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Preface

Memory is fundamental to natural cognition. Everything we perceive and every
action we perform is influenced by our previous experiences that are laid down in
various forms in memory. As a psychology student I became fascinated with the
wide-ranging capacities of natural memory. Throughout our lives, we continuously
acquire new information which is integrated effortlessly with previously learned infor-
mation stored in memory. In sharp contrast, neurally inspired connectionist models
of memory are severely limited in their storage capacity; new information frequently
overwrites memory containing previously learned information. Neuropsychological,
physiological, and behavioural studies suggest that the brain is able to deal with
the accumulation of an almost endless number of memories by gradually consoli-
dating newly acquired memories into long-term memory during sleep. In my M.Sc.
research, I studied a computational model that simulated the memory processes in
operation during the various stages of sleep. There, I found that the model was able
to mimic some of the basic characteristics of memory consolidation on the basis of
a restricted set of highly simplified input patterns. Obviously, these patterns are
unrepresentative for the complex patterns of natural environmental input.

Inspired by the ability of human memory to deal with an enormous amount of
highly complex natural sensory input, I decided to pursue a Ph.D. study at Maas-
tricht University examining models of memory in a realistic environment. Soon I
discovered that despite the vast volume of research in the domain of cognitive mod-
elling, few models have been developed that meet natural environmental demands.
The research presented in this thesis extends the memory models from the compu-
tational psychology tradition to enable the coping with natural input. The result
is a situated computational memory model that provides an initial step towards a
plausible model of natural cognition.

For the accomplishment of this scientific work I received support from many
people who deserve my sincerest acknowledgements. First of all, I would like to
thank my supervisors Jaap Murre, Eric Postma, and Jaap van den Herik. Their
creative, optimistic, and thorough guidance was essential to this thesis. Next, many
colleagues and friends encouraged me through inspiring discussions and by creating
a socially enjoyable working environment. I would like to thank Michel van Dartel,
Ben Torben-Nielsen, Rens Kortmann, Guido de Croon, Sander Spek, Sjoerd Bakker,
Steven de Jong, Marc Ponsen, Jahn Saito, Igor Berezhnoy, Evgueni Smirnov, Guil-
laume Chaslot, and Andra Waagmeester. Furthermore, I owe many thanks to Ida
Sprinkhuizen-Kuyper and Niek Bergboer for sharing their mathematical insights,
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to Jeroen Donkers for his LaTeX support, to Peter Geurtz for his technical assis-
tance, and to Joke Hellemons and the people from the secretariat for their help with
administrative matters.

Over the years, I was fortunate to be surrounded by several people that helped
me relax and focus on the important things in life. As a significant supplement to
those already mentioned, I would like to give my thanks and appreciation to Judith
te Brake, Linda Daas, Marieke Lansbergen, Jaimie Luermans, and Esther Vermeer.
In particular, I would like to express my gratitude to Simon Muller for his love and
support. Finally, my respect and thankfulness go out to my parents and brothers
who provided me with their unconditional support.

Joyca Lacroix
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Chapter 1

Introduction

Since the early days of the cognitive sciences, theories of cognitive functions have
been framed in terms of computational models. The two main advantages of compu-
tational cognitive models are: (1) that they enable the fully transparent specification
of the computations that underlie the different cognitive processes and their inter-
actions, and (2) that they allow for the simulation and prediction of behavioural
responses in various experimental situations. Computational cognitive models bene-
fit from the abstraction of cognitive processes to the level of computations. However,
the abstraction comes at a cost. The cognitive processes operate on symbols rather
than real-world input. For instance, a model of memory for images may represent an
image of a chair by a proposition (see, e.g., Anderson, 1993) or a binary or discrete
valued vector (see, e.g., Rumelhart, McClelland, and The PDP Research Group,
1986; Shiffrin and Steyvers, 1997). Virtually all present-day cognitive models are
disconnected from the real world because they rely on highly simplified representa-
tions of the visual input (but see Kohonen, Oja, and Lehtiö, 1981; Cottrell, Bartell,
and Haupt, 1990, for notable exceptions). In this thesis we deal with the main lim-
itation of computational cognitive models which is their lack of a connection with
the real world.

In section 1.1, we provide an overview of the development of computational
memory modelling throughout the years. Subsequently, in section 1.2, the problem
statement and the research questions are formulated. This is followed, in section
1.3, by a description of the research methodology that was applied to address the
problem statement. Finally, section 1.4 presents an outline of the thesis.

1.1 Computational memory modelling

The development of computational memory modelling can be characterized by three
types of models: the data-description models, the mechanism-based models, and the
situated models. The data-description models can be considered as the first compu-
tational models. They comprised straightforward mathematical descriptions of be-
haviourally obtained data from learning and memory experiments (e.g., Ebbinghaus,

1



2 Introduction

1885/1964; Thorndike, 1913)1. With the advent of the computer and the cognitive
sciences, mechanism-based models became widespread. These models were more
elaborate, describing the mechanisms and making specific predictions for new situa-
tions (e.g., Raaijmakers and Shiffrin, 1981; Eich, 1982; Murdock, 1982; Shiffrin and
Steyvers, 1997). Situated models represent a recent modelling trend that attempts
to take realistic environmental demands into account.

Below, we discuss the data-description models (1.1.1), the mechanism-based
models (1.1.2), and the situated models (1.1.3) in more detail.

1.1.1 Data-description models

Ebbinghaus (1885/1964) and Thorndike (1913) performed the first endeavours to
gain insight into learning and memory by describing behaviourally obtained data
from memory tasks in mathematical terms. In a series of learning and memory
studies, Ebbinghaus (1885/1964) obtained data about the learning and forgetting
of items on a study list as a function of (1) the retention interval, (2) the amount
and temporal distribution of study time, and (3) the serial position of the item on
the study list. Subsequently, he attempted to capture the results in mathematical
descriptions such as the forgetting curve, the learning curve, and the serial position
curve (Ebbinghaus, 1885/1964).While Ebbinghaus (1885/1964) focussed mainly on
the retention of information, the learning and memory experiments performed by
Thorndike (1913) addressed the effect of reward on producing a particular response
in a distinctive situation and the degree of transfer between learning trials. In a
similar way as Ebbinghaus, Thorndike (e.g., 1913) tried to capture his experimental
results on learning in mathematical descriptions. He proposed different types of
learning curves for trial-and-error learning and learning based on insights.

The data-description models developed by Ebbinghaus and Thorndike provided
the first formal models of memory in cognitive psychology. The advantage of the
data-description models is that they give precise descriptions of the relation be-
tween the examined memory characteristic and the manipulated variable. The main
drawback of the data-description models is that they do not provide insight into
the mechanisms underlying the described data. Consequently, these models are of
limited value for making predictions for new situations (Raaijmakers and Shiffrin,
2002). A new type of computational memory models addressed this limitation by
focussing more on the underlying memory mechanisms.

1.1.2 Mechanism-based models

The mechanism-based models deal with the main limitation of the data-description
models by attempting to simulate the memory mechanisms underlying performances
on memory tasks. Mechanism-based models formalize and simulate the dynamics

1It should be noted that sometimes a distinction is made between learning models that con-
centrate on what is retained and memory models that focus somewhat more on what is forgotten.
However, it is extremely difficult to distinguish the first from the latter as most models describe
the combination of learning and memory. Therefore, we discuss the models that were originally
called learning models along with the memory models.
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of (one or more of) the different mechanisms underlying memory. Memory pro-
cesses are conceived of as computations on a multi-dimensional representation space.
Item representations are formalized as points (or vectors) in the multi-dimensional
space, the dimensions of which correspond to various features of the items. Exam-
ples of mechanism-based models include the Sam model (Raaijmakers and Shiffrin,
1981; Gillund and Shiffrin, 1984), the Todam model (Murdock, 1982), the Charm
model (Eich, 1982; Eich, 1985), the Matrix model (Pike, 1984), the Minerva2
model (Hintzman, 1986), the Rem model (Shiffrin and Steyvers, 1997), the model of
differentiation (McClelland and Chappell, 1998), and the Bcdmem model (Dennis
and Humphreys, 2001). The mechanism-based models elaborate on the early data-
description models by describing the storage and retrieval processes quite precisely.
Therefore, these models are suitable to make predictions for various situations. For
example, the Rem model (Shiffrin and Steyvers, 1997) has been successfully ap-
plied to a range of different memory tasks such as old-new recognition (Shiffrin
and Steyvers, 1997), perceptual identification (Schooler, Shiffrin, and Raaijmakers,
2001), associative recognition (Criss and Shiffrin, 2004), and judgements of frequency
(Malmberg, Holden, and Shiffrin, 2004). Despite these successes, the mechanism-
based models suffer from an important limitation. They lack a connection with the
real world, because they fail to explain how sensory input is translated into memory
representations. Rather than incorporating a perceptual mechanism to transform
real-world input into representations, the mechanism-based memory models assume
a predefined artificial representation space. In such a space, representations are
predefined in terms of abstract features or in terms of other representations, rather
than derived from the physical features of real-world stimuli themselves.

The mechanism-based models can be said to descend from two closely related
traditions that enjoy a long-standing support in the field of cognitive psychology,
the information-processing approach (e.g., Lindsay and Norman, 1977) and the cog-
nitivist approach (e.g., Fodor, 1980). Inspired by the invention of the computer,
these approaches drew a parallel between a natural cognitive system and a com-
puter, where, crudely speaking, the brain was considered as the hardware and the
mental processes as the software. In order to understand mental processes, the
information-processing and cognitivist approaches disregard the relations with the
real world (Fodor, 1980). They claim that the processes can be understood best
by abstracting away from the hardware (i.e., the brain and also the body) and the
environment in which it is embedded (Fodor, 1980). The idea to treat cognition
as internal computation that is isolated from a body and its environment is now
losing support (e.g., Clark, 1999; Roy, 2005a; Pecher and Zwaan, 2005), because
it is hampered by two interrelated problems: the symbol grounding problem (Har-
nad, 1990) and the transduction problem (Barsalou, 1999). The symbol grounding
problem refers to the failure to map representations onto real world stimuli (Har-
nad, 1990). It concerns how representations acquire meaning by relating directly to
something in the real world without the need for an external interpreter. The trans-
duction problem refers to the failure to provide an explanation for the origin of the
abstract representations in a cognitive system (Barsalou, 1999). It concerns the lack
of a mechanism for translating the input from the real world into representations
in the cognitive system. The grounding and transduction problems are essentially
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two ways of looking at the same problem, i.e., the establishment of a direct relation
between representations and the objects that they refer to in the external world.
The mechanism-based models suffer from the grounding and transduction problems,
because they lack an encoding process that creates a representation space directly
from real-world stimuli.

1.1.3 Situated models

The grounding and transduction problems can be solved by improving the ecolog-
ical validity of memory models. Contrary to the mechanism-based memory mod-
els, natural systems ground representations in their physical interaction with the
real world. The way natural systems understand and represent the world is a di-
rect consequence of their perceptions and actions within the world (e.g., Barsalou,
1999; Pecher and Zwaan, 2005). Inspired by natural cognition, a shift is taking place
from studying cognition as an isolated computational system towards studying cog-
nition as an acting system within a real-world environment (i.e., a ‘situated’ model;
Clancey, 1997). The idea of emphasizing the environment in perception was first
proposed by Gibson (e.g., 1979) in his ecological approach to perception. At the
time Gibson introduced his ecological approach, it was a radical departure from the
conventional information-processing approach in cognitive psychology. While the
information-processing approach focussed on internal computations, Gibson under-
scored the information originating from the interaction with the environment. He
argued that information does not reside in the static retinal image, but instead is
available from the spatial and temporal optic patterns that emerge from acting in
the world. Gibson was fiercely criticized by cognitive scientists and artificial intelli-
gence researchers. The main criticism was that his views did not lend themselves to
an algorithmic approach. In this respect, Gibson’s work is often contrasted to that
of Marr (1982), who did present a detailed computational account of vision. The re-
cent trend towards more realism in cognitive psychology, artificial intelligence, and
robotics, leads to renewed interest in the ecological approach. Cognitive systems
are increasingly developed in the context of realistic environmental demands (e.g.,
Atkeson et al., 2000; de Croon, Postma, and van den Herik, 2006a; Sprague, Ballard,
and Robinson, in press). However, the artificial systems developed so far are limited
to fairly simple behaviours and lack a plausible memory system. In contrast, as
elucidated in subsection 1.1.2, the existing computational memory models from the
field of cognitive psychology provide quite detailed descriptions of the functioning of
the human memory processes, but ignore the role of the environment.

Acknowledging the essential role of the environment for natural cognition and the
fundamental problems in the traditional cognitive theories that assume abstract rep-
resentation spaces, cognitive modelling developments are increasingly moving from
an isolated approach towards a situated approach. An essential element of situat-
edness is the implementation of sensor-grounded representations (e.g., Pecher and
Zwaan, 2005), i.e., representations derived directly from the physical features of real-
world stimuli. Extending the mechanism-based memory models with a perceptual
front-end that translates real-world stimuli into representations would constitute an
important initial step towards the development of a situated computational memory

model. It is the aim of this thesis to do so.
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1.2 Problem statement and research questions

As exemplified in the previous section, it is clear that computational modelling so far
has mainly produced models that lack a connection with the real world. Currently,
the field of cognitive science is entering a new stage that underscores the importance
of studying cognition within a realistic environment.

The existing mechanism-based memory models as outlined in section 1.1, provide
a starting point for the extension into more plausible models of natural memory
within a realistic environment. Their lack of a connection with the real world leads
us to the following problem statement.

PS: How can computational memory models be extended to solve the grounding
and transduction problems?

While the real-world input of natural cognitive systems consists of different types
of perceptions, we restrict our scope to real-world visual input. Furthermore, we fo-
cus our modelling studies on two types of memory-based cognitive processes: recogni-
tion and classification. We attempt to approach the problem statement by proposing
a perceptual preprocessing front-end that constitutes a connection between a compu-
tational memory back-end and the real world. The perceptual front-end transforms
natural visual input into representations that can be operated on by the computa-
tional memory back-end. By combining the perceptual front-end with a computa-
tional memory back-end we obtain a situated memory model. On the basis of the
situated model we aim to answer the following three research questions.

RQ 1: To what extent can a situated model produce human responses to individual
natural visual stimuli?

RQ 2: To what extent can a situated model produce recognition-memory effects
on the basis of natural visual stimuli?

RQ 3: To what extent can a situated model classify natural visual stimuli?

1.3 Research methodology

We employ an empirical methodology in which we perform the following two steps:
(1) model construction using insights from biology and computer vision, and (2)
model validation using behavioural data. Below we discuss the model construction
(1.3.1) and validation (1.3.2).
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1.3.1 Model construction

We address our problem statement by aiming to construct a computational model of
human memory that operates on real-world visual input. To meet our objective, we
propose a perceptual front-end that transforms real-world visual input (i.e., natural
images) into memory representations that can be operated on by computational
memory processes. In chapter 2, we formulate three guiding principles for creating
a representation space from real-world input which are derived from psychophysical
and biological knowledge about the main characteristics of the human visual system.
For the realization of a perceptual front-end that fulfils these guiding principles, we
borrow elements from influential approaches in the field of visual object recognition
(i.e., computer vision). In computer vision, several methods have been proposed
for the construction of representation spaces for visual input. Our approach relies
on these methods to develop a perceptual front-end that aims at building visual
representations from the real world. The front-end will realize a connection between
a computational memory model and the real world.

1.3.2 Model validation

We will validate our proposed situated model by using data from behavioural experi-
ments. We perform three validation studies with three different model variants. The
model variants are obtained by connecting our proposed perceptual front-end with
three variants of a computational memory back-end. The first model is a model for
recognition of natural stimuli called the Natural Input Memory model (Nim), which
forms the basis for the second and third models. The second model extends Nim into
Nim-Rem, a model for recognition of natural stimuli, the memory back-end of which
is based on the powerful computational model Retrieving Effectively from Memory
(Rem) proposed by Shiffrin and Steyvers (1997). The third model extends Nim into
a model for classification of natural stimuli, called Nim-Class. The models will be
validated on the basis of human data from behavioural studies.

NIM

Nim realizes a situated model for recognition memory by combining our proposed
perceptual front-end with a computational memory back-end that is based on the
Generalized Context Model (Gcm; see, e.g., Nosofsky, 1986, 1987); the latter is an
exemplar-similarity based model for recognition. We validate Nim by comparing
model similarity judgements and recognition rates for a set of natural stimuli with
human similarity judgements and recognition rates obtained in behavioural studies
(e.g., Busey and Tunnicliff, 1999).

NIM-REM

Nim-Rem combines our perceptual front-end with a computational memory back-
end based on the Rem model (Shiffrin and Steyvers, 1997). We validate Nim-Rem by
testing the model for producing a number of general recognition memory effects often
obtained in human recognition-memory studies. A comparison is made between the
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pattern of model recognition results and human recognition results for the different
effects.

NIM-CLASS

Nim-Class extends Nim into a classification model for natural stimuli. The model
combines our perceptual front-end with a computational memory back-end for classi-
fication based on a nearest-neighbour classifier. We validate Nim-Class by assessing
its classification performance and comparing it with human classification perfor-
mance. Moreover, we extend Nim-Class into two Nim-Class variants, Nim-Class
A and B, that employ an active vision mechanism for the selection of visual input
on the basis of its relevance. We test to what extent the active vision extensions
enhance performance on the classification task as compared to the original Nim-
Class performance and to what extent it corresponds with human classification
performance.

1.4 Outline of the thesis

In chapter 2, we start by reviewing the nature of the representations in existing com-
putational memory models. Then, we formulate three guiding principles for building
a veridical representation space from real-world visual input and show how the prin-
ciples can be fulfilled computationally in a perceptual front-end. Subsequently, in
chapter 3, we present a situated computational recognition-memory model called
Nim that combines the perceptual front-end with a computational memory back-
end.

Thereafter, in chapters 4, 5, and 6, different variants of Nim are proposed and
validated using data from behavioural studies. Chapter 4 validates Nim by compar-
ing model responses to individual natural stimuli with human responses to the same
set of stimuli obtained in behavioural studies. Chapter 5 proposes Nim-Rem and
validates the model by testing to what extent it can produce recognition-memory
effects robustly obtained in behavioural studies. Finally, chapter 6 proposes Nim-
Class and validates the model by comparing model and human classification results.
Moreover, chapter 6 introduces Nim-Class A and B that employ different types of
top-down gaze-control mechanisms to select relevant visual input. We evaluate to
what extent classification performance improves by employing top-down gaze control
and to what extent it improves the agreement with human results.

The model validation chapters are followed in chapter 7 by a discussion of our
approach by placing it in the context of existing computational models of object
recognition, by identifying points for the improvement of the psychological and bi-
ological plausibility of our models, and by relating it to the global developments in
cognitive modelling. Finally, chapter 8 provides the thesis conclusions.





Chapter 2

Connecting memory models

with the real world

As stated in chapter 1, our study aims to solve the symbol grounding and trans-
duction problems by connecting memory models directly with the real world. This
chapter shows how veridical memory representations can be derived directly from
real-world visual input. It introduces a perceptual mechanism that is based on
the main characteristics of the human visual system for transforming natural visual
input into memory representations. The perceptual mechanism can function as a
perceptual front-end to a computational memory model.

The chapter starts in section 2.1 with a review of the nature of representations in
existing memory models and the identification of the main limitation of these mem-
ory models: the absence of a connection between the representations employed and
their real-world referents. Two factors can help connecting memory models to real-
world visual input: (1) existing approaches to map visual input to a representation
space and (2) knowledge about the processing in the human visual system. Section
2.2 presents four approaches to map visual input to representations that have been
influential in the domain of computer vision. This is followed in section 2.3 by an
inventory of the main characteristics of the human visual system, which are taken
as guiding principles for creating a veridical representation space from real-world in-
put. Section 2.4 shows how the guiding principles can be fulfilled computationally by
introducing a perceptual front-end that constructs a veridical representation space
from natural visual input. The perceptual front-end connects the visual real world
with a computational memory model. Our approach combines the perceptual front-
end that operates on the visual real world with a computational memory model to
obtain a situated memory model, which is called the Natural Input Memory model
(Nim). The model forms the basis for our studies in the chapters 3 to 6.

9
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2.1 Representations in existing memory models

Memory models are often conceptualized as representation-process pairs (Anderson,
1976). In such models, perceived or remembered items are represented in some way.
Then, a variety of memory processes may act upon these representations. As stated
in chapter 1, existing memory models focus on the memory processes rather than on
the origin of the representations (e.g., Raaijmakers and Shiffrin, 1981; Eich, 1982;
Murdock, 1982; Gillund and Shiffrin, 1984; Pike, 1984; Eich, 1985; Hintzman, 1986;
Shiffrin and Steyvers, 1997; McClelland and Chappell, 1998; Dennis and Humphreys,
2001). While the memory processes are described quite precisely, the translation of
sensory input into memory representations is mostly left unspecified. The memory
models thus lack a direct connection with the real world.

Rather than specifying how an adequate representation can be derived from real-
world input, the memory models rely on different types of abstracted representations
from real-world objects. Two main representation types can be distinguished: (1)
the rule-based type, and (2) the similarity-based type. The rule-based type consists
of a set of variables and propositions that can be combined to generate an infinite
number of representations (see, e.g., Newell and Simon, 1972; Sun and Zhang, 2006).
The similarity-based type employs items that are organised in a representation space
according to the similarities between the items (see, e.g., Shepard, 1957; Goldstone
and Son, 2005). Theories of categorization, generalization, and learning and mem-
ory often employ similarity-based representations. Representations of the rule-based
type are explicit descriptions of real-world objects but lack a straightforward con-
nection with their real-world instantiations. As outlined in subsection 1.1.2 this lack
of a connection is generally referred to by two interrelated problems: the symbol
grounding problem (Harnad, 1990) and the transduction problem (Barsalou, 1999).
Similarity-based representations can be considered to indirectly solve the ground-
ing and transduction problems, since they are connected indirectly with the real
world by reflecting the functional and perceptual similarities between their refer-
ents. Therefore, similarity-based models are to be preferred for grounding memory
representations. Fundamental to many theories of memory and cognition that as-
sume a similarity-based representation space is the feature-space approach, which
uses a multi-dimensional metric space to represent items along several discrete or
continuous dimensions (e.g., Brooks, 1978; Medin and Schaffer, 1978; Nosofsky,
1986; Shepard, 1987; Nosofsky, 1987, 1988, 1989, 2003). Hence, we focus on this
type of representation space.

The following three types of representational methods have been employed in
existing memory models for the construction of a feature space of real-world stim-
uli: (1) representation by statistical assumptions about feature values of real-world
stimuli, (2) representation by context-dependent co-occurrences of items, and (3)
representation by human judgements. The three methods will be discussed in sub-
sections 2.1.1, 2.1.2, and 2.1.3, respectively. Subsequently, we discuss the main
limitation of the existing memory models in subsection 2.1.4.
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2.1.1 Representation by statistical assumptions

A number of memory models have attempted to build their feature-vector repre-
sentations by making straightforward assumptions about the distribution of feature
values in the real world. For example, in the Todam model (Murdock, 1982) and
the Charm model (Eich, 1982, 1985), feature values are drawn from the normal
distribution, because real-world features are assumed to be normally distributed.
In contrast, in other models, such as the original Rem model, feature values are
drawn from the geometric distribution (Shiffrin and Steyvers, 1997), the parameters
of which depend on the frequency of occurrence in the real world of the features that
together represent the item. The statistical assumptions provide a straightforward
means to build a feature space. However, they do not reflect the true similarity
relations of items in the real world, but at best form a crude approximation.

2.1.2 Representation by context-dependent co-occurrences

Building representation spaces by means of context-dependent co-occurrences is
based on the idea that similar items occur in similar contexts. While this method
can be used for perceptually based stimuli, such as objects and faces, as well as for
conceptually based stimuli, such as words, it has mostly been applied to the latter
(e.g., Landauer and Dumais, 1997). The method of building a similarity space on
the basis of context-dependent co-occurrences assumes that the meaning of a word
and the similarity of one word to another is largely determined by all the contexts in
which the word does and does not appear. Two operationalizations of this method
are the Latent Semantic Analysis (Lsa; e.g., Landauer and Dumais, 1997) and the
Hyperspace Analogue to Language (Hal; e.g., Burgess, Livesay, and Lund, 1998).
Using Lsa and Hal, similarity spaces are constructed in which the representations
of items are a product of the contexts in which the items are found. Representation
by context-dependent co-occurrences establishes a more direct connection with the
real world than representation by statistical assumptions. Nevertheless, it achieves
only an approximate relation between representations and their referents, because
its representations come about through averaging over many instances. Moreover,
texts are a biased and imperfect reflection of the real world.

2.1.3 Representation by human judgements

Using a multi-dimensional scaling (Mds) analysis or a singular value decomposi-
tion (Svd), a representation space is obtained that is based on human similarity
judgements (e.g., Shepard, 1957; Caramazza, Hersch, and Torgerson, 1976; Busey,
1998; Busey, 2001), human free-association data (e.g., Steyvers, Shiffrin, and Nelson,
2004), or other types of judgements that reveal the perceived similarity of stimuli.
These methods have often been used to build a representation space that accurately
reflects similarities as perceived by humans, i.e., a psychologically plausible repre-
sentation space. For example, in a similarity-rating experiment, Busey (1998) asked
subjects to rate the similarity of two faces on a scale from 1 to 9. Across subjects,
he collected at least six ratings for each of the 5356 possible pairs of faces from a
set of 104 faces. The similarity ratings were the input to an Mds analysis. Fig. 2.1
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Figure 2.1: Faces plotted in a two-dimensional space obtained by applying a multi-
dimensional scaling analysis to the similarity judgements of human subjects. Repro-
duced from Busey (2001).

shows several of the faces plotted in a two-dimensional representation space acquired
by an Mds analysis of the similarity ratings for pairs of faces from the face-image
set (Busey, 1998). The figure is reproduced from Busey (2001), but is based on the
similarity ratings obtained by Busey (1998), and discussed and analysed by Busey
and Tunnicliff (1999). After plotting the faces in Mds space, Busey and Tunnicliff
(1999) interpreted the two dimensions shown here as age and race. In a similar
way, free-association data can form the input to an Mds analysis or an Svd method
in order to create a psychologically plausible representation space. Steyvers et al.
(2004) applied Mds and Svd methods to free-association data obtained by Nelson,
McEvoy, and Schreiber (1999). The free-association data were collected by asking
subjects to write down the first word that came to mind that was meaningfully re-
lated or strongly associated to a presented word. By applying the scaling methods
on the free-association data, a representation space is obtained such that words with
similar associative patterns reside in similar regions of the space.

The main advantage of using human judgements is that the obtained representa-
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tion space has a considerable degree of psychological plausibility. While this method
achieves the best connection between the real world and memory representations, it
is still based on indirect evidence, i.e., the human judgements.

2.1.4 A limitation in existing memory models

Existing memory models often employ a representation space created by using one of
the three methods discussed in subsections 2.1.1, 2.1.2, and 2.1.3. The three methods
that aim at building memory representations for real-world stimuli all suffer from the
limitation that they rely on an analysis of the entire stimulus set rather than on an
analysis of the individual stimulus to define its representation. While these methods
can produce psychologically plausible representation spaces, the representations are
not derived directly from the physical features of each of the stimuli, i.e., they are
not grounded in the real world.

In the following section we examine four existing and influential methods from
the domain of computer vision to realize the grounding of memory representations.

2.2 From the real world to memory representations

In order to acquire representations from real-world (i.e., natural) input, a transfor-
mation is needed that maps items to a suitable representation space. Since visual
input constitutes a major part of human sensory input, we focus on natural visual
input (i.e., images). In the domain of computer vision, several researchers have been
working on methods to construct veridical visual representations for object recogni-
tion (e.g., Marr, 1982; Biederman, 1985, 1987; Swain and Ballard, 1991; Edelman
and Intrator, 1997; Mel, 1997). In this section we provide a brief (and incomplete)
historical overview of methods that have been developed to map visual input to a
multi-dimensional representation space for object recognition. Four important ap-
proaches are: (1) the computational approach (e.g., Marr, 1982), (2) the recognition-
by-components approach (e.g., Biederman, 1985; 1987), (3) the similarity-space ap-
proach (Edelman, 1998), and (4) the feature-space approach (e.g., Mel, 1997). Al-
though we will discuss the approaches separately in subsections 2.2.1, 2.2.2, 2.2.3,
and 2.2.4, respectively, we would like to emphasize that they share many characteris-
tics with each other. In subsection 2.2.5, we briefly discuss how we will move towards
a new approach for translating the visual real world into memory representations.

2.2.1 The computational approach

Marr’s (1982) computational approach to visual object recognition demarcated the
start of computational models of vision. The computational approach focussed on
defining the stages involved in extracting 3D model representations from images.
Marr’s model assumes that the visual system builds up a full 3D object represen-
tation from the retinal image via several progressively complex representations. In
order to construct the sequence of representations, Marr (1982) proposed a compu-
tational algorithm that distinguishes three stages of processing: (1) the construction
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of the (raw and full) primal sketch (i.e., an image-based representation), (2) the con-
struction of the 2.5D sketch (i.e, a viewer-dependent surface-based representation),
and (3) the construction of the 3D model representation (i.e., a viewer-independent
object-based representation). The first stage realizes the translation from an image
into the raw primal sketch: a representation in terms of a set of intensity-based
image features (i.e., primitives), including edges, lines, blobs, and terminations.
Subsequently, the raw primal sketch is extended into the full primal sketch by con-
necting and grouping the primitives into larger structures and segmenting regions
that differ from each other in texture. The second stage builds on the primal sketch
to construct the 2.5D sketch that represents the orientation and depth of the vis-
ible surfaces as well as the discontinuities. The 2.5D sketch contains information
on the local surface orientation primitives, the distance from the viewer, and the
discontinuities in depth and surface orientation. The last stage of Marr’s framework
translates the viewer-centred 2.5D sketch into the viewer-independent object-centred
3D model representation.

The representations constructed in Marr’s framework start as image-based rep-
resentations; subsequently they are transformed into surface-based and finally into
object-based representations. The Marr paradigm is a compelling theoretical frame-
work that describes how representations can be derived directly from an image using
a computational algorithm. Since Marr (1982), many psychophysical studies (e.g.,
Farah, 1985; Biederman, 1987; Logothetis and Sheinberg, 1996) and neuroscientific
studies (e.g., Tanaka, 1996) have revealed knowledge about human object recogni-
tion (for an overview, see, e.g., Peissig and Tarr, 2007). Based on advances in the
study of object recognition, more effective vision applications (for various tasks, e.g.,
recognition and navigation) have been developed than the one proposed by Marr.
Yet, Marr’s framework has been very influential in the world of computational visual
object recognition, as a result of which several theories have been built on Marr’s
framework, e.g., Biederman’s (1985, 1987) recognition-by-components theory.

2.2.2 The recognition-by-components approach

While Marr’s computational approach focussed on defining the stages involved in
extracting view-invariant 3D model representations from images, Biederman’s (1985,
1987) recognition-by-components theory aims at identifying objects by recognizing
their basic view-invariant constituent components, called ‘geons’. Examples of geons
include arcs, spheres, blocks, and cylinders. According to Biederman (1985, 1987)
object identification proceeds by recognizing spatial configurations of geons through
their properties (so-called non-accidental properties) and matching these with stored
object representations. Analogously to the processing stages in Marr’s framework,
Biederman assumes a number of processing stages that construct a sequence of rep-
resentations that start as image-based representations and are then transformed into
surface-based, and finally view-invariant object-based representations (e.g., Palmer,
1999). Biederman (1985, 1987) proposes that representations are constructed and
matched to stored representations in four consecutive stages: (1) edge extraction,
(2) detection of non-accidental properties and parsing at regions of concavity, (3)
determination of geons and their spatial relations, and (4) matching of components
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to stored representations. During the first stage, a representation of the edge infor-
mation in the visual scene is constructed on the basis of luminance gradients. Then,
in the second stage, the edge information is used to detect essential view-invariant
properties (non-accidental properties) for geon identification. Simultaneously, the
second stage attempts to parse objects into the constituent geons based on regions
of concavity. Stage three combines the results on non-accidental property detection
and object parsing of stage two to specify the geons at the different locations and the
spatial relations that hold among them. Finally, stage four matches the definitive
geon-description representation with stored representations.

