene expression were a result of epigenetic mechanisms, because hypermethylation of repetitive elements could be distinguished in the bone marrow cells of these animals.

Oxidative stress related processes

Since flavonoids are well known for their antioxidant properties (9) and they can cross the placenta to reach the developing fetus, we investigated whether prenatal exposure to genistein and quercetin could also have long-lasting effects on systems that contribute to the resistance to oxidative stress, which is involved in the onset of cancer (33). To this end,
the antioxidant capacity of liver and lung tissue of adult male mice prenatally exposed to genistein or quercetin was assessed in Chapter 4. Quercetin exposure during pregnancy resulted in the up-regulation of genes involved in the enzymatic antioxidant defense system of the liver of fetuses at day 14.5 of gestation. Especially Nrf2, which functions as an important transcription factor responding to oxidative stress, showed increased gene expression levels during quercetin exposure. This indicated that despite quercetin’s antioxidant property, it probably exerted pro-oxidant effects during in utero exposure. Pro-oxidant effects have previously also been ascribed to quercetin (34, 35). Genistein exposure on the contrary, had no effect on the enzymatic antioxidant defense system at this time point in gestation. This could be the result of a less pro-oxidant or even antioxidant effect of genistein. However, it has also been reported for genistein that in case of Nrf2 genistein impedes its nuclear export and degradation (36), making the up-regulation in gene expression unnecessary.

However, at adult age, mice prenatally exposed to either genistein or quercetin still had a differential expression of genes involved in the enzymatic antioxidant defense in their liver. This suggests that the adaptations made by the fetus in response to the in utero conditions by the increased supply of genistein or quercetin to the mother are maintained throughout life. We also investigated the effect of prenatal exposure to genistein or quercetin on the non-enzymatic antioxidant defense system and could only find an effect of prenatal exposure to genistein in the lung compared to control animals. Oxidative stress induced DNA damage, namely direct oxidizing of the DNA (8-oxo-dG levels) or indirect DNA damage induced by the lipid peroxidation product MDA (M₁dG), was also assessed in the liver and lung of adult male mice prenatally exposed to quercetin or genistein. Prenatal exposure to genistein but especially to quercetin resulted in lower levels of oxidative stress induced DNA damage, however, only in the liver of these animals. As we mainly found changes in the gene expression of enzymatic antioxidants in the liver, it seems that the pre-emptive trigger of the enzymatic antioxidant defense system appeared to be beneficial and protective against oxidative DNA damage in the liver of adult mice prenatally exposed to genistein but especially to quercetin.

This effect was tissue specific as in the lung only modest effects of maternal flavonoid supplementation on gene expression of enzymatic antioxidants were observed and the non-enzymatic antioxidant defense system was only increased due to prenatal genistein exposure. Therefore the minor statistically non significant decrease in 8-oxo-dG levels and M₁dG in the lung of male mice prenatally exposed to either genistein or quercetin was as expected.

This study showed that although genistein and quercetin are mainly known for their antioxidant properties, they probably functioned as pro-oxidants during gestation, as has been reported previously (35, 37-40), probably due to their accumulation in the fetus (23, 24), because antioxidant properties mainly occur at lower concentrations. This study also showed that genistein and quercetin did not exerted the same effects, with regard to long-lasting changes in the enzymatic antioxidant defense system; quercetin was more effective than genistein. Though it had already been shown that exposure to genistein and quercetin during adult life protects against oxidative stress (41, 42), we have now shown that in utero exposure also results in protection at adulthood, but it remains to be established whether this beneficial effect outweighs the oxidative stress that is induced in utero.
Iron chelating properties of quercetin as programming trigger

Quercetin is known to be a very potent iron chelator (15, 16). Therefore, the effect of prenatal quercetin exposure on iron homeostasis was assessed during fetal development and at adult age in Chapter 5. First, we investigated whether quercetin exposure *in utero* indeed resulted in iron chelation. However, at day 14.5 of gestation, no differences in the total amount of iron measured in amniotic fluid could be detected. Next, since the largest amount of iron is used for the production of hemoglobin (43, 44), gene expression of globin genes was assessed. At day 14.5 of gestation, fetuses are undergoing a switch from the embryonic hemoglobin, solely produced by primitive erythrocytes, to the adult hemoglobin, produced by primitive and definitive erythrocytes (45, 46). The main difference between both forms of hemoglobin is their affinity for oxygen. During early development, oxygen levels are low due to limited vascularisation to ensure proper organogenesis, because at this time point the fetus is the most vulnerable for oxidative stress, which could lead to damage or disruption of the fetus (47, 48). Nevertheless, the fetus needs to subtract oxygen from the maternal blood. Therefore, in the early phase of pregnancy the fetus produces embryonic hemoglobin as it has a higher affinity for oxygen compared to adult hemoglobin present in the maternal blood (49, 50). However, once the utero-placental circulation is well established (between day 9.5 and 11 of gestation) (47) a switch to the adult hemoglobin occurs due to the increase in oxygen concentration (45, 46, 48). In addition, embryonic hemoglobin is less stable compared to adult hemoglobin (48) making it more prone to oxidation, resulting in the formation of methemoglobin, which is incapable of binding oxygen. Hence, embryonic hemoglobin also releases iron more easily from heme (51). As it has been shown that quercetin exposure results in the formation of methemoglobin by entering red blood cells (RBCs) and oxidizing the iron ion (15, 16), we expected to see an accelerated switch from the fetal to the adult hemoglobin in fetuses exposed to quercetin. Though the results were not significant, we did observe a trend in globin gene expression, namely the decrease in gene expression of embryonic globins in fetuses exposed to quercetin. However, the gene expression of adult globins remained unaltered while the switch from the primitive erythroid lineage towards the definitive erythroid lineage was accelerated due to increased quercetin intake by the mothers. This could indicate that, though iron levels were not significantly lower quercetin did chelate the iron delivered by the mother, making the amount of iron available for hemoglobin production limited. Moreover, these data also suggested that quercetin chelated the iron from embryonic hemoglobin, which is less stable, accelerating the switch from embryonic to adult hemoglobin. However, the level of adult hemoglobin was not elevated as the globin production is dependent on iron availability (52), which we suspected to be low. However, the accelerated switch in hemoglobin production seems reasonable as the switch in erythroid lineage was also accelerated in these mice, and RBCs from the definitive lineage mainly produce adult hemoglobin.

