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Abstract

This study develops a new bias-corrected estimator for the fixed-effects
dynamic panel data model and derives its limiting distribution for fixed T’
and N large. The bias-corrected estimator is derived as a bias correction
of the least-squares dummy variable (within) estimator. It does not share
some of the drawbacks of recently developed IV and GMM estimators and
is relatively easy to compute. Monte Carlo experiments provide evidence
for the bias-corrected estimator to perform well even in small samples. The
paper contains an application to a model of unemployment dynamics at the
U.S. state level for the 1991-2000 period.

1. Introduction

The estimation of fixed-effects dynamic panel data models has been one of the
main challenges in econometrics during the last two decades. Various instrumental
variables (IV) estimators or generalized method of moments (GMM) estimators
have been proposed and compared (see e.g. Anderson and Hsiao, 1981, 1982; Arel-
lano and Bond, 1991; Arellano and Bover, 1995; Ahn and Schmidt, 1995; Kiviet,
1995; Wansbeek and Bekker, 1996; Ziliak, 1997; Blundell and Bond; 1998, Hahn,
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ree is corresponding author. He is grateful to the Royal Academy of Arts and Sciences (KNAW)
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1999; Judson and Owen, 1999). The development and comparison of such new
estimators was necessary because the traditional within estimator (least-squares
dummy variable estimator) is inconsistent for fixed T'. Despite the increasing so-
phistication of the IV and GMM estimators, two important drawbacks remain.
First, the complexity of the new estimators is a barrier for applied researchers
(see e.g. Baltagi et al., 2000). This should partly be a temporary drawback as
the new estimators will be incorporated in the statistical packages. However,
the newly developed estimators may require additional decisions on, for example,
which and how many instruments to use. For example, by evaluating the expecta-
tion of asymptotic expansions of estimation errors Bun and Kiviet (2002b) show
that finite sample bias of GMM-estimators increases with the number of moment
conditions used. This makes application less straightforward. Second, the new es-
timators introduce problems of their own. For example, the GMM-estimators may
suffer from a substantial bias in case the autoregressive parameter becomes close
to one (see Blundell and Bond, 1998; Meghir and Windmeijer, 1999; Kitazawa,
2001). Furthermore, the performance of these estimators depends strongly upon
the ratio of variance of the individual specific effects and the variance of the
general error term (see e.g. Kitazawa, 2001).

This paper introduces a new and simple estimator for dynamic panel data
models with or without additional exogenous variables. It is computed as a bias
correction to the least squares dummy variable (LSDV) estimator (also referred
to as within estimator) and is, as such, related to the bias-corrected estimator
developed by Kiviet (1995).! An important advantage of the estimator is that it
does not depend upon the ratio of the variance of the fixed effects and the variance
of the error term. The bias adjustment of the newly developed estimator is done
without resorting to outside initial consistent estimates, as is the case with Kiviet’s
bias-corrected estimator and, in addition, appears to perform well in comparison.
MacKinnon and Smith (1998) already indicate that bias of parameter estimates
may be virtually eliminated in some common cases, though at the expense of
increased variance of the estimators. This paper shows that this is also the case
for dynamic panel data models.

! Judson and Owen (1999) present Monte Carlo simulation results indicating that Kiviet’s
bias-corrected estimator outperforms the Anderson-Hsiao IV estimator and the Arellano-Bond
GMM estimators. The current paper provides further support for the usefulness of Kiviet’s
central idea of bias-correcting the least squares dummy variable estimator. Kiviet proposed to
consistently estimate the extent of the bias by using a preliminary consistent estimator, e.g.
based on generalized method of moments. This allows for a consistent corrected estimator
based on additive bias-correction. An obvious disadvantage of the Kiviet-estimator is that its
performance depends upon the preliminary estimator chosen. Hahn and Kuersteiner (2002)
recently introduced a bias-corrected estimator related to that developed by Kiviet. However,
their estimator is not designed for samples with small T'.