Both Biederman’s object representation in terms of geons and Marr’s 3D model
representation rely on a reconstruction of the physical object that they represent.
Such first-order isomorphism was characteristic of many models of visual perception
and computer vision in the early days of artificial intelligence. Although both Marr’s
and Biederman’s representational approaches were quite influential, there is not
much evidence for a view-invariant first-order isomorphism in human visual object
recognition. More recent models often employ another type of isomorphism that
represents objects in terms of their perceptual and functional similarities to other
objects.

2.2.3 The similarity-space approach

The similarity-space approach proposed by Edelman (see, e.g., Edelman, 1995a;
Edelman and Duvdevani-Bar, 1997a; Edelman and Intrator, 1997; Edelman, 1998)
is based on the assumption that the human brain attempts to represent the percep-
tual and functional similarities between objects in the real world. This assumption
is partly justified by the fact that similar objects and events tend to have similar
characteristics and tend to behave in a similar way (e.g., Goldstone and Son, 2005).
Therefore, our judgement of similarity allows us to generalize from one situation to a
similar situation and from the behaviour and characteristics of one object to a similar
object. The similarity structure of the real world has long been recognized as a funda-
mental element of cognitive processes such as learning, categorization, memory, and
representation (e.g., Shepard, 1957, 1964; Shepard and Chipman, 1970; Nosofsky,
1986; Edelman, 1995a; Busey, 2001; Nosofsky and Zaki, 2003; Markman and Gen-
tner, 2004). Acknowledging the importance of similarity for generalization, Arkadev
and Braverman (1966) formulated already in the 1960s the compactness hypothe-
sis. This hypothesis states that similar objects in the real world are close in their
representations and that there is no ground for any generalization on representa-
tions that do not obey this demand. In agreement with Arkadev and Braverman’s
(1966) hypothesis, the similarity-space approach states that the similarities between
the representations in a representational system reflect the similarities between ob-
jects in the real world (Shepard, 1957, 1964; Shepard and Chipman, 1970; Edelman,
1995a; Edelman and Duvdevani-Bar, 1997a; Edelman and Intrator, 1997; Edelman,
1998). An example of such a space is shown in Fig. 2.2, which is reproduced from
Edelman (1995b). The isomorphism between similarities of objects in the real world
and the similarities of their representations in a representation space is referred to as
a second-order isomorphism (Shepard and Chipman, 1970; Shepard, 1987). Similar-
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Figure 2.2: Example of a similarity space representing items that are highly similar
in close proximity of each other. Reproduced from Edelman (1995b).

ities of objects are represented rather than the objects themselves (as in first-order
isomorphism).

Edelman (1998) provides a computational basis for the representation of simi-
larity by postulating a number of adaptive templates (or prototypes) each matching
a particular instance of a class. The template representations are activated to a
degree that is proportional to the match with the input. An incoming stimulus
is represented in terms of the responses of a restricted number of such adaptive
templates. The ensemble of k adaptive templates, called the ‘chorus of prototypes’
(Edelman, 1995a, 1998), maps the stimuli from the real world onto a k-dimensional
representation space in which the response of each adaptive template represents the
contribution of the associated prototype to the recognized object. The stimulus rep-
resentations obtained in this way have been shown to be in agreement with human
classification and recognition responses (Edelman and Duvdevani-Bar, 1997a).

2.2.4 The feature-space approach

The feature-space approach has been mentioned several time in this chapter already.
Subsections 2.1.1, 2.1.2, and 2.1.3 described the indirect construction of feature-space
representations on the basis of general statistical assumptions, context-dependent co-
occurrences, and human judgements. Moreover, subsection 2.2.3 outlined Edelman’s
computational basis for building a representation space with his ‘chorus of proto-
types’ that can be conceived as a feature space in which each template constitutes a
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high-level feature. However, none of the previously discussed methods constructed a
feature space directly from natural images (but see Edelman, 1995a, who employed
a wavelet-based transform for encoding the templates). Such a feature space can be
based on any type of feature set that is assumed to be relevant for the task at hand
and that can be extracted readily from the image.

The feature-space approach may be based on the method of image histogram-
ming to obtain a suitable representation space for object recognition (e.g., Swain and
Ballard, 1991; Mel, 1997). Image histogramming entails counting the occurrence of
feature values in an image given a certain feature, such as colour, shape, or texture.
Colour histogramming has been shown to be quite successful for object identifica-
tion and localization. Using a colour-histogramming approach, Swain and Ballard
(1991) tested a visual system on object identification and on object localization. To
identify an object, the system matched the colour histogram of an incoming image
containing the object to the colour histograms in the database based on the number
of corresponding pixels of the same colour. Localization of an object is based on
a backpropagation network that finds the location in the image that contains the
colours of the object being looked for. Using the colour-histogramming approach
Swain and Ballard (1991) showed that robust and efficient object identification as
well as object localization can be achieved. Since colour histogramming is a pixel-
based method, it does not contain any spatial information. Hence, it is insensitive
to any permutation of the pixels in an image.

The success of the feature-extraction approach for object recognition was also
demonstrated by Mel (1997), who used the histogramming method to construct a
visual model for object recognition inspired by the feedforward feature-extraction
hierarchy assumed to underlie vision in natural systems. Mel’s (1997) visual model
Seemore extends the colour-histogramming-based system developed by Swain and
Ballard (1991) using spatially extended features that capture spatial information.
Seemore employed a set of feature channels that were relatively sensitive to changes
in the image that correspond to a change in object identity, such as colour, shape,
and texture, and relatively insensitive to changes in the image that do not correspond
to changes in identity, such as pose and orientation. The shape and texture-related
channels employed by Mel (1997) included, feature detectors for edges, edge pairs,
texture, colour, and simple shapes. The feature-space representations resulting from
Seemore’s feature channels were mapped onto a low-dimensional feature space and
were subsequently used in a classifier to determine the recognition response. Con-
sistent with the results of Swain and Ballard (1991), Seemore’s results show that
when using solely the colour features, the system achieves a rather successful recog-
nition performance (Mel, 1997). However, the performance significantly improved
when features relating to shape and texture were employed.

2.2.5 Towards a new approach

The four approaches to constructing veridical visual representations for real-world
objects discussed in this section have been quite influential in the field of visual object
recognition. Each of the approaches relies on neurocognitive and psychophysical
ideas about the human visual-processing and representational system. Inspired by
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these approaches and by psychophysical and biological knowledge about the human
visual system, the next section identifies appropriate guiding principles for a veridical
mapping from images to feature-space representations and proposes how the guiding
principles can be fulfilled.

2.3 Guiding principles for a veridical mapping

Psychophysical and biological findings demonstrate that processing in the human
visual system relies on three main characteristics. First, the individual cells of the
primary visual cortex V1 respond most strongly to edges in a visual scene (see,
e.g., Hubel and Wiesel, 1959, 1962, 1968). Second, the cells of the V1 cortical area
perform a local multi-scale analysis of the visual input (see, e.g., Palmer, 1999).
Third, the human eye takes selected samples in a visual scene by means of eye
fixations (see, e.g., Yarbus, 1967; Henderson, 2003).

We consider the basic processing characteristics of the human visual system as
guiding principles for achieving a veridical mapping from images to a feature space.
Below we discuss the guiding principles in more detail: (1) an edge-based analysis
(2.3.1), (2) a local multi-scale analysis (2.3.2), and (3) a fixation-based analysis
(2.3.3).

2.3.1 Edge-based analysis

The detection of discontinuities in intensity, colour, or texture, often referred to
as ‘edges’ and their orientation, is performed by the cells in the primary visual
processing area V1 of the human cortex. The functional roles of these cells were
discovered in a series of famous experiments performed by Hubel and Wiesel (1959,
1962, 1968). Hubel and Wiesel tried to determine the tuning characteristics of cells
in V1 by visually presenting stimuli varying from spots of light to more complex
patterns of light. They found that the majority of the cells fired most strongly
when an oriented line or an edge was presented on a spatially confined part of the
retina. Originally, these cells were referred to as ‘edge detectors’ by Hubel and
Wiesel. Inspired by the findings of Hubel and Wiesel (e.g., 1959, 1962, 1968), many
computational edge-detector models have been developed (e.g., Marr and Hildreth,
1980; Fukushima, 1980; Marr, 1982; Canny, 1986).

Acknowledging the importance of edge detection for human vision, several al-
gorithms have been developed to detect edges in an image (i.e., edge operators).
We mention three classes of algorithms: differential operators, spatial filters, and
statistical algorithms.

The first class of algorithms relies on first-order and second-order spatial deriva-
tives of the luminance values (e.g., Marr and Hildreth, 1980; Canny, 1986). First-
order differential operators perform differencing operations on adjacent (pixel-based)
luminance values, while second-order differential operators compute the difference
between the adjacent outcomes of the first-order operators.

The second class of computational algorithms that attempted to model the func-
tion of the edge-detector cells that Hubel and Wiesel discovered, include the detec-
tion of edges by means of local spatial frequency filters such as Gabor filters. A
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Gabor function is a sinusoid weighted by a Gaussian. An example of the resulting
response profile is presented in Fig. 2.3(a). The response profiles of many V1 cells
resemble those of Gabor filters.

The third class of algorithms performs a statistical analysis of the intensity values
in an image. Two examples of statistical methods are principal component analysis
(Pca) and independent component analysis (Ica). Pca and Ica are methods that
exploit the statistical structure of natural images to create compact visual represen-
tations (Field, 1994; Lee, 1998b; Pearson, 1901). Pca finds a linear transformation
of the array of constituent pixel values onto a space spanned by n orthogonal princi-
pal components. The components are ordered in terms of the variance they explain.
Since most of the variance in natural images is explained by oriented edges at mul-
tiple scales, the principal components can be said to detect edges. Ica is related to
Pca, and tries to find a linear transformation that yields components that are inde-
pendent and not normally distributed (e.g., Comon, 1994; Field, 1994; Lee, 1998b).
When applied locally, both Pca and Ica yield filters that are similar to Gabor
filters.

Inspired by the neurophysiological findings on edge detection in natural vision
and by the fruitful computational approaches to edge detection from the field of
object recognition, the first guiding principle reads: an adequate mechanism to build
a veridical mapping from images to feature space performs an edge-based analysis.

2.3.2 Local multi-scale analysis

Psychophysical and biological findings indicate that the early processing stages in
the human visual system detect features, such as edges, in the retinal image at a
variety of scales. According to the spatial frequency theory of vision formulated
by Blakemore and Campbell (1969), the visual system incorporates a large number
of overlapping ‘channels’, each selectively tuned to a particular range of spatial
frequencies and orientations. The spatial frequency theory has a mathematical basis
and is supported by psychophysical and biological findings.

From a mathematical point of view, every image can be decomposed into a set
of sinusoidal gratings from different spatial frequencies using Fourier analysis. The
linear combination of the set of component gratings contains all the information
present in the original image. This led vision researchers to believe that the cells
of the primary visual processing area might be performing something similar to a
global Fourier analysis (see, e.g., Palmer, 1999).

Blakemore and Campbell (1969) collected psychophysical evidence for a spatial
frequency analysis in the human visual system. They showed that when subjects
viewed a sinusoidal grating for a prolonged time, their visual system selectively
adapted to the frequency and orientation of the presented grating, while retaining
responsive to gratings of another frequency or orientation. The results by Blakemore
and Campbell (1969) were considered as strong evidence for the existence of the
spatial frequency channels in vision.

More support for the idea that human vision performs a multi-scale analysis by
means of cells that selectively respond to a particular spatial frequency, comes from
biological studies that examined the receptive field structure of V1 cells. While
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Hubel and Wiesel mainly found receptive fields that were strongly responsive to
edges, later studies showed that the receptive fields often have a more complex
structure (de Valois and de Valois, 1988). In their study, de Valois and de Valois
(1988) found that many cells which are tuned to a bar in a specific orientation and
position, show a pattern of activation and inhibition when the bar is shifted laterally
away from the centre of the cell’s receptive field. Moreover, they found a variety of
receptive field sizes, the larger ones responding most strongly to coarse spatial scales
and the smaller ones responding most strongly to fine spatial scales.

Many vision researchers now assume that the receptive field structures that were
studied by Hubel and Wiesel (1959, 1962, 1968) and later by de Valois and de Valois
(1988) and by many others form the biological implementation of the frequency
channels in the visual nervous system. Biological studies indicate that processing
of visual input in V1 is local in the sense that the receptive fields of V1 cells are
limited to a few degrees of visual angle (Palmer, 1999). In contrast to a global
spatial frequency analysis (i.e., a Fourier analysis), the cells are assumed to perform
a so-called ‘local spatial frequency analysis’.

The spatial-frequency theory of natural vision is supported by psychophysical
and biological findings and leads us to formulate our second guiding principle: an
adequate mechanism to build a veridical mapping from images to feature space
performs a local multi-scale analysis.

2.3.3 Fixation-based analysis

The extraction of visual input is performed through a fixation-based sampling of
information contained in a visual scene, by means of sequences of eye fixations. Hu-
mans make approximately three to five eye fixations per second (see, e.g., Henderson,
2003; McSorley and Findlay, 2003). Eye fixations allow parts of the visual scene to
be sampled with high resolution. Visual acuity is highest in the centre (i.e., fovea) of
the retina and decreases towards the periphery. By moving the eyes around, parts
of the visual scene can be ‘foveated’ to obtain detailed information at the centre
of gaze. Psychological studies have shown that both bottom-up (stimulus-based)
and top-down (concept-based) processes contribute to the selection of eye-fixation
locations.

Numerous studies showed that bottom-up processes draw the eyes towards salient
visual features such as contours (e.g., Yarbus, 1967; Norman, Phillips, and Ross,
2001), regions with high edge density (e.g., Mannan, Ruddock, and Wooding, 1996),
and local contrast (e.g., Parkhurst and Niebur, 2003). These preferences can be
explained in terms of the principle of maximizing information (e.g., Wainwright,
1999; Petrov and Zhaoping, 2003). Natural images are characterized by a high degree
of redundancy, mainly caused by intensity correlations among adjacent pixels. At
contours, at locations of high edge density, and at locations with high local contrast,
intensity correlations between adjacent pixels are low, which makes these locations
highly informative. Pca and Ica can be interpreted as methods to reduce the
redundancy of visual images.

In addition to image saliency, the selection of fixation locations is based on top-
down processes. Top-down processes rely on stored knowledge to select the most
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informative location to orient the eyes (see, e.g., Henderson, 2003). The types of
stored knowledge that play a role include: (1) knowledge about previous encounters
with the currently viewed stimuli, (2) knowledge about the spatial arrangement of
the currently viewed visual scene, and (3) task-related knowledge. These types of
knowledge are discussed in more detail in chapter 6.

Motivated by psychological finding on the gathering of visual input in human
vision by means of eye fixations, our third guiding principle is phrased: an adequate
mechanism to build a veridical mapping from images to feature space performs a
fixation-based analysis.

2.3.4 Fulfilling the three guiding principles

Having identified three guiding principles for grounding memory representations in
the real visual world, we now turn to discuss ways to fulfil the guiding principles.
The first two guiding principles, i.e., that of performing an edge-based analysis
and that of performing a local, multi-scale analysis can be fulfilled by using the
wavelet-transform approach. The third guiding principle, i.e., that of performing a
fixation-based analysis, can be fulfilled by applying the wavelet-transform approach
to spatially confined image regions.

The next section discusses a specification of our front-end for memory models that
fulfils the three guiding principles and borrows elements from the four approaches
discussed in section 2.2.

2.4 A front-end for memory models

Wavelet transforms provide a mathematical and computational realization of both
the edge-based and the local multi-scale analysis characteristics of the human vi-
sual system (we recall that they were identified as the first and the second guiding
principles for a veridical mapping from images to a feature space). Wavelets can be
used to model the receptive field structure discovered by Hubel and Wiesel (1959,
1962, 1968) and de Valois and de Valois (1988), which underlies the local spatial
frequency analysis in human vision. Suitable wavelets are Gaussian derivatives and
Gabor functions, which can be regarded as approximations of high-order Gaussian
derivatives.

The steerable pyramid transform is one of several possible approaches that ad-
heres to the guidelines of an edge-based, local, multi-scale image transform. The
steerable filter pyramid implements a number of wavelets at multiple orientations
and at multiple scales (Freeman and Adelson, 1991). The wavelets are oriented
Gaussian derivatives. Fig. 2.3(b) shows an example of an image of a white disk
that is processed (i.e., filtered) with the steerable pyramid at four orientations and
two scales. To fulfil the guiding principle of the fixation-based spatial selection, our
front-end applies the steerable pyramid to image regions centred around a fixation
point. Each sample results in a fixation-based feature vector representing the image
region.

Our front-end is a perceptual mechanism that employs a fixation-based steerable
pyramid transform. The front-end connects memory models with the visual world.
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(a) (b)

Figure 2.3: (a) The resulting pattern of a Gabor function. (b) An example steerable
pyramid decomposition of an image of a white disk on a black background. Retrieved
from http://www.cns.nyu.edu/ eero/steerpyr/ that describes the Steerable Pyramid
(Freeman and Adelson, 1991)

In chapter 3, we introduce the situated memory model called the Natural Input
Memory model (Nim) that combines a perceptual front-end with an exemplar-
similarity-based memory model (see, e.g., Nosofsky, 1986, 1987, 1988, 1989, 2003).
Nim is the focus of our studies in chapter 4. Then, chapters 5 and 6 introduce two
Nim variants. The variant described in chapter 5 extends Nim’s memory stage to
obtain a natural-input variant of the powerful Rem model (Shiffrin and Steyvers,
1997) and tests the variant on several well-known recognition-memory effects that
are obtained in behavioural memory studies. The variant described in chapter 6
extends Nim’s memory stage to obtain a natural-input model for classification and
introduces a fixation-selection mechanism to select relevant fixation locations.

2.5 Chapter summary

We identified the lack of a connection with the real world as the main limitation
of existing memory models. We aim to develop a memory model that operates
on natural images. Therefore, we investigated the guiding principles for realizing
a veridical mapping from images to a feature space and identified three guiding
principles that should be fulfilled. The fixation-based multi-scale wavelet transform
fulfils all three guiding principles and is therefore selected as a front-end to ground
memory representations.



Chapter 3

The Natural Input Memory

Model

This chapter is based on1:

1. Lacroix, J. P. W., Murre, J. M. J., Postma, E. O., and van den Herik, H.
J. (2006a). Modeling recognition memory using the similarity structure of
natural input. Cognitive Science, Vol. 30, pp. 121–145.

In chapter 2 we discussed that existing computational memory models suffer from
the limitation that they are not grounded in the real world. It was observed that:
(1) they lack a mechanism that derives representations directly from the perceptual
features of the stimuli, and (2) they rely on indirect methods by which an abstract
feature space is predefined. Since the computational models operate on predefined
abstract representations, they are unable to make predictions for natural individual
stimuli in behavioural memory experiments.

In this chapter, we propose a situated computational recognition-memory model
that operates on natural images: the Natural Input Memory model (Nim). Nim
combines a perceptual front-end with an exemplar-similarity-based memory model.
Nim’s perceptual front-end is a biologically informed perceptual preprocessing method
that translates a natural image into a similarity-space representation (i.e., a feature-
space representation). The exemplar-similarity-based memory model operates on
this similarity space in order to make a memory decision. The exemplar-similarity-
based memory model that we propose in this chapter is a recognition version of the
Generalized Context Model (e.g., Nosofsky, 1986, 1987). However, we would like
to emphasize that Nim’s perceptual front-end can be combined with other types of
exemplar-similarity-based memory models and classification models (see, e.g., chap-
ters 5 and 6).

The chapter is organized as follows. In section 3.1, we provide an overview of
the model. This is followed, in section 3.2 and 3.3, by a detailed exposition of Nim’s

1The author would like to thank her co-authors and the publisher of Cognitive Science for their
kind permission to reuse relevant parts of the article in this thesis.
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two stages: the perceptual preprocessing stage and the memory stage, respectively.
Subsequently, section 3.4 compares Nim with other models. Finally, section 3.5
presents the chapter summary.

3.1 The NIM essentials

Nim encompasses the following two stages.

1. A perceptual preprocessing stage that translates a natural image into feature
vectors.

2. A memory stage comprising two processes:

(a) a storage process that stores feature vectors in a straightforward manner;

(b) a recognition process that compares feature vectors of the image to be
recognized with previously stored feature vectors.

Fig. 3.1 presents a schematic overview of Nim. The face image is an example of a
natural image. The left and right side of the figure correspond to Nim’s two stages:
the perceptual preprocessing stage (left) and the memory stage (right). The prepro-
cessing stage selects eye-fixation locations and extracts perceptual input (i.e., a fea-
ture vector) at each eye-fixation location. Then, it reduces the dimensionality of the
feature vectors (not shown in the figure), which leads to a low-dimensional feature-
vector representation. The low-dimensional feature-vector representation forms the
input of the memory stage. During storage, the memory stage stores the feature-
vector representation. During recognition, the memory stage matches the feature-
vector representation with previously stored representations. Below, the perceptual
preprocessing stage and the memory stage will be explained in more detail.

3.2 The perceptual preprocessing stage

The perceptual preprocessing stage is inspired by: (1) biological knowledge about the
processing of information in the human visual system (see, e.g., Hubel, 1988; Palmer,
1999) and (2) certain computational considerations (see, e.g., Bellman, 1961; Bishop,
1995; Edelman and Intrator, 1997). Both are discussed in subsection 3.2.1. In
subsection 3.2.2, we provide some relevant implementation details.

3.2.1 Biological inspiration and computational considerations

It is well known that early visual processing in the brain leads to the activation
of millions of optic nerve cells (Palmer, 1999). The nerve-cell activations may be
conceived as a high-dimensional vector. The high dimensionality enables the repre-
sentation of a large amount of information without suffering from interference (Rao
and Ballard, 1995), but it also hampers the memory performance, as the number
of examples that is necessary for a reliable generalization performance grows expo-
nentially with the number of dimensions. This phenomenon is known as the ‘curse
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Figure 3.1: The Natural Input Memory model (Nim).
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of dimensionality’ (Bellman, 1961; Bishop, 1995; Edelman and Intrator, 1997). In
coping with this phenomenon, subsequent stages in the visual system are assumed to
reduce the dimensionality of the high-dimensional input (see, e.g., Hubel, 1988; Bar-
low, 1989; Tenenbaum, de Silva, and Langford, 2000). This assumption is supported
by the findings of Edelman and Intrator (1997), who showed that the human vi-
sual system performs a dimensionality reduction that extracts the low-dimensional
structure of high-dimensional visual input.

In Nim, dimension reduction of a high-dimensional natural image is achieved
by a biologically informed feature-vector extraction method (Freeman and Adelson,
1991). A natural digitized image has a high dimensionality because it is treated as a
vector, the elements of which are the constituent pixel values. Motivated by eye fixa-
tions in human vision, the feature-vector extraction method takes local samples from
selected locations in the image. To emphasize the parallel with human vision we refer
to these samples as ‘fixations’. Human fixations tend to cluster at or near contours
(see, e.g., Yarbus, 1967; Norman et al., 2001). The preference for contours can be
explained in terms of the principle of maximizing information (see, e.g., Wainwright,
1999; Petrov and Zhaoping, 2003), since (1) natural images are characterized by a
high degree of redundancy, mainly caused by intensity correlations among adjacent
pixels, and (2) at contours intensity correlations between adjacent pixels are low,
which makes contours highly informative. Nim’s feature-vector extraction method
places fixations along the contours of the image.

For each fixation, features (i.e., a feature vector) are extracted from the image
area centred at the fixation location. Nim’s feature-vector extraction mimics the
visual processing in area V1. The responses of neurons in V1 are modelled by a
multi-scale wavelet decomposition (to be described in detail in subsection 3.2.2).
Multi-scale wavelet decomposition models are biologically plausible (see, e.g., Lee,
1998a; Palmeri and Gauthier, 2004). Moreover, several studies showed that distances
between representations in the similarity space that results from preprocessing in-
put with the biologically informed multi-scale wavelet decomposition agree well with
dissimilarities as perceived by humans (see, e.g., Kalocsai, Zhao, and Biederman,
1998; Lyons and Akamatsu, 1998; Lyons, 2000; Dailey et al., 2002; Lacroix et al.,
2006a). The extracted feature vectors contain information on oriented edges at mul-
tiple scales and form an efficient basis for object recognition (see, e.g., Rao and
Ballard, 1995). In order to reduce the dimensionality of the feature vectors we use
the method of principal component analysis (Pca). Pca discovers a linear trans-
formation of n-dimensional vectors onto a space spanned by n orthogonal principal
components (see also subsection 2.3.1). The components are ordered in terms of
the variance they explain. The dimensionality of the extracted feature vectors is
reduced by taking the projection onto the first p (p < n) principal components. The
p-dimensional feature vectors so obtained reside in a similarity space where visual
similarity translates to proximity of feature vectors.

Translating a two-dimensional image by using a multi-scale wavelet decomposi-
tion followed by a dimension reduction by means of a principal component analysis, is
an often applied method in the domain of visual object recognition to model the first
stages of processing of information in the human visual system (i.e., retina/LGN,
V1/V2, V4; cf., Dailey et al., 2002; Palmeri and Gauthier, 2004).
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3.2.2 Implementation of the perceptual preprocessing stage

The features extracted from the face image consist of the responses of different
derivatives-of-Gaussian filters. By applying a set of these filters at multiple scales and
orientations, a representation of the face image area centred at the fixation location
is obtained (Freeman and Adelson, 1991). To extract the feature vectors, the entire
input image is transformed into a multi-scale representation at four spatial scales.
At every scale, the image is processed by four oriented filters in the orientations 0◦,
45◦, 90◦, and 135◦ using the steerable-pyramid transform (Freeman and Adelson,
1991). The choice for four orientations is assumed to be sufficient for the task
at hand. The steerable-pyramid transform with four orientations is overcomplete,
which means that it contains more information than necessary to reconstruct the
original image. The human visual system appears to ‘filter’ retinal images with much
more orientations (Palmer, 1999).

The steerable-pyramid processing results in the 16 (four scales times four ori-
entations) filtered images shown on the lower left-hand corner of Fig. 3.1. The
pixel values represent filter coefficients. Brighter pixels correspond to larger filter
responses. From each of the 16 images a 7 × 7 window is selected centred at a fixa-
tion location and the 7 × 7 coefficients of the 16 images are placed in a vector. The
sampling of 7 × 7 coefficients at each scale and orientation of the steerable pyramid
is based on the following two considerations. First, it is assumed to reflect the way
the human visual system samples the local neighbourhood of fixated locations at
multiple scales (Postma, van den Herik, and Hudson, 1997). Second, it corresponds
roughly to the estimates of the resolution of spatial attention (Nakayama, 1990). In
addition to the filter coefficients, the pixel values of a 7×7 window of a low-resolution
version of the image, centred at the fixation location, are appended to the vector.
The 7× 7 low-resolution sub-image is included in the feature vector, because it con-
tains absolute brightness information at the fixation location. This information is
absent in the other 7 × 7 windows that contain the coefficients reflecting filter re-
sponses. Taken together, each fixation yields a 833-dimensional (16×7×7+1×7×7)
feature vector that contains information ranging from visual details (high-scale fea-
tures) to coarse visual characteristics (low-scale features). It is worth noting that
though information about the spatial locations and arrangement of fixations is not
represented explicitly, it is represented implicitly by the low-scale features.

Fixation locations are randomly drawn from the contours of the face image. To
detect the contours in an image we used an edge detector, which is based on the
standard Canny edge detector with an adaptive threshold (i.e., the minimum and
maximum intensity values) and σ = 1 (Canny, 1986)2. In Fig. 3.1 the contours of
the input image are shown to the right of the input image.

After feature-vector extraction, we reduce the dimensionality of the feature vec-
tors extracted by the multi-scale wavelet decomposition. To find the principal com-
ponents that cover most of the variance of the 833-dimensional vectors, we apply
Pca to a large set of feature vectors (i.e., about 60,000 feature vectors extracted
from the images used in the simulations). Then, in our simulations, we project the
feature vectors onto the first p = 50 of these principal components. It has been

2In principle, the steerable pyramid can be used to detect the contours.
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shown that approximately 50 components are sufficient to represent faces accurately
(Hancock, Burton, and Bruce, 1996; Calder et al., 2001; Dailey et al., 2002).

3.3 The memory stage

Nim’s memory stage is based on the Generalized Context Model (Gcm; e.g., Nosof-
sky, 1986, 1987). While the Gcm was initially introduced as an exemplar-similarity
model for explaining categorization and identification of multi-dimensional percep-
tual items (e.g., Nosofsky, 1986, 1987), it has successfully been applied to old-new
recognition tasks as well (see, e.g., Busey and Tunnicliff, 1999; Zaki and Nosofsky,
2001; Nosofsky and Zaki, 2003). Gcm-based recognition models rely on the assump-
tion that individual exemplars are stored in memory and that recognition decisions
are based on the similarity of new inputs to previously stored inputs (see, e.g., Busey
and Tunnicliff, 1999; Busey, 2001). In section 3.3.1, we briefly discuss Nim’s Gcm-
based memory stage that is a recognition version of the Gcm. Subsequently, we
describe the implementation details in subsection 3.3.2.

3.3.1 The GCM-based memory stage

We distinguish two processes in the memory stage: the storage process and the
recognition process.

The storage process

Nim retains (i.e., ‘stores’) exemplars of natural images in a similarity space. The
storage process stores the preprocessed natural images. A preprocessed natural
image is represented by a number of fixations, i.e., low-dimensional feature vectors
in a similarity space, each corresponding to the preprocessed image contents at the
fixation location.

The recognition process

Recognition decisions in the Gcm are based on the familiarity of an item. Familiarity
is assessed by summing the similarities of a test image to the individual exemplars
stored in memory (e.g., Nosofsky and Zaki, 2003). Similarity between two items
is a decreasing function of distance in the representation space. The recognition
process of Nim’s Gcm-based memory stage determines the familiarity of an item to
be recognized (i.e., a test image) by summing the similarities of the feature vectors of
the image to previously stored feature vectors. The similarity of two feature vectors
is defined as a decreasing function of their Euclidean distance in the similarity space.
The similarity summed over all previously stored feature vectors serves as a basis for
old-new recognition decisions. Although, in the Gcm it is suggested that similarities
are changed systematically by selective attention (Nosofsky, 1986), we, for now,
ignore the role of attention. This means that each dimension in the similarity space
receives an equal weight.
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Figure 3.2: Two-dimensional projection of the feature-vector representations of two
natural images in a similarity space.

3.3.2 Implementation of the GCM-based memory stage

Below, we discuss the implementation of the two processes of the memory stage: the
storage process and the recognition process.

The storage process

In each unit of presentation time, the storage process stores s feature vectors for an
image (corresponding to s fixations). Fig. 3.2 is an illustration of the feature-vector
representations of two natural images in a two-dimensional projection of a similarity
space. The x-axis and the y-axis show the first and second dimensions (i.e., principal
components), respectively. In the illustration, each image is represented by a cluster
of 400 feature vectors, i.e., fixations (indicated by black dots (·) and grey crosses
(×)). Note that this is an example of a representation based on 400 eye fixations.
In our recognition simulations, however, we stored 10 fixations for each image. This
corresponds to about two to three seconds of viewing time in a recognition-memory
experiment, as humans make approximately three to five eye fixations per second
(see e.g., Henderson, 2003; McSorley and Findlay, 2003).