The amount of iron stored in the liver of adult offspring was much higher in mice prenatally exposed to quercetin compared to control animals. We assume that exposure to quercetin resulted in lower levels of available iron *in utero*, to which the fetus adapted. Once born, fetuses were exposed to normal levels of iron, because the chelating activity of quercetin ceased. However, due to this fetal programming towards a life with lower levels of iron, these levels exceeded the levels they perceived as normal. Therefore, pathways
were activated to cope with this “iron overload”. Hence, we found an increased gene expression of several interleukins and hepcidin, all involved in iron storage normally seen with anemia of chronic disease also known as ‘anemia of inflammation’. Interestingly, anemia is seen more frequently at advanced age and in people with cancer, where ‘anemia of inflammation’ accounts for 77 % of the underlying causes of anemia (53). In addition, a decreased gene expression of Steap4, involved in the iron uptake by cells (54), was found in bone marrow cells of mice prenatally exposed to quercetin. We assumed that this measure was taken to protect the bone marrow from excess iron and subsequent DNA damage.

These data suggested that although mice were adapted to an in utero situation, with scarcity of iron due to quercetin chelation, they did cope with the increased iron availability later in life. Moreover, they even decreased the risk on iron induced ROS formation, as a decrease in 8-oxo-dG levels was found for the liver of these mice. However, as gene expression of inflammation related pathways were induced in the absence of an inflammatory trigger, one could expect that these mice could react differently if inflammation would be triggered. As inflammation is involved in many chronic diseases, including cancer (33), one can hypothesize that although these animals seemed to be protected against oxidative stress induced diseases, an inflammatory stressor could alter this protective mechanism towards a harmful one, but this needs confirmation.

Quercetin as AhR agonist modifies xenobiotic metabolism

AhR-signaling in the liver is of major importance in determining the capacity to metabolize certain well known carcinogens. It therefore determines an individual’s risk to develop cancer after exposure to genotoxic compounds. We further elucidated the potential of quercetin exposure on carcinogen metabolism, more precisely on the metabolism of B[a]P (Chapter 6). B[a]P is know to be a potent mutagen and carcinogen when metabolically activated. This activation is performed by CYP1A1 and CYP1B1 (55, 56), which both have been shown to be modulated by quercetin. Moreover, quercetin can also modulate phase II enzymes (57-59). However, no straightforward effect of quercetin on phase I and II expression has been reported (56, 57, 60-62). Here, we showed that exposure to quercetin induced Cyp1a1 and Cyp1b1 gene expression in mice fetuses at day 14.5 of gestation. This increase could be due to the fact that CYPs are hemoproteins, containing heme-iron (63), which could be chelated by quercetin resulting in less CYP activity that needs to be compensated by an increase in gene expression. Another explanation is the fact that quercetin can increase the 17β-estradiol level, which is a known substrate for Cyp1b1 and Cyp1a1 (64). Moreover, AhR gene expression was not induced in these fetuses. However, as in the liver of developing mice the AhR mRNA and protein expression peaks between gestational day 14 and 16 (65), it may be that the effect of quercetin on AhR gene expression may not be visible at that time point. Furthermore, gene expression of Nqo1, Ugt1a6 and Gstp1 was also induced in fetuses exposed to quercetin. We suspect that this is the result of the activation of the Nrf2-pathway as all three genes are target genes of the transcription factor Nrf2 (66, 67). Indeed, Nrf2 gene expression was up-regulated in these fetuses (Chapter 4).

At 12 weeks of age, mice prenatally exposed to quercetin still had an up-regulation in the expression of Cyp1b1 in their liver, while the up-regulation of the other genes was not maintained throughout life. Interesting to see was that in adult mice, AhR gene
expression was increased, which could at least partly explain the increase in Cyp1b1 expression. We compared male and female littermates and found that female mice prenatally exposed to quercetin developed a more masculine profile regarding the phase I and II enzymes compared to control female mice. In rats it has also been shown that prenatal exposure to quercetin resulted in long-term alterations of CYP activity, predominantly in the female offspring. Here, the CYP profile of the female offspring also showed to be more masculine compared to control females. It was suggested that quercetin exerted these effects by regulating constitutive androstene receptor or Ah receptor (58). Indeed, AhR gene expression was slightly increased in female mice prenatally exposed to quercetin.

Gene expression of phase I and II enzymes demonstrated a different profile in the lung of 12 week old mice prenatally exposed to quercetin. Here phase II enzymes (Gstp1, Nqo1 and Ugt1a6) were mainly induced. The difference in tissue response to prenatal quercetin exposure could be due to the fact that the lung develops mainly in the final stages of pregnancy and even continues to develop after birth (68), while the liver is largely differentiated before birth (69). Hence, less gender effects were noticeable in the lung, which is in line with the fact that lung is not a main organ involved in estrogen metabolism. However, in fetuses at gestational day 14.5, increased gene expression of Nqo1 and Ugt1a6 was detected and was suggested to be the result of the activation of the Nrf2-pathway, as quercetin can also function as pro-oxidant (Chapter 4). As the lung is directly exposed to oxygen concentrations higher than in most tissues (33), a pre-emptive oxidative stress trigger in utero could result in the up-regulation of the Nrf2-pathway and therefore of phase II enzymes. However, as mentioned above, Nrf2-pathway was probably only modestly induced in the lung of these mice (Chapter 4).

Although prenatal exposure to quercetin resulted in an increased expression of phase I and II enzymes in liver and lung, differences in ex vivo B[a]P metabolism were only found in the lung of mice prenatally exposed to quercetin as they showed a decrease in the amount of B[a]P-9,10-dihydrodiol and B[a]P-7,8-dihydrodiol. Moreover, mice prenatally exposed to quercetin showed an increase in B[a]P metabolism. However, due to the high detoxification of B[a]P towards 3-hydroxy-B[a]P in all diet groups, no BPDE-induced DNA-adducts could be detected. However, as the lung is the primary target organ for airborne B[a]P the increased B[a]P metabolism and phase II gene expression suggests that prenatal exposure to quercetin could decrease the susceptibility to develop lung cancer in vivo.