The rest of the paper is organized as follows. In section 2 we explain the
principle of bias-correction in dynamic panel data models. In section 3 we derive
the limiting distribution for fixed T of the bias-corrected estimator. In section 4
we discuss the special case of the AR(1)-model in which no additional exogenous
variables are included. In this section the bias-corrected estimator is compared
with other possible corrections on the LSDV-estimator. Section 5 contains results
from Monte Carlo experiments for the model with an additional exogenous regres-
sor. In section 6 the estimators are applied to a simple model of intertemporal
dynamics of the unemployment rate in U.S. states in the 1991-2000 period. In
section 7 we discuss extensions and limitations of the proposed estimator in more
general models and provide concluding remarks.

2. Bias-corrected estimation in dynamic panel data models

In this section we will illustrate the principle of bias-corrected estimation in the
first-order dynamic panel data model. For ease of exposition we assume only one
additional time varying regressor (next to the lagged dependent variable regressor)
and the panel to be balanced. Consider the following first-order dynamic panel
data model

Yit = VWir—1 + Bxi +1; + €it, 1=1,...,N; t=1,..,T. (2.1)

In this model the dependent variable y;; is determined by the one-period lagged
value of the dependent variable y; ;_, the additional regressor x;;, the unobserved
individual specific effect 1, and a general disturbance term ;. The regressor x;
may be correlated with the individual specific effect n,, but we assume that it is
strictly exogenous with respect to the general error term ;. Regarding the latter
we assume that it has mean zero, constant variance o2, finite fourth moment, not
correlated either over time or across individuals and not correlated with 7,. Con-
sidering the start-up observations y; o we assume that they are uncorrelated with
subsequent error terms £;. Finally, the model (2.1) is assumed to be dynamically
stable, or |y| < 1.

The unknown individual effects in (2.1) can be eliminated by expressing each
variable in deviation of its individual-specific mean. We introduce ¢ = vt — ¥,
Uit-1 = Yit—1 — Yi—1, Ty = Ty — T; and &, = 4 — &; and rewrite model (2.1) as

g’it :'Ygi,tfl‘i‘ﬁiit‘i‘git; Z: 1,,N, t = 1,...,T. (22)

The LSDV-estimators are computed by applying ordinary least squares to this
equation to give

e = ZZ%ZZ?M lyzt_zzxztyzt lzzxztyzt
- CYBE Y R— (O i)’

(2.3)



B _szztyzt 122:%15 lyzt+zzyzt 1zzxztyzt (24)
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where the summations are for: =1,.... N and t=1,...,7T.

The LSDV-estimators of v and 3 are biased and inconsistent for fixed T be-
cause of the correlation between ¢;;—1 and &;. The extent of the inconsistency
can be computed as follows. We rewrite equations (2.3) and (2.4) as

%de — 4 Z Z Ty Z Z Yit—1€it — Z Z TitYit—1 Z Z CL’z‘téfz't7 (2.5)

22 THD 000 yz -1 — (22 iitgi,tfl)z

Blsdv:ﬁ_ Zsztyzt 122% 1ezt—ZZyzt 1225%% (2.6)
20T Zyzt 1= 2> Tubie 1)

From equation (2.1) we use continuous substitution to obtain

_ 1
yio = Yo+ B (T +yTig 4 o+ T Ea) + 1=

+eit + VEip-1 + . + 7 e (2.7)

In order to obtain an expression for g; ;1 we require the mean g; _;. The sum of
Yo through y; 7_1 equals

1 —A~T 1 — ~AT-1
Z Yig—1 = 1 _77 Yio + ﬁ (%’,Tl + ...+ %%1) + (2.8)
t=1
(T—1)—Ty+~" 1 —~T-1
(1—7)2 N, +€r-1+ ...+ 11—+ €il-

From this it can be derived that when y;q is uncorrelated with subsequent error
terms ¢; that

DD FirEa o (T —1) =Ty +~" 2
1 Yie1Cit = —a2h(v,T). 2.9
]I\)]—l}/ori NT O-E T2(1 _ 7)2 O-E (77 ) ( )
This expression is always negative because the function h(vy,T') is positive. Having
N tending to infinity and using plimy_,., =7 > > & = 0 (as the error term
Ei¢ is assumed to be uncorrelated with Z;), we find that the inconsistency of the
LSDV coefficient estimators equals (see also Nickell, 1981, p.1424 and Kiviet,

1995, p.61)

1 67, 2
7*:phm(§/lsdv_7)_phm Zzyt . t/zzyt .