The recognition process

The recognition process defines the familiarity of a test image as the average fa-
miliarity across its feature vectors. The familiarity of a feature vector is based on
the summed similarity to the previously stored feature vectors. The Gcm typically
uses a Gaussian or an exponential decay function for relating stimulus similarity
to distance in the similarity space. In a preliminary pilot study, we obtained the
best results with the step decay function. The step decay function is 1 when the
Euclidean distance is smaller than or equal to a certain radius r and 0 otherwise. In
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other words, the step function simply calculates the number of previously stored fea-
ture vectors that reside within a hypersphere with radius r around a feature vector.
Formally, the familiarity of a test feature vector, j, is denoted as:

famj =
∑

T
i=1s(di,j), (3.1)

where

s(di,j) =

{

1 if di,j ≤ r
0 otherwise

with T the total number of previously stored feature vectors and di,j the Euclidean
distance between feature vector i and j. The familiarity of a test image J is then
defined as:

famJ =
1

N

∑

N
j=1famj (3.2)

with N the total number of feature vectors of test image J .
We use the logistic function to transform the familiarity values into a recognition
probability between 0 and 1 (see, e.g., Busey and Tunnicliff, 1999; Busey, 2001).
The logistic function is defined as:

P (recognized|J) =
1

1 + βe−θfamJ
, (3.3)

with β and θ two free parameters, and famJ the familiarity of face J (Busey and
Tunnicliff, 1999).

3.4 Comparison with other models

The main difference between Nim and other existing memory models is that Nim
encompasses a biologically informed perceptual front-end that operates on natural
images. In subsection 3.4.1, we discuss the benefit of encompassing such a perceptual
front-end and in subsection 3.4.2 we compare the perceptual front-end with other
image-processing techniques.

3.4.1 The benefit of a perceptual front-end

Nim’s perceptual preprocessing applies a transformation that yields a perceptual
similarity structure of natural images. So far, existing memory models have been
tested with artificial data (e.g., the Rem model, Shiffrin and Steyvers, 1997), with
predefined similarity spaces (e.g., the Gcm, Nosofsky, 1987; the SimSample model,
Busey, 2001; the Rem model, Steyvers, 2000), and with synthesized texture images
(the Nemo model, Kahana and Sekuler, 2002). For conceptually based stimuli,
many methods for defining the similarity space are based on word co-occurrence
counts in texts (Lsa, e.g., Derweester et al., 1990; Landauer and Dumais, 1997;
Hal, e.g., Burgess et al., 1998), on experimentally obtained free association data
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(Was, e.g., Steyvers et al., 2004) or on experimentally obtained similarity ratings
(Mds, Caramazza et al., 1976). For perceptually based stimuli, such as faces, the
latter approach has also often been used (e.g., Busey, 2001). Since the resulting
perceptual similarity spaces accurately reflect similarities as perceived by humans,
this approach leads to useful representational models of memory. However, because
representations are not derived directly from the individual input patterns, these
models fall short in constructing a representation that is grounded in the real world.
Because Nim’s preprocessing stage can be conceived as an image-processing front-
end, it can be applied to other models of memory to realize grounded representations.
Therefore, Nim’s front-end complements rather than replaces existing computational
memory models such as Rem. The strength of Nim thus lies in the fact that it is able
to operate directly on natural images. Hence, Nim can be used to predict recognition
judgements for novel stimuli. We consider this a clear benefit of a perceptual front-
end.

3.4.2 Image processing

The approaches to modelling the cognitive elements of recognition have largely
evolved independently of the image-processing approaches to recognition. The latter
are mainly concerned with how visual input can be mapped onto a certain repre-
sentation despite variations in viewpoint and lighting conditions. Nim introduces
advanced image preprocessing in the cognitive modelling of memory. The advan-
tages of combining image-processing techniques with cognitive approaches have been
emphasized by several researchers (Edelman, 1995a; Burton, Bruce, and Hancock,
1999; Steyvers and Busey, 2000; Calder et al., 2001; Dailey et al., 2002). The method
of Pca is widely applied in the domain of image processing. Below, we consider how
our preprocessing method relates to Pca. Then, we discuss how Nim’s preprocessing
stage relates to that of Dailey et al.’s (2002) model called Empath.

Pca applied to the pixel values of natural images yields a compact representation
of the images (Hancock, Baddeley, and Smith, 1992). A number of face-recognition
models (e.g., Turk and Pentland, 1991; O’Toole et al., 1993; Burton et al., 1999)
apply Pca to the entire (shape-standardized) image to obtain so-called ‘eigenfaces’
(e.g., Turk and Pentland, 1991), i.e., the principal components that account for most
of the variance in a number of face images. Analogously to Nim’s similarity space,
the similarity space spanned by the eigenfaces forms the psychological abstract no-
tion of a similarity space for faces that is generally assumed to underlie face memory
(Valentine, 1991; O’Toole, Wenger, and Townsend, 2001). Models based on princi-
pal components have been shown to perform successfully different recognition tasks,
such as old-new recognition memory, identification, and recognition of facial expres-
sions (e.g., O’Toole et al., 1993; Burton et al., 1999; Calder et al., 2001). Although
Pca applied to the entire face image extracts important visual features from a set of
face images, the nature of the features depends on the specific expressions or shapes
of the faces. Therefore, the use of a different set of images requires recomputation of
the principal components so that they fit the new set. In order to obtain the general
features of natural images, a Pca should be applied to an extensive collection of nat-
ural images containing a wide variety of objects and scenes instead of a limited set
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of training images. Hancock et al. (1992) found that the principal components that
resulted from performing Pca on a large number of natural images approximated
derivatives of two-dimensional Gaussian functions (or Gabor functions). Such func-
tions, which are used for feature extraction in Nim, form an appropriate basis for
building a similarity-space representation from natural images that is independent
of the specific set of images used. Therefore, we prefer their use over standard Pca
applied to the raw or shape-standardized image. After feature vectors have been
extracted using Gaussian derivatives, we still apply a Pca to the extracted feature
vectors in order to reduce computational demands.

Our preprocessing stage resembles that in Empath developed by Dailey et al.
(2002): multi-scale wavelet filtering followed by Pca. Empath relies on the pre-
processing to explain psychological findings on the perception of facial expressions.
Moreover, Dailey, Cottrell, and Busey (1999) used Empath as a preprocessing front-
end to different memory models in an attempt to account for the experimental recog-
nition data obtained by Busey and Tunnicliff (1999) (in a similar way, we evaluate
to what extent Nim can account for the results by Busey and Tunnicliff (1999) in
one of our studies in chapter 4 and provide a comparison with the Empath results
in subsection 4.2.5). By showing that Empath simulates a variety of psycholog-
ical results on categorization, similarity, discrimination, and recognition difficulty
related to facial expression perception, Dailey et al. (2002) validate the similarity
structure extracted from the input by the preprocessing method. Although the
image-processing methods employed by Nim and Empath are quite similar, they
differ in two ways. The first difference is a minor difference. For feature extraction,
Dailey et al. (2002) use Gabor wavelets at different scales and orientations. In con-
trast, we use the steerable pyramid (a set of Gaussian derivatives) at different scales
and orientations (see section 2.4 and subsection 3.2.2). While Dailey et al. (2002)
use a slightly different set of filters, both feature-extraction methods are multi-scale
wavelet decompositions that contain information about oriented edges at different
scales and orientations. The second and main difference between Nim and Empath
concerns the way in which image locations are selected for feature extraction. In
Empath, images are filtered at 29 × 35 grid points, evenly distributed over the im-
age (in Dailey et al., 1999, only 64 grid points are used). In contrast, Nim selects
a few eye-fixation locations randomly along the contours in the image (moreover, in
chapter 6 we will introduce fixation-selection mechanisms for the selection of rele-
vant fixations) and extracts the filter responses from a small image area surrounding
each fixation. This corresponds to the way human subjects attend different parts
of a visual scene by means of eye fixations. Nim’s mechanism of selectively fixating
different parts of the image provides a natural way of dealing with overt spatial at-
tention. Moreover, since the number of stored fixations corresponds to viewing time,
the timing of stimuli can be modelled. Simulations that manipulate Nim’s viewing
time show that the model’s recognition performance increases with the number of
stored fixations (Lacroix et al., 2004).



3.5 — Chapter summary 33

3.5 Chapter summary

In this chapter, we described the details of the Natural Input Memory model (Nim).
Nim differs from existing memory models in that it incorporates a perceptual pre-
processing method that builds a similarity space directly from natural visual input.
Recognition is based on a matching of incoming similarity-space representations
with previously stored representations. Complementing a memory model with a
perceptual front-end allows for automatic predictions of recognition memorability
for individual natural stimuli.





Chapter 4

Validation of NIM on

individual natural stimuli

This chapter is based on1:

1. Lacroix, J. P. W., Postma, E. O., and Murre, J. M. J. (2005). Predicting
experimental similarity ratings and recognition rates for individual natural
stimuli with the Nim model. Proceedings of the 27th Annual Meeting of the
Cognitive Science Society (CogSci 2005) (eds. B. G. Bara, L. Barsalou, and
M. Bucciarelli), pp. 1225–1230, Lawrence Erlbaum Associates, Mahwah, NJ.

2. Lacroix, J. P. W., Murre, J. M. J., Postma, E. O., and van den Herik, H.
J. (2006a). Modeling recognition memory using the similarity structure of
natural input. Cognitive Science, Vol. 30, pp. 121–145.

In this chapter, we show that Nim can predict similarity ratings and recognition rates
for individual natural stimuli (Lacroix, Postma, and Murre, 2005; Lacroix et al.,
2006a)2. The model is tested on a similarity-rating task and a face-recognition
task using the same natural face images that were used in behavioural experiments
(Busey, 1998; Busey and Tunnicliff, 1999; Busey and Arici, in preparation).

The chapter is organized as follows. In section 4.1, Nim is tested on a similarity-
rating task in order to assess the psychological plausibility of the similarity space
that Nim builds from the natural input. Subsequently, in section 4.2 Nim is validated
on a face-recognition task. Finally, section 4.3 provides the chapter conclusion.

1The author would like to thank her co-authors and the publisher of the CogSci 2005 proceedings
and of Cognitive Science for their kind permission to reuse relevant parts of the article in this thesis.

2Dr. Busey of Indiana University Bloomington is gratefully acknowledged for providing us with
his data set of facial images and helpful comments. Moreover, we wish to thank the reviewers for
their helpful comments on earlier versions of the article on which this chapter is partly based.
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Figure 4.1: Three examples of faces contained in the sets of faces used in the
similarity-rating experiments.

4.1 The similarity-rating task

Since Nim’s key characteristic is that it transforms natural images into similarity-
space representations, the psychological plausibility of the constructed similarity
space is crucial for Nim’s behaviour. Therefore, we assess the psychological plausi-
bility of the similarity space that Nim builds from natural input. In order to do so,
we compare the Nim similarity ratings with experimentally obtained human simi-
larity ratings. Human similarity ratings were acquired from two studies: Busey and
Arici (in preparation) 3 and Busey (1998).

In this section, we review the two behavioural similarity-rating experiments
(4.1.1), describe the similarity-rating stimulations with Nim (4.1.2), provide the
simulation results (4.1.3), discuss the results (4.1.4), and compare our results with
those obtained in other similarity-rating modelling studies (e.g., Dailey et al., 1999;
Steyvers and Busey, 2000) (4.1.5).

4.1.1 Behavioural similarity-rating experiments

In both the experiments by Busey and Arici (in preparation) and by Busey (1998),
subjects were repeatedly confronted with two face images and were instructed to
rate the similarity by assigning a number ranging from 1 (most similar) to 9 (least
similar). This resulted in human similarity ratings for all possible pairs of faces. The
sets of stimuli used in the experiments consisted of grey-scale images of bald male
faces without glasses. Three examples of these faces are shown in Fig. 4.1.

In Busey and Arici (in preparation), 238 subjects were tested on pairs of faces
from a set of 60 faces (8 of the faces contained in the set were morphs, created by
averaging 2 of the 52 other faces). Across subjects, this resulted in a total of about
25 ratings for each of the 1770 possible pairs of faces.

In Busey (1998), 343 subjects were tested on pairs of faces from a set of 104
faces (16 of which were morphs, created by averaging two of the 88 other faces),
resulting in at least six ratings for each of the 5356 possible pairs of faces. Within

3also referred to in Steyvers and Busey (2000)
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each experiment, the similarity ratings of individual subjects were translated into
z-scores and averaged across subjects.

4.1.2 Similarity-rating simulation with NIM

Nim bases a similarity rating for two faces on a matching of the similarity-space
representations that result from preprocessing those faces. Since this task involves
no memory processes, the memory stage is not employed in these simulations.

We presented Nim with all possible face pairs from the sets of face images used in
the experiments by Busey and Arici (in preparation) and by Busey (1998). For the
assessment of the similarity of two faces, we used a method similar to the assessment
of familiarity as defined in equations 3.1 and 3.2 in chapter 3. For each face of a pair
(A, B), 100 feature vectors were extracted. Then, for each feature vector of face A,
we determined the summed similarity to the feature vectors of face B using a step
function as defined for familiarity with radius parameter r (see subsection 3.3.2).
The average summed similarity defined the Nim similarity value s for face A and
B. To compare the similarity values to the human similarity ratings, we linearly
transformed the human similarity ratings (i.e., the average z-scores of the human
similarity ratings) to cover the range from 0 to 1 and logistically transformed the
Nim similarity values into similarity ratings SR using the logistic function as defined
previously in subsection 3.3.2.

In our simulations, we varied the radius r from 2.0 to 6.0 to obtain the value
for which correlations between the human similarity ratings and the Nim similarity
ratings SR were optimal. Results were averaged across 1000 simulation runs.

4.1.3 Similarity-rating simulation results

The highest correlations between human and Nim similarity ratings were found when
the radius had a value ranging from 4.0 to 5.4. Fig. 4.2 presents the correlations
between human and Nim similarity ratings (SR) as a function of the radius r. As
can be seen in Fig. 4.2, for the experiment by Busey and Arici (in preparation),
the simulations with r = 5.1 produced the highest correlation of R = 0.65. For the
experiment by Busey (1998), the simulations with r = 4.9 resulted in the highest
correlation of R = 0.70. Fig. 4.3(a) shows the Nim similarity ratings SR for a
radius of r = 5.1 as a function of the human similarity ratings that were obtained
experimentally by Busey and Arici (in preparation). Fig. 4.3(b) shows the Nim
similarity ratings for for r = 4.9 as a function of the human similarity ratings
obtained in the experiment by Busey (1998).

4.1.4 Discussion of the similarity-ratings results

Below, we discuss four points that provide some perspective on the correlations
obtained in our experiments: (1) the limited consistency of similarity judgements
across subjects, (2) the logistic transform of similarity values into similarity ratings,
(3) the selection of eye-fixation locations, and (4) the contribution from the different
spatial scales.
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Figure 4.2: Correlations between experimentally obtained human similarity ratings
and Nim similarity ratings (SR) as a function of the radius r.
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Figure 4.3: The Nim similarity ratings (SR) as a function of the experimentally
obtained human similarity ratings (linearly transformed to the range 0 to 1). (a)
The experiment by Busey and Arici (in preparation), R = 0.65. (b) The experiment
by Busey (1998), R = 0.70.
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The first point concerns the limited consistency of the human similarity judge-
ments. An analysis of the human similarity ratings obtained in the experiment by
Busey and Arici (in preparation) showed that there was considerable variation across
the different subjects’ similarity ratings. When the subjects’ similarity ratings were
divided into 5 groups (each consisting of some 48 subjects), correlations between
the different group averages ranged from 0.72 to 0.75. This low correlation value
demonstrates the limited consistency of the similarity judgements across subjects.
It is highly unlikely that correlations between the similarity ratings produced by
Nim and experimental similarity ratings will exceed the correlation value of 0.75.
Given this consideration, Nim’s similarity-space representations then can be said to
correlate reasonably well with the experimentally obtained similarity ratings.

The second point is the use of a non-linear function to map similarity values
onto similarity ratings. Our motivation for using the non-linear logistic function is
that it constrains similarity ratings to the unit interval (Busey and Tunnicliff, 1999).
Since the logistic function produces a constrained range of outputs, we applied it
to translate the Nim similarity values into similarity ratings. However, a linear
transform of the similarity values produced comparable correlations that were 0.64
and 0.70 for the experiments by Busey and Arici (in preparation) and Busey (1998),
respectively.

The third point is about the role of the eye-fixation locations. The correlations
obtained can be explained partly by the selection of eye-fixation locations. In a sepa-
rate study, we selected eye-fixation locations randomly along the image (as opposed
to selection along the contours in the image). Using this procedure, correlations
between model and human similarity ratings are significantly lower than when fix-
ations are selected along the contours in the image. The selection of eye-fixation
locations plays an important role in human vision (e.g., Rajashekar, Cormack, and
Bovik, 2002, see also chapter 6).

Finally, the fourth point concerns the contribution from the various spatial scales.
To test this contribution, we ran similarity-rating simulations that selectively ignored
the features at one of the four spatial scales. The results demonstrate that correla-
tions between model and human similarity judgements decrease significantly more
when low-scale visual features (i.e., coarse visual information) are removed than
when high-scale visual features (i.e., visual details) are removed. It is very well pos-
sible that coarse visual information plays a more important role than detailed visual
information, when judging the similarity of two faces.

4.1.5 Comparison with other modelling studies

Two other studies have compared the representation spaces with the human sim-
ilarity ratings obtained in the behavioural studies described above. Dailey et al.
(1999) performed a comparison with the 104 face images used in the experiment by
Busey (1998) and Steyvers and Busey (2000) with the 60 face images used in the
experiment by Busey and Arici (in preparation). Below, we provide a brief overview
of both studies.

The study by Dailey et al. (1999) examined the ability of three different memory
models operating on three types of representation spaces to account for the experi-
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mental face-recognition results by Busey and Tunnicliff (1999). Two of these three
types of representation spaces were generated using Pca and Gabor filtering followed
by Pca (similar to the preprocessing in Dailey et al.’s (2002) Empath; see the dis-
cussion in subsection 3.4.2 for a detailed description of the differences between Nim’s
and Empath’s preprocessing). Dailey et al. (2002) compared the resulting represen-
tations with the distances between pairs of faces in the Mds space for the 104 face
images. They found a correlation of 0.39 for the principal-component representation
space and a correlation of 0.52 for the Gabor-filter representation space, which are
considerably smaller than the correlation of 0.70 obtained with Nim.

Higher correlations were obtained by Steyvers and Busey (2000). In their feature-
mapping model, Steyvers and Busey related the features extracted using various
preprocessing mechanisms to the dimensions of a multi-dimensional scaling solution
based on human similarity judgements for the 60 face images (Busey and Arici, in
preparation). They investigated three different preprocessing mechanisms: principal
component analysis, Gabor-filter based preprocessing, and geometric information ex-
traction (i.e., describing the face by a set of distances between landmark points in
the face). The feature-mapping model differs from Nim in an important respect:
in the feature-mapping model the pre-processed images were fed into an optimiza-
tion network to enhance the fit with behavioural data. The optimization network
learned the mapping between the input features and the psychological dimensions of
the Mds solution of the human similarity ratings (Steyvers and Busey, 2000). Con-
sidering that Steyvers and Busey (2000) specifically optimized their representations
with respect to the human similarity ratings, it is not surprising that they found
correlations ranging from 0.45 to 0.86. In contrast to their approach, Nim changes
only three parameters, whereas Steyvers and Busey (2000) adapt at least 40 weights
to optimize the fit with the human data. The study by Steyvers and Busey (2000)
provides important clues about how the dimensions of feature vectors extracted with
a certain preprocessing mechanism should be weighed in a psychologically plausible
way. Future Nim versions should analogously address the weighing of feature-vector
dimensions in a more psychologically plausible way.

Several other studies have compared the representation spaces resulting from var-
ious image preprocessing schemes with the outcomes of psychological experiments.
For instance, Calder et al. (2001) and Dailey et al. (2002) did this for coding facial ex-
pressions, and Hancock, Bruce, and Burton (1998), Kalocsai et al. (1998), and Lyons
(2000) did this for face identity. Hancock et al. (1998) compared human similarity
judgements with similarity-space representations based on a principal component
analysis or on a graph-matching system. They found small correlations of about
0.20 and argued that it was caused by the noisiness of the human data. Kaloc-
sai et al. (1998) used a samedifferent judgement task to compare the performances
of a preprocessing scheme based on a Gabor-filtering and a global template-matching
classifier with human data. In the samedifferent judgement task, participants had
to judge whether two sequentially presented images were of the same individual.
Kalocsai et al. (1998) found correlations up to 0.91. However, these were based on a
small sample of 16 judgements. Moreover, the similarity judgements were obtained
using a much simpler binary classification task. Lyons (2000) found a correlation
of 0.71 between human and model-based face similarity ratings, which is slightly



4.2 — The recognition task 41

higher than the correlations we found. However, he employed a very small set of 10
facial images and did not apply Pca to reduce the dimensionality of the represen-
tation space. In our studies, we employed sets of 60 and 104 faces and used feature
representations of a much smaller dimensionality.

4.2 The recognition task

In order to validate Nim’s recognition predictions for individual natural stimuli, we
compare the Nim recognition rates with the human recognition rates that were ob-
tained in two behavioural experiments. The first behavioural recognition experiment
is the face-recognition experiment by Busey and Arici (in preparation), employing
60 faces and 238 subjects (as described in subsection 4.1.1). The second experiment
is the face-recognition experiment 1 by Busey and Tunnicliff (1999), employing 104
faces and 180 subjects. The face images used in these experiments were identical to
those used in the similarity-rating experiments.

Below, we review the behavioural face-recognition experiments (4.2.1), describe
the face-recognition simulations with Nim (4.2.2), present the simulation results
(4.2.3), discuss the results (4.2.3), and compare our modelling results with those
obtained in other face-recognition modelling studies (Busey and Tunnicliff, 1999;
Dailey et al., 1999) (4.2.5).

4.2.1 Behavioural recognition experiments

In their recognition experiments, Busey and Arici (in preparation) and Busey and
Tunnicliff (1999) assessed the recognition rates (i.e., hit rates and false-alarm rates)
for different types of faces. The sets of 60 and 104 faces employed in the experiments
contained two types of faces: (1) normal faces, and (2) morph faces. Each morph
face was the average of two normal faces, so-called parent faces.

In the face-recognition experiment by Busey and Arici (in preparation), the set
of 60 faces was subdivided into two sets of 30 faces in such a way that each set
contained 26 normal faces, 8 of which were defined as parent faces, and 4 morph
faces (each of which was the average of 2 of the 8 parent faces). When a morph
was in one of the two sets, its parents were in the other. Half of the subjects were
presented with a study list of the faces from set 1 and tested for old-new recognition
for the faces from both set 1 (i.e., targets) and set 2 (i.e., lures). For the other half of
the subjects this was reversed. In this way, hit and false-alarm rates were obtained
for each of the 60 faces.

In the face-recognition experiment by Busey and Tunnicliff (1999) that employed
a set of 104 faces, subjects were presented with a study list of 68 normal faces, 32 of
which were defined as parent faces. Then, old-new recognition was tested for the 68
normal faces from the study list (i.e., 36 normal targets and 32 parent targets) along
with 20 new normal faces (i.e., normal lures) and 16 new morph faces (i.e., morph
lures). The morph lures were the average of two parent targets that were either
dissimilar or similar to each other. Dissimilar and similar morph lures resulted from
dissimilar and similar morph parents, respectively.
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4.2.2 Recognition simulation with NIM

In the simulations of Busey and Arici’s (in preparation) and Busey and Tunnicliff’s
(1999) face-recognition experiments, Nim was presented with a set of study-list faces
and then tested for old-new recognition of the set of faces from the study list (i.e.,
targets) along with a set of new faces (i.e., lures). The simulations with Nim used
study lists and test lists identical to those in the behavioural experiments. In other
words, Nim was provided with input similar to the input that the human subjects
had received in the behavioural experiments.

For half of the subjects in the experiment by Busey and Arici, the faces from set
1 were the targets and the faces from set 2 were the lures; for the other half, this
was reversed. In a similar way, in half of the simulations of Busey and Arici’s (in
preparation) face-recognition experiment (henceforth referred to as simulation set
A), the faces from set 1 were the targets and the faces from set 2 were the lures. For
the other half of the simulations (henceforth referred to as simulation set B) this
was reversed. See subsection 4.2.1 for the composition of the face sets 1 and 2.

In the simulations of the face-recognition experiment by Busey and Tunnicliff
(1999), Nim was presented with the faces from the study list of the behavioural
experiment (see subsection 4.2.1). Then recognition was tested for the faces of
the test list of the behavioural experiment. Again, see subsection 4.2.1 for the
composition of the study and test lists.

In the behavioural experiments, the images were presented for 1500 ms, followed
by a two-second delay. In our simulations, the number of fixations selected and stored
for each face was set to 10 which corresponds to approximately two seconds of viewing
time (see, e.g., Henderson, 2003; McSorley and Findlay, 2003). For recognition, Nim
calculated the familiarity of each target and lure on the basis of 100 fixations using
equation 3.1. Familiarity values were transformed into recognition probabilities using
the logistic transform as defined in equation 3.3. In the simulations the radius r was
varied from 2.0 to 6.0 to determine the r value that produced (1) the smallest
root-mean-square errors (RMSE) and (2) the largest correlation values between
the experimentally obtained human recognition rates (i.e., hit rates and false-alarm
rates) and the Nim recognition rates.

4.2.3 Recognition simulation results

The smallest RMSEs and the largest correlation values between the human and
the Nim recognition rates were obtained when the radius r had a value ranging
from 2.6 to 3.6. Fig. 4.4(a) presents the RMSEs between the human and the Nim
recognition rates and Fig. 4.4(b) the correlations between the human and the Nim
recognition rates as a function of the radius r.

For the simulations of the face-recognition experiment by Busey and Arici (in
preparation), the smallest RMSEs between the human and the Nim recognition
rates were obtained for r = 3.0 (RMSE = 0.155 for simulation set A and RMSE =
0.160 for simulation set B). The correlations for r = 3.0 were R = 0.82 and R = 0.70
for simulation sets A and B, respectively. Using this radius, Figs. 4.5(a) and 4.5(b)
present the Nim recognition rates as a function of the human recognition rates for
simulation sets A and B, respectively. Fig. 4.5(c), to be discussed in subsection
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Figure 4.4: A comparison of the human and the Nim recognition rates for the
experiments by Busey and Arici (in preparation) and by Busey and Tunnicliff (1999).
(a) The RMSEs between the human and the Nim recognition rates as a function of
the radius r. (b) The correlation between the human and the Nim recognition rates
as a function of the radius r.
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Figure 4.5: The Nim recognition rates as a function of the human recognition rates
(Busey and Arici, in preparation). (a) Simulation set A, for r = 3.0, RMSE = 0.155,
R = 0.82. (b) Simulation set B, for r = 3.0, RMSE = 0.160, R = 0.70. (c)
Simulation set A, for r = 3.3, RMSE = 0.162, R = 0.80.

4.2.4 presents the Nim recognition rates for a radius of r = 3.3 as a function of the
human recognition rates for simulation set A.

For the simulations of the face-recognition experiment by Busey and Tunnicliff
(1999), the smallest RMSE and the highest correlation between the human recog-
nition rates and the Nim recognition rates obtained for r = 3.0 are RMSE = 0.151
and R = 0.66.

Fig. 4.6(a) presents the Nim recognition rates for r = 3.0 as a function of the
human recognition rates (Busey and Tunnicliff, 1999). Fig. 4.6(b), which will be
discussed in subsection 4.2.4, does this for r = 3.2.
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Figure 4.6: The Nim recognition rates as a function of the human recognition rates
(Busey and Tunnicliff, 1999). (a) For r = 3.0, RMSE = 0.151, R = 0.66, (b) For
r = 3.2, RMSE = 0.164, R = 0.58.

4.2.4 Discussion of the recognition results

The recognition rates produced by Nim agree rather well with experimentally ob-
tained human recognition rates. Below, the main differences and agreements between
Nim’s recognition results and the experimentally obtained human recognition results
will be described. We start by identifying three main behavioural effects that are
successfully replicated by Nim. Subsequently, we briefly touch upon Nim’s ability to
explain the within-class variability of human recognition rates. Finally, we discuss
to what extent our results depend on the number and locations of fixations, and on
the different spatial scales.

Three replicated effects

The first effect found in the experimental data is that morph lures are falsely rec-
ognized more often than normal lures. This effect was successfully produced by the
Nim simulations of both the experiments by Busey and Arici (in preparation) and
Busey and Tunnicliff (1999).

The second effect is that in the experiment by Busey and Tunnicliff (1999),
which employed similar and dissimilar morph lures, false-alarm rates for the similar
morph lures were higher than those for the dissimilar morph lures. This effect was
also produced successfully by the Nim simulations of the experiment by Busey and
Tunnicliff (1999).

The third effect concerns the false-alarm rates for lures compared to the hit
rates for their parents. In the behavioural experiments, the false-alarm rate for the
morph lures approached the hit rates for their parents. In the experiment by Busey
and Tunnicliff (1999) the false-alarm rates even marginally exceeded the hit rates
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for the similar lures (and not for the dissimilar lures)4. This effect is called the
morph-inversion effect (Dailey et al., 1999). As can be seen in Figs. 4.5(a), 4.5(b),
and 4.6(a), Nim produced substantially smaller false-alarm rates for the morph lures
compared to the hit rates for their parents for r = 3.0. By increasing Nim’s radius r,
a better agreement with experimental findings for the morphs can be obtained. This
is at the expense, however, of a decrease in overall correlation and an increase in the
RMSEs between experimental and model recognition rates. Fig. 4.5(c) presents
the results for simulations of the experiment by Busey and Arici (in preparation)
for simulation set A, using a radius of r = 3.3. Fig. 4.6(b) presents the results
for simulations of the experiment by Busey and Tunnicliff (1999) with a radius
of r = 3.2. Compared to the results in Figs. 4.5(a) and 4.6(a), the false-alarm
rates for the morph lures have increased, while the hit rates for their parents have
decreased. Obviously, the increase in r selectively benefits the recognition rates for
the different types of faces. With the increased radius, the Nim findings agree with
the experimental findings by Busey and Tunnicliff (1999); a morph-inversion effect
is produced for the similar-morph lures, but not for the dissimilar morph lures. This
is a direct consequence of the face similarity structure reflected in Nim’s similarity
space. With a larger radius r, more stored fixations of the parent faces contribute to
the familiarity of the morph lures, in particular when the target parents are highly
similar to the morph lures (i.e., their feature-vector representations are close together
in the similarity space). Since the feature vectors of lures that are dissimilar to the
stored targets are farther apart in the similarity space, the familiarity of these faces
is only marginally affected by an increase in the radius r.

The within-class variability

While quite high overall correlations between the Nim and human recognition rates
were obtained, there is an important discrepancy between them. The discrepancy
concerns the within-class variability of recognition rates (for example, within the
class of normal targets). The human recognition rates show noticeably larger within-
class variability than the Nim recognition rates. Busey and Tunnicliff (1999) report
the same discrepancy between the human data and their SimSample model pre-
dictions based on an Mds space. They argue that the discrepancy is likely to be
due to memory characteristics that operate independently from the overall similarity
structure of the faces (e.g., a small striking facial feature, such as a birth mark, may
make the face highly memorable, but may be insignificant for the overall similarity
of faces). Similarly, a different dependency on the similarity structure of faces might
explain why the radius r, for which the correspondence between the model and the
human results is optimal, differs for the similarity-rating task and for the recognition
task.