Surprisingly, in case of the liver the ex vivo induction of BPDE DNA-adducts was decreased for mice prenatally exposed to quercetin, although they did not show a change in the rate of B[a]P metabolism or a changed profile of the 3 major B[a]P metabolites, including the 7,8-dihydrodiol of B[a]P which is thought to be the precursor of the ultimate genotoxic metabolite, BPDE. This suggests that prenatal exposure to quercetin results in the protection from B[a]P induced DNA damage in the liver, we suspect due to up-regulation of phase I enzymes. Although CYP1A1 and CYP1B1 are mainly thought to be important for metabolic activation of B[a]P, we suspect that they also contributed to the detoxification of B[a]P, as previously also has been suggested by Uno et al. (70).
Fetal programming is regulated via epigenetics

The changes in gene expression discussed in Chapter 3-6, as a result of in utero exposure to genistein or quercetin, are maintained throughout life. We therefore expected epigenetic mechanisms to be involved. Therefore, the induction of changes in methylation status of repetitive elements due to prenatal exposure to genistein or quercetin was investigated, as the mouse genome constitutes almost for 37.5% out of these repetitive elements (71). Results showed that that both flavonoids did not induce changes in global methylation (namely, methylation of SINEB1, SINEB2, LINE1, IAP, Major and Minor satellites) in the liver of fetuses at gestational day 14.5 (Chapter 3, 5, 6). However, when investigating methylation patterns in the bone marrow of 12 week old mice, an overall increase in methylation could be distinguished and this especially for SINEB1 and SINEB2 (Chapter 3, 5). Moreover, in liver and lung tissue of 12 week old mice prenatally exposed to genistein or quercetin mild hypomethylation of the repetitive elements SINEB1, SINEB2, and LINE1 occurred (Chapter 6). The fact that no changes in methylation could be distinguished in fetuses at day 14.5 of gestation could suggest that de novo methylation induced by flavonoids took place at a later time point in gestation or even after birth. This is plausible as during the late gestational and early postnatal period, tissue maturation can result in epigenetic modifications. Moreover, it has been suggested that transcriptional inactivity attracts de novo methylation while transcriptional activity can override DNA methylation, inducing developmental hypomethylation (72). Besides, the level of exposure to genistein and quercetin only increases throughout gestation, enhancing their effects. Prenatal exposure to genistein has previously been shown to alter gene expression by affecting methylation patterns, namely prenatal exposure of yellow agouti mice altered coat color and body weight of agouti mice by inducing hypermethylation of transposable repetitive elements upstream of the transcription start site of the *Agouti* gene (31). Hence, both genistein and quercetin have been shown to inhibit DNA methyltransferases, inducing hypomethylation, namely of hypermethylated tumor suppressor genes, to which their anticancer effects are ascribed (73, 74). However, prenatal exposure to flavonoids resulted in a tissue dependent effect on methylation, namely hypermethylation in case of the bone marrow and hypomethylation in case of liver and lung tissue, especially of SINE transcripts. During early embryogenesis SINE and LINE repetitive elements are normally expressed, after which their expression rapidly decreases with development. Therefore, SINEB1, SINEB2 and LINE1 expression later in life is associated with cell stress, for instance induced by DNA-damaging agents (75, 76), which we have shown in Chapter 2 quercetin and genistein are capable of due to their topoll inhibiting properties. As SINE and LINE expression are also associated with cancer (75, 76), this could suggest that an in utero flavonoid trigger can result in an increased silencing of SINEB1, SINEB2 and LINE1 to protect the genome from any future genomic instability.
Implications and future research

As this is only the beginning of understanding how maternal intake of genistein and quercetin can affect offspring’s risk on developing cancer later in life, further elaborate studies need to be performed:

- Concerning the epigenetic mechanisms behind the genistein and quercetin induced fetal programming. Moreover, the critical window of exposure should be assessed.
- Although genistein and quercetin both are flavonoids, they exert different effects. Therefore their specific actions should be further elucidated.
- At 12 weeks of age it seemed that prenatal exposure to genistein and quercetin overall had beneficial effects regarding cancer susceptibility. However, as these mice are relatively young, the true contribution of the adaptations made by the fetus regarding genistein and quercetin exposure *in utero* will not be visible at this age and additional studies should thus include aging mice. Moreover, the effects of fetal programming should also be investigated at a later time point in life, when these mice normally are subjected to adult chronic diseases. These chronic diseases could also be induced by for instance pro-inflammatory triggers.
- It would also be interesting to investigate what the effects of life-long exposure to both flavonoids would be regarding the cancer susceptibility.
- It would also be valuable to study the effects of prenatal exposure to genistein or quercetin on following generations. However, to examine the true transgenerational inheritance, the third generation, the first unexposed generation, needs to be examined, as the first generation is directly exposed to genistein or quercetin and the second generation results from gametes that are exposed to genistein or quercetin (Figure 1).

![Figure 1. Overview of transgenerational inheritance of effects induced by genistein or quercetin exposure.](image)

When summarizing the results as described in this thesis it can be concluded that prenatal exposure to quercetin and genistein resulted in altered fetal programming as compared to a non-supplemented diet during pregnancy. During gestation, when fetuses are directly exposed to both flavonoids, changes in expression of genes involved in antioxidant defense and carcinogen metabolism occurred, suggesting that these fetuses adapted to
the in utero environment. However, once born genistein and quercetin exposure ceased, but some changes in gene expression were maintained until adult life, while others were gained throughout life, showing that the offspring was trying to cope with its new ‘unexpected’ environment.

At the age of 12 weeks, prenatal exposure to genistein and quercetin seemed to be beneficial as these mice showed to have less oxidative stress induced DNA damage as a result of increased enzymatic antioxidant defense system and more efficient iron storage. It also seemed that they could better cope with B[a]P induced DNA-damage due to the up-regulation of phase I and II enzymes. Moreover, the increased methylation in certain repetitive elements suggested that these animals were more protected from genomic instability, overall suggesting they were less susceptible to develop cancer. On the other hand, prenatal exposure to genistein and quercetin induced \textit{Mll} translocations, increasing the risk on leukemia especially in mice with an impaired DNA repair. Additionally, some inflammatory cytokines were increased in their basal expression, which could affect the inflammatory response.

A general overview of the effects of prenatal genistein and quercetin exposure on the offspring’s risk to develop cancer is depicted in Figure 2.

![Figure 2](image-url)
References

Nederlandse samenvatting
Chronische ziektes die op volwassen leeftijd optreden, zoals kanker, cardiovasculaire en respiratoire aandoeningen zijn een grote last voor de gezondheid van de mens wereldwijd (1). Blootstelling aan genotoxische en mutagene stoffen lijkt een belangrijke rol te spelen in de ontwikkeling van dit soort ziektes (2-6). Van gezonde voeding wordt vermoed dat ze beschermen tegen deze genotoxische en mutagene stoffen en zo ook bescherming bieden tegen chronische ziektes en de gezondheid te bevorderen. Een voedingscomponent dat veel aandacht krijgt in verband met de behandeling en preventie van chronische ziektes zijn de flavonoïden (7-10). Flavonoïden bestaan uit een grote groep polyfenolen die wijdverspreid voorkomen in onze voeding (9), waardoor de gemiddelde inname varieert tussen 65 en 250 mg flavonoïden per dag (11). Quercetine is de meest voorkomende flavonoïd in ons dieet en wordt teruggevonden in uien, appels, thee en rode wijn (9, 12-14). Het is een zeer krachtige radicaalvanger en kan ook ijzer cheleren (15, 16). Genisteïne is ook een belangrijk flavonoïd dat voornamelijk wordt teruggevonden in sojabonen. Naast een antioxidant werking heeft het ook oestrogeen agonistische/antagonistische werkingen, afhankelijk van de situatie, als gevolg van structurele overeenkomsten met 17β-oestradiol (17, 18).