4One more point should be noted about the third effect. While a morph-inversion effect was
obtained for the similar morph lures (and not for the dissimilar morph lures) in the behavioural
experiment by Busey and Tunnicliff (1999), the effect was not statistically significant (α > 0.05)
and the average recognition rates for the similar morph lures only marginally exceeded the average
recognition rates for their parents.
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Fixations and spatial scales

The correlations between the Nim and human recognition rates appear to be rela-
tively independent of the number of fixations that are selected and stored (i.e., the
storage strength). In our original simulations we used a storage strength of 10 fixa-
tions, since this approximately corresponds to the number of fixations per face in a
face-recognition experiment. In order to test to what extent the results depend on
the storage strength, we ran simulations with various storage strengths. For both the
experiments by Busey and Arici (in preparation) and by Busey and Tunnicliff (1999),
the different storage strengths (varying from 3 to 30 fixations) gave similar results as
the simulations with 10 fixations. While, the correspondence between the Nim and
the human recognition performance is unaffected by the number of stored fixations,
the location of the fixations seems to play an important role. Randomly selecting
fixations across the image rather than along the contours significantly reduces cor-
relations between the Nim and the human recognition performance. The reduction
mainly results from a substantial decrease in the ability to account for the variation
of recognition rates across the different types of lures and across the different types
of targets. As for the similarity rating results, we analysed the contribution from vi-
sual information at the different spatial scales. The decrease in correlations between
model and human recognition rates that results from removing visual information
from one scale is approximately equal for the different spatial scales. In contrast, for
the similarity-rating task, information from the lower spatial scales seems to play
a more important role than fine visual details. Apparently, the amount of visual
detail used to make recognition decisions differs from the amount of detail used to
make similarity judgements. This complies with Busey and Tunnicliff’s (1999) sug-
gestion that striking visual details can play an important role for memory, while
being unimportant for judging similarity. Moreover, a number of studies showed
that observers attend information at different spatial scales depending on the task
(see, e.g., Goffaux et al., 2005; Sowden and Schyns, 2006).

4.2.5 Comparison with other modelling studies

The face-recognition results obtained by Busey and Tunnicliff (1999) have been
modelled previously by Busey and Tunnicliff (1999) themselves and by Dailey et al.
(1999). In order to explain their experimental recognition data, Busey and Tun-
nicliff (1999) tested several models among which were a recognition version of the
Gcm model, their SimSample model, and the SimSample model extended with
two different versions of a prototype mechanism. They obtained RMSEs of 0.1800,
0.1462, 0.1441, and 0.1411 for the four models, respectively. The RMSEs are some-
what smaller than the RMSE of 0.151 obtained with Nim. This is likely to be
due to the use of a weighed Mds space based on human similarity ratings instead
of using the face images as input. In contrast, Dailey et al. (1999) used the face
images as input for a principal component analysis and a Gabor-filter preprocessing
mechanism in their Empath model (see subsection 3.4.2, for a detailed description
of Empath). The resulting representations were used to test the ability of different
memory models to account for the recognition data by Busey and Tunnicliff (1999).
Using the Gabor-filter preprocessing method, they obtained RMSEs of 0.1624 with
a version of the Gcm.
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4.3 Chapter conclusions

Since Nim operates directly on natural images, it is suitable for making automatic
predictions of recognition memorability for individual novel stimuli. In this chap-
ter, Nim was validated on individual natural stimuli. The model was tested on a
similarity-rating task and a face-recognition task using the same face images as were
used in behavioural studies.

From the results obtained in the similarity-rating task, we may conclude that the
Nim similarity ratings correlate reasonably well with the human similarity ratings
obtained in the behavioural studies. An additional analysis of the contribution of
the visual information from the various spatial scales suggested that coarse visual
information plays a more important role than detailed information for judging the
similarity of two faces. Moreover, extracting visual information from the contours
rather than randomly across the images, produced significantly larger correlations
between model and humans.

From the results obtained in the face-recognition task, we may conclude that
the Nim recognition rates agree rather well with the behaviourally obtained human
recognition rates. Nim successfully replicated the main effects in the human data
and absolute deviations from the human recognition rates were relatively small. An
additional analysis of the contribution of the visual information from the various
spatial scales revealed that visual details play a more important role for making
recognition decisions than for making similarity judgements. Moreover, as for the
similarity-rating task, the extraction of visual input along the contours rather than
randomly across the image produced larger correlations between model and humans.

Overall, we may conclude that Nim quite reliably produces the human similarity
ratings and recognition performances for individual natural stimuli.



Chapter 5

NIM-REM and the

recognition-memory effects

This chapter is based on1:

1. Lacroix, J. P. W., Murre, J. M. J., Postma, E. O., and van den Herik, H. J.
(2004). The natural input memory model. Proceedings of the 26th Annual
Meeting of the Cognitive Science Society (CogSci 2004) (eds. K. Forbus, D.
Gentner, and T. Regier), pp. 773-778, Lawrence Erlbaum Associates, Mahwah,
NJ.

2. Lacroix, J. P. W., Postma, E. O., Murre, J. M. J., and van den Herik, H. J.
(in preparation). Modelling recognition-memory effects with Nim-Rem.

The modelling studies presented in chapter 4 revealed that Nim quite reliably pre-
dicts behaviourally obtained similarity ratings and recognition performances for in-
dividual natural stimuli (i.e., face images). In this chapter, we investigate Nim’s nat-
ural input recognition properties for general recognition-memory effects (see, e.g.,
Lacroix et al., 2004; Lacroix et al., in preparation). In order to do so, we introduce a
variant of the Nim model, called Nim-Rem, which realizes a natural input version of
the powerful Retrieving Effectively from Memory model (Rem) proposed by Shiffrin
and Steyvers (1997). Nim-Rem generalizes Rem in such a way that it can operate
directly on natural input. The validity of a memory model is generally assessed by
testing the model’s ability to replicate a number of well-known recognition-memory
effects that are found in behavioural recognition-memory studies. In a similar way,
we examine Nim-Rem’s ability to replicate the recognition-memory effects found in
behavioural experiments. The original Rem successfully produced the behaviourally
found recognition-memory effects using a representation space based on oversimpli-
fied statistical assumptions about the features of natural input (e.g., Shiffrin and
Steyvers, 1997; also, see subsection 2.1.1). Below, we examine to what extent Nim-

1The author would like to thank her co-authors and the publisher of the CogSci 2004 proceedings
for their kind permission to reuse relevant parts of the article in this thesis.
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Rem produces these effects using a representation space that is derived directly from
natural visual input.

The chapter is organized as follows. First, we discuss Nim-Rem in section 5.1.
This is followed by a brief description of the behavioural recognition-memory ex-
periments and the paradigms that they used to study recognition memory. Then,
sections 5.3, 5.4, 5.5, and 5.6 address four recognition-memory effects. For each of
the recognition-memory effects, we present the behavioural findings, the simulations
with Nim-Rem, the simulation results, and a discussion of the results. Subsequently,
in section 5.7, Nim-Rem is compared with dual-process models. Moreover, the re-
lation between faces and words as experimental items is discussed. Finally, section
5.8 gives our chapter summary.

5.1 NIM-REM

Below, the Nim-Rem essentials are described. Since the preprocessing stage is iden-
tical to the one described in chapter 3, we here consider only the memory stage.
As mentioned in chapter 3, we distinguish two processes in the memory stage: the
storage process (5.1.1) and the recognition process (5.1.2).

5.1.1 The storage process

As in the original Nim model, the storage process in Nim-Rem stores preprocessed
samples of natural images (i.e, fixations). Both Nim and Nim-Rem store s fixations
for an image per unit of presentation time (where s represents the storage strength,
i.e., the number of stored fixations). The original Nim stores fixations without
labels not explicitly distinguishing between fixations coming from different items.
However, Rem handles representations coming from different items separately during
recognition by means of one separate feature vector for each stored item (Shiffrin
and Steyvers, 1997). Via a slight adaptation of this idea, Nim-Rem is enabled to
store labelled feature vectors. As a result, an image is represented by the set of
stored feature vectors that are similarly labelled.

Rem makes two main assumptions about the stored representations. Below we
present the assumptions and show how we adhere to these assumptions in Nim-Rem.

Rem’s two main representational assumptions are: (1) representations are incom-
plete copies of the input, and (2) representations are error-prone copies of the input
(Shiffrin and Steyvers, 1997). The representations that result from Nim’s prepro-
cessing stage (adopted by Nim-Rem) automatically adhere to the first assumption.
Nim’s preprocessing stage is based on samples (fixations) of the input. Each sample
represents a fragment of the original input. Therefore, Nim (and Nim-Rem) has
the characteristic of incomplete storage. The representations that result from Nim’s
preprocessing stage do not automatically seem to adhere to Rem’s second assump-
tion of error-proneness. Below, we will argue that Nim (and Nim-Rem) does in
fact incorporate a mechanism that generates errors. In Nim, Rem’s rather artificial
assumption of error-proneness is replaced by a more natural assumption of noisy
sampling of natural input. We assume that this noisy sampling has effects that are
comparable to the artificial error-proneness characteristic. For natural images it is
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known that displacements yield errors that are inversely proportional to the size of
the displacement. More importantly, the errors are larger for locations typically fix-
ated by human observers viewing natural images (Reinagel and Zador, 1999). Since
Nim and Nim-Rem are likely to select ‘human-like’ fixation locations, we assume
that fixational displacements yield samples that are significantly different. As a con-
sequence of the variations in fixation locations, different encounters with the same
image give rise to different representations.

5.1.2 The recognition process

Nim-Rem fully adopts Rem’s recognition process. Below, we start by describing
Rem’s recognition process. Subsequently, we describe how Nim-Rem adopts Rem’s
recognition process.

In Rem, the familiarity of a test item is determined by performing a Bayesian
comparison of all stored representations to the test representation in terms of like-
lihood ratios. For each of the stored representations, the likelihood ratio expresses
the probability that it represents the test item (i.e., the test item is old) as opposed
to that it does not represent the test item (i.e., the test item is new). The overall
odds in favour of an old over a new test item are obtained by averaging likelihood
ratios across all stored representations. These overall odds are used to produce a
recognition decision (see, e.g., Shiffrin and Steyvers, 1997; Steyvers, 2000). In Rem
the overall odds are defined as:

φ =
1

n

∑

n
J=1λJ , (5.1)

where n represents the number of stored representations and λJ is the likelihood for
the J-th stored representation that is defined as the ratio of the probability that
it represents the test item (i.e., a ‘same’ (S) judgement) over the probability that
it represents an item different from the test item (i.e., a ‘different’ (D) judgement)
(Steyvers, 2000). Formally, the likelihood is defined as:

λJ =
P (S)

P (D)
, (5.2)

where S and D represent ‘same’ and ‘different’ judgements, respectively. The cal-
culation of each likelihood ratio λ follows directly from a Bayesian principle that
uses the available information to determine the match between the test item and
the stored representation (for details, see Shiffrin and Steyvers, 1997).

Nim-Rem employs a similar method. As Rem, Nim-Rem calculates the likeli-
hood ratio λ for each of the stored representations and determines the overall odds
φ in favour of a target image over a lure image by averaging over the likelihood
ratios. In order to apply Rem’s recognition process to the representations produced
by Nim-Rem, we need to redefine the calculation of the probabilities P (S) and P (D)
for Nim-Rem. Our Bayesian calculations deviate somewhat from the approach fol-
lowed by Rem, because Nim-Rem employs continuous valued features, rather than
discrete valued features (as employed by Rem).
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In Nim-Rem, the probabilities P (S) and P (D) are related directly to the ‘fa-
miliarity’ of a test image as defined originally for Nim (see equation 3.1 and 3.2).
As noted by Barrington, Marks, and Cottrell (2007), the familiarity calculation can
be interpreted as a kernel density estimate that centres a Parzen window at each
stored feature vector (see, e.g., Duda, Hart, and Stork, 2001). The kernels are hy-
perspheres with radius r and uniform density functions. For each test fixation, the
Parzen window computes the probability density of the extracted feature vector.
Since Nim originally stored unlabelled feature vectors that were handled similarly
as exemplars of the class ‘old’, the sum of the probability densities formed the es-
timation of the probability that the test image was ‘old’. In contrast, Nim-Rem
stores labelled feature vectors and handles each stored representation (consisting of
the set of similarly labelled feature vectors) separately. Therefore, Nim-Rem sums
probability densities over the set of (similarly labelled) feature vectors of a stored
representation J , in order to estimate the probability P (S) that J represents the
test image. In the same way, P (D) can be estimated by computing the probability
densities of a set of feature vectors that represent images different from J (in our
simulations we extracted 1,000 feature vectors from each of the images different from
the stored representation J).

As in the original Rem (cf., Shiffrin and Steyvers, 1997), Nim-Rem produces a
positive recognition decision when the overall odds φ in favour of a target over a lure
exceed the value 1.0; it produces a negative recognition decision otherwise. Thus,
by comparing the obtained φ values (that were first normalized for each list type by
dividing them by the mean φ values of targets and lures of the specific list type) to
a fixed recognition decision criterion of c = 1.0, recognition rates (i.e., hit rates and
false-alarm rates) are obtained.

Some of the recognition-memory effects addressed in this chapter are expressed in
terms of overall recognition-score patterns rather than in terms of hit rate and false-
alarm rate patterns. Therefore, in addition to the calculation of the recognition
rates (i.e., the hits and false alarms), overall recognition scores are calculated for
each list. The recognition scores are calculated directly from the overall odds values
φ in a signal detection analysis. The signal-detection calculation of a recognition
score is based on the difference between the average φ value for the targets and
the average φ value for the lures. When the standard deviations of the two φ-value
distributions are equal, recognition performance, d′, is generally expressed as the
difference between the average φ value for the targets, φT , and the average φ value
for the lures, φL, normalized by the standard deviation of the distribution of the φ
values for the lures:

d′ =
φT − φL

σ(φL)
. (5.3)

However, in the more general case (when it is unknown whether the standard devia-
tions of the two distributions are equal), the appropriate measure for the recognition
score is expressed as (cf. Simpson and Fitter, 1973; Swets, 1986a, 1986b):

da =
φT − φL

√

σ2
(φT )

+σ2
(φL)

2

. (5.4)
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We used the more general measure, da, to calculate the recognition scores from the
obtained φ values.

We based calculations of each da value on the φT values and the φL values of 100
single recognition simulations. For each list type we ran 100,000 single recognition
simulations.

5.2 Behavioural experiments

In order to reveal the workings of the different episodic recognition-memory pro-
cesses, numerous behavioural experiments have been conducted. The various exper-
iments employ a straightforward list paradigm in which subjects are presented with
a study list of items and are tested for their old-new recognition memory of the stud-
ied items (targets) and a number of non-studied items (lures) (see, e.g., the studies
described in subsection 4.2.1). The behavioural recognition-memory experiments
perform various list manipulations to examine the effect on recognition memory,
e.g., strengthening (some of) the items on the study list (see the list-strength effect
in subsection 5.2.1 and the item-strength effect in subsection 5.2.3), lengthening the
study list (see the list-length effect in subsection 5.2.2), and increasing the similar-
ity of targets and lures (see the false-memory effect in subsection 5.2.4). Examples
of strengthening items are: increasing the amount of study time for the item and
increasing the number of times that the item occurs on the study list (see, e.g.,
Ratcliff, Clark, and Shiffrin, 1990; McClelland and Chappell, 1998; Norman, 2002).
Lengthening of the study list is performed by increasing the number of items on the
list (e.g., Ratcliff et al., 1990; Ohrt and Gronlund, 1999; Cary and Reder, 2003).
Increasing the similarity between targets and lures is achieved straightforwardly by
using lures on the test list that are highly similar to the studied targets.

In our investigations, we address four recognition-memory effects that have been
found consistently across the behavioural recognition-memory experiments. There-
fore, these are now considered to be robust effects (see, e.g., Ratcliff et al., 1990; Mur-
nane and Shiffrin, 1991; Yonelinas, Hockley, and Murdock, 1992; Roediger and Mc-
Dermott, 1995; McClelland and Chappell, 1998; Stretch and Wixted, 1998; Busey
and Tunnicliff, 1999; Cabeza et al., 1999; Ohrt and Gronlund, 1999; Stewart and
McAllister, 2001; MacAndrew et al., 2002; Norman, 2002; Roark, O’Toole, and
Abdi, 2003; Dewhurst and Farrand, 2004; Lamont, Stewart-Williams, and Podd,
2005; Nega, 2005). The four effects are: (1) the (null/negative) list-strength effect,
(2) the list-length effect, (3) the item-strength effect, and (4) the false-memory ef-
fect. Subsections 5.2.1, 5.2.2, 5.2.3, and 5.2.4 provide the descriptions of the four
effects and the behavioural paradigms employed to examine them.

5.2.1 The list-strength effect

The list-strength effect depicts the effect of strengthening a subset of the items of
the study list on recognition memory for the non-strengthened items.

In order to test for a list-strength effect, many list-strength studies have used the
mixed/pure paradigm, first proposed by Ratcliff et al. (1990). In this paradigm three
types of lists serve as study lists: pure weak lists (with weak items only), pure strong
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lists (with strong items only), and mixed lists (with both strong and weak items).
Weak and strong (i.e., strengthened) items differ in the amount of presentation time
on the study list or the number of times the item appears on the list. A list-strength
effect is then said to occur when the strengthened items on the study list (i.e., the
strong items) would suppress recognition of the non-strengthened items (the weak
items), which entails that recognition memory for weak items is better in the pure
weak list than in the mixed list (Ratcliff et al., 1990). Likewise, a list-strength effect
entails that memory for strong items is better in the mixed list than in the pure
strong list.

A somewhat simpler paradigm has also been used for testing the list-strength
effect (Norman, 2002). The simpler paradigm employs two types of study lists:
pure weak lists and mixed lists. A list-strength effect is then said to occur when
recognition memory for weak items is better in the pure weak list than in the mixed
list (Norman, 2002).

5.2.2 The list-length effect

The list-length effect represents the effect of the lengthening of the study list on the
recognition memory for the study list items.

In order to test for a list-length effect, behavioural studies use a paradigm that
employs two (or more) types of study lists that differ in their lengths (i.e., the number
of items on the list): (1) short lists, and (2) long lists. A list-length effect is then
said to occur when recognition memory for the items on a short list is better than
recognition memory for the items on a long list. The recognition-memory studies
examine the list-length effect either in terms of an overall performance measure,
such as the performance measure da, or examine it in more detail by analysing the
hit and false-alarm patterns. Often the specific pattern of a decrease in the hit rate
and an increase in the false-alarm rate appears to underlie the list-length effect (see,
e.g., Cary and Reder, 2003). The expression of the list-length effect in terms of the
opposing effect on the hit and false-alarm patterns is referred to as the length-mirror
effect (see, e.g., Cary and Reder, 2003).

5.2.3 The item-strength effect

The item-strength effect reflects the effect of strengthening the items of the study
list on the recognition memory for these items.

In order to test for an item-strength effect, behavioural studies use a paradigm
that employs two (or more) types of study lists that differ in the strength of items on
the list: (1) weak lists (with weak items only), and (2) strong lists (with strong items
only). Weak and strong items differ in the presentation time of an item or the number
of times the item occurs on the list. An item-strength effect is then said to occur
when recognition memory for the items on the strong list is better than recognition
memory for items on the weak list. As the list-length effect, the item-strength effect
can be examined either in terms of an overall performance measure or, in terms of
a detailed analysis of the hit and false-alarm patterns. When the specific pattern
of an increase in the hit rate and a decrease in the false-alarm rate underlies the
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item-strength effect, this is referred to as a strength-mirror effect (e.g., McClelland
and Chappell, 1998; Stretch and Wixted, 1998; Cary and Reder, 2003; Nega, 2005).

5.2.4 The false-memory effect

The false-memory effect portrays the effect of the similarity of a lure to (one of) the
studied items on the probability of falsely recognizing the lure.

In order to test for a false-memory effect, behavioural studies use a paradigm
that employs two types of lures on the test lists that differ in their similarity to the
targets on the study list: (1) dissimilar lures, and (2) similar lures. A false-memory
effect is then said to occur when similar lures are recognized falsely more often than
dissimilar lures.

5.2.5 The behavioural experiments and the simulations with
NIM-REM

In our model simulations we employed the same paradigms as those used in the
behavioural experiments. We used the set of 104 face images that was introduced
in chapter 4. The set consisted of grey-scale images of bald male faces without
glasses (see subsection 4.1.1). Nim-Rem was repeatedly first provided with a study
list of images and subsequently tested for old-new recognition of a number of the
studied images (i.e., targets) plus a number of non-studied images (i.e., lures). In
the following four sections, the behavioural findings on the four recognition-memory
effects are discussed along with theNim-Rem simulation studies that test Nim-Rem
on the four effects.

5.3 List-strength studies

A list-strength effect is defined as a decrease in recognition-memory performance
for a given subset of study-list items when other study-list items are strengthened
(Ratcliff et al., 1990).

In this section, we discuss well-known findings from behavioural recognition-
memory studies on the list-strength effect (5.3.1). Subsequently, we present the Nim-
Rem simulations by which we tested Nim-Rem’s ability to replicate the behavioural
list-strength findings (5.3.2). Then, we present the list-strength simulation results
(5.3.3). Finally, we discuss the predictions of other models on the list-strength effect
and outline how the list-strength effect varies with the similarity of the items (5.3.4).

5.3.1 Behavioural list-strength findings

Several studies showed that strengthening some items on the study list did not
deteriorate recognition performance for the non-strengthened items (i.e., a null
list-strength effect) or even significantly increased the performance for the non-
strengthened items (i.e., a negative list-strength effect) (e.g., Shiffrin, Ratcliff, and
Clark, 1990a; Ratcliff et al., 1990; Murnane and Shiffrin, 1991; Yonelinas et al.,
1992). These results contradicted the expectations of a positive list-strength effect
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for recognition memory for three reasons. First, positive list-strength effects were
obtained for free recall, which led to the expectation that positive list-strength ef-
fects would be obtained for recognition memory also; in contrast, null and negative
list-strength effect were obtained. Second, several studies showed that lengthening
the study list by adding new items to the study list deteriorated recognition memory
for the items on the list (i.e., a list-length effect, see subsection 5.4.1 that describes
results on the list-length effect), which led to the expectation that lengthening the
study list by repeating items on the study list (i.e., strengthening these items) would
deteriorate recognition memory for the non-strengthened items (in a similar way as
recognition memory for items deteriorated when items are added to the list); this
is not what happens. Third, the null list-strength findings and the negative list-
strength findings contradicted the predictions of the major existing memory models
of that time (for a detailed outline, see, Shiffrin, R. Ratcliff, and Clark, 1990b). To
adhere to the list-strength findings, new models were developed among which was
Rem that was discussed in the previous section (Shiffrin and Steyvers, 1997).

The list-strength results, which contradicted the expectations, seem to reflect
robust effects; the null and the negative list-strength effect have been obtained in
many studies (e.g., Ratcliff et al., 1990; Murnane and Shiffrin, 1991; Yonelinas et al.,
1992). In an elaborate study Ratcliff et al. (1990) tested for a list-strength effect for
recognition in seven experiments employing the mixed/pure paradigm described in
subsection 5.2.1. They obtained null-list-strength effects in four of the experiments,
and significantly negative list-strength effects in three of the experiments. Where
non-significant (i.e., null) list-strength effects were obtained, the effects were mostly
slightly negative. Since the experiments by Ratcliff et al. (1990), several list-strength
studies have failed to obtain a list-strength effect for recognition (e.g., Murnane and
Shiffrin, 1991; Yonelinas et al., 1992).

Taken together, the list-strength literature shows that a list-strength effect does
not occur for recognition and often a negative list-strength effect is observed.

5.3.2 List-strength simulations with NIM-REM

In our simulations, we investigated the list-strength effect. In particular, we tested to
what extent Nim-Rem is able to predict a null list-strength effect or even a negative
list-strength effect as obtained in the behavioural experiments (e.g., Ratcliff et al.,
1990). To assess the robustness of the effect, we tested for the list-strength effect
across several list-length levels (i.e., study lists that differ in the number of images
on the list).

Below we describe (1) the paradigm that was employed for assessing the list-
strength effect, and (2) the experimental procedure.

The paradigm

For assessing the occurrence of a list-strength effect, we employed the paradigm
proposed by Norman (2002) as mentioned in subsection 5.2.1. This paradigm uses
two types of study lists: weak lists and mixed lists. Both types of study lists contain
N targets. On the weak lists all targets are presented once. On the mixed lists half
of the targets are presented once and half of the targets are presented twice (i.e., they
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are strengthened). The strengthened targets serve to manipulate the list strength
and are not tested for recognition. A list-strength effect is said to occur when the
recognition score for weak lists is higher than the recognition score for mixed lists. As
mentioned previously, list-strength effects were assessed across different list-length
levels (i.e., we employed short lists, long lists, and extra long lists). The Cohen’s d
effect size estimate (Cohen, 1988) was used to quantify the difference in recognition
scores for weak lists and mixed lists. The effect size is calculated as follows:

Cohen′s d =
da(weak) − da(mixed)
√

σ2
da(weak)

+σ2
da(mixed)

2

(5.5)

with da(weak) and da(mixed) the recognition scores for the weak and mixed lists,
respectively. The effect size is a measure for the degree to which a list-strength effect
has occurred.

The experimental procedure

For each simulation run, Nim-Rem was presented with a study list of targets. Then,
old-new recognition was tested for a (non-strengthened) target and a lure. Targets
and lures were randomly selected from the set of face images. We presented Nim-
Rem with: (1) weak study lists, and (2) mixed study lists. On the weak lists all
targets were stored with storage strength S = 10 (i.e., 10 feature vectors were stored,
corresponding to 10 fixations). On the mixed lists, half of the targets were stored
with storage strength S = 10 (i.e., the non-strengthened targets) and half of the
targets were stored with storage strength S = 20 (i.e., the strengthened targets that
were shown twice). Nim-Rem was tested on study lists of different lengths N : (1)
short lists (N = 8), (2) long lists (N = 12), and (3) extra long lists (N = 18)2.
Recognition tests were performed using the radius parameter r = 5.0.

5.3.3 List-strength simulation results

Table 5.1 presents the results. The rows show the results for the weak and mixed lists
of different lengths: short lists (N = 8), long lists (N = 12), and extra long lists (N =
18). Since the list-strength effect is defined in terms of an overall recognition score
rather than in terms of hit and false-alarm patterns, we present the da recognition
scores. Also, the size of the obtained list-strength effects are presented. Overall,
recognition scores for mixed lists are higher than those for weak lists. This indicates
that negative list-strength effects occurred3.

2List lengths were chosen in such a way that the results would reveal the difference between
the effect on recognition memory of lengthening the study list by repeating items on the study list
(i.e., strengthening these items) and the effect on recognition memory of lengthening the study list
by adding new items to the study list. Therefore, the mixed short study lists contained an equal
number of images (i.e., 4 non-strengthened targets and 4 strengthened targets (shown twice) which
added up to 12 targets) as the weak long list and the mixed long list contained an equal number
of images (i.e., 6 non-strengthened targets and 6 strengthened targets (shown twice) which added
up to 18 targets) as the weak extra long list.

3We would like to note that, while lengthening the study list by repeating some of the targets
on the study list improved recognition memory (i.e., a worse performance for weak lists compared
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weak mixed effect size
————— ————— —————

da da Cohen’s d
short

(N = 8) 0.93 1.02 0.60
long

(N = 12) 0.77 0.86 0.63
extra long
(N = 18) 0.64 0.70 0.41

Table 5.1: Recognition scores (da) for weak lists and mixed lists of different lengths:
short lists (N = 8), long lists (N = 12), and extra long lists (N = 18). Cohen’s d
effect sizes quantify the obtained list-strength effects.
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Figure 5.1: The list-strength effect. Recognition performance, da, for weak lists
(grey bars) and mixed lists (white bars) for lists of different lengths: short lists
(N = 8), long lists (N = 12), and extra long lists (N = 18). The error bars indicate
the standard deviations of the recognition scores.

Fig. 5.1 shows bar graphs of the recognition scores for lists of different lengths:
short lists (N = 8), long lists (N = 12), and extra long lists (N = 18), for weak
lists (grey bars) and mixed lists (white bars). The error bars indicate the standard
deviations of the recognition scores. Anovas support the statistical significance
of the negative list-strength effects for short lists (N = 8), F (1, 1999) = 182.54,
p < 0.05, long lists (N = 12), F (1, 1999) = 195.67, p < 0.05, and extra long lists
(N = 18), F (1, 1999) = 83.81, p < 0.05.

It should be noted that for da to be a suitable performance measure, the tar-
get and lure familiarity values should be distributed normally. Fig. 5.2 presents

to that for mixed lists), lengthening the study list by adding targets to the study list decreased
recognition performance (i.e., a worse performance for long lists compared to that for short lists
and a worse performance for extra long lists compared to that for long lists). See also section 5.4
about the list-length effect.
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familiarity-value distributions for targets and lures on weak and mixed lists for
short lists (N = 8) and extra long lists (N = 18). From Fig. 5.2, it can be seen that
familiarity-value distributions become more normally-distributed when the study list
is lengthened. For short lists (N = 8) (corresponding to a relatively small number
of stored fixations), familiarity values were slightly skewed, due to their truncation
at a familiarity value of zero (see Fig. 5.2(b) and (d)). The truncation somewhat
distorts the standard deviations and therefore the da values. The magnitude of the
distortion depends on the skewedness of the distribution. However, we believe that
Nim-Rem reliably produces a negative list-strength effect, because the simulations
for longer study lists produce a similar pattern of results based on more normally
distributed familiarity values.

5.3.4 Discussion of the list-strength results

Below we clarify why some models predict a null or even negative list-strength effect,
whereas others fail to do so. Then, we discuss how similarity affects the size of the
list-strength effect.

List-strength predictions of memory models

At the time Ratcliff et al. (1990) published their results on the null and negative
list-strength effect, the major existing memory models (e.g., the Sam model (Raaij-
makers and Shiffrin, 1981; Gillund and Shiffrin, 1984), the Todam model (Murdock,
1982), the Charm model (Eich, 1982; Eich, 1985), the Matrix model (Pike, 1984),
the Minerva2 model (Hintzman, 1986)) were unable to predict a negative list-
strength effect. The models had the characteristic that strengthening some items on
the study list had a similar qualitative effect as adding new items to the study list.
Therefore, the models predicted positive list-strength effects (in a similar way as
they predicted positive list-length effects). Shiffrin et al. (1990a) demonstrated that
for a model to accommodate a null or negative list-strength effect, the model should
incorporate the characteristic that when an item is strengthened it becomes less
confusable with a test item that is different from the stored item. This phenomenon
is called differentiation (McClelland and Chappell, 1998). The original Rem pro-
duced an effect of differentiation, because more features are stored for strengthened
items, which makes their representations less confusable with test words other than
the strengthened item. In a similar way, Nim-Rem stores more feature vectors for
an image when it is strengthened, which makes the feature-vector representation
more refined and less confusable with test images other than the strengthened im-
age. As a consequence of the refinement of the representations, the variability in the
familiarity values for targets and lures decreases, which results in higher recognition
scores.

Similarity and the list-strength effect

While in most studies a null list-strength effect or a negative list-strength effect was
obtained for recognition, in a more recent study it was shown that a positive list-
strength effect can be obtained when there is a high degree of similarity between
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(c) Targets, mixed short lists
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Figure 5.2: Target and lure familiarity-value distributions for weak and mixed lists
for short lists (N = 8) and extra long lists (N = 18) based on 50,000 familiarity
values.
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the items on the study and the test list (Norman, 2002). Norman adheres to a
dual-processing approach to explain his results, which assumes that two processes
underlie recognition: (1) a familiarity process, i.e., a context-insensitive automatic
process that determines the familiarity of an item, and (2) a recollection process, i.e.,
a context-sensitive strategic process that recollects specific studied details (Norman,
2002; Norman and O’Reilly, 2003). Consistent with the fact that a list-strength
effect is found for recall and not for recognition (Ratcliff et al., 1990), Norman (2002)
argues that the magnitude of the list-strength effect depends on the extent to which
recollection drives recognition. In a few experiments, Norman (2002) manipulated
the degree to which subjects had to rely on recollection to make recognition decisions
by varying the similarity between the items on the study list and the test list.
Norman (2002) argued that when the items on the test list are highly similar to the
items on the study list, all test items produce strong ratings of familiarity. Therefore,
the subject will rely more on recollection of specific details when using similar study
items (i.e., targets) and test items (i.e., lures) than when using dissimilar targets
and lures. As a consequence, a larger list-strength effect will be obtained for similar
targets and lures than for dissimilar targets and lures. His results supported the
prediction that the size of the list-strength effect varies with similarity; while he
found a null list-strength effect using similar targets and lures, a positive list-strength
effect was obtained for similar study and test items.

In order to test whether Nim-Rem is able to predict that the similarity between
studied images (i.e., targets) and non-studied images (i.e., lures) affects the size of
the list-strength effect, we ran an additional simulation in which list-strength effects
were assessed for targets vs. dissimilar lures (TD) and for targets vs. similar lures
(TS). We presented the model with weak and mixed study lists of length N = 8.
After the last image of the study list had been stored, three images were presented
for recognition: (1) a (non-strengthened) target, (2) a lure dissimilar to the tar-
gets, and (3) a lure similar to one of the (non-strengthened) targets. Similarity
was based on the similarity ratings that were obtained in the studies of chapter 4
(also see subsection 5.6.2 which explains in more detail when two images are con-
sidered to be dissimilar or similar). Analogously to the behavioural results obtained
by Norman (2002), the Nim-Rem results showed that similarity affects the size of
the list-strength effect; significantly smaller list-strength effects were obtained for
TD than for TS. However, Nim-Rem produced negative and slightly negative list-
strength effects for TD and TS, respectively, while Norman (2002) obtained a null
list-strength effect and a positive list-strength effect for TD and TS, respectively. In
its current form Nim-Rem is unable to produce positive list-strength effects since it
produces an effect of differentiation. Strengthening some of the targets will make
the stored representations less confusable, which will benefit recognition. While the
beneficial effect is less pronounced and can even be a null effect when target-lure
similarity increases, it will not have a detrimental effect on recognition. When the
positive list-strength effects for similar targets and lures that were obtained by Nor-
man (2002) turn out to be robust recognition-memory effects, model adjustments
should be made to accommodate the findings.
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5.4 List-length studies

A list-length effect is defined as a decrease in memory performance for the study-list
items when the study list is lengthened (Ratcliff et al., 1990).

In this section, we discuss well-known findings from behavioural recognition-
memory studies on the list-length effect (5.4.1). Then, we present the Nim-Rem
simulations by which we tested Nim-Rem’s ability to replicate the behavioural find-
ings (5.4.2). Subsequently, we present the list-length results (5.4.3). Finally, we
discuss why Nim-Rem produces a list-length effect (5.4.4).

5.4.1 Behavioural list-length findings

The list-length effect has often been studied for recognition memory. Although many
studies that tested for the effects did not control the variables that normally vary
with the list length (e.g., the retention interval, the loss of attention, the displaced
rehearsal, the failure of contextual reinstatement, and the recognition load), a num-
ber of studies have been conducted that controlled one or more of these confounding
variables. While some of the controlled studies failed to find a list-length effect
(e.g., Dennis and Humphreys, 2001), most did obtain it (e.g., Ohrt and Gronlund,
1999; Cary and Reder, 2003). List-length studies that analysed the list-length effect
in terms of the hit and false-alarm patterns, revealed that subjects produce more hits
and fewer false alarms for shorter lists than for longer lists (see, e.g., Ratcliff et al.,
1990; Cary and Reder, 2003). In other words, a length-mirror effect (i.e., an opposing
effect on the hit and false-alarm patterns) underlies the list-length effect. Generally,
the list-length effect is considered a well-established effect in the recognition-memory
literature (e.g., Podd, 1990; Ratcliff et al., 1990; Ohrt and Gronlund, 1999; MacAn-
drew et al., 2002; Metzger, 2002; Cary and Reder, 2003; Lamont et al., 2005).

5.4.2 List-length simulations with NIM-REM

Our list-length simulation tested Nim-Rem’s ability to produce the list-length effect.
The list-length effect was analysed both in terms of the overall performance measure,
and in terms of the hit and false-alarm patterns (to reveal the occurrence of a length-
mirror effect, see subsection 5.2.2). In order to assess the robustness of the effect,
we tested for the list-length effect across several item-strength levels (i.e., across
study lists that differ in the strength of the images on the list). In the same way,
subsection 5.5.2 will address Nim-Rem’s ability to produce the item-strength effect
across several list-length levels (i.e., across study lists that differ in the number of
images on the list). Considering our aim to test for a list-length effect at different
item-strength levels and to test for an item-strength effect at different list-length
levels, we decided to merge the tests into one design employing nine study list types
of three different list-length levels and three different item-strength levels.

Below we describe (1) the paradigm that was employed for assessing the list-
length effect, and (2) the experimental procedure.
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The paradigm

Although the second simulation employed a design that was suitable for assessing
the list-length effect as well as the the item-strength effect, here we focus on the
paradigm that underlies the assessment of a list-length effect. The paradigm uses
three types of lists that differ in their lengths N : (1) short lists, (2) long lists, and (3)
extra long lists. As mentioned previously, these list types were presented at three
different item-strength levels (i.e., weak, strong, and extra strong, see subsection
5.5.2). A list-length effect is said to occur if the recognition score decreases when
the study list is lengthened. Nim-Rem recognition scores were compared for the
short, long, and extra long lists (at each item-strength level) in order to assess the
occurrence of a list-length effect. Moreover, we analysed the hit and false-alarm
patterns across the short, long, and extra long lists, to reveal length-mirror effects.
To quantify the effect sizes, we again used Cohen’s d effect size estimate.

The experimental procedure

Again (see subsection 5.3.2), each simulation run, a study list of targets was pre-
sented to Nim-Rem and subsequently Nim-Rem was tested for old-new recognition
of a target and a lure. Targets and lures were randomly selected from the set of
face images. Since this simulation was designed in such a way that it addressed the
list-length effect and the item-strength effect, the length of the study lists as well as
the strength of the images on the study lists were varied.

We presented to Nim-Rem: (1) short lists (N = 8), (2) long lists (N = 12),
and (3) extra long lists (N = 18), at three different item-strength levels: (1) weak,
(2) strong, and (3) extra strong. Targets on the weak, strong, and extra strong
lists were stored with storage strengths S = 10 (i.e., 10 feature vectors were stored,
corresponding to 10 fixations), S = 20, and S = 30, respectively. After the last
image of a study list had been stored, one target along with one lure were presented
for recognition. As in the first simulation, recognition tests were performed using
the radius parameter r = 5.0. As mentioned in subsection 5.1.2, the recognition
decision criterion was set to c = 1.0. Small variations in the recognition decision
criterion were not critical to the simulation results.

5.4.3 List-length simulation results

Table 5.2 presents the results. The table shows the recognition results for weak
(S = 10), strong (S = 20), and extra strong (S = 30) lists (columns) for lists of
different lengths: short lists (N = 8), long lists (N = 12), and extra long lists (N =
18) (rows). The results in Table 5.2 demonstrate that Nim-Rem produces a list-
length effect; recognition scores (da) decrease with the length, N , of the study list.
Anovas show that the list-length effects are significant for weak lists, F (2, 1499) =
584.09, p < 0.05, strong lists, F (2, 1499) = 1103.07, p < 0.05, and extra strong lists
F (2, 1499) = 1772.95, p < 0.05. The values presented in bold between the rows in
Table 5.2 indicate the absolute sizes of the list-length effects. Moreover, the results
in Table 5.2 show length-mirror effects: the hit rate for longer lists is lower than the
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weak strong extra strong
(S = 10) (S = 20) (S = 30)

————————– ————————– ————————–
da H FA da H FA da H FA

short
(N = 8) 0.94 0.63 0.27 1.22 0.70 0.24 1.41 0.74 0.22

1.17 1.51 1.95

long
(N = 12) 0.78 0.61 0.31 0.99 0.67 0.29 1.11 0.70 0.28

1.03 1.43 1.82

extra long
(N = 18) 0.63 0.59 0.35 0.77 0.63 0.33 0.84 0.66 0.32

Table 5.2: Recognition scores (da), hit rates (H), and false-alarm rates (FA), for
weak (S = 10), strong (S = 20), and extra strong (S = 30) lists of different lengths:
short lists (N = 8), long lists (N = 12), and extra long lists (N = 18). The absolute
list-length effect sizes are presented in bold between the rows.
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Figure 5.3: The list-length effect. Recognition scores, da, for (a) weak lists, (b)
strong lists, and (c) extra strong lists of different lengths: short lists (N = 8; dark-
grey bars), long lists (N = 12; light-grey bars), and extra long lists (N = 18; white
bars). Error bars indicate the standard deviation of the recognition scores.

hit rate for shorter lists and the false alarm rate for longer lists is higher than the
false alarm rate for shorter lists.

Fig. 5.3 presents bar graphs of the recognition scores for (a) weak lists, (b) strong
lists, and (c) extra strong lists of different lengths: short lists (N = 8; dark-grey
bars), long lists (N = 12; light-grey bars), and extra long lists (N = 18; white bars).
Again, the error bars indicate the standard deviation of the recognition scores.
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5.4.4 Discussion of the list-length results

Nim-Rem produces a list-length effect because storing more images decreases the
average match between a tested target and the stored representations. Overall, a
relatively high familiarity value is found for a test target and the previously stored
representation of that test target; also, a relatively low match is found between a
test target and a previously stored representation of a different image. Therefore,
when the familiarity value is based on more previously stored representations (of
images different from the tested target), the average match across the previously
stored representations decreases for the test target. As a consequence, the difference
between the average familiarity value for targets and that for lures decreases, which
causes the recognition score to decrease. At the same time, lengthening the study list
causes the variability in the familiarity values for targets and lures to decrease, which
leads to an increase in the da values. Nevertheless, the decrease in the difference
between the average familiarity values for targets and lures amply outweighs the
decreases in variabilities of familiarity values for targets and lures. Therefore, overall,
recognition scores da decreased when the study list was lengthened.

5.5 Item-strength studies

An item-strength effect is defined as an increase in memory performance for the
study-list items when the items are strengthened (Ratcliff et al., 1990).

In this section, we discuss well-known findings from behavioural recognition-
memory studies on the item-strength effect (5.5.1). Then, we present the Nim-
Rem simulations by which we tested Nim-Rem’s ability to replicate the behavioural
findings (5.5.2). After that the item-strength results are presented (5.5.3). Finally,
we discuss briefly why Nim-Rem produces an item-strength effect (5.5.4).

5.5.1 Behavioural item-strength findings

Many researchers have found an item-strength effect using textual items (e.g., Rat-
cliff et al., 1990; Cary and Reder, 2003) and faces (Laughery, Alexander, and Lane,
1971; Roark et al., 2003; Nega, 2005). When examined in terms of the hit and false-
alarm patterns (rather than an overall performance measure), a strength-mirror
effect is often observed: when strengthening the study list, discrimination between
targets and lures improves, there are more hits and fewer false alarms (e.g., McClel-
land and Chappell, 1998; Stretch and Wixted, 1998; Cary and Reder, 2003; Nega,
2005). As the list-length effect, the item-strength effect is generally considered to
occur for recognition memory.

5.5.2 Item-strength simulations with NIM-REM

In our simulations, we examined Nim-Rem’s ability to predict the item-strength ef-
fect. The item-strength effect was analysed both in terms of the overall performance
measure, and in terms of the hit and false-alarm patterns (to reveal the occurrence
of a strength-mirror effect, see subsection 5.2.3).
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Below we describe (1) the paradigm that was employed for assessing the item-
strength effect, and (2) the experimental procedure.

The paradigm

As described in subsection 5.4.2, the second simulation employed a design that was
suitable for assessing the list-length effect as well as the item-strength effect. Here,
we focus on the paradigm that underlies the assessment of an item-strength effect.
The paradigm uses three types of lists that differ in the item-strength (i.e., the
strength of the images on the study list): (1) weak lists, (2) strong lists, and (3)
extra strong lists. As explained in subsection 5.4.2, these list types were presented at
three different list-length levels (i.e., short, long, and extra long). An item-strength
effect is said to occur if the recognition score increases when the images on the
study list are strengthened. Nim-Rem recognition scores were compared for the
weak, strong, and extra strong lists (at each list-length level) in order to assess the
occurrence of an item-strength effect. Moreover, we analysed the hit and false-alarm
patterns across the weak, strong, and extra strong lists, to reveal strength-mirror
effects. To quantify the effect sizes, we again used Cohen’s d effect size estimate.

The experimental procedure

As mentioned previously, the second simulation addressed the list-length effect and
the item-strength effect. Details about the experimental procedure can be found in
section 5.4.2.

5.5.3 Item-strength simulation results

Table 5.3 presents the results. The table shows the recognition results for weak
(S = 10), strong (S = 20), and extra strong (S = 30) lists (rows) for lists of
different lengths: short lists (N = 8), long lists (N = 12), and extra long lists
(N = 18) (columns). Please note, that the recognition scores and the hit rates
and false-alarm rates are the same ones as presented in Table 5.2. However, Table
5.3 presents the values of Table 5.2 with the rows and columns interchanged, to
stress the emphasis on the item-strength effect rather than the list-length effect.
Moreover, in Table 5.2 the effect sizes presented in bold between the rows in Table
5.2 and Table 5.3 represent the list-length effect sizes and the item-strength effect
sizes, respectively.

Overall, recognition scores (da) increased with the strength, S, of the study-list
images. This indicates that item-strength effects occurred. Fig. 5.4 presents bar
graphs of the recognition scores for weak (dark-grey bars), strong (light-grey bars),
and extra strong lists (white bars) of different lengths: short lists (N = 8), long lists
(N = 12), and extra long lists (N = 18).

The values presented in bold between the rows in Table 5.3 indicate the sizes of
the item-strength effects. Moreover, strength-mirror effects were obtained: hit rates
for weaker lists were lower than hit rates for stronger lists and false alarm rates for
weaker lists were higher than false alarm rates for stronger lists. This was the case
across all list-length levels.
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short long extra long
(N = 4) (N = 12) (N = 18)

————————– ————————– ————————–
da H FA da H FA da H FA

weak
(S = 10) 0.94 0.63 0.27 0.78 0.61 0.31 0.63 0.59 0.35

1.92 1.42 0.96

strong
(S = 20) 1.22 0.70 0.24 0.99 0.67 0.29 0.77 0.63 0.33

1.21 0.81 0.50

extra strong
(S = 30) 1.41 0.74 0.22 1.11 0.70 0.28 0.84 0.66 0.32

Table 5.3: Recognition scores (da), hit rates (H), and false-alarm rates (FA), for
weak (S = 10), strong (S = 20), and extra strong (S = 30) lists (rows) of different
lengths: short lists (N = 8), long lists (N = 12), and extra long lists (N = 18)
(columns). The absolute item-strength effect sizes are presented in bold between
the rows.
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Figure 5.4: The item-strength effect. Recognition scores, da, for weak lists (dark-grey
bars), strong lists (light-grey bars), and extra strong lists (white bars) of different
lengths: short lists (N = 8), long lists (N = 12), and extra long lists (N = 18).
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5.5.4 Discussion of the item-strength results

Nim-Rem produces an item-strength effect because when an image is strengthened
it becomes less confusable with a test image that is different from the stored image.
As a consequence of the refinement of the representations, the variability in the
familiarity values for targets and lures decreases, which results in higher recognition
scores.

5.6 False-memory studies

The false-memory effect says that the recognition of a lure (i.e., a false memory or a
false alarm) is more likely to happen when the lure is similar to (one of) the studied
items.

In this section, we discuss well-known findings from behavioural recognition-
memory studies on the false-memory effect (5.6.1). Then, we present the Nim-Rem
simulations by which we assessed Nim-Rem’s ability to replicate the behavioural
findings (5.6.2). Subsequently, the false-memory simulation results are presented
(5.6.3). Finally, we discuss the effect of similarity on the list-length effect and the
item-strength effect (5.6.4).

5.6.1 Behavioural false-memory findings

False-memory effects have been found in a number of behavioural studies using
textual stimuli (e.g., Postman, 1951; Roediger and McDermott, 1995; Westbury,
Buchanan, and Brown, 2002; Dewhurst and Farrand, 2004), colours (Zaki and Nosof-
sky, 2001), object images (Koutstaal, 2003), and face images (e.g., Davies, Shepherd,
and Ellis, 1979; Solso and McCarthy, 1981; Vokey and Read, 1992; Busey and Tun-
nicliff, 1999; Cabeza et al., 1999; Stewart and McAllister, 2001). In one task in the
experiment by Koutstaal (2003) younger and older adults were presented with three
types of items: (1) previously-studied items (targets), (2) items that were perceptu-
ally and conceptually similar to studied items but were not presented during study
(similar lures), and (3) new unrelated items (dissimilar lures). Items were coloured
photographs or detailed line drawings of common objects or animals. Their results
showed that for both younger and older adults, the number of false alarms was signif-
icantly higher for similar lures than for dissimilar lures. Similarly, the false-memory
effect has been found in studies using faces. For example, Busey and Tunnicliff
(1999) found a false-memory effect in their recognition experiment using face images
(in our simulations we used the same face images). In the experiment there were
three types of faces: (1) normal faces, (2) parent faces, and (3) morph faces. Each
morph face was the average of two parent faces. A study list with 36 normal faces
and 32 parent faces was presented to the subjects. Then, old-new recognition was
tested for these 36 normal faces (i.e., normal targets) and 32 parent faces (i.e., parent
targets) along with 20 new normal faces (i.e., normal lures) and 16 new morph faces
(i.e., morph lures). The morph lures were the average of two parent targets that
were either dissimilar or similar to each other. Dissimilar and similar morph lures
resulted from dissimilar and similar morph parents, respectively. They found that
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morph lures were falsely recognized much more often than normal lures. Moreover,
similar morph lures were falsely recognized more often than dissimilar morph lures.

5.6.2 False-memory simulations with NIM-REM

In our simulations, we examined Nim-Rem’s ability to predict the false-memory
effect. In particular, we investigated whether Nim-Rem is able to predict that
similarity affects the false recognition of a lure as was found experimentally (see,
e.g., Busey and Tunnicliff, 1999; Koutstaal, 2003). The robustness of the effect was
assessed by testing for the false-memory effect across several list-length levels and
across several item-strength levels. Below we describe (1) the paradigm that was
employed for assessing the false-memory effect, and (2) the experimental procedure.

The paradigm

For assessing the occurrence of a false-memory effect, we employed a paradigm that
uses two types of lures on the test list: (1) a lure that is dissimilar to the images on
the study list, and (2) a lure that is similar to (at least one of) the images on the
study list. A higher false-alarm rate for similar lures than for dissimilar lures is said
to indicate the occurrence of a false-memory effect. We compared the false-alarm
rate for dissimilar and for similar lures to assess the occurrence of a false-memory
effect.

The experimental procedure

We varied the similarity of targets and lures, while keeping the similarity between the
targets constant, distinguishing recognition performance for: (1) target vs. dissimilar
lures (TD) and (2) targets vs. similar lures (TS).

In the similarity-rating studies described in section 4.1.2, similarity ratings for
all possible pairs of images from the face image set were obtained. These were used
to select dissimilar and similar images in the false-memory effect simulation. In the
simulation, two images are considered dissimilar when they have a similarity rating
larger than 0.50 and two images are considered similar when they have a similarity
rating smaller than 0.25.

For each simulation run, Nim-Rem was provided with a study list of targets,
which were selected randomly from the face image set. Then, old-new recognition
was tested for: (1) a target, (2) a lure dissimilar to all of the targets, and (3) a
lure similar to (at least) one of the targets. As for the list-length and item-strength
simulations, the false-memory effect simulation provided Nim-Rem with 9 lists across
three list-length levels: (1) short lists (N = 8), (2) long lists (N = 12), and (3) extra
long lists (N = 18), and across three item-strength levels: (1) weak (S = 10), (2)
strong (S = 20), and (3) extra strong (S = 30). Targets on the weak, strong, and
extra strong lists, were stored with storage strengths S = 10, S = 20, and S = 30,
respectively. As for the other simulations, recognition tests were performed using
the radius parameter r = 5.0 and a recognition decision criterion c = 1.0.
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5.6.3 False-memory simulation results

The false-memory simulation results are presented in Tables 5.4 and 5.5. The tables
shows the recognition results for weak (S = 10), strong (S = 20), and extra strong
(S = 30) lists of different lengths: short lists (N = 8), long lists (N = 12), and extra
long lists (N = 18). Although this subsection addresses the false-memory effect in
general, for reasons of readability Tables 5.4(a) and (b) and Tables 5.5(a) and (b)
adhere to similar table structures as used in Table 5.2 and Table 5.3, respectively.
We reiterate that the recognition scores, the hit rates, and the false-alarm rates
in Tables 5.4(a) and (b) are the same as those in the Tables 5.5(a) and (b) with
the rows and columns appropriately interchanged. The effect sizes are presented in
bold between the rows in Tables 5.4(a) and (b) and in Tables 5.5(a) and (b). They
represent the list-length effect sizes and the item-strength effect sizes, respectively.
A detailed discussion of the effect of the similarity on the size of the list-length effect
and the size of the item-strength effect is given in subsection 5.6.4.

A false-memory effect occurred for each list type; false-alarm rates were higher
for similar lures than for dissimilar lures for each list type. The false-memory effects
were significant for each list-length level and each item-strength level, F values
ranged from F (1, 999) = 6605, p < 0.05, for short weak lists (N = 8, S = 10) to
F (1, 999) = 27807, p < 0.05, for extra long extra strong lists (N = 18, S = 30).
So, in accordance with the behavioural findings (e.g., Busey and Tunnicliff, 1999),
Nim-Rem predicts that the target-lure similarity modifies the false recognition of a
lure.

As Table 5.2, Tables 5.4(a) and (b) present the sizes of the list-length effects
in bold between the rows. Also, as Table 5.3, Tables 5.5(a) and (b) present the
sizes of the item-strength effects in bold between the rows. Tables 5.4(a) and (b)
illustrate that the list-length effect sizes vary with the similarity between the images
on the study list and the test list. Also, Tables 5.5(a) and (b) illustrate that the
item-strength effect sizes vary with the similarity between the images on the study
list and the test list. Subsection 5.6.4 reflects on the effect of similarity on the sizes
of the list-length and item-strength effects.

5.6.4 Discussion of the false-memory results

Below, we discuss the effect of similarity on the sizes of the list-length effects and
the sizes of the item-strength effects as obtained in the false-memory simulation.

Similarity and the list-length effects

List-length effects were smaller for TD than for TS and were even non-significant for
TD. The interaction between list length and similarity (TD or TS) was confirmed
in the two-way Anovas, in which F values ranged from F (2, 2999) = 204.44, p <
0.05 for weak lists to F (2, 2999) = 214.11, p < 0.05 for extra strong lists. Nim-
Rem produces smaller list-length effects for TD than for TS, because there is more
variation in the familiarity values for tested similar lures than for tested dissimilar
lures and the variation declines less rapidly with list length for TS than for TD. For
TD, additional study list images vary less in their similarity to the lures than for TS.
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(a) Targets vs. dissimilar lures (TD)

weak strong extra strong
(S = 10) (S = 20) (S = 30)

————————– ————————– ————————–
da H FA da H FA da H FA

short
(N = 8) 1.30 0.69 0.19 1.78 0.78 0.14 2.07 0.82 0.12

0.02 0.35 0.48

long
(N = 12) 1.30 0.68 0.20 1.70 0.75 0.15 1.96 0.79 0.12

0.01 0.17 0.45

extra long
(N = 18) 1.29 0.67 0.20 1.66 0.72 0.15 1.86 0.75 0.12

(b) Targets vs. similar lures (TS)

weak strong extra strong
(S = 10) (S = 20) (S = 30)

————————– ————————– ————————–
da H FA da H FA da H FA

short
(N = 8) 0.63 0.69 0.46 0.82 0.78 0.48 0.94 0.82 0.49

1.08 1.68 1.87

long
(N = 12) 0.47 0.68 0.51 0.58 0.75 0.54 0.67 0.79 0.55

0.99 1.57 1.96

extra long
(N = 18) 0.33 0.67 0.55 0.35 0.72 0.60 0.38 0.75 0.62

Table 5.4: Recognition scores (da), hit rates (H), and false-alarm rates (FA), for weak
(S = 10), strong (S = 20), and extra strong (S = 30) lists (columns) of different
lengths: short lists (N = 8), long lists (N = 12), and extra long lists (N = 18)
(rows). The values in bold between the rows represent the absolute list-length effect
sizes. (a) Targets vs. dissimilar lures (TD). (b) Targets vs. similar lures (TS).
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(a) Targets vs. dissimilar lures (TD)

short long extra long
(N = 8) (N = 12) (N = 18)

————————– ————————– ————————–
da H FA da H FA da H FA

weak
(S = 10) 1.30 0.69 0.19 1.30 0.68 0.20 1.29 0.67 0.20

2.49 2.02 1.67

strong
(S = 20) 1.78 0.78 0.14 1.70 0.75 0.15 1.66 0.72 0.15

1.42 1.18 0.82

extra strong
(S = 30) 2.07 0.82 0.12 1.96 0.79 0.12 1.86 0.75 0.12

(b) Targets vs. similar lures (TS)

short long extra long
(N = 8) (N = 12) (N = 18)

————————– ————————– ————————–
da H FA da H FA da H FA

weak
(S = 10) 0.63 0.69 0.46 0.47 0.68 0.51 0.33 0.67 0.55

1.34 0.75 0.14

strong
(S = 20) 0.82 0.78 0.48 0.58 0.75 0.54 0.35 0.72 0.60

0.84 0.58 0.22

extra strong
(S = 30) 0.94 0.82 0.49 0.67 0.79 0.55 0.38 0.75 0.62

Table 5.5: Recognition scores (da), hit rates (H), and false-alarm rates (FA), for weak
(S = 10), strong (S = 20), and extra strong (S = 30) lists (rows) of different lengths:
short lists (N = 8), long lists (N = 12), and extra long lists (N = 18) (columns).
The values in bold between the rows represent the absolute item-strength effect sizes.
(a) Targets vs. dissimilar lures (TD). (b) Targets vs. similar lures (TS).
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This is so because, for TD the similarity to all of the study list images is controlled,
while for TS the similarity to one of the study list images is larger than a certain
value and the similarity to the other images varies.

Although there is no behavioural study we know of that directly examines how
target-lure similarity affects the list-length effect, existing behavioural findings seem
to support our Nim-Rem predictions. In a study examining the effect of phonological
similarity on recognition memory, MacAndrew et al. (2002) provided subjects with
a study list of four letters and study lists of six letters (that were presented either
sequentially or simultaneously). Some of the study lists contained phonologically
similar letters while others contained phonologically dissimilar letters. For recogni-
tion, either a letter from the study list (target) or a new letter (lure) was presented.
For phonologically similar study lists, phonologically similar lures were used and for
phonologically dissimilar study lists, phonologically dissimilar lures were used. A
signal detection analysis of the hit rates and false-alarm rates determined the recog-
nition scores. According to Klatzky (2004), the results showed that a significantly
larger list-length effect occurred for similar targets and lures than for dissimilar tar-
gets and lures. Also, overall recognition scores were higher for dissimilar targets
and lures than for similar targets and lures. So, in accordance with the behavioural
findings of one study (MacAndrew et al., 2002), Nim-Rem predicts that target-lure
similarity modifies the list-length effect. However, more behavioural research should
reveal the robustness of the effect of similarity on the occurrence of a list-length
effect.

Similarity and the item-strength effects

Analogously to the list-length effect, the item-strength effect varies with the sim-
ilarity between the images on the study list and the test list. However, the sim-
ilarity affects the list-length effect and the item-strength effect in opposite direc-
tions. While list-length effects are smaller for TD than for TS, item-strength effects
are larger for TD than for TS. The interaction between list length and similarity
(TD or TS) was confirmed in the two-way Anovas, in which F values ranged from
F (2, 2999) = 446.95, p < 0.05 for short lists to F (2, 2999) = 454.68, p < 0.05 for ex-
tra long lists. The smaller item-strength effect for TS compared to that for TD, can
also be observed indirectly from the difference in the patterns of the false-alarm rates
for TS and those for TD that occur when the study list is strengthened. While for
TD the false-alarm rate decreases when the images on the study list are strengthened
(together with the observed increase in the hit rate this represents a strength-mirror
effect), for TS, the false-alarm rate does not decrease (and even slightly increases)
when the images of the study list are strengthened (i.e., no strength-mirror effect
occurs). This can be explained as follows. When study list images are strengthened,
representations refine. Therefore, the variability in the familiarity values for targets
and lures decreases. However, the refinement is less pronounced (or even absent)
for similar lures, because by definition the representations of similar images over-
lap more than the representations of dissimilar images. Hence, Nim-Rem produces
larger item-strength effects for TD than for TS.

Behavioural results seem to support our Nim-Rem predictions. Although a rise in
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the hit rate and a decrease in the false-alarm rate is generally observed when items
on the study list are strengthened (i.e., a strength-mirror effect; e.g., McClelland
and Chappell, 1998; Stretch and Wixted, 1998; Cary and Reder, 2003; Nega, 2005),
several researchers found that when strengthening the study-list items no decrease
in the false-alarm rate for similar lures occurred (although judgements of frequency
for both targets and similar lures steadily increased) (see, e.g., Hintzman, Curran,
and Oppy, 1992; Sheffert and Shiffrin, 2003; Malmberg et al., 2004). For example,
the results of Malmberg et al. (2004) showed that when the number of presentations
of the targets increased from one to twelve, the hit rate for targets increased, but
the false-alarm rate for similar lures decreased neither for low frequency words nor
for high frequency words, and even increased. Light et al. (2006) obtained similar
results; when targets were strengthened, the hit rate as well as the false-alarm rate
for similar lures (the switched plurality of a target word) increased. Hintzman et al.
(1992), too, found the same results when using (1) nouns, (2) photographs ranging
from pictures of landscapes to pictures of single objects, and (3) bit-mapped drawings
in the experiments.

5.7 General discussion

In this section, we compare Nim-Rem with dual-process memory models that have
been proposed to explain the results from behavioural recognition-memory stud-
ies (5.7.1). Moreover, we discuss the differences between conceptually based and
perceptually based similarity spaces (5.7.2).