Aangezien flavonoïden momenteel geacht worden voordeling te zijn voor de gezondheid, zijn ze vrij verkrijgbaar als voedingssupplementen en dit in hoge dosissen, met een aanbevolen dagelijkse dosis tussen 1-2 gram (19, 20). Zorgwekkend is de toename in supplement inname door zwangere vrouwen. In de VS nemen 78 % van de zwangere vrouwen voedingssupplementen (21), waaronder foliumzuur. Nochtans verhoogt de inname van foliumzuur het risico op kanker bij volwassenen (22). Er is echter weinig bekend over de biologische werking van flavonoïden tijdens de zwangerschap en over de kort en/of lange termijn effecten die ze kunnen hebben op de gezondheid van het kind. Aangezien flavonoïden de placenta kunnen doorkruisen om zo te accumuleren in de foetus (23, 24), is het nodig onderzoek te verrichten naar de veiligheid van verhoogde flavonoïd inname tijdens de zwangerschap.

Flavonoïden tijdens de zwangerschap: Kinderleukemie

Een verhoogde flavonoïd inname wordt ook in verband gebracht met het ontstaan van kinderleukemie, omdat ze topoisomerase II kunnen remmen (25, 26) en zo dubbelstrengsbreuk in DNA en herschikingen van het mixed-lineage leukemia (MLL) gen kunnen induceren, wat veel voorkomt bij kinderleukemie (26, 27). In Hoofdstuk 2 werden Atm-ΔSRI heterozygote muizen gepaard om nakomelingen te verkrijgen met een verschillende genetische mogelijkheid om DNA schade te herstellen, namelijk Atm wildtype, Atm-ΔSRI heterozygote en Atm-ΔSRI mutante nakomelingen. Wij konden vaststellen dat prenatale blootstelling aan flavonoïden inderdaad Mll translocaties in het beenmerg van zowel wild-type als Atm-ΔSRI mutante muizen veroorzaakte. Bovendien waren Atm-ΔSRI mutante muizen gevoeliger voor het ontwikkelen van deze chromosomale afwijkingen. Ook werd aangetoond dat muizen met een slecht werkend DNA herstelmechanisme een verhoogd risico hadden op het ontwikkelen van andere aandoeningen buiten kinderleukemie, wanneer ze prenataal blootgesteld waren aan genisteïne. Dit geeft aan dat het DNA dubbelstrengsbreuk herstelmechanisme van belang is voor het behoud van de integriteit van het genoom in de ontwikkelende foetus.
De Atm-ΔSRI mutatie komt overeen met een van de meest voorkomende Atm mutaties teruggevonden in de mens. Atm-ΔSRI muizen hebben ook een fenotype dat verschilt van Atm knock-out muizen. Atm-ΔSRI mutant muizen hebben 50 % kans op het ontwikkelen van leukemie en lymfoma, zonder bijkomende blootstellingen (28). In onze studie lag de leeftijd waarop deze muizen tumoren ontwikkelden dramatisch lager wanneer ze prenataal blootgesteld waren aan genisteïne en quercetine, namelijk van een gemiddelde leeftijd van 18,6 maanden (28, 29) naar slechts 3 maanden. Ondanks dat het aantal dieren waarin leukemie vastgesteld kon worden tamelijk laag was in onze studie, toonden de Mll translocatie analyse wel aan dat muizen die prenataal blootgesteld waren aan een van beide flavonoïden een verhoogd risico liepen op het krijgen van kanker op latere leeftijd.

Flavonoïden tijdens de zwangerschap: Foetale programmering

Naast het direct verhogen van de gevoeligheid voor het ontwikkelen van kanker wordt van flavonoïden ook vermoed dat ze betrokken zijn bij ‘foetale programmering’. Dit concept houdt in dat de foetus zich tracht aan te passen aan ongunstige omstandigheden dat het tegentkomt in utero, wat kan resulteren in aanpassingen die schadelijk zijn wanneer deze omstandigheden niet overheersen tijdens het verdere leven (30). Dolinoy et al. (31) geeft een duidelijk voorbeeld van foetale programmering door aan te tonen dat agouti muizen die prenataal blootgesteld werden aan genisteïne een andere vachtkleur hadden, terwijl ze ook beschermd waren tegen obesitas op latere leeftijd, wat kenmerkend is voor agouti muizen. Deze effecten werden veroorzaakt door epigenetische veranderingen, namelijk door hypermethylatie van een repetitief element stroomopwaarts van de transcriptie start site van het Agouti gen dat resulteerde in de verminderde expressie van dit gen. De verandering in het DNA methylatie patroon tijdens de foetale ontwikkeling door blootstelling aan flavonoïden kan dus langdurige effecten hebben, omdat dit patroon doorgegeven wordt aan dochtercellen tijdens de celdeling.

Aanhouderende veranderingen in gen expressie

In Hoofdstuk 3 werd het effect van prenatale blootstelling aan genisteïne op gen expressie en globale methylatie van beenmerg cellen van 12 weken oude, mannelijke muizen onderzocht. Prenatale blootstelling aan genisteïne resulteerde overduidelijk in een verminderde expressie van oestrogeengevoelige genen en genen betrokken bij het remmen van de hematopoëse. Dit had als gevolg dat de erythropoëse en granulopoëse toenam in deze muizen. Het effect dat genisteïne uitoefende op de oestrogeengevoelige genen was min of meer verwacht, aangezien genisteïne structurele gelijkenissen heeft met 17β-oestradiol, waardoor het via de oestrogeenreceptor zijn effect kan uitoefenen (18). Daarnaast werd het effect van genisteïne op de hematopoëse ook teruggevonden door Zhou et al. (32), waar muizen voorbehandeld werden met genisteïne alvorens ze 7 dagen later aan een gehele lichaamsbestraling blootgesteld werden. De voorbehandeling met genisteïne had een beschermend effect op deze muizen doordat het de regeneratie van hematopoëtische stamcellen verbeterde. We vermoeden dat de
verandering in gen expressie in onze studie het resultaat is van epigenetische mechanismen, aangezien de repetitieve elementen een toename in methylatie vertoonden in het beenmerg van deze dieren.

Oxidatieve stress gerelateerde processen

Flavonoïden zijn voornamelijk gekend omwille van hun werking als antioxidant (9) en ze kunnen de placenta doorkruisen om zo de ontwikkelende foetus te bereiken. Daarom hebben wij onderzocht of prenatale blootstelling aan genisteïne of quercetine ook lange termijn effecten kon hebben op systemen die bijdragen aan de bescherming tegen oxidatieve stress, aangezien dit betrokken is bij het ontstaan van kanker (33). Hiervoor hebben we de antioxidant capaciteit van lever en long weefsel van volwassen, mannelijke muizen die prenataal blootgesteld werden aan genisteïne en quercetine, onderzocht in **Hoofdstuk 4**. Quercetine blootstelling tijdens de dracht resulteerde in een verhoogde expressie van genen die betrokken zijn bij het enzymatische antioxidant verdedigingssysteem van de lever van foetussen op dag 14,5 van de dracht. Vooral Nrf2, een belangrijke transcriptie factor die reageert op oxidatieve stress, toonde een verhoogde expressie bij blootstelling aan quercetine. Dit toont aan dat, ondanks quercetine’s eigenschappen als antioxidant, het waarschijnlijk een pro-oxidante werking uitoefende tijdens de in utero blootstelling. Pro-oxidante effecten zijn reeds eerder aangetoond voor quercetine (34, 35). Blootstelling aan genisteïne daarentegen had op dit moment van de dracht geen effect op het enzymatische antioxidant e verdedigingssysteem. Dit zou kunnen zijn doordat genisteïne een minder sterke pro-oxidant is of zelfs eerder een antioxidant werking had. Het is echter wel reeds aangetoond dat genisteïne het nucleaire transport en de degradatie van Nrf2 verhinderd (36), waardoor de verhoogde gen expressie overbodig is.

Op volwassen leeftijd vertoonde de muizen die prenataal blootgesteld werden aan genisteïne of quercetine nog altijd een verandering in de expressie van genen die betrokken zijn bij de enzymatische antioxidante verdediging van de lever. Dit suggereert dat de foetus zich aanpast aan de in utero omgeving, gecreéerd door de verhoogde aanlevering van genisteïne en quercetine door de moeder, en dat deze aanpassingen behouden blijven tijdens het leven. We onderzochten ook het effect van prenatale blootstelling aan genisteïne en quercetine op de non-enzymatische antioxidant e verdediging. Enkel prenatale blootstelling aan genisteïne had een effect op de non-enzymatische antioxidante capaciteit van de long. Oxidatieve stress-geïnduceerde DNA schade, namelijk directe oxidatie van het DNA (8-oxo-dG levels) of indirecte DNA schade geïnduceerd door het lipidenperoxidatie product MDA (M₁dG) werd ook gemeten in de lever en longen van volwassen muizen die prenataal blootgesteld werden aan quercetine of genisteïne. Zowel prenatale blootstelling aan genisteïne, maar vooral aan quercetine, resulteerde in minder oxidatieve stress geïnduceerd DNA schade, maar dit enkel in de lever van de dieren. Aangezien we in de lever voornamelijk veranderingen in gen expressie van de enzymatische antioxidanten vonden, lijkt het erop dat het preventief stimuleren van het enzymatische antioxidant verdedigingssysteem voordelig en beschermend werkt tegen oxidatieve DNA schade in de lever van volwassen muizen die prenataal blootgesteld waren aan genisteïne, maar vooral aan quercetine.
Dit effect was weefselspecifiek, aangezien in de long enkel bescheiden effecten in gen expressie van de enzymatische antioxidanten terug te vinden waren ten gevolge van toevoeging van flavonoïden aan het dieet van de moeder en de non-enzymatische antioxidanten verdedigingsysteem enkel toegenomen was ten gevolge van blootstelling aan genisteïne, in vergelijking met de lever. Daarom dat de beperkte, niet statistisch significante, daling in 8-oxo-dG en M7dG in de long van volwassen muizen die prenataal blootgesteld werden aan genisteïne of quercetine te verwachten was.

Deze studie toonde aan dat, ondanks het feit dat genisteïne en quercetine voornamelijk gekend zijn omwille van hun antioxidante eigenschappen, ze waarschijnlijk als pro-oxidanten fungeerden tijdens de dracht, zoals ook al eerder gemeld werd (35, 37-40). Dit is aannemelijk aangezien ze accumuleren in de foetus (23, 24) terwijl een antioxidante werking optreed bij lagere concentraties. Deze studie toonde ook aan dat genisteïne en quercetine niet hetzelfde effect uitoefenden als we kijken naar de lange termijn veranderingen in het enzymatische antioxidante verdedigings systeem. Het effect van quercetine was meer uitgesproken dan dat van genisteïne. Hoewel het al eerder was aangetoond dat blootstelling aan genisteïne en quercetine op volwassen leeftijd beschermt tegen oxidatieve stress (41, 42), hebben wij nu aangetoond dat in utero blootstelling ook voor bescherming zorgt op volwassen leeftijd. Het moet echter nog vastgesteld worden of dit voordelige effect kan opwegen tegen de oxidatieve stress veroorzaakt in utero.