5.7.1 Single-process models versus dual-process models

Our results show that a straightforward single recognition-process approach to recog-
nition memory accommodates a wide range of findings from recognition-memory
studies. Several memory models attempt to explain behavioural recognition results
on the basis of two distinct types of memory processes (see Yonelinas (2002), for
a review). These dual-processing models assume that recognition involves: (1) a
familiarity process, i.e., a context-insensitive automatic process, and (2) a recollec-
tion process, i.e., a context-sensitive strategic process. Results from cognitive, neu-
ropsychological, and neuroimaging studies of human memory seem to support that
two types of memory processes underlie recognition memory performance (again,
see Yonelinas (2002), for a review). Therefore, findings are increasingly elucidated
within a dual-process framework. For example, Norman (2002) explains his be-
havioural findings on the effect of similarity on the list-strength effect (described
in subsection 5.3.4) by a dual-processing approach (see also Norman and O’Reilly
(2003)). He argues that the magnitude of the list-strength effect depends on the
extent to which recollection drives recognition. When targets and lures are similar,
both targets and lures are assumed to produce strong ratings of familiarity. There-
fore, the subject relies on recollection of specific details to produce a recognition
decision. Consequently, Norman (2002) argues, a positive list-strength effect occurs
for similar targets and lures and a null or negative list-strength effect occurs for dis-
similar targets and lures. Our results show that a single straightforward process for
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recognition suffices to produce the effect of similarity on the size of the list-strength
effect that was obtained by Norman (2002). However, in its current form Nim-Rem
will not produce positive list-strength effects, because of the effect of differentiation
(as explained in subsection 5.3.4). While Norman and O’Reilly’s (2003) dual-process
model produces a positive list-strength effect for similar targets and lures and at the
same time a null or negative list-strength effect for dissimilar targets and lures, it
does not to produce the effects on the basis of natural input. We showed that the
single-process Nim-Rem model that operates on natural input, can accommodate the
findings of the abundant majority of list-strength studies. Nim-Rem also produces
the effect of similarity on the list-strength effect (as obtained by Norman, 2002)
and produces a wide range of other recognition-memory findings, all on the basis of
natural input. Although the large amount of research on recognition memory does
not provide a conclusive answer to the question whether more than one process is
involved in recognition, neurobiological evidence seems to support the idea of more
than one process (see, e.g., Yonelinas, 2002; Yonelinas et al., 2005). Therefore, fu-
ture work may address a dual-process variant of Nim that aims to explain Norman’s
and other recognition-memory findings on the basis of natural input.

5.7.2 Faces versus words

The results obtained with Nim-Rem are based on the perceptual similarity structure
of the input that is reflected in the similarity space. In our simulations we used face
images. In contrast, many of the behavioural recognition-memory results are found
mainly with textual stimuli. We are well aware of the fact that for printed words, the
similarity is assumed to be based mainly on conceptual (semantic) characteristics
and much less on perceptual characteristics (Stillings et al., 1995). However, we
argue that the effects described in this chapter generalize to different types of input,
because they follow from the similarity-space representations rather than from the
modality that gave rise to the representations. In our view, words (concepts) and
images (objects) are processed differently to yield similar types of psychological
similarity spaces.

5.8 Chapter summary

In the modelling studies presented in chapter 4, we found that Nim quite reliably
produces similarity ratings and recognition rates for individual natural stimuli (also
in Lacroix et al., 2006a). In this chapter, we investigated Nim’s suitability as a
natural-input model for general recognition-memory effects. We presented a Nim
variant, called Nim-Rem, which realizes a natural-input version of the original Rem
model (Shiffrin and Steyvers, 1997) by complementing it with Nim’s perceptual front
end that operates directly on natural input. We tested Nim-Rem by assessing its
ability to produce four well-known recognition memory effects that are obtained in
behavioural studies. Our results show that Nim-Rem, predicts rather adequately
the findings from behavioural recognition-memory experiments on the basis of natu-
ral visual input. Nim-Rem produces the behavioural findings using a single-process
memory model that operates on natural visual input. Future extensions of Nim-Rem
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may address a dual-processing approach that appears to be supported by neuropsy-
chological and neurobiological recognition-memory studies.



Chapter 6

Classification by NIM-CLASS

This chapter is partly based on1:

1. Lacroix, J. P. W., Postma, E. O., and Murre, J. M. J. (2006b). Knowledge-
driven gaze control in the Nim model. Proceedings of the 28th Annual Meeting
of the Cognitive Science Society (CogSci 2006) (eds. R. Sun and N. Miyake),
pp. 1657–1662, Lawrence Erlbaum Associates, Mahwah, NJ.

2. Lacroix, J. P. W., Postma, E. O., and van den Herik, H. J. (to appear).
Modeling visual classification using bottom-up and top-down fixation selection.
The 29th Annual Meeting of the Cognitive Science Society (CogSci 2007).

3. Lacroix, J. P. W., Postma, E. O., and van den Herik, H. J. (submitted).
Toward a visual cognitive system using active top-down saccadic control.

In this chapter2, we aim to investigate Nim’s ability to classify natural images.
Classification plays an important role in memory, learning, and other cognitive pro-
cesses (see, e.g., Murre, 1992). We extend Nim to obtain a model of classification
called Nim-Class. Classification is the process by which encountered items are
grouped together based on their similarity (e.g., Medin and Schaffer, 1978; Nosof-
sky, 1986). It is closely related to recognition (see chapters 4 and 5), because both
classification and recognition operate by assessing the similarity between an item
and previously encountered items. Classification and recognition differ in that clas-
sification emphasizes the similarities of items belonging to the same class, whereas
recognition emphasizes the identification of previously stored items. Nim-Class
combines Nim’s perceptual front-end with a new memory stage that is suitable for
classification. We examine to what extent Nim-Class is able to classify natural
stimuli in a classification task. Subsequently, we investigate to what extent classi-
fication performance can be improved by introducing a top-down fixation-selection
mechanism to select relevant fixation locations.

1The author would like to thank her co-authors and the publisher of the CogSci 2006 and 2007
proceedings for their kind permission to reuse relevant parts of the articles in this thesis.

2The results presented in this chapter were partly presented at the workshop Towards Cognitive

Humanoid Robots of the IEEE-RAS International Conference on Humanoid Robots 2006
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The outline of the remainder of this chapter is as follows. In section 6.1, we
present Nim-Class, a model for the classification of natural visual input. This is
followed in section 6.2 by a description of the classification experiment that was used
for our classification studies. Subsequently, in section 6.3, the classification perfor-
mance of Nim-Class is evaluated on a face-classification task. Then, section 6.4
presents two Nim-Class variants that demonstrate how Nim-Class can be adapted
to incorporate top-down fixation selection to direct the gaze towards relevant spatial
locations in an image. After that, the classification performances of the Nim-Class
variants extended with top-down fixation selection are assessed in sections 6.5 and
6.6. In section 6.7, we discuss bottom-up and top-down gaze control models, ex-
amine the scalability of the Nim-Class variants, and provide a comparison with
existing models that have been tested for classification with the same stimuli. Fi-
nally, in section 6.8, we summarize the results and draw conclusions on the feasibility
of Nim-Class as a cognitive model for visual classification of natural input.

6.1 Adapting NIM for classification

As outlined in chapter 3, the original Nim encompasses two stages: the perceptual
preprocessing stage and the memory stage. While Nim is a model for recognition
of natural images, here we show that it can readily be adapted into a model for
classification of natural images which we call Nim-Class. The feasibility of adapting
Nim for classification has been shown recently by Barrington et al. (2007) who
combined Nim’s preprocessing stage to transform fixated image parts into feature
vectors with a Bayesian version of the memory stage in their Nimble model and
applied it successfully to face classification. Nim-Class uses a slightly different
approach that also adopts Nim’s preprocessing stage, but introduces a different
memory stage based on a nearest-neighbour classifier that has been demonstrated
to be highly suitable for object classification (see, e.g., Mattern and Denzler, 2004).
Since Nim-Class differs from Nim in the design of the memory stage only, we discuss
the two processes of the Nim-Class memory stage: the storage process (6.1.1) and
the classification process (6.1.2). The storage and classification processes correspond
to the training and the testing stages that are commonly distinguished in supervised
learning (see, e.g., Duda et al., 2001).

6.1.1 The storage process

The Nim-Class storage process, retains (i.e., stores) preprocessed samples of natural
images (i.e., fixations) that belong to a certain class. As in the original Nim, each
natural image is represented by a number of low-dimensional feature vectors (one
for each fixation) in a similarity space. For Nim-Class, each image represents an
instance of a class. Therefore, in contrast to the original Nim that stores unlabelled
feature vectors, Nim-Class stores class labels with each feature vector corresponding
to the class associated with the image (i.e., ‘1’ for class 1, ‘2’ for for class 2, and
so forth). The storage of labelled feature vectors was introduced previously for
Nim-Rem that was presented in chapter 5.



6.2 — Classification experiment 79

6.1.2 The classification process

The Nim-Class classification process employs a naive Bayesian method that is based
on an incremental estimate of the class-dependent probabilities (Duda et al., 2001).
In the classification process, each fixation of the test image (i.e., each test feature
vector) contributes to an n-bin histogram, the bins of which represent the ‘beliefs’
in the n different classes. For each test feature vector, the bin that corresponds
to the label of its nearest neighbouring stored labelled feature vector (acquired in
the storage process) is incremented (e.g., if the stored labelled feature vector that is
closest to the test feature vector has label ‘1’, bin 1 is incremented). Finally, upon
the last fixation, the class with the largest bin (i.e., belief) determines the classifi-
cation decision. This heuristic classification process could readily be extended into
a Bayesian approach in which each fixation updates class-conditional probabilities
according to the Bayes update rule.

6.2 Classification experiment

In our experiments, we evaluate the ability of Nim-Class to classify natural images
of faces. Below, we discuss the classification task (6.2.1), the data set (6.2.2), and
the experimental procedure (6.2.3).

6.2.1 The classification task

The classification task entails the identification of a natural image of a frontal face
with variations in facial expression, illumination (location of the light source), and
occlusion (sun glasses and scarf). For each individual, there are 13 views in total
(see Fig. 6.1). Humans are generally able to identify a face after a single encounter
only, despite variations in appearance (e.g., Burton et al., 2005). Inspired by this
fact, Nim-Class is evaluated on a task in which the training set (i.e., the study
list) consists of a single image for each class and the test set (i.e., the test list)
of the twelve remaining images. In this respect, our evaluation differs from most
evaluations in machine learning, where the training set consists of a much larger
fraction of the data set.

6.2.2 The data set

For the face-classification task, a data set with different images of the same individual
was needed. We chose to use the AR data set created by Martinez and Benavente
(1998) that contains over 4,000 images corresponding to the faces of 126 individuals.
For each individual, the AR data set includes a sequence of 13 images of frontal view
faces with different facial expressions, illumination conditions, and occlusions. For
the experiment, we selected the sequence of 13 images (i.e., views) of the first 10
male individuals of the AR data set as our data set. All face images were downscaled
to 165 × 165 pixels. Fig. 6.1 shows an example of the sequence of 13 views of one
individual. The first (standard) view of each individual was selected for the study
list, the remaining 12 views were assigned to the test list.
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Figure 6.1: Example of the 13 views of one individual from the AR data set.

6.2.3 The experimental procedure

The face-classification experiment entailed a study and a test phase. During the
study phase, we presented Nim-Class with the images from the study list containing
the first view of each of the n = 10 individuals (i.e., the study faces). For each study
face, Nim-Class extracted and stored s labelled feature vectors. Then during the
test phase, the model was given the images from the test list (i.e, the 12 test faces) of
each of the n = 10 studied individuals. For each of the test faces, the model extracted
t test feature vectors to classify the face as one of the n = 10 individuals that it had
previously encountered. To assess how the Nim-Class classification performance
varied as a function of the number of storage fixations s and the number of test
fixations t, the experiment was repeated for values of s and t in the range from 10
to 100, i.e., s, t ∈ {10, 20, ...100}.

6.3 Classification by NIM-CLASS

Below, we present the Nim-Class results for the face-classification task (6.3.1).
Subsequently, we compare viewing time and fixation selection by Nim-Class with
that by humans (6.3.2).

6.3.1 Classification results

Table 6.1 presents the percentages of correctly classified test faces for a range of
values of the number of storage fixations s and the number of test fixations t. To
visualize the pattern of performances as a function of the number of storage fixations
s and the number of test fixations t, Fig. 6.2 presents the same results as a surface
plot (for the precise performance values we refer to Table 6.1, because it is difficult
to read these from Fig. 6.2). The Nim-Class classification performances range from
just above chance level (16%) for s = t = 10 to a good performance of 89.0% for
s = t = 100. Evidently, Nim-Class is capable of exhibiting a good performance
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t 10 20 30 40 50 60 70 80 90 100
s
10 16.0 18.2 20.6 22.1 23.6 23.7 24.4 25.3 25.5 26.2
20 21.3 26.3 29.5 32.1 35.5 38.3 39.3 41.1 42.7 43.5
30 26.5 32.8 38.1 42.5 46.3 49.0 52.0 53.3 55.5 57.3
40 30.0 39.5 45.7 51.1 55.1 58.6 60.8 63.1 64.5 66.8
50 34.0 45.2 51.7 57.0 61.8 64.9 68.0 70.0 71.5 73.7
60 36.7 49.2 57.0 62.7 66.9 70.7 73.7 75.3 77.3 78.5
70 39.8 52.9 61.8 67.7 71.2 75.3 77.8 79.6 80.9 82.5
80 42.7 57.0 65.9 70.9 75.4 77.9 80.7 82.9 84.3 85.4
90 45.7 60.1 68.3 73.8 78.3 81.1 83.3 84.8 85.9 87.4
100 47.6 63.1 71.3 77.0 80.6 83.2 84.7 87.1 87.8 89.0

Table 6.1: Percentages of correctly classified faces for a range of values of the number
of storage fixations s and the number of test fixations t.

provided that a sufficient number of fixations is made.

The results show, not surprisingly, that the performance increases both with the
number of storage fixations and the number of test fixations. Increasing the number
of stored fixations s, improves the performances more than increasing the number
of test fixations t. For small s values, the performance hardly increases with t.
Evidently, increasing the number of test fixations is only useful when a sufficient
number of feature vectors was stored previously. From a statistical perspective this
makes sense. A proper approximation of the true distribution of feature vectors in a
similarity space associated with a single face requires a sufficient number of samples
(fixations) of that face.

To provide some insight into the distribution of beliefs in the different classes
for each of the 120 test faces (i.e., 12 test views for each of the 10 individuals in
the data set), Fig. 6.3 presents an overview of the histograms for each of the 120
test faces for s = t = 100. Each histogram represents the belief in class 1 (leftmost
bin in each histogram) to 10 (rightmost bin in each histogram). In other words, the
histograms represent the frequency counts of the labels of the nearest neighbours of
the test feature vectors. Each row of histograms corresponds to the view depicted
to the left of that row and each column of histograms corresponds to the individual
depicted at the top of that column. A face is classified correctly when the index of
the largest bin corresponds to the class of the particular face. From Fig. 6.3 it can
be seen that, in most cases, the largest bin corresponds to the class of the test face.
Where this is not the case, the largest bin is not considerably larger than the other
bins. Therefore, it can be said that the falsely classified faces were classified with
less certainty than the correctly classified faces.
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Figure 6.2: Percentages of correctly classified faces as a function of the number of
storage fixations s and the number of test fixations t.

6.3.2 Comparison with humans

The results show that Nim-Class is able to classify faces quite accurately despite
variations in facial expressions, illumination conditions, and occlusions. The model
reaches a performance of 89% for s = t = 100 storage and test fixations. Below, we
compare viewing time and fixation selection by Nim-Class with that by humans.

Viewing time by NIM-CLASS and by humans

The number of storage and test fixations extracted by Nim-Class can be inter-
preted as the amount of viewing time of the image during the study and test phase,
respectively. Dividing the number of fixations by five provides a rough estimate of
the number of seconds the image is inspected, since humans make about five fixa-
tions per second (see, e.g., Henderson, 2003; McSorley and Findlay, 2003). As the
results show, the Nim-Class performance relies heavily on the amount of viewing
time during the study phase. This accords with results from several psychological
studies indicating that memory for visual information increases with the amount of
viewing time during the study phase (see, e.g., Loftus, 1972; Mäntylä and Holm,
2006; Melcher, 2006). Moreover, it is interesting that a considerable percentage of
faces (say ≈ 75%) is classified correctly after a short viewing time of about 8 sec-
onds (40 fixations) during the test phase, provided that there was a sufficiently long
viewing time of about 20 seconds (100 fixations) during the study phase.

We performed additional simulations to assess in more detail to what extent Nim-
Class is able to classify the test faces correctly on the basis of a brief viewing time
during the test phase. In these simulations, the experiment was repeated for values
of s that range from 10 to 1000, i.e., s ∈ {10, 20, ...1000} which corresponds to about
2 seconds to 200 seconds of viewing time during the study phase, and the number
of test fixations was set to t = 5, which corresponds to approximately one second of
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Figure 6.3: Overview of the histograms obtained in the classification experiment
across the 120 test faces (i.e., 12 views of each of the 10 individuals) for s = t = 100.
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viewing time during the test phase. Fig. 6.4 presents the Nim-Class performance
for a fixed number of test fixations, t = 5, as a function of the number of storage
fixations s. To illustrate the differences between the performances for the faces
without and with occlusions, Fig. 6.4 shows the average performances across the six
test views without occlusions (dark-grey line), the average performances across the
six test views with occlusions (light-grey line), and the average performances across
all the twelve test views (black line), separately. For the faces with occlusions, a
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Figure 6.4: Percentages of correctly classified faces for a fixed number of test fix-
ations, t = 5, as a function of the number of storage fixations s for the test views
without occlusions (dark-grey line), with occlusions (light-grey line), and both with
and without occlusions (black line).

degraded performance is observed compared to the performance for faces without
occlusions. This is so, because the probability that a sufficient amount of relevant
visual information is gathered for correct classification diminishes rapidly when one
or more of the limited number of only five test fixations happen to be selected from
occluded regions of the face. Still, it can be said that Nim-Class is able to reach a
considerable average classification performance on the basis of a brief viewing time
during the test phase, provided Nim-Class has studied the face for a sufficiently
long time. The same holds for human vision, for which it is known that a brief
viewing time will allow for correct identification, provided the face is sufficiently
familiar to the observer (see, e.g., Findlay and Gilchrist, 2003; Burton et al., 2005).

Fixation selection by NIM-CLASS and by humans

Nim-Class selects image samples (i.e., fixations) on the basis of their visual saliency
(along the contours). Several behavioural studies showed that in human vision
bottom-up processes draw the eyes toward salient visual features such as high edge
density (see, e.g., Mannan et al., 1996) and local contrast (see, e.g., Parkhurst and
Niebur, 2003). Based on these findings, many models of gaze control employed
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a bottom-up approach (e.g., Braun et al., 2001; Rao et al., 2002; Zhaoping and
May, 2007). Often, a so-called ‘saliency map’ is constructed that marks those image
regions that are visually distinct from their surround in one or more visual features
(Itti and Koch, 2000). Then the gaze is directed to locations that are marked as
highly salient on the saliency map. In fact, our contour-based selection of fixations
can be regarded as a realization of the bottom-up approach in which contours are
the salient features. Evidently, the bottom-up fixation-selection mechanism of Nim-
Class, can hardly be considered to agree with the active context-dependent scanning
of a visual scene that humans perform (see, e.g., Rajashekar et al., 2002). In the
dynamic process of actively scanning the visual scene, eye fixations are guided by
both bottom-up and top-down processes (Karn and HayHoe, 2000; Henderson, 2003;
Oliva et al., 2003; Neider and Zelinski, 2006; Torralba et al., 2006).

While bottom-up processes (based on visual saliency) have often been used to
control the gaze in artificial systems, the use of top-down processes has not received
as much attention. Top-down processes employ stored knowledge and the goals of
the viewer to select the most relevant gaze location (see, e.g., Henderson, 2003;
Henderson et al., 2007; Torralba et al., 2006). Several studies showed that human
gaze control relies more on top-down processes than on bottom-up processes when
performing an active visual task with meaningful stimuli (see, e.g., Oliva et al.,
2003). The top-down processes are driven by several cognitive systems, including:
(1) short-term episodic memory for previously attended visual input (e.g., Chun,
2000; Henderson, 2003), (2) stored long-term knowledge about visual, spatial, and
semantic characteristics of classes of items or scenes acquired through experience
(e.g., Henderson, 2003), and (3) the goals and plans of the viewer (e.g., Yarbus,
1967; Land and Hayhoe, 2001; Henderson, 2003). Although bottom-up processes
are important in human vision too, they are integrated with top-down processes
that direct the gaze to relevant locations on the basis of cognitive systems (see,
e.g., Henderson, 2003). To adhere to the use of top-down processes for fixation
selection in human vision, we focus in section 6.4 on top-down fixation selection as
an important element for Nim-Class.

6.4 Adapting NIM-CLASS for top-down

fixation selection

Inspired by fixation selection in human vision, this section adapts Nim-Class for
top-down fixation selection. We explore the use of top-down fixation selection by
investigating to what extent top-down fixation selection aids performance on the
classification task compared to the pure bottom-up selection. To realize top-down
fixation selection, we rely on two types of knowledge known to operate in human
gaze control: (1) the short-term episodic knowledge about previously attended vi-
sual input (see, e.g., Chun, 2000; Henderson, 2003; Mäntylä and Holm, 2006), and
(2) the long-term knowledge about a class of items acquired through experience with
instances from the class (see, e.g., Henderson, 2003). In order to assess the contri-
bution of the different types of knowledge separately, we introduce two Nim-Class
variants: Nim-Class A (6.4.1) and Nim-Class B (6.4.2).
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6.4.1 NIM-CLASS A

Nim-Class A extends Nim-Class with a top-down fixation-selection mechanism
based on episodic knowledge about previously attended visual input. Nim-Class
A incorporates the top-down fixation selection in the classification process, while
adopting the bottom-up (i.e., contour-based) fixation selection of Nim-Class in
the storage process. Below, we discuss the two processes of the memory stage of
Nim-Class A: (1) the storage process and (2) the classification process.

The storage process

The storage process of Nim-Class A is similar to that of the original Nim-Class,
except that Nim-Class A stores the coordinates of each fixation along with the
class label. The coordinate labels are used for top-down fixation selection by the
classification process.

The classification process

The classification process of Nim-Class A involves a top-down fixation-selection
mechanism that uses short-term episodic knowledge. In Nim-Class, the short-term
episodic knowledge corresponds to the labelled feature vectors that were acquired
during the storage process directly preceding the current classification process. The
top-down fixation-selection mechanism in the classification process is inspired by
the idea that episodic knowledge about attended item parts provides detailed item-
specific information that may contribute to the recognition or classification of the
item (see, e.g., Chun, 2000; Henderson, 2003; Mäntylä and Holm, 2006).

For the implementation of the top-down fixation-selection mechanism, we rely
on the notion of Shannon’s (1948) entropy. Shannon introduced entropy as a mea-
sure of uncertainty. In order to decide in the most efficient way to which class a
new item belongs, a system should select new input that minimizes the entropy, i.e.,
the uncertainty about the class membership. In Nim-Class, uncertainty is repre-
sented by the histogram in which the heights of the bins represent the beliefs in the
different classes. Considering the uncertainty, the top-down fixation-selection mech-
anism selects those locations that contain the most relevant information to decide
upon the class of the face under consideration (i.e., that minimize the entropy or
uncertainty about the class). In order to do so, the fixation-selection mechanism of
the classification process in Nim-Class A uses the short-term episodic knowledge
about attended parts of recently encountered faces (i.e., the stored labelled feature
vectors).

To select the fixation locations that minimize the entropy (i.e., the locations that
contain the most relevant information for classification) the mechanism proceeds as
follows. For each fixation, it first chooses the two most likely classes, P and Q, by
selecting the two highest bins in the histogram. Subsequently, it selects the fixation
location that best discriminates between the two classes P and Q (i.e., contains the
most relevant visual input with respect to P and Q). The selection relies on:
(1) the distances between the feature vectors of the two classes; and
(2) the distances between the spatial fixation locations from which they originated.
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The idea behind the selection is that spatially adjacent fixations within one class
give rise to similar feature vectors. Hence, the fixation mechanism searches for a pair
of feature vectors p and q coming from classes P and Q, respectively, that originate
from relatively close spatial locations and at the same time are relatively distant
from each other in the representation space.

We implemented this idea heuristically. Below, we provide the steps followed by
the fixation-selection mechanism:
1. Define the two classes that have the largest belief as the target classes, P and Q.
2. For each possible pair of feature vectors p and q coming from target classes P
and Q, respectively, calculate the ratio d(p, q)/d((x, y)p, (x, y)q), where d(p, q) is the
Euclidean distance between feature vectors p and q in the representation space and
d((x, y)p, (x, y)q) is the Euclidean distance between the spatial coordinates (x, y) of
p and q.
3. Select the two feature vectors p and q for which the ratio is the highest.
4. Define the target location as the contour location that is closest to the midpoint
of the line connecting the spatial coordinates of p and q.
5. Select the contour in the test image that is closest to the target location as the
location to be fixated next. If this location has been fixated before, go back to step
3 and take the next highest ratio in line. Moreover, in the highly unlikely event that
all locations that are selected on the basis of the ratios have been visited, select a
random fixation location.
Since the bins are empty when the classification process commences, the process
starts with two test fixations that are taken randomly along the contours in the
image (as described in subsection 6.1.2).

6.4.2 NIM-CLASS B

Nim-Class B employs the top-down fixation-selection mechanism of the classifica-
tion process of Nim-Class A, and employs in addition a top-down fixation-selection
mechanism in the storage process. Below, we discuss the two processes of the mem-
ory stage of Nim-Class B: (1) the storage process and (2) the classification process.

The storage process

As Nim-Class A, Nim-Class B stores the coordinates of each fixation along with
the class label, which are used by the classification process. In contrast to Nim-
Class A, Nim-Class B employs a top-down fixation-selection mechanism in the
storage process. The fixation-selection mechanism relies on long-term knowledge
that is acquired through experience, i.e., encounters with many faces. Top-down
fixation selection in the storage process is motivated by the idea that people have
acquired long-term knowledge about which parts of the items or scenes from a par-
ticular category, e.g., the face category, are the most informative (Henderson, 2003).
Through experience with numerous exemplars of faces, efficient strategies have been
developed for directing the gaze to the face parts that are most relevant for dis-
criminating among different faces (i.e., the face parts with a high entropy). The
Nim-Class B top-down fixation-selection mechanism of the storage process relies
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on the long-term knowledge about the relevance of face parts for top-down fixation
selection upon the first encounter with a new face (i.e., in the storage process).

The fixation-selection mechanism employed by the storage process of Nim-Class
B uses the acquired knowledge about the relevance R of fixation locations for the
class of faces. As in Nim-Class and Nim-Class A, only locations along contours
were considered as fixation locations. The relevance R of a fixation location (x, y) in
an image i (i ∈ 1, 2, ...n, with n the number of images), Rx,y,i, is a direct function of
the average distance across the feature vectors extracted from the (x′, y′) locations
in the study images (where location (x′, y′) is the fixation location, i.e., the contour
location, that is closest to (x, y)).

Formally Rx,y,i is defined as follows.

Rx,y,i =

∑n

p=1

∑n

p=1,q 6=p d(p, q)

n(n − 1)
, (6.1)

where d(p, q) represents the Euclidean distance between the feature vectors extracted
from coordinates (x′, y′) in images p and q. Fig. 6.5 shows an example of a ‘relevance

Figure 6.5: An example of the relevance of 1000 fixation locations in the face image.
The sizes of the dots relate to the relevance of the location.

map’ of 1000 fixation locations in which the relevance of each fixation location is
represented by a disk. The size of the disk at a location is proportional to the value of
R at that location. The relevance of a location is used for fixation selection upon the
first encounter with a new face (i.e., in the storage process). Locations are fixated
with a probability corresponding to the associated value of R. Since differences in
R values were very small, R values were raised by the power 10 and divided by the
sum of the R values such that they summed up to 1, to obtain the probabilities for
fixation selection.

The classification process

Nim-Class B fully adopts the classification process of Nim-Class A (see subsection
6.4.1).
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t 10 20 30 40 50 60 70 80 90 100
s
10 25.2 27.8 28.8 29.1 30.9 29.9 30.1 31.1 30.0 30.6
20 32.5 40.6 43.8 45.9 48.7 50.6 50.7 51.8 53.6 53.4
30 36.9 46.3 53.3 56.6 59.3 62.0 64.0 65.4 66.7 67.1
40 41.0 51.5 58.3 63.9 66.5 68.7 71.2 72.6 73.8 75.4
50 44.1 56.2 63.7 67.8 71.3 73.5 75.7 78.1 79.3 80.9
60 46.7 59.6 66.5 72.3 75.2 77.6 79.9 81.2 82.6 84.2
70 49.1 62.7 69.8 75.0 78.5 80.8 82.2 84.2 85.8 86.7
80 51.3 64.8 72.1 77.4 80.0 83.3 85.2 85.8 86.9 88.2
90 53.4 67.0 75.3 79.3 82.7 84.7 86.6 87.6 88.7 89.8
100 54.9 69.5 77.1 81.5 84.4 85.8 87.8 88.9 90.0 91.0

Table 6.2: The Nim-Class A classification performance for a range of values of the
number of storage fixations s and the number of test fixations t.

6.5 Classification by NIM-CLASS A

Below, we present the results for the face-classification task performed by Nim-Class
A (6.5.1) and compare the classification performance of the original Nim-Class and
Nim-Class A (6.5.2).

6.5.1 NIM-CLASS A classification results

Table 6.2 presents the percentages of correctly classified test faces as a function of
the number of storage (s) and test (t) fixations for Nim-Class A. In addition, Fig.
6.6 visualizes the pattern of the classification performances of Nim-Class A as a
function of s and t in a surface plot. The Nim-Class A classification performance
ranges from 25.2% for s = t = 10 to a performance of 91.0% for s = t = 100. As
for the original Nim-Class, the results of Nim-Class A show that performance
increases with the number of storage fixations s and the number of test fixations t
and the performance increases more with s than with t. As was demonstrated for
Nim-Class, the results of Nim-Class A show that increasing the number of test
fixations t becomes useful when a sufficient number of feature vectors was stored
previously.

6.5.2 Discussion and comparison of classification results

Below we review and discuss the classification performances of Nim-Class and Nim-
Class A.

The results show that extending Nim-Class with top-down fixation selection for
classification to direct the gaze towards relevant locations, improves the performance
on the classification task. To allow for easy comparison, Fig. 6.7 displays the
performances of Nim-Class, and of Nim-Class A (and also the performances of
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Figure 6.6: The Nim-Class A classification performance as a function of the number
of storage fixations s and the number of test fixations t.

Nim-Class B, see section 6.6.1) in a comparative picture. Evidently, Nim-Class
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Figure 6.7: A comparison of the Nim-Class (lowest surface), Nim-Class A (middle
surface), and Nim-Class B (top surface) classification performances as a function
of the number of storage fixations s and the number of test fixations t.

A directs the gaze to locations that are more relevant to perform the classification
task than those selected by the original Nim-Class. In Nim-Class A, the top-
down fixation-selection mechanism in the classification process actively constructs
a fixation sequence based on: (1) the task (i.e., classification), and (2) the stored
episodic knowledge about previous encounters with particular faces (i.e., the stored
labelled feature vectors). By combining top-down and bottom-up processes for the
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selection of fixations (by considering only the fixations along contours), Nim-Class
A acknowledges the influence of the episodic short term knowledge and the goals
(i.e., classification) that are known to play a role in human gaze control (see, e.g.,
Henderson, 1999; Land and Hayhoe, 2001; Henderson, 2003). The active strategy
employed by Nim-Class A in the classification process ensures that the locations
are fixated that are known to discriminate well among the two most likely classes.
Therefore, the model is better able to form the correct classification decision. This is
particularly so, when the classification process makes a limited number of fixations.
When the classification process makes a large number of fixations, a sufficient amount
of relevant visual information is gathered for correct classification even when fixations
are taken randomly along the contours. When the classification process makes fewer
fixations, the probability that a sufficient amount of relevant visual information
is gathered for correct classification decreases. Therefore, performance differences
between the original Nim-Class and the Nim-Class A models are most pronounced
for small t values.