De ijzer chelende eigenschap van quercetine als programmeringsstimulus

Quercetine is een gekende, zeer krachtige ijzer chelator (15, 16). Dit is de rede dat het effect van prenatale blootstelling aan quercetine op de ijzerhuishouding onderzocht werd tijdens de foetale ontwikkeling en op volwassen leeftijd in Hoofdstuk 5. Eerst werd onderzocht of in utero blootstelling aan quercetine wel degelijk resulteerde in ijzer chelatie, maar op dag 14,5 van de dracht was er echter geen verschil in de totale hoeveelheid ijzer meetbaar in het vruchtwater. Aangezien het merendeel van het ijzer gebruikt wordt voor hemoglobine vorming (43, 44) werd de gen expressie van globine genen bepaald. Op dag 14,5 van de dracht ondergaan foetuses een omschakeling van de embryonische vorm van hemoglobine, dat enkel gevormd wordt door primitieve rode bloedcellen (RBCs), naar de volwassen vorm van hemoglobine, dat gevormd wordt door zowel de primitieve als de definitieve RBCs (45, 46). Het belangrijkste verschil tussen beide vormen van hemoglobine is hun affiniteit voor zuurstof. Tijdens de vroege ontwikkeling zijn de zuurstof niveaus laag door de beperkte doorbloeding, om een optimale organontwikkeling te garanderen. Dit is de periode waarin de foetus het meest kwetsbaar is voor oxidatieve stress, wat kan leiden tot beschadiging van de foetus en vroegtijdig beëindigen van de zwangerschap (47, 48). Niettemin moet de foetus ook zuurstof krijgen via het bloed van de moeder. Daarom vormt de foetus in de eerste fase van de zwangerschap embryonische hemoglobine, welke een hogere affiniteit voor zuurstof heeft in vergelijking met de adulte hemoglobine, wat gevormd wordt door de moeder (49, 50). Eens de utero-placentale circulatie gevormd is (tussen dag 9,5 en 11 van de dracht) (47), komt er een overschakeling naar de adulte hemoglobine, als gevolg van de toename in zuurstof concentratie (45, 46, 48). Maar de embryonische hemoglobine is ook minder stabiel in vergelijking met de adulte hemoglobine (48), waardoor het gevoeliger is voor oxidatie, wat resulteert in de
vorming van methemoglobine dat niet in staat is zuurstof te binden. Daarbij laat embryonische hemoglobine ook makkelijker ijzer vrij van zijn heem groep (51). Aangezien het aangetoond is dat blootstelling aan quercetine leidt tot de vorming van methemoglobine, doordat quercetine de RBCs ingaat en het ijzer ion oxideert (15, 16), verwachten wij ook een versnelde overgang van embryonische naar adulte hemoglobine waar te nemen bij blootstelling aan quercetine. Ondanks dat de resultaten niet significant waren, zagen we toch een trend in de expressie van de globine genen, namelijk een vermindering in gen expressie van de embryonische globines in foetussen die blootgesteld waren aan quercetine. De gen expressie van de adulte globines was echter onveranderd, terwijl de overgang van de primitieve RBC lijn naar de definitieve RBC lijn versneld was ten gevolg van de verhoogde inname van quercetine door de moeders. Dit kan betekenen dat ondanks dat de ijzer niveaus niet significant afgenomen waren, quercetine toch het ijzer dat geleverd werd door de moeder cheleerde, waardoor er minder ijzer beschikbaar was voor de vorming van hemoglobine. Daarbij doet deze data ook vermoeden dat quercetine het ijzer van de embryonische hemoglobine cheleerde, omdat deze minder stabiel is, waardoor de overgang van embryonische naar adult hemoglobine versneld werd. Er was echter geen verandering in de hoeveelheid adulte hemoglobine detecteerbaar. Dit kan verklaard worden doordat de globine productie afhankelijk is van de hoeveelheid beschikbaar ijzer (52), waarvan wij vermoeden dat er minder beschikbaar was. Desondanks lijkt de versnelde overgang van embryonisch naar adult hemoglobine aannemelijk aangezien de overgang in RBC lijn ook versneld was in deze muizen en RBCs van de definitieve lijn voornamelijk adult hemoglobine produceren.

De hoeveelheid ijzer dat opgeslagen was in de lever van volwassen nakomelingen lag veel hoger in muizen die prenataal blootgesteld waren aan quercetine in vergelijking met controle dieren. Wij vermoeden dat de foetus zich aangepast heeft aan de lagere hoeveelheden bruikbaar ijzer waaraan het in utero blootgesteld was door de chelatie van quercetine. Eens geboren worden de foetussen blootgesteld aan een normaal ijzer niveau, aangezien de chelering de werking van quercetine wegvalt. Doordat deze foetussen echter geprogrammeerd werden voor een leven met een laag ijzer niveau voelden deze niveaus aan alsof ze de normale waarden overschreden. Hierdoor werden pathways geactiveerd om deze ‘ijzer overlast’ te verwerken. We vonden ook een verhoogde gen expressie terug voor verschillende interleukines en hepcidin die allemaal betrokken zijn bij de opslag van ijzer wanneer ‘anemie van chronische ziekten’, ook wel ‘inflammatoire anemie’ genoemd, optreedt. Interessant om te weten is dat anemie vaker voorkomt op oudere leeftijd en bij personen die lijden aan kanker, waarvan ‘inflammatoire anemie’ meetelt voor 77 % van de onderliggende oorzaken van de anemie (53). In beenmerg cellen van muizen die prenataal blootgesteld werden aan quercetine werd ook een daling teruggevonden in de gen expressie van Steap4, wat normaal betrokken is bij de opname van ijzer door cellen (54). Wij vermoeden dat deze maatregel genomen was om het beenmerg te beschermen tegen een overmaat aan ijzer en de DNA schade die hierdoor veroorzaakt kan worden.

Deze data doet vermoeden dat de nakomelingen konden omgaan met de toename in beschikbaar ijzer tijdens hun leven, ondanks dat ze zich hadden aangepast aan de in utero omstandigheden, waar ijzer schaars was door de chelatie door quercetine. Sterker nog, er werden minder reactieve zuurstof soorten (ROS) gevormd door ijzer aangezien
lagere 8-oxo-dG levels teruggevonden werden in de lever van deze muizen. Maar omdat de expressie van genen betrokken bij inflammatie ook verhoogd was in afwezigheid van een inflammatoire stimulus, zou het kunnen dat deze muizen anders zullen reageren als inflammatie zou plaats vinden. Aangezien inflammatie betrokken is bij vele chronische ziektes, waaronder kanker (33), lijkt het erop dat, ondanks dat deze dieren beschermd zijn tegen oxidatieve stress gerelateerde ziektes, een inflammatoire stimulus dit beschermend mechanisme misschien kan veranderen in een schadelijk mechanisme. Dit moet echter nog bevestigd worden.

Quercetine als AhR agonist wijzigt het xenobiotisch metabolisme

AhR-signalering in de lever speelt een belangrijke rol in het metabolisme van bepaalde, gekende carcinogenen. Zo bepaalt het het risico van een individu op het ontwikkelen van kanker na blootstelling aan genotoxische stoffen. Daarom hebben wij uitgezocht of blootstelling aan quercetine het carcinogeen metabolisme kon beïnvloeden, meer bepaald het metabolisme van B[a]P (Hoofdstuk 6). B[a]P is een gekend, krachtig mutageen en carcinogeen dat metabolisch geactiveerd moet worden. Deze activatie wordt uitgevoerd door CYP1A1 en CYP1B1 (55, 56), die beiden gereguleerd kunnen worden door quercetine. Quercetine kan zelfs fase II enzymen reguleren (57-59). Desondanks is er geen eenduidig effect van quercetine op fase I en II enzyme expressie gemeld (56, 57, 60-62). In deze studie toonden we aan dat blootstelling aan quercetine Cyp1a1 en Cyp1b1 gen expressie verhoogde in foetussen op dag 14,5 van de dracht. Aangezien CYPs hemoproteïnes zijn, die ijzer bevatten in hun heemgroep (63), kan het zijn dat de toename in gen expressie het resultaat is van de chelerende werking van quercetine. Dit kan namelijk resulteren in een mindere CYP activiteit wat gecompenseerd wordt door een toename in gen expressie. Een andere verklaring kan zijn dat quercetine het 17β-oestradiol niveau verhoogt, wat ook een substraat is voor Cyp1b1 en Cyp1a1 (64). AhR gen expressie was bovendien niet verhoogd in foetussen. Dit kan zijn omdat in de lever van ontwikkelende muizen foetussen de AhR mRNA en proteïne expressie een piek kent tussen dag 14 en 16 van de dracht (65), waardoor het effect van quercetine op de AhR gen expressie misschien nog niet zichtbaar is op dit tijdstip. Daarbuiten was de gen expressie van Nqo1, Ugt1a6 and Gstp1 wel verhoogd in foetussen die blootgesteld waren aan quercetine. Wij vermoeden dat dit het resultaat is van de activatie van het Nrf2-pathway, aangezien deze 3 genen doelgenen zijn van de transcriptie factor Nrf2 (66, 67). Nrf2 gen expressie was inderdaad verhoogd in foetussen blootgesteld aan quercetine (Hoofdstuk 4).

Op 12 weken vertoonde de muizen die prenataal blootgesteld waren aan quercetine nog altijd een verhoogde expressie van Cyp1b1 in hun lever, terwijl de verhoogde expressie van de overige genen niet behouden bleef over tijd. Interessant om te zien was dat in volwassen dieren de gen expressie van AhR verhoogd was, wat de toename in Cyp1b1 gen expressie kan verklaren. Wanneer mannelijke en vrouwelijke muizen van eenzelfde nest met elkaar vergeleken werden, vonden we dat vrouwelijke muizen die prenataal blootgesteld waren aan quercetine een mannelijker fase I en II enzyme profiel ontwikkelden in vergelijking met vrouwelijke controle muizen. In ratten werd ook aangetoond dat prenatale blootstelling aan quercetine lange termijn veranderingen in CYP activiteit veroorzaakte, voornamelijk in de vrouwelijke nakomelingen. Het CYP
profiel van de vrouwelijke nakomelingen toonde ook in dit geval een mannelijker profiel in vergelijking met controle vrouwen. Er werd vermoed dat quercetine zijn effecten uitoefende via de regulatie van de androstene of Ah receptor (58). Inderdaad, AhR gen expressie was licht verhoogd in vrouwelijke muizen die prenataal blootgesteld waren aan quercetine.

Gen expressie van fase I en II enzymen toonde een ander profiel in de longen van 12 weken oude muizen die prenataal blootgesteld waren aan quercetine. In dit geval was de gen expressie van de fase II enzymen (Gstp1, Nqo1 and Ugt1a6) verhoogd. Het feit dat beide weefsels anders reageren op prenatale blootstelling aan quercetine kan verklaard worden doordat de longen zich voornamelijk ontwikkelen tijdens de laatste fase van de zwangerschap en zelfs nog verder ontwikkelen na de geboorte (68), terwijl de lever grotendeels gevormd is voor de geboorte (69). De minder aanwezige geslachtseffecten in de long kunnen ook het gevolg zijn van de minder belangrijke rol die de long speelt in het metabolisme van oestrogenen. Desondanks vertoonden de foetussen op dag 14,5 van de dracht wel een toename in Nqo1 en Ugt1a6 gen expressie, waarvan wij vermoeden dat dit het resultaat was van de activering van het Nrf2-pathway, aangezien quercetine ook als pro-oxidant kan werken (Hoofdstuk 4). Aangezien de long blootgesteld wordt aan hogere zuurstof concentraties in vergelijking met andere weefsels (33) kan een preventieve oxidatieve stress stimulus in utero resulteren in de verhoogde expressie van de Nrf2-pathway en zo ook van de fase II enzymen. Maar, zoals hierboven aangegeven, was het Nrf2-pathway slechts matig geïnduceerd in de longen van muizen die prenataal blootgesteld waren aan quercetine (Hoofdstuk 4).

In de lever was verrassend genoeg te zien dat ex vivo inductie van BPDE DNA-adducten verminderd was wanneer muizen prenataal blootgesteld waren aan quercetine. Desondanks was er geen verandering in de snelheid waarmee B[a]P gemetaboliseerd werd of in het profiel van de 3 belangrijkste B[a]P metabolieten, waaronder de 7,8-dihydrodiol van B[a]P wat een voorloper is van de uiteindelijke genotoxische metaboliet BPDE. Dit wijst erop dat prenatale blootstelling aan quercetine resulteert in de bescherming tegen B[a]P geïnduceerde DNA schade in de lever, waarschijnlijk door een verhoogde expressie van fase I enzymen. Ondanks dat CYP1A1 en CYP1B1 belangrijk zijn voor de activering van B[a]P, vermoeden wij dat ze ook bijdragen aan B[a]P detoxificatie, wat voorheen ook voorgesteld werd door Uno et al. (70).
Foetale programmering wordt gereguleerd via epigenetica

De verandering in gen expressie ten gevolge van in utero blootstelling aan genisteïne of quercetine, besproken in Hoofdstuk 3-6, werd behouden doorheen het leven van de muis. Wij vermoeden dus dat epigenetische mechanismen betrokken zijn. Daarom werden in dit onderzoek de veranderingen in methylatie status van repetitieve elementen ten gevolge van prenatale blootstelling aan genisteïne en quercetine nagegaan, aangezien het muizen genoom voor 37,5 % uit repetitieve elementen bestaat (71). De resultaten toonden aan dat beide flavonoïden geen veranderingen in globale methylatie (namelijk methylatie van SINEB1, SINEB2, LINE1, IAP, major en minor satellieten) veroorzaakten in de lever van foetussen op dag 14,5 van de dracht (Hoofdstuk 3, 5, 6). Wanneer echter het methylatie patroon van het beenmerg van 12 weken oude muizen onderzocht werd, was een algemene toename in methylatie zichtbaar, vooral in geval van SINEB1 en SINEB2, wanneer muizen prenataal blootgesteld waren aan genisteïne of quercetine (Hoofdstuk 3, 5). In lever en long weefsel van 12 weken oude muizen die prenataal blootgesteld waren aan genisteïne of quercetine bleken de repetitieve elementen SINEB1, SINEB2 en LINE1 licht gehypomethylleerd te zijn (Hoofdstuk 6). Het feit dat er nog geen verandering in methylatie vastgesteld kon worden in foetussen op dag 14,5 van de dracht kan betekenen dat de novo methylatie veroorzaakt door flavonoïden op een later tijdstip in de dracht of zelfs na de geboorte pas plaatsvindt. Dit is aannemelijk aangezien tijdens de laatste fase van de dracht en tijdens de vroege postnatale periode weefsel maturatie plaatsvindt, waardoor epigenetische modificaties plaatsvinden. Bovendien wordt beweerd dat transcriptionele inactivatie de novo methylatie aantrekt, terwijl transcriptionele activiteit de novo methylatie kan uitschakelen, met het laatste resulterend in hypomethylatie tijdens de foetale ontwikkeling (72). Daarbij neemt het niveau van blootstelling aan genisteïne en quercetine ook enkel toe doorheen de dracht, waardoor hun effect enkel versterkt wordt.