6.6 Classification by NIM-CLASS B

Below, we present the results for the face-classification task performed by Nim-
Class B (6.6.1) and compare the classification performance of Nim-Class A and
Nim-Class B (6.6.2).

6.6.1 NIM-CLASS B classification results

Table 6.3 presents the percentages of correctly classified test faces as a function of
the number of storage (s) and test (t) fixations for Nim-Class B. In addition, Fig.
6.8 visualizes the pattern of the classification performances of Nim-Class B as a
function of s and t in a surface plot.
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Figure 6.8: The Nim-Class B classification performance as a function of the number
of storage fixations s and the number of test fixations t.
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t 10 20 30 40 50 60 70 80 90 100
s
10 35.5 42.2 44.4 45.0 45.6 45.5 44.3 44.8 43.7 42.8
20 45.7 57.5 63.6 67.0 68.7 68.8 70.2 70.5 70.4 70.6
30 51.4 65.1 71.3 75.1 76.9 78.9 80.3 81.5 82.3 82.6
40 54.5 68.9 76.0 79.6 81.7 83.8 84.7 86.2 86.6 87.2
50 58.2 72.5 78.7 82.3 84.5 87.0 87.4 88.2 89.3 90.1
60 60.5 74.3 81.1 84.4 86.9 88.4 89.4 90.2 90.8 91.6
70 62.1 76.9 82.7 85.6 87.8 89.4 90.4 91.3 91.9 92.1
80 63.5 78.1 83.5 86.9 89.0 90.1 91.4 92.1 92.6 93.0
90 64.7 78.9 84.8 87.6 89.8 90.8 92.0 92.8 92.9 93.4
100 66.2 79.8 85.6 88.3 90.6 91.6 92.3 93.2 93.4 94.0

Table 6.3: The Nim-Class B classification performance for a range of values of the
number of storage fixations s and the number of test fixations t.

The Nim-Class B classification performance ranges from 35.5% for s = t = 10
and reaches a performance of 94.0% for s = t = 100. In correspondence with the
results by the original Nim-Class and Nim-Class A, the results by Nim-Class B
show (1) that the performance increases with the number of storage fixations s and
the number of test fixations t, and (2) that the performance increases more with s
than with t. Also, similarly to the Nim-Class and the Nim-Class A results, the
Nim-Class B results show that increasing the number of test fixations t becomes
useful when a sufficient number of feature vectors was stored previously.

6.6.2 Discussion and comparison of classification results

Nim-Class B further extends Nim-Class A by adding top-down fixation selection
in the storage process. With this addition, Nim-Class B approaches the long-term
spatial knowledge that people have built up about categories of items. Sufficient
experience with human faces, allows for efficient strategies for directing the gaze to
the face parts that are most informative for discriminating among different faces.
Incorporating this type of knowledge in Nim-Class B resulted in the ability to fixate
efficiently relevant face parts upon the first encounter with a new face. Fixating loca-
tions that contain visual input that is discriminative in terms of the different classes,
leads to more discriminative memory representations. Consequently, the top-down
fixation selection of the classification process that relies on finding discriminative
locations based on previously stored feature vectors, can be performed more effi-
ciently. This explains the improved performance of Nim-Class B compared to that
of Nim-Class A (see Fig. 6.7 for a comparison of the performances of Nim-Class
A and Nim-Class B; it also shows the performances of the original Nim-Class).



6.7 — General discussion 93

6.7 General discussion

Below, we discuss bottom-up and top-down gaze-control models (6.7.1). Subse-
quently, we discuss the scalability of the three Nim-Class models (6.7.2). Finally,
we compare the Nim-Class and the Nim-Class A and B classification performances
to the performances of existing classification models in the domain of artificial in-
telligence (6.7.3).

6.7.1 Bottom-up and top-down gaze-control models

Two types of gaze-control models can be distinguished: (1) bottom-up models, and
(2) top-down models. Below, we first discuss bottom-up gaze-control models. Then,
we compare top-down gaze control in Nim-Class A and B with other gaze-control
models that use a top-down approach.

Bottom-up gaze-control models

Until now, the bottom-up or stimulus-driven approach has been the dominant ap-
proach to model gaze control. Bottom-up gaze-control models generally assume that
fixation locations are selected in a bottom-up manner based on the image proper-
ties (see, e.g., Itti and Koch, 2000; Rao et al., 2002; Zhaoping and May, 2007).
These models create a saliency map that marks the saliency of each image location.
Saliency is defined by the distinctiveness of a region from its surround on certain
visual dimensions. Since locations with a high visual saliency are assumed to be
highly informative, the gaze is directed towards highly salient locations. Often, the
visual dimensions that are used to generate a saliency map are similar to the visual
dimensions that are known to be processed by the human visual system such as
colour, intensity, contrast, orientation, edge junctions, and motion (see, e.g., Koch
and Ullman, 1985; Itti and Koch, 2000; Parkhurst, Law, and Niebur, 2002). Also,
in order to discover certain important visual dimensions for generating a saliency
map, a few studies analysed which visual dimensions best distinguish fixated image
regions from non-fixated image regions (see, e.g., Mannan et al., 1996; Parkhurst
and Niebur, 2003; Henderson et al., 2007).

Several studies showed that, under some conditions, fixation patterns predicted
by bottom-up gaze-control models correlate well with those observed in human sub-
jects (see, e.g., Parkhurst et al., 2002). In their study, Parkhurst et al. (2002)
recorded human scan paths when viewing a series of complex natural and artificial
scenes. They found that human scan paths could be predicted quite accurately
by stimulus saliency which was based on colour, intensity, and orientation. While
the bottom-up approach was successful in predicting human fixation patterns for
some tasks, it is inaccurate in predicting fixation patterns for an active task that
uses meaningful stimuli (see, e.g., Oliva et al., 2003; Turano, Geruschat, and Baker,
2003; Henderson et al., 2007). For example, Turano et al. (2003) showed that a
saliency model performed as accurately as a random model in predicting the scan
paths of human subjects during a real-world activity. In contrast, they found that a
model that used only top-down (i.e., knowledge-driven) gaze control outperformed
the random model. Obviously, visual saliency alone cannot account for the human
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fixation patterns when performing certain tasks. Similar results were found by Hen-
derson et al. (2007) who analysed eye movements of subjects that viewed images of
real-world scenes during an active search task. They found that a visual saliency
model did not predict fixation patterns any better than a random model did. They
concluded that visual saliency does not account for eye movements during active
search and that top-down (i.e., knowledge-driven) processes play the dominant role.

Top-down gaze-control models

Whereas bottom-up gaze-control models use visual scene characteristics, top-down
gaze-control models rely on stored knowledge and task demands to select the most
relevant fixation locations (see, e.g., Henderson, 2003). In this chapter two types
of top-down fixation-selection mechanisms were introduced relying on: (1) short-
term episodic knowledge about previously attended image parts, and (2) long-term
knowledge about relevant image parts, respectively.

The first type of top-down fixation-selection mechanism is based on short-term
episodic knowledge about previously attended image parts to actively select the rel-
evant fixation locations. This first type of top-down fixation selection mechanism
that is employed by the classification process of both Nim-Class A and B, relates
to the approach employed by probabilistic active vision models for classification (for
a comparison of different active vision models see, de Croon, Sprinkhuizen-Kuyper,
and Postma, 2006b). Both select visual input to reduce uncertainty about the class
of a test item. The main difference between top-down gaze control in the active
probabilistic models and top-down gaze control in the classification process of Nim-
Class A and B concerns the nature and amount of knowledge that the mechanism
uses to select relevant fixations. Active probabilistic models either consider all pos-
sible fixation selections at each time step (e.g., Borotschnig et al., 1999; Denzler
and Brown, 2002), consider all possible fixation selections on forehand (e.g., Arbel
and Ferrie, 2001), or use a fixation selection policy that is acquired on the basis
of an extensive training (e.g., reinforcement learning by Paletta, Prantl, and Pinz,
1998) or on the basis of an evolutionary algorithm (e.g., de Croon et al., 2006a).
In contrast, top-down fixation selection in the classification process of Nim-Class
A and B relies solely on the feature vectors that were stored during one encounter
with the class instance (in the storage process). A few other models have used a
top-down approach to select relevant image parts for classification on the basis of
limited short-term episodic knowledge (e.g., Rybak et al., 1998). The main difference
with these models concerns the explicit representation of movement sequences. The
models often employ a separate ‘where’ (motor memory) system that uses fixed eye-
movement programs acquired from previously viewing the image (e.g., Rybak et al.,
1998). In contrast, Nim-Class A and B actively construct fixation patterns during
classification based on the short-term episodic knowledge about previous encounters
with the faces (i.e., the stored labelled feature vectors), rather than relying on the
eye-movement sequence that was performed during the first encounter.

The second type of top-down fixation-selection mechanism that we presented is
based on stored knowledge about relevant face parts acquired through long-term
experience with faces. This second type of top-down fixation selection mechanism,
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that is employed by the storage process of Nim-Class B, relates to the probabilistic
active vision models in the sense that fixation selection is based on an extensive set of
built-up knowledge about the relevance of particular locations or eye movements. It
is remarked that the top-down fixation selection employed by the storage process of
Nim-Class B differs from these models because it does not consider the incremental
beliefs, but rather selects fixations according to their general entropy in terms of all
possible classes in the data set. According to the results presented in subsection 6.6.1,
this improves performance compared to random fixation selection in the storage
process.

6.7.2 Scalability of the models

In our studies we have not examined how the Nim-Class, the Nim-Class A, and
the Nim-Class B classification performances scale up with the number of classes.
Below we offer some perspective on the aspects that relate to the scalability of the
models.

In our classification task, Nim-Class, and Nim-Class A and B deal with 130
objects (i.e., faces) coming from 10 different classes. Obviously, this limited number
of objects can hardly be considered to be representative for the large number of
objects that natural systems encounter in the real world. Ideally, a plausible classi-
fication or recognition model should be able to distinguish among large numbers of
objects. However, since the different Nim-Class models store the complete encoun-
tered visual input, classification time is linear in the number of encountered objects
(see also Bajramovic et al., 2006). In order to address this problem, mechanisms
can be incorporated that use the representation space in an efficient way and that
ensure the maintenance of an efficient representation space. In Nim-Class A and B
we introduced a mechanism that operates on the representation space in an efficient
way by actively using the most relevant information in the representation space. In
addition, in Nim-Class B we introduced a mechanism that maintains an efficient
representation space that selects visual input on the basis of its relevance or informa-
tiveness. However, we would like to remark that the development of such relevance
knowledge may be computationally challenging, since it is based on a large number
of encountered items. Nevertheless, the building up of relevance knowledge may be
assumed to operate over extended periods of time as it corresponds to the acquired
long-term knowledge in human memory. Provided that the knowledge has been ac-
quired and is used for fixation selection (as in Nim-Class B), this may lead to more
discriminable class representations. Overall, we may assume that (1) Nim-Class A
is more suitable than Nim-Class for upscaling to a larger number of classes because
it uses the representation space in an efficient manner (in the classification process),
and (2) Nim-Class B is even more suitable than Nim-Class A for upscaling to a
larger number of classes, because it builds up an efficient representation space (in
the storage process) and uses this space in an efficient manner (in the classification
process).

Further extension may address the maintenance of an efficient representation
space. For example, the storage process can be adapted in such a way that only
relevant information is stored and retained. In human vision the brain continuously
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makes predictions about the expected visual input at the new fixation location (see,
e.g., Hawkins and Blakeslee, 2004). In a similar way a new Nim-Class variant
may make predictions on the basis of long-term knowledge and then store only the
new input that deviates significantly from the expectations (i.e., the relevant or
informative input). In addition, the effectiveness of the representation space may
be improved by forgetting stored information that is not addressed for a sufficiently
long period of time. The neural implementation techniques described in subsection
7.2.3 can be used to realize a compact and efficient representation space even for
large numbers of objects.

6.7.3 Comparison with existing classification models

Several other models have been applied for the classification of the faces of the AR
data set. However, the existing models (1) generally leave out the faces with oc-
clusions that appear to be the most difficult ones for many models (see, e.g., Lu,
Wang, and Jain, 2003) or (2) are trained on more class instances than the one view
that we used for training (see, e.g., Martinez and Kak, 2001; Wang et al., 2005).
An example of (2) is the following. Martinez and Kak (2001) compared the perfor-
mances of a nearest-neighbour classifier operating on a representation space based
on a Principal Component Analysis (Pca) and on a Linear Discriminant Analysis
(Lda) of the pixel values of the entire AR images. Their classification task differed
from ours in the number of classes and the number of training views. While their
model was presented with 50 individuals (classes) rather than the 10 individuals that
we selected, training was based on a larger set of two or even 13 views3 rather than
the one view that we used. Despite their larger set of training instances per class,
performances were lower than the performances that we obtained with the different
Nim-Class models. For the experiments with two training views, the maximum
average classification performances of around 60% were obtained using Pca with
80 dimensions. For the experiments with 13 training views, the maximum aver-
age classification performances of around 87% were obtained using Lda. Although
most models that were tested for classification on the AR data set were trained on
more than one view per class or left out the unfavourable views for testing, a few
studies used the same training and testing set as we did (i.e., one view for train-
ing and the remaining 12 views for testing) (e.g., Guillamet and Vitri, 2002). For
example, Guillamet and Vitri (2002) used one view of each class for training and
the remaining twelve for testing, when they compared the performances of different
classification algorithms on the AR data set. In their study, they introduced the use
of a Non-negative Matrix Factorization (Nmf; see, e.g., Lee and Seung, 1999) in the
context of classification and compared the performance of Nmf with those of the
widely applied Pca, and two influential techniques from computer vision, a feature-
based technique based on Local Feature Analysis (Lfa; Penev and Atick, 1996),
and a Bayesian template-based technique (Moghaddam and Pentland, 1997). The
techniques showed average performances for the faces without occlusions (i.e., views

3In addition to the series of 13 views of each individual, there was a second series of 13 views
showing the same view but taken at another point in time; when Martinez and Kak (2001) used
13 training views, the 13 views of the second series were used for testing.
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2 up to 7), of about 65.0% for the template-based technique, 74.0% for the Pca
technique (using 150 dimensions), 85.0% for the Nmf technique and 90.0% for the
Lfa-based technique. For a comparison, our Nim-Class, Nim-Class A, and Nim-
Class B models showed an average performance for the faces without occlusions of
96.7%, 96.8%, and 98.5%, respectively, when we used s = t = 100 storage and test
fixations4 Average performances of each of the techniques tested by Guillamet and
Vitri (2002) dropped substantially for the faces with occlusions, in particular for
the faces with sunglasses for which the average performance was about 8.0% for the
Lfa-based technique, 22.0% for the Pca technique, 27.3% for the Nmf technique
and 32.3% for the template-based technique. For a comparison, our Nim-Class,
Nim-Class A, and Nim-Class B models showed an average performance for the
faces occluded with sunglasses of 85.5%, 87.9%, and 92.7%, respectively, when we
used s = t = 100 storage and test fixations. The considerable drop in the clas-
sification performance of the techniques tested by Guillamet and Vitri (2002) for
faces with sunglasses, demonstrates that the occluded parts contain important vi-
sual information for classification with these techniques. Occlusions are known to
be problematic for techniques that construct global representations, such as Pca,
rather than part-based representations (see, e.g., Lee and Seung, 1999; Fei-Fei and
Perona, 2005). Although, the Nmf technique and also the Lfa technique are more
part-based than the Pca and the template-based techniques, they still rely on global
image characteristics to some degree. The performances of the Nim-Class variants
that rely on discrete local samples across the images, appear to be less disrupted
by an occlussion of the eyes even when testing under different lighting conditions.
Therefore, it can be said that, despite occlusions, the three Nim-Class variants can
make the correct classification decision on the basis of the local samples from image
regions other than the occluded regions.

6.8 Chapter summary and conclusions

This chapter started with the adaptation of Nim to obtain a natural input model for
classification called Nim-Class. Nim-Class was tested on a classification task that
used frontal view faces with different facial expressions, illumination conditions, and
occlusions. From the Nim-Class classification results we may conclude that Nim-
Class is able to classify natural images of frontal faces correctly under a variety of
potentially difficult conditions provided that a sufficient number of fixations is made
by the storage process and by the classification process.

After assessing the Nim-Class classification performance, we examined how
Nim-Class could be adapted for top-down fixation selection to select relevant fix-
ation locations on the basis of stored knowledge. We proposed two Nim-Class
variants, called Nim-Class A and Nim-Class B. Nim-Class A employs top-down
fixation-selection mechanism in the classification process on the basis of short-term
episodic knowledge about previously encountered faces. The selection mechanism
selects locations for fixation that minimize the uncertainty of classification. From

4Since Tables 6.1, 6.2, and 6.3 show average performances across all test views, these values are
not found in the tables.
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the Nim-Class A classification results we may conclude that the top-down fixation
selection employed by the classification process improves performance on the classi-
fication task compared to the Nim-Class performance. This is particularly so when
a limited number of fixations is made by the classification process.

Nim-Class B adopts the top-down fixation-selection mechanism of Nim-Class
A in the classification process and, in addition, employs a top-down fixation-selection
mechanism in the storage process based on long-term stored knowledge about the
relevance of different face parts. The Nim-Class B classification results demonstrate
that the top-down fixation-selection mechanism employed by the storage process
improves the performance on the classification task compared to the Nim-Class A
performance. Nim-Class B stores visual input that is more relevant for classification
than the visual input that Nim-Class A stores. This enables the top-down fixation-
selection mechanism in the classification process to operate more efficiently in Nim-
Class B than in Nim-Class A.

On the basis of the results presented in this chapter we may conclude that Nim-
Class is able to classify faces correctly under a variety of unfavourable conditions
on the basis of one encounter (i.e., one stored view). Moreover, Nim-Class A and B
are able to do this on the basis of a limited number of storage and test fixations by
using top-down fixation selection to extract relevant visual input. All in all, we may
conclude that the Nim-Class A and B variants underline the importance of active
top-down approaches for obtaining plausible cognitive models for the classification
of natural visual input.



Chapter 7

Towards a plausible model of

cognition

In this thesis we have proposed a situated computational memory model by real-
izing a perceptual front-end that connects a computational memory back-end with
the natural visual environment. Nim provides an initial step towards the develop-
ment of a plausible computational model of cognition. This chapter discusses our
approach by placing it in the context of existing computational models of object
recognition (7.1), by identifying points for the improvement of Nim’s psychological
and biological plausibility as a model of cognition (7.2), and by relating it to the
global developments in cognitive modelling (7.3).

7.1 NIM and models of object recognition

By realizing a computational memory model that operates on realistic input, Nim
brings together elements of two early influential approaches to object recognition:
the ecological approach (e.g., Gibson, 1979) and the computational approach (e.g.,
Marr, 1982).

In section 1.1, we sketched a brief historical overview of computational modelling
of cognition. We pointed at the recent trend towards the development of systems
that can cope with realistic environmental demands. This trend has led to a reap-
praisal of the ecological approach formulated by Gibson (1979) in cognitive science.
At the time Gibson introduced his ideas, he was criticised mainly because his views
could not be translated easily into computational algorithms. In contrast, Marr’s
(1982) computational framework (see subsection 2.2.1) provided a clear computa-
tional formulation of the processing stages assumed to underlie object recognition.

It is clear that the object-recognition framework by Marr (1982) and the more re-
cent recognition-by-components theory by Biederman (1985, 1987) fit nicely with the
information-processing accounts of cognition. According to Marr and Biederman,
the visual system performs the information-processing task that results in mental
representations that are isomorphic to objects in the world, i.e., a first-order isomor-
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phism (see, e.g., Shepard, 1975, 1981). In that way, processing can be directed purely
to the internal representations without the need to acquire input from the external
environment. Although the mental reconstruction of the environment in terms of
mental representations seems highly desirable from a computational point of view,
it is rather implausible from a psychological and neurophysiological point of view.
Moreover, computational attempts to create first-order isomorphic representations
from natural images turned out to be infeasible (see, e.g., Edelman, 2002; Edelman
and Intrator, 2003).

Obviously, Nim deviates from the first-order isomorphism characteristic of Marr’s
and Biederman’s models by transforming natural images into second-order isomor-
phic representations. In that respect Nim is inspired by Shepard’s (e.g., Shepard,
1957, 1964; Shepard and Chipman, 1970) and Edelman’s (e.g., Edelman, 1995a;
Edelman and Duvdevani-Bar, 1997a; Edelman and Intrator, 1997; Edelman, 1998)
similarity-based approach. The main advantage of the similarity-space approach
is that it does not require a detailed reconstruction of the environment. Instead
only the similarities have to be reconstructed. Edelman (see, e.g., Edelman and
Duvdevani-Bar, 1997b; Edelman, 1998) and others (see, e.g., Busey, 1998; Goldstone
and Steyvers, 2001) have shown the feasibility of the similarity-based approach by
representing faces and objects. Below, we will elaborate on Edelman’s approach and
remark how he addressed the main critique on his original approach.

Edelman’s original similarity-space approach is based on global shape templates.
Notwithstanding its successes, this approach has been criticized to ignore the in-
trinsic spatial structure of objects. More specifically, the part-whole relations of an
object and its constituents is not addressed by the representations. For instance, in
his view-interpolation model (e.g., Edelman and Duvdevani-Bar, 1997b) objects are
recognized by interpolating over multiple 2D views of the object. Each incoming
object is then represented by the responses of an ensemble of stored prototypical ob-
ject views (therefore this representational scheme is called the ‘chorus of prototypes’,
see also subsection 2.2.3). Ignoring the intrinsic spatial structure of objects limits
the plausibility of the interpolation model as a general model for visual representa-
tion. Edelman attempted to address this limitation with his ‘chorus of fragments’
(e.g., Edelman and Intrator, 2001, 2003). In this model, objects are represented in
terms of templates of shapes tuned to specific locations (e.g., Edelman and Intrator,
2001) rather than in terms of templates of entire object views (as in his original
‘chorus of prototypes’). The templates mimic the what and where receptive fields
that support the treatment of spatial structure in the human visual system (see,
e.g., Palmer, 1999). Edelman argues that a representation space that implicitly
codes for parts and their spatial relations (i.e., compositionality; Bienenstock and
Geman, 1995; Bienenstock, Geman, and Potter, 1997) by means of shape-specific
and location-specific fragments (i.e., what and where similarity-space representa-
tions) provides an effective computational and biologically plausible alternative to
the structural descriptions proposed by Marr and Biederman (see, e.g., Edelman,
2002; Edelman and Intrator, 2003). Moreover, this alternative approach is less sen-
sitive to disruptions and variations compared with the classical structural object
descriptions, because none of the individual fragments is critical for the entire rep-
resentation (e.g., Nelson and Selinger, 1998; Edelman and Intrator, 2001; Edelman
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and Intrator, 2003). So, while the Edelman was criticised for disregarding spatial
structure in his original global shape-template approach, his ‘chorus of fragments’
addresses this limitation in a computational and biologically inspired manner.

Since Nim employs similarity-based representations, it may fall prey to the same
criticism as Edelman’s original model. However, Nim represents objects in terms
of a number of preprocessed image fragments. In that respect it resembles Edel-
man’s ‘chorus of fragments’. Although Nim does not directly represent the spatial
composition of objects and their parts, the fixation mechanism as discussed in chap-
ter 6 may be considered to exploit the spatial relations for two reasons. First, in
Nim spatial relations are implicitly represented in the overlap structure of fixations
(see also subsection 7.2.4). Second, by retaining the fixation locations and the cor-
responding visual input, the spatial relations can be exploited and (oculomotor)
action-perception patterns can be learned (see also subsection 7.2.2). For this rea-
son, Nim can be extended into a model that closes the perception-action loop that
is characteristic of human vision within a natural environment (chapter 6 illustrated
our initial attempts to approach the interactive visual behaviour of natural systems
by implementing an active vision mechanism).

In summary, Nim’s perceptual front-end combines elements from the different ex-
isting approaches to realize a computational mechanism that builds a representation
space from real-world input. Nim operates on image parts and builds up represen-
tations from the parts (see, e.g., Biederman, 1985; Edelman and Intrator, 2003). At
the same time it adheres to the ecological approach by emphasizing the role of the
environment and by incorporating a natural eye-fixation mechanism characteristic
of natural vision.

Nim is inspired by neurocognitive and psychophysical findings. Still, several well-
known neurocognitive and psychophysical findings about visual object recognition
in the brain are not addressed by Nim and might serve as a basis for improving
Nim’s plausibility and realism as a model of object recognition and memory.

7.2 NIM’s psychological and biological plausibility

In its present form, Nim is simple and straightforward. Enhancing Nim’s psycho-
logical and biological plausibility requires the model to be extended in agreement
with psychological and biological insights. In the subsections below, we discuss five
of such extensions: a feature-based attentional mechanism (7.2.1), a spatial atten-
tional mechanism (7.2.2), a neural implementation of the similarity space (7.2.3),
the representation of spatial knowledge (7.2.4), and the incorporation of separate
episodic and semantic representation spaces (7.2.5).

7.2.1 Feature-based attention

The first extension is the task-dependent adaptation of Nim’s representations by
stretching or shrinking the axes of its similarity space. It has been shown that
humans attend to different features depending on task-related factors (e.g., Nosof-
sky, 1987; Goldstone and Steyvers, 2001; Halberstadt, Goldstone, and Levine, 2003)
or depending on individual differences in perceptual or attentional processes (e.g.,
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Viken et al., 2002; Halberstadt et al., 2003). Nim might be extended to incorporate
a feature-based attentional mechanism that adjusts the similarity space by assigning
the task-relevant dimensions of the similarity space a higher weight than the task-
irrelevant dimensions. Feature weighting can be based on: (1) psychological knowl-
edge about task-relevant dimensions, (2) specific human experimental data, and
(3) training examples to find the weights automatically by using machine-learning
techniques. We briefly discuss each of these three types of feature weighing.

The first type of feature weighing is based on psychological knowledge about task-
relevant dimensions obtained in behavioural studies. Several studies examined the
role of information at different spatial scales for performing a certain task (see, e.g.,
Goffaux et al., 2005; Sowden and Schyns, 2006). For example, Sowden and Schyns
(2006) found that observers actively and dynamically attend to visual information at
different spatial scales depending on the task. This knowledge can be incorporated
into Nim’s preprocessing stage in such a way that the scale-specific parts of the
vector are weighed in agreement with the psychological knowledge.

Second, the feature weights can be defined by human data obtained in a spe-
cific behavioural similarity-rating or categorization study. For example, Steyvers
and Busey (2000) proposed to improve the psychological plausibility of their ex-
tracted feature-vector representations for a set of facial images by means of the
human similarity-ratings for the same images. In order to do so, they proposed
a feature mapping model to map their feature-vector representations to the Mds
representations that were derived from the human similarity ratings. In a similar
way, Nim’s representations may be fed into a feature mapping model to adjust the
weights according to human similarity judgements.

A third manner of feature weighing is to learn the weights from examples using
feature-weighing techniques from the domain of machine learning. These learning
techniques adjust the feature weights in such a way that the generalization or the
classification performance of, e.g., a nearest-neighbour method is optimized (see, e.g.,
Lowe, 1993; Wettschereck, Aha, and Mohri, 1997; Paredes and Vidal, 1999; Stahl,
2005). Feature-weighing learning techniques may be applied to Nim’s representations
to optimize, for example, its classification performance of natural stimuli.

Employing feature weighing to Nim’s similarity-space representations might re-
sult in more plausible representations than those obtained without considering the
psychological and task-dependent relevance of the different dimensions.

7.2.2 Spatial attention

The second extension of Nim addresses the spatial selection of interesting regions for
visual information extraction. Human visual selection is highly context dependent
(e.g., Rajashekar et al., 2002). When interacting within the environment, covert
attention directs the eyes to interesting regions on the basis of bottom-up and top-
down processes (Karn and HayHoe, 2000; Henderson, 2003; Oliva et al., 2003) (see
also section 6.4). Nim incorporates the natural characteristic of directing spatial
attention by fixating different image regions (i.e., overt attention). Nim, Nim-Rem,
and Nim-Class, select eye fixations along the contours in the image, independent
of the current or past states of the system. Inspired by human vision, chapter 6
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introduced Nim-Class A and Nim-Class B, that employ two types of fixation-
selection mechanisms for the selection of image regions on the basis of both bottom-
up processes (that rely on salient features) and top-down processes (that rely on
stored knowledge). Still, both models are limited in that they consider a confined
subset of the types of stored knowledge known to play a role in human eye fixation
selection. Future extensions should address psychologically more plausible fixation-
selection mechanisms that are based on different types of short-term, long-term,
and task-related knowledge. Such forms of knowledge require an extension of Nim’s
representation space or the addition of separate specialised representation spaces.
Considering the task-dependent nature of human fixation patterns, the fixation-
selection mechanisms should be tested on a variety of different tasks and be compared
with fixation patterns of humans engaged in such tasks.

7.2.3 Neural implementation

The third extension of Nim deals with a neural implementation of Nim’s similar-
ity space. While Nim’s feature-vector extraction is inspired by the human visual
system, the memory stage retains the preprocessed input in a straightforward repre-
sentation space (as is common for many computational memory models) that does
not resemble the neural realization of representations in the brain. A more biologi-
cally plausible representation space may be preferred for a model of human memory.
Several biologically inspired types of representation spaces may be considered as
suitable alternatives for Nim’s similarity space, such as self-organizing maps (e.g.,
Kohonen, 2001) and radial basis function networks (e.g., Edelman and Intrator,
2001; Buhmann and Ablowitz, 2003). A self-organizing map is a single-layer feedfor-
ward network where the output neurons are arranged in a low-dimensional grid. The
learning algorithm of the self-organizing map ensures that adjacent neurons in the
grid respond to similar inputs. The resulting ‘topological maps’ resemble the neural
topological maps found throughout the brain (see, e.g., Knudsen, Du Lac, and Es-
terly, 1987). To build a neurally plausible representation space for Nim, the feature
vectors extracted by Nim can be fed directly into a self-organizing map. Another
way of enhancing the biological realism of Nim’s feature-vector representations is to
use radial basis function (Rbf) networks. These networks model the response pat-
terns of populations of neurons throughout the brain (e.g., Buhmann and Ablowitz,
2003). An Rbf network is a similarity-based feedforward network that employs non-
linear (Gaussian or other radial) transfer functions to weigh the distance of an input
vector with a stored prototype. An example of such a network is Edelman’s ‘chorus
of fragments’ (see also section 7.1) that learns the what-and-where responses on the
basis of selected image fragments (see, e.g., Edelman and Intrator, 2001).

Although self-organizing maps and Rbf networks realize biologically plausible
alternatives to structure Nim’s feature-vector representations, more biological real-
ism can be obtained by modelling Nim’s similarity space in terms of spiking neural
networks (for a review, see Gerstner, 1998). The computational advantages of such
networks over the conventional neural implementations remain to be determined.
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7.2.4 Representation of spatial knowledge

The fourth extension of Nim addresses the representation of spatial knowledge. In
chapter 6, we introduced the Nim-Class A and B models that use stored visual as
well as spatial knowledge from previously attended image regions in order to direct
gaze towards relevant locations. Nim-Class A and B represent spatial knowledge
explicitly by storing the coordinate labels of the fixation locations. This accords
with neurobiological evidence for a separate ‘where’ system in the brain that keeps
track of the spatial origin of visual information (see, e.g., Mishkin and Appenzeller,
1987; Courtney et al., 1996; Broadbent, Squire, and Clark, 2004). However, rather
than the separate storage of coordinate labels, the spatial origin of the input as well
as the spatial relations between different inputs may be inferred from the input itself.
Natural images, such as the face images in our studies, contain spatial regularities
at two levels: (1) regularities within a natural image, and (2) regularities between
the natural images of the same category (Torralba and Oliva, 2003). Within an im-
age, visual input originating from adjacent spatial locations leads to similar feature
vectors due to the correlation structure of natural images (see, e.g., Olshausen and
Field, 1996; Karklin and Lewicki, 2003). Hence, the similarity-space representations
provide cues for both the identity and the (relative) spatial location of the input.
For images of the same category (e.g., face images), visual input coming from the
same (relative) spatial location in two different images lead to similar feature vectors
due to the spatial regularities of objects within one category. The knowledge about
the general spatial arrangement of a certain category of stimuli or scenes is used
by the top-down gaze control processes in human vision (i.e., scene-schema knowl-
edge; Henderson, 2003). In the same way, Nim can derive scene-schema knowledge
from extensive experience with objects from one category. The results obtained
in a separate preliminary study with a classification variant of Nim showed that
knowledge about the spatial arrangement of objects within a particular category
can be extracted from the similarity-space representations (Lacroix, Postma, and
Murre, 2006b). Moreover, the spatial knowledge could be used to direct the eyes to-
wards relevant fixation locations (cf., Bergboer, Postma, and van den Herik, 2004; de
Croon et al., 2006a; de Croon and Postma, 2007; Bergboer, to appear).