Eerder is al aangetoond dat prenatale blootstelling aan genisteïne de gen expressie kan veranderen door het methylatie patroon te beïnvloeden. Meer bepaald gele agouti muizen die prenataal blootgesteld waren aan genisteïne vertoonden een verandering in vachtkleur en lichaamsgewicht doordat een repetitief element stroomopwaarts van de transcriptie start site van het Gen agouti gegehypermethylleerd was (31). Daarbij is voor zowel genisteïne als quercetine aangetoond dat ze in staat zijn DNA methyltransferases te remmen om zo hypomethylatie te veroorzaken, meer bepaald van gegehypermethylerde tumor suppressor genen, waaraan hun beschermend effect tegen kanker ook wordt toegeschreven (73, 74). Er is echter ook een weefsel effect zichtbaar wat de methylatie betreft. Hypermethylatie komt voor in het geval van het beenmerg terwijl de lever en long hypomethylatie ondergaan, met name de SINE transcripten. In het begin van de embryogenese worden SINE en LINE repetitieve elementen normaal uitgedrukt, waarna hun expressie snel afneemt. Naderhand wordt de expressie van SINEB1, SINEB2 en LINE1 geassocieerd met cellulaire stress. Dit kan veroorzaakt worden door DNA beschadigende stoffen (75, 76) zoals genisteïne en quercetine, aangezien zij een topoïsomerase II remmende werking hebben, wat aangetoond werd in Hoofdstuk 2. Aangezien SINE en LINE expressie geassocieerd is met kanker (75, 76) kan dit betekenen dat een flavonoïden stimulus in utero SINEB1, SINEB2 en LINE1 expressie kan onderdrukken om zo te beschermen tegen genoom instabiliteit op latere leeftijd.
Implicaties en verder onderzoek

Omdat dit slechts het begin is van inzicht te verkrijgen in hoe genisteïne en quercetine inname door de moeder een effect kan hebben op het risico van de nakomelingen om kanker te ontwikkelen op latere leeftijd, moeten verdere studies uitgevoerd worden:

- Betreffende het epigenetische mechanisme dat betrokken is bij de genisteïne en quercetine veroorzaakte foetale programmering. De ‘critical window’ van de blootstelling moet achterhaald worden.
- Ondanks dat genisteïne en quercetine beide flavonoïden zijn, oefenen ze toch verschillende effecten uit. Daarom moet hun specifieke werking verder onderzocht worden.
- Als de muizen 12 weken oud zijn, lijkt het alsof prenatale blootstelling aan genisteïne en quercetine over het algemeen voordelige effecten heeft veroorzaakt ten opzichte van de gevoeligheid voor kanker. Deze muizen zijn echter nog relatief jong, waardoor de werkelijke bijdrage van de aanpassingen gemaakt door de foetus als reactie op de in utero blootstelling aan genisteïne en quercetine misschien nog niet zichtbaar zijn op deze leeftijd. Daarom dat toekomstige studies op oudere muizen uitgevoerd moeten worden. Onderzoek naar het effect van foetale programmering zou ook op latere leeftijd moeten gebeuren, wanneer deze muizen te maken krijgen met chronische ziektes. Deze chronische ziektes zouden ook geïnduceerd kunnen worden aan de hand van pro-inflammatoire stimuli.
- Het zou ook interessant zijn te kijken naar het effect van levenslange blootstelling aan genisteïne en quercetine met betrekking tot de gevoeligheid voor het ontwikkelen van kanker.
- Het zou ook waardevol zijn te kijken naar het effect van prenatale blootstelling aan genisteïne en quercetine in volgende generaties. Echter, om de werkelijke erfelijkheid te bepalen, zou de derde generatie, de eerste niet blootgestelde generatie, onderzocht moeten worden. De eerste generatie is namelijk direct blootgesteld geweest aan genisteïne of quercetine, terwijl de tweede generatie ontstaat uit voortplantingscellen die blootgesteld zijn aan genisteïne of quercetine (Figuur 1).

Figuur 1. Overzicht van hoe de effecten geïnduceerd door genisteïne of quercetine blootstelling overgeërfd kan worden door volgende generaties.
Wanneer alle resultaten beschreven in deze thesis opgesomd worden, kan geconcludeerd worden dat prenatale blootstelling aan quercetine en genisteïne de foetale programmering veranderd in vergelijking met een niet-gesupplementeerd dieet tijdens de zwangerschap.

Tijdens de dracht, wanneer de foetussen direct blootgesteld zijn aan flavonoïden, treden veranderingen op in de gen expressie van genen die betrokken zijn bij het antioxidante verdedigingssysteem en bij het carcinogeen metabolisme. Dit doet vermoeden dat foetussen zich aanpasten aan de in utero omgeving. Eens geboren viel de blootstelling aan genisteïne en quercetine weg. Sommige veranderingen in gen expressie bleven echter behouden tot op volwassen leeftijd, terwijl andere verkregen werden doorheen het leven, wat erop wijst dat de nakomelingen zich probeerden aan te passen aan de nieuwe ‘onverwachte’ omgeving.

Op de leeftijd van 12 weken lijkt het dat prenatale blootstelling aan genisteïne en quercetine voordelig blijkt te zijn, aangezien de muizen minder oxidatieve stress geïnduceerde DNA schade hadden ten gevolge van een verhoogde enzymatische antioxidante verdedigingssysteem en omdat ze op een meer efficiëntere manier ijzer opslagen. Het lijkt ook dat ze onder deze condities beter overweg konden met B[a]P geïnduceerde DNA schade door de verhoogde expressie van fase I en II enzymen. Daarbij vertoonden deze muizen ook een verhoogde methylatie van bepaalde repetitieve elementen dat erop wijst dat deze dieren meer beschermd waren tegen genoom instabiliteit, waardoor ze minder gevoelig leken voor het ontwikkelen van kanker. Aan de andere kant veroorzaakte prenatale blootstelling aan genisteïne en quercetine ook Mll translocaties waardoor het risico op leukemie verhoogd was, zeker voor muizen met een beperkt DNA herstel. Daarbij was ook de basale expressie van een aantal inflammatoire cytokines verhoogd, wat de inflammatoire respons kan beïnvloeden.

Een algemeen overzicht van het effect van prenatale blootstelling aan genisteïne en quercetine op het risico voor de nakomeling om kanker te ontwikkelen, wordt weergegeven in Figuur 2.

![Figuur 2. Algemeen overzicht van het effect van prenatale blootstelling aan genisteïne en quercetine op het risico voor de nakomeling om kanker te ontwikkelen beschreven in deze thesis.](image)