While there might be good neurobiological evidence to support separate what
and where systems, it is very well possible that in some situations the brain infers
the ‘where’ information from the ‘what’ information, particularly where it concerns
well-known objects or categories of objects with a high degree of spatial regularity,
such as the category of faces. An extended Nim should incorporate both a sepa-
rate representation of ‘where’ information to direct actions (fixations) and at the
same time exploit the implicit spatial knowledge contained in the similarity-space
representations.

7.2.5 Episodic and semantic representations in the brain

The fifth Nim extension is the incorporation of separate episodic and semantic rep-
resentation spaces. Nim’s perceptual front-end builds a perceptual similarity space
from the visual input. The preprocessed visual inputs are stored as instances in
memory on the basis of a single encounter. This type of learning is characteristic
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of episodic human memory that relies on the hippocampus for fast one-shot learn-
ing (e.g., Teyler and Discenna, 1985; Zola-Morgan, 1990; Squire, 1992). It may be
assumed that the similarity structure of newly encountered faces can be explained
largely on the basis of instances of perceptual representations. This assumption is
supported by the results from the similarity-rating experiments in chapter 4. For
words or concepts, the similarity structure is assumed to be based much less on
perceptual features, but instead relies mainly on conceptual features. In contrast to
the one-shot learning that underlies episodic memory, the development of concep-
tual (i.e., semantic) memory is generally believed to result from a slow and gradual
learning process based on multiple episodes (see, e.g., McClelland, McNaughton, and
O’Reilly, 1995). As a consequence, semantic representations contain general knowl-
edge that is not referenced to specific events. This contrasts with episodic memories
that, by definition, refer to an event or episode. Nim may be extended to employ both
a fast learning episodic memory system and slower learning semantic or conceptual
memory system that builds up over time on the basis of the stored episodic represen-
tations. Such an extension can be realized by implementing a memory consolidation
mechanism that is assumed to underlie the distinction and communication between
fast acquired episodic memories and gradually acquired semantic memories (see, e.g.,
Teyler and Discenna, 1985; Alvarez and Squire, 1994; McClelland et al., 1995). Ac-
cording to the theory of memory consolidation, recent acquired (episodic) memories
are crystallized into long-term memories over time (see, e.g. Murre, 1996; Meeter
and Murre, 2004; Meeter and Murre, 2005). Neuropsychological and neurophysi-
ological studies revealed that two brain structures are involved in the process of
memory-consolidation, i.e., the hippocampal structure and the neocortical structure.
While memories are initially dependent on the fast-learning hippocampal structure,
they are eventually transported into long-term memory that has been recognized
to reside in the neocortical structure. Neurophysiological and psychological sleep
studies point out that the consolidation process is based on a reactivation of stored
memories in the hippocampus which occurs mainly during sleep (see, e.g., Squire,
1992; Walker et al., 2003; Nelson, 2004; Stickgold, 2005). Results from connectionist
memory-modelling research support the idea of two complementary learning systems
in the brain and the transfer of information from one system to the other (see, e.g.,
Gluck and Meyers, 1993; Alvarez and Squire, 1994; McClelland et al., 1995; Lacroix,
2001). An extended Nim may incorporate a consolidation mechanism that grad-
ually generalizes the acquired episodic instances into robust conceptual memories.
Several researchers argued that the conceptual representations that underlie natural
language are derived from the interaction with the real world (see, e.g., Barsalou,
1999; Glenberg and Kaschak, 2002; Goldstone, Feng, and Rogosky, 2005; Roy, 2005a,
2005b).

Having discussed five biologically inspired extensions of Nim, in the next sub-
section we position Nim in the broader context of the global developments of models
of cognition.
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7.3 Global developments in modelling cognition

Traditional psychological and artificial intelligence models of natural cognition fo-
cussed mainly on symbol manipulation associated with higher-level cognitive tasks.
As we argued in chapter 1, these symbol-manipulation models suffer from the sym-
bol grounding problem (Harnad, 1990) and the transduction problem (Barsalou,
1999) by disregarding the connection between the representations and their real-
world referents. For the domain of artificial intelligence, the acknowledgement of
these problems led to a fundamentally different approach to the building of intelli-
gent systems. Rather than focussing on higher-level intelligent behaviour by means
of computations on knowledge represented by symbols, the new so-called ‘situated’
approach focusses on low-level behaviours in situated ‘agents’ acting within an en-
vironment (see, e.g., Beer, 1995; Clancey, 1997; Arkin, 1998; Pfeifer and Scheier,
1999). In Artificial Intelligence, the approach to cognition thus moved from the
study of isolated, representation-rich, symbol manipulation systems, to the study
of the dynamics of simple agents in interaction with their environments. The de-
velopment in the domain of cognitive psychology shows a different pattern. After
the cognitive science revolution, models addressing high-level cognitive behaviour
prevailed (Gardner, 1985). This resulted in a gap between cognitive modelling in
the domain of artificial intelligence and psychology. Currently, these domains are
slowly moving towards each other. On the one hand situated artificial intelligence
is exploiting the advantages of extending situated agents to incorporate more com-
plex cognitive structures such as memory systems (see, e.g., the Paco-Plus project,
http://www.paco-plus.org/). On the other hand, the findings from the situated ar-
tificial intelligence approach inspire new psychological models that acknowledge the
essential role of the environment for understanding cognition.

In line with these global developments in cognitive modelling, Nim constitutes a
straightforward situated computational memory model. It combines insights from
computational memory modelling in the domain of psychology with those from the
domain of artificial intelligence by realizing a computational memory model that
operates directly on the natural visual environment. In doing so, it departs from the
traditional computational memory models that consider the cognitive system as de-
tached from its environment. Rather than focussing on isolated cognitive processes,
Nim brings about a coupling between cognition and the environment. The selection
of visual input by means of eye fixations provides a plausible basis to model the
interactive visual behaviour of natural systems.

Future extensions of Nim should address the continuous interaction between per-
ception, cognition, and action. Similarly, other models and experimental methods in
cognitive science could be extended or adapted to become more situated. The trend
towards more realism is already observed in some experiments (see, e.g., Cohen and
Conway, 1996; Henderson, 2005). A similar trend in cognitive modelling is needed.
Acknowledging the importance of the interaction with a realistic environment may
lead to a radically different conception of mental representations (see, e.g., Barsa-
lou, 1999; van Dartel et al., 2005; van Dartel, 2005) and cognitive mechanisms (see,
e.g., Pfeifer and Scheier, 1999; Beer, 2003) required for the realization of a plausible
model of natural cognition.



Chapter 8

Conclusion

In this thesis we addressed the main limitation of computational memory models,
which is their lack of a connection with the real world. Because these models do
not incorporate an encoding process that creates memory representations from real-
world input, they suffer from the symbol grounding and the transduction problems.
This led us to the formulation of the central problem statement of this thesis in
chapter 1: How can computational memory models be extended to solve the symbol
grounding and transduction problems? Subsequently, we approached the problem
statement by attempting to construct and validate a situated computational mem-
ory model. For the construction of a situated computational memory model, we
proposed to develop a perceptual front-end that transforms natural input into mem-
ory representations that can be operated on by a computational memory back-end.
In order to achieve this objective, chapter 2 provided three guiding principles for
creating a veridical representation space from real-world visual input and showed
how the principles can be fulfilled in a perceptual front-end that transforms natural
visual input into memory representations. Subsequently, in chapter 3, we presented
a situated computational memory model, called Nim, that combines the perceptual
front-end with a computational memory back-end.

For the validation of the model, we focussed on answering three research ques-
tions. Below, we answer our research questions on the basis of the work presented
in the previous chapters. Subsequently, we formulate our conclusion on the problem
statement.

8.1 Answers to our research questions

On the basis of the proposed situated model, we aimed at answering three research
questions that will be addressed in subsections 8.1.1, 8.1.2, and 8.1.3.

8.1.1 RQ 1: on producing individual responses

Below, we repeat our first research question.
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To what extent can a situated model produce human responses to individual nat-
ural visual stimuli?

Chapter 4 addressed the first research question. There, we compared Nim re-
sponses with human responses to individual natural stimuli in a similarity-rating task
and a recognition-memory task. On the basis of the results we may conclude that we
are able to produce human responses to individual natural stimuli quite reliably with
our situated model. Nim produced the overall pattern of human similarity-rating
data and recognition-memory data.

8.1.2 RQ 2: on producing recognition-memory effects

Below, we repeat our second research question.

To what extent can a situated model produce recognition-memory effects on the
basis of natural visual stimuli?

Chapter 5 addressed the second research question by introducing a Nim variant
called Nim-Rem, which extended Nim into a natural input variant of the power-
ful Rem model proposed by Shiffrin and Steyvers (1997). The chapter validated
Nim-Rem on four general recognition-memory effects that are typically obtained in
behavioural memory studies. From the results we may conclude that Nim-Rem is
able to explain the recognition-memory effects to the extent that it produces the
four effects successfully directly on the basis of natural visual input.

8.1.3 RQ 3: on classification

Below, we repeat our third research question.

To what extent can a situated model classify natural visual stimuli?

Chapter 6 addressed the third research question by introducing a classification
variant of Nim called Nim-Class, which extended Nim into a classification model
for natural stimuli. In addition to Nim-Class, the chapter introduced two variants
of Nim-Class, called Nim-Class A and Nim-Class B, that extended Nim with a
gaze control mechanism for the selection of relevant visual input based on top-down
processes. Nim-Class A employed top-down fixation selection during classification
on the basis of short-term episodic knowledge about previously encountered natu-
ral stimuli. Nim-Class B featured the top-down fixation selection of Nim-Class
A during classification and, in addition, employed top-down fixation selection dur-
ing storage based on long-term stored knowledge about the relevance of different
image parts. Nim-Class and Nim-Class A and B, were validated in a classifica-
tion task and a qualitative comparison was carried out between model and human
performances. From the Nim-Class classification results we may conclude that
Nim-Class is able to classify natural images correctly under a variety of poten-
tially disturbing conditions provided that a sufficient amount of visual input was
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selected for storage and classification. From the Nim-Class A classification results
we may conclude that top-down fixation selection during classification improves per-
formance on the classification task compared to the Nim-Class performance. This
is particularly so when a limited number of fixations are taken during classification.
The Nim-Class B classification results demonstrate that top-down fixation selec-
tion during storage yields an improved performance on the classification task when
compared to the Nim-Class A performance.

8.2 Conclusion

Below we formulate our conclusion of the problem statement: How can computational
memory models be extended to solve the transduction and grounding problems?

The situated computational memory model called Nim introduced in chapter 3
(and also the variants presented in chapters 5 and 6) provides an implicit answer to
the problem statement. Nim explains how representations originate from the real
world by employing a front-end that transforms real-world input into memory repre-
sentations in a neurobiologically informed manner. The symbol grounding and the
transduction problems address the lack of a direct relation between representations
and the objects that they refer to in the external world. By creating representa-
tions from natural images, the relation between a representation and its referent is
established. As a consequence, the symbol grounding and transduction problems
are solved. The model validation studies demonstrate that Nim is quite successful
in explaining human data from behavioural memory studies. However, the model is
limited with respect to the psychological and biological realism and may be further
improved as outlined in chapter 7.

Finally, we may conclude that the situated computational memory model pre-
sented in this thesis provides an efficient way to solve the symbol grounding and
transduction problems. Moreover, it offers a fruitful basis for developing a psycho-
logically plausible model of natural cognition.
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Summary

Traditionally, models of natural cognition consider cognitive mechanisms as pro-
cesses of symbol manipulation operating independently of the environment. The
symbol-manipulation models suffer from two interrelated problems: the symbol
grounding problem and the transduction problem. Both problems address the lack
of a connection between representations in a cognitive system and the entities that
they refer to in the real world. The relatively new situated approach to cognition
deals with the two problems by viewing cognitive mechanisms as emerging from the
interaction with the natural environment. The focus of this thesis is to address the
symbol grounding and transduction problems for computational memory models by
realizing a situated computational memory model. The situated model operates
directly on the natural environment.

Chapter 1 starts with a historical overview of the development of computational
memory modelling. The chapter identifies the lack of a direct connection with the
real world as the main limitation of the existing computational memory models.
Rather than deriving representations directly from the real world, these models rely
on various types of abstract representation spaces that are only indirectly related to
the real world. By assuming an abstract representation space, these models suffer
from the symbol grounding problem and the transduction problem. In order to deal
with these problems we phrase the following problem statement: “How can com-
putational memory models be extended to solve the grounding and transduction
problems?” The problem statement is addressed by defining a perceptual front-end
that transforms natural visual input into memory representations. We propose a
combination of the perceptual front-end with a computational memory back-end to
obtain a situated computational memory model. To validate the situated computa-
tional memory model, three research questions are formulated: (1) to what extent
can a situated model produce human responses to individual natural visual stimuli?
(2) to what extent can a situated model produce recognition-memory effects on the
basis of natural visual stimuli? and (3) to what extent can a situated model classify
natural visual stimuli? The research methodology is presented; it consists of two
steps: model construction and model validation.

Chapter 2 provides an overview of the types of abstract representation spaces
used in the existing memory models. It illustrates that the representations are not
derived directly from the physical features of the individual stimuli that they refer
to in the real world, i.e., they are not grounded in the real world. Subsequently, two
sources of inspiration for constructing veridical representations directly from visual
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natural input are discussed. The first source consists of the insights taken from four
influential approaches belonging to the domain of computer vision to map visual
input onto representations. The second source consists of relevant knowledge about
the main characteristics of the human visual system. Based on these two sources
of inspiration, the chapter proceeds with the formulation of three guiding principles
for grounding memory representations in the real visual world. Finally, it provides
ways to fulfil the guiding principles to obtain a perceptual front-end for a situated
computational memory model.

Chapter 3 introduces the situated computational memory model. The model op-
erates on natural images and it is called: the Natural Input Memory model (Nim).
Nim combines a perceptual front-end with a computational memory back-end. Nim’s
perceptual front-end employs a biologically informed method that selects local image
samples (i.e., eye fixations) from natural images and translates these into feature-
vector representations. Each feature vector contains information on oriented edges at
multiple scales extracted from a small image area surrounding the fixation location.
The feature-vector representations form the input to the computational memory
back-end, which is an exemplar-based model that makes recognition-memory deci-
sions on the basis of a comparison between stored and incoming similarity-space
representations.

Chapter 4 validates Nim by assessing to what extent Nim can produce human
similarity ratings and recognition rates for individual natural stimuli. The model is
tested on a similarity-rating task and a face-recognition task using the same stimuli
and tasks as those used in behavioural experiments. The Nim similarity ratings and
recognition rates are compared with the behaviourally obtained human similarity
ratings and recognition rates. The results demonstrate that Nim quite accurately
produces the human similarity ratings and the human recognition rates for the in-
dividual natural stimuli.

Chapter 5 examines Nim’s natural input recognition properties in terms of gen-
eral recognition-memory effects. Many studies have demonstrated the success of
Rem (a well-established model of memory) in replicating a wide range of human
recognition-memory effects. The chapter introduces a Nim variant called Nim-Rem
that realizes a natural input version of Rem by combining Nim’s perceptual front-
end with a Rem-based memory back-end. The remainder of the chapter focuses on
validating Nim-Rem by assessing its ability to explain behavioural results on four
recognition-memory effects that are often studied in behavioural recognition-memory
experiments: the list-strength effect, the list-length effect, the item-strength effect,
and the false-memory effect. For each effect, the pattern of Nim-Rem recognition
results are compared with the human pattern of results obtained in behavioural
experiments. The results on the four recognition-memory effects indicate that Nim-
Rem produces rather adequately the findings from behavioural experiments.

Chapter 6 studies Nim’s ability to classify natural input. In order to test the
classification ability, the chapter introduces a Nim variant called Nim-Class that
combines Nim’s perceptual front-end with a new memory back-end that is suitable
for classification. The classification performance of Nim-Class is evaluated on a
face-classification task that entails the identification of a natural image of a frontal
face with variations in facial expression, illumination, and occlusion, on the basis of
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a single encounter with the face. The classification results demonstrate that Nim-
Class is able to classify natural images of frontal faces correctly under a variety
of unfavourable conditions, provided that a sufficient number of fixations are made
during a single encounter with the face. Subsequently, the chapter investigates to
what extent the classification performance can be improved by extending Nim-Class
with top-down fixation selection to select relevant fixation locations on the basis of
stored knowledge. The chapter introduces two Nim-Class variants: Nim-Class A
and Nim-Class B. Nim-Class A employs a top-down fixation-selection mechanism
during the classification of a face that relies on short-term episodic knowledge about
previously encountered faces. From the Nim-Class A classification results we may
conclude that the short-term episodic-knowledge-based top-down fixation selection
improves performance on the classification task compared to the Nim-Class perfor-
mance. This is particularly so when a limited number of fixations is made during
classification. Nim-Class B adopts the top-down fixation-selection mechanism of
Nim-Class A during the classification of a face and, in addition, employs a top-down
fixation-selection mechanism during the storage of a face that relies on long-term
stored knowledge about the relevance of different face parts. The Nim-Class B
classification results demonstrate that the top-down fixation-selection mechanism
employed during storage improves the performance on the classification task com-
pared to the Nim-Class A performance. The results obtained with the Nim-Class
A and B variants demonstrate the beneficial effect of active top-down processes that
rely on various types of stored knowledge for the classification of natural visual input.

Chapter 7 provides a discussion of our proposed situated computational memory
model. First, it relates our approach to influential existing computational models
of object recognition. Second, it identifies several model extensions for the improve-
ment of the model’s psychological and biological realism as a model of natural cog-
nition. Based on psychological and biological insights, five extensions are discussed:
(1) a feature-based attentional mechanism, (2) a spatial attentional mechanism, (3)
a neural implementation of the similarity space, (4) the representation of spatial
knowledge, and (5) the incorporation of separate episodic and semantic represen-
tation spaces. Third, the chapter places our approach in the context of the global
developments in the domain of cognitive modelling. It shows that our approach
departs from the traditional computational memory models and adheres to the new
‘situated’ approach by focussing on the interaction with a realistic environment.

Chapter 8 answers the three research questions formulated in chapter 1 and pro-
vides the thesis conclusion of the problem statement. For the first research question,
the answer is that the situated model is able to produce human responses to individ-
ual natural stimuli quite reliably. For the second research question, it is stated that
the situated model is able to produce the four recognition-memory effects successfully
directly on the basis of natural visual input. For the third research question, we state
that our situated model is able to classify natural images correctly under a variety
of potentially unfavourable conditions provided that a sufficient amount of visual in-
put is selected. Moreover, we see that the use of active top-down processes that rely
on stored knowledge to select visual input enhances classification performance, in
particular when classification is based on a limited amount of visual input. Finally,
the chapter elaborates on the conclusion that the situated computational memory



134 Summary

model presented in this thesis provides a viable solution to the symbol grounding
and transduction problems by relating a representation to its real-world referent in
a transparent and non-trivial manner that is neurobiologically informed.
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Samenvatting

In de klassieke modellen van natuurlijke cognitie worden cognitieve mechanismen
beschouwd als processen van symbool-manipulatie die onafhankelijk van de omge-
ving werken. De symbool-manipulatiemodellen hebben last van twee aan elkaar gere-
lateerde problemen: het symbool-funderingsprobleem en het transductieprobleem.
Beide problemen hebben betrekking op het ontbreken van een verbinding tussen
representaties in het cognitieve systeem en de entiteiten waarnaar deze verwijzen
in de wereld. De relatief nieuwe, gesitueerde benadering van cognitie pakt deze
problemen aan door cognitieve mechanismen te beschouwen als het resultaat van de
interactie met de natuurlijke omgeving. Dit proefschrift richt zich op de behandeling
van het symbool-funderingsprobleem en het transductieprobleem voor computatio-
nele geheugenmodellen door de verwezenlijking van een gesitueerd computationeel
geheugenmodel. Het gesitueerde model is direct werkzaam op de natuurlijke omge-
ving.

Hoofdstuk 1 begint met een historisch overzicht van de ontwikkeling van het
computationeel modelleren van het geheugen. Het hoofdstuk identificeert het ge-
brek van een directe verbinding met de echte wereld als de belangrijkste beperking
van de bestaande computationele geheugenmodellen. In plaats van representaties
die direct van de echte wereld zijn afgeleid, zijn de bestaande modellen afhanke-
lijk van allerlei typen abstracte representaties die slechts indirect gerelateerd zijn
aan de wereld. Het gebruik van een abstracte representatieruimte in deze modellen
leidt tot het symbool-funderingsprobleem en het transductieprobleem. Om deze
problemen aan te pakken, formuleren we de volgende probleemstelling: “Hoe kun-
nen computationele geheugenmodellen worden uitgebreid zodat ze het funderings-
en transductieprobleem oplossen?” De probleemstelling wordt benaderd door het
definiëren van een perceptueel front-end dat natuurlijke visuele input vertaalt naar
geheugenrepresentaties. We stellen voor om het perceptuele front-end te combineren
met een computationeel geheugen-back-end om te komen tot een gesitueerd compu-
tationeel geheugenmodel. De validatie van het gesitueerde computationele geheugen-
model vindt plaats aan de hand van drie onderzoeksvragen: (1) In hoeverre kan een
gesitueerd model menselijke responsen op individuele natuurlijke visuele stimuli pro-
duceren? (2) In hoeverre kan een gesitueerd model herkenningseffecten produceren
op basis van natuurlijke visuele stimuli? en (3) In hoeverre kan een gesitueerd model
natuurlijke visuele stimuli classificeren? De onderzoeksmethodologie wordt gepre-
senteerd aan de hand van twee stappen: modelconstructie en modelvalidatie.

Hoofdstuk 2 geeft een overzicht van de typen abstracte representatieruimten die
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in de bestaande geheugenmodellen worden gebruikt. Het illustreert dat de represen-
taties niet direct worden afgeleid van de fysieke eigenschappen van de individuele
stimuli waarnaar ze verwijzen in de echte wereld; dit betekent dat ze niet gefundeerd
zijn in de echte wereld. Vervolgens worden twee bronnen van inspiratie besproken
voor de directe constructie van waarheidsgetrouwe representaties van natuurlijke
visuele input. De eerste bron bestaat uit de inzichten van vier invloedrijke be-
naderingen uit het domein van computer vision voor de vertaling van visuele input
in representaties. De tweede bron bestaat uit relevante kennis over de belangrijkste
eigenschappen van het menselijke visuele systeem. Op basis van deze twee bronnen
van inspiratie vervolgt het hoofdstuk met de formulering van drie richtlijnen voor
het funderen van geheugenrepresentaties in de visuele wereld. Tenslotte geeft het
methoden om deze richtlijnen te volgen en te komen tot een perceptueel front-end
voor een gesitueerd geheugenmodel.

Hoofdstuk 3 introduceert het gesitueerde computationele geheugenmodel. Het
model werkt op natuurlijke afbeeldingen en wordt het Natural Input Memory model
(Nim) genoemd. Nim combineert een perceptueel front-end met een computatio-
neel geheugen-back-end. Het perceptuele front-end van Nim gebruikt een biologisch
gëınformeerde methode die lokale samples (oogfixaties) selecteert uit natuurlijke af-
beeldingen en deze vertaalt naar vectorrepresentaties. Iedere vector bevat informatie
over georiënteerde licht/donker overgangen op meerdere schalen. Deze informatie
wordt verkregen van een klein gebied rondom de fixatielocatie in de afbeelding. De
vectorrepresentaties vormen de input voor het computationele geheugen-back-end.
Dit is een exemplaar-gebaseerd model dat herkenningsbeslissingen maakt op basis
van een vergelijking tussen opgeslagen en inkomende vectorrepresentaties.

Hoofdstuk 4 valideert Nim door te beoordelen in hoeverre Nim in staat is om
menselijke similariteitsresponsen en herkenningsresponsen op individuele natuur-
lijke stimuli te produceren. Het model wordt getest op een similariteitstaak en
een gezichtsherkenningstaak waarbij dezelfde stimuli en taken worden gebruikt als
in gedragsexperimenten. De similariteits- en herkenningsresponsen van Nim wor-
den vergeleken met de menselijke similariteits- en herkenningsresponsen die verkre-
gen zijn in de gedragsexperimenten. De resultaten wijzen uit dat Nim de mense-
lijke similariteits- en herkenningsreponsen voor individuele natuurlijke stimuli vrij
nauwkeurig produceert.

Hoofdstuk 5 bestudeert de herkenningseigenschappen van Nim voor natuurlijke
input in termen van algemene herkenningseffecten. Vele studies hebben het suc-
ces aangetoond van Rem (een gerenommeerd geheugenmodel) in het repliceren van
een breed scala aan menselijke herkenningseffecten. Het hoofdstuk introduceert een
Nim-variant, Nim-Rem genaamd, die een Rem-versie realiseert voor natuurlijke in-
put door het perceptuele front-end van Nim te combineren met een Rem-gebaseerd
geheugen-back-end. Het hoofdstuk richt zich vervolgens op de validatie van Nim-
Rem door te beoordelen in hoeverre Nim-Rem in staat is om vier herkenningsef-
fecten uit experimenteel geheugenonderzoek te produceren: het lijststerkte-effect,
het lijstlengte-effect, het itemsterkte-effect, en het pseudoherinnering-effect. Voor
ieder effect wordt het patroon van Nim-Rem-resultaten vergeleken met het patroon
van menselijke resultaten uit experimenteel onderzoek. De resultaten tonen aan dat
Nim-Rem de experimentele bevindingen tamelijk adequaat benadert.
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Hoofdstuk 6 bestudeert het vermogen van Nim om natuurlijke input te classifi-
ceren. Om het classificatievermogen te testen introduceert het hoofdstuk een Nim-
variant, genaamd Nim-Class, die het perceptuele front-end van Nim combineert
met een geheugen-back-end dat geschikt is voor classificatie. De classificatieprestatie
van Nim-Class wordt beoordeeld op een gezichtsclassificatietaak waarin natuurlijke
afbeeldingen van frontale gezichten, met variaties in gezichtsuitdrukking, belich-
ting, en occlusies, moeten worden gëıdentificeerd op basis van een enkele presentatie
van het gezicht. De classificatieresultaten tonen dat Nim-Class in staat is om
natuurlijke afbeeldingen van frontale gezichten, onder verscheidene ongunstige om-
standigheden, correct te classificeren, gegeven dat er voldoende fixaties zijn gemaakt
gedurende de enkele presentatie van het gezicht. Vervolgens onderzoekt het hoofd-
stuk in hoeverre de classificatie kan worden verbeterd door Nim-Class uit te brei-
den met een top-down fixatieselectie-mechanisme voor het selecteren van relevante
fixatielocaties op basis van opgeslagen kennis. Het hoofdstuk introduceert twee Nim-
Class-varianten: Nim-Class A en Nim-Class B. Nim-Class A implementeert een
top-down fixatieselectie-mechanisme voor de classificatie van een gezicht dat gebruik
maakt van episodische korte-termijn kennis van eerder gepresenteerde gezichten.
Uit de classificatieresultaten mogen we concluderen dat het top-down fixatieselectie-
mechanisme van Nim-Class A de prestatie op de classificatietaak verbetert vergele-
ken met de prestatie van Nim-Class. Dit is voornamelijk zo wanneer de classificatie
gebaseerd is op een beperkt aantal fixaties. Nim-Class B gebruikt het top-down
fixatieselectie-mechanisme van Nim-Class A voor de classificatie van een gezicht.
Daarnaast gebruikt het een top-down fixatieselectie-mechanisme voor het selecteren
van fixaties gedurende de opslag van een gezicht in het geheugen dat is gebaseerd op
lange-termijn kennis over de relevantie van verschillende gezichtsdelen. De classifica-
tieresultaten laten zien dat het top-down fixatieselectie-mechanisme voor de opslag
van een gezicht, de prestatie op de classificatietaak verbetert in vergelijking met de
prestatie van Nim-Class A. De resultaten verkregen met de Nim-Class A-variant
en de Nim-Class B-variant tonen het gunstige effect van actieve top-down processen
op de classificatie van natuurlijke visuele input, als de processen gebruik maken van
verscheidene soorten van opgeslagen kennis.

Hoofdstuk 7 bediscussieert het gesitueerde computationele geheugenmodel. Ten
eerste relateert het onze benadering aan invloedrijke bestaande modellen van object-
herkenning. Ten tweede identificeert het verscheidene uitbreidingen van het model
voor de verbetering van de psychologische en biologische plausibiliteit als model van
natuurlijke cognitie. Op basis van psychologische en biologische inzichten worden vijf
uitbreidingen besproken: (1) een kenmerk-gebaseerd aandachtsmechanisme, (2) een
spatieel aandachtsmechanisme, (3) een neurale implementatie van de representatie-
ruimte, (4) de representatie van spatiële kennis, en (5) de implementatie van aparte
episodische en semantische representatieruimten. Ten derde plaatst het hoofdstuk
onze benadering in de context van de globale ontwikkelingen op het gebied van cog-
nitief modelleren. Het toont aan dat onze benadering verschilt van de traditionele
computationele geheugenmodellen en aansluit bij de nieuwe ‘gesitueerde’ benadering
door zich te richten op de interactie met een realistische omgeving.

Hoofdstuk 8 beantwoordt de drie onderzoeksvragen die in hoofdtsuk 1 gefor-
muleerd zijn en geeft onze conclusie ten aanzien van de probleemstelling. Het ant-
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woord op de eerste onderzoeksvraag luidt dat het gesitueerde model de menselijke
responsen op individuele natuurlijke stimuli tamelijk nauwkeurig kan produceren.
Het antwoord op de tweede onderzoeksvraag luidt dat het gesitueerde model de vier
herkenningseffecten succesvol kan produceren op basis van natuurlijke visuele input.
Het antwoord op de derde onderzoeksvraag luidt dat ons gesitueerde model in staat
is om natuurlijke afbeeldingen onder een variëteit aan ongunstige omstandigheden
correct te classificeren mits er voldoende visuele input geselecteerd is. Bovendien zien
we dat de classificatieprestatie verbetert door het gebruik van top-down processen
die gebruik maken van opgeslagen kennis voor het selecteren van visuele input. Dit
is voornamelijk zo wanneer classificatie gebaseerd is op een beperkte hoeveelheid
visuele input. Tenslotte, mogen we concluderen dat het gesitueerde computationele
model dat in dit proefschrift wordt gepresenteerd een vruchtbare oplossing biedt voor
het funderings- en transductieprobleem. Dit gebeurt door het bewerkstelligen van
een relatie tussen een representatie en zijn referent in de wereld op een transparante
en niet-triviale manier die gëınformeerd is vanuit de neurobiologie.
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