Neooo N—oool — (ZZ%’tyi,t—l) / (ZZ%ZZ?JH 1>’
(2.10)
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We introduce the following expressions of the (asymptotic) variances of ;1
and Z; and their (limiting) covariance: o2 = plimy . w7 2. > U1, 02 =
plimy_ . o7 > 2 &5 and 04y, = plimy_, &7 > > Zlie—1. The inconsistency

of the LSDV coefficient estimators is now conveniently expressed as

—ozh(7,T)
v = S ; B = —Cv, (2.12)
(1 - p%y—l)ag—l

where p,, | = 0ay_, /040, , and ( = 04y_, /03 are the (asymptotic) correlation
coefficient between ¢;; 1 and Z; and the (asymptotic) regression coefficient of
Uit—1 on Z;. Note that the denominator (1 — piy_l)o'z_l in the first equation of
(2.12) is the conditional variance of §_; given Z.

From the first expression in (2.12) it is clear that the LSDV-estimator 9,4, is
always downward biased. The extent of the (asymptotic) bias depends upon five
parameters, viz. v, T, o2, 05_1 and piy_l. The bias of the LSDV-estimator will
be especially severe in case (i) the value of v is close to one; (ii) the number of
time periods T is low; (iii) the ratio of variances o2/c7_ is high; (iv) the lagged
endogenous variable and the exogenous variable are highly correlated, either posi-
tively or negatively. The second expression in (2.12) shows that the inconsistency
of stdv is proportional to that of 4,,,. The bias of the LSDV-estimator Blsdv
can be either positive or negative dependent upon the sign of the (asymptotic)
covariance between ¢;, 1 and Z;.

The principle of bias-correction can be explained straightforwardly using equa-

2

tion (2.12). First, assume that we would know the values for o2, p,, , o7  and

(. Then we may use as a bias-corrected estimator 7,, that value of v for which

o2h(v,T)

L=piy oy,

Visdo =V — ( (2.13)
This estimator can then be inserted into the second expression in (2.12) to find
the bias-corrected estimator By, = Bragy + € Fisd — Vo )->

The function h(y) = (T — 1) — Ty +~7)/T? (1 — 7)* plays an important role
in this non-linear bias-correction procedure. This function is always positive and
monotonically increasing for |y| < 1. Because h(1) = (T'—1)/2T using I’'Hopital’s
rule, we have that, irrespective of the values of v and T" that the inconsistency ~v*
is at most —o2/2(1— p2,_,)o._ . For T = 2 the function h(y) is equal to 1/4, for

2The subscript bc means ”bias-corrected”. The letters be also being the initials of the authors’
surnames is purely coincidental.



T =3 it is equal to (2 +)/9. Hence, for T' = 2 the bias-corrected estimator can
be explicitly expressed as

0.2

Voe = Visaw + : , for T =2. (2.14)
S T L

For T' = 3 it can be explicitly expressed as

’3/ . 9ﬁylsdv + 20&2:/(1 - p§y71)0§_1
bec —
9—-02/(1-p%, )op,

) for T =3. (2.15)

For T' > 3 equation (2.13) has to be solved numerically.?

In practice we do not know the values for o2, p,, ., 02 and (. The values
of the latter three variables can be estimated consistently by using their sample
analogues Dy, | = Guy, /040, ,, 05 and ( = G4y_,/6%. However, the LSDV-
estimator of o2 is inconsistent and the variance of the error term can only be
consistently estimated when the LSDV-estimators for v and 3 have been bias-
corrected. The procedure of finding bias-corrected estimates can therefore be
achieved by using an iterative procedure for equation (2.13). We then substitute
the LSDV-estimate for o2 in (2.13) to achieve 1-step estimates for v and 3. These
estimators are used to compute the 1-step estimate for o2. This 1-step estimate
is again substituted in (2.13) to achieve 2-step estimates for v and 3 and so
on until convergence. An alternative procedure is to use the expression for the
inconsistency of the LSDV-estimate! for o2

N 2
(yit — Visdv¥it—1 — ﬁlsdvxit)

limé%, = plim

N o = R0 N(T 1)

N 2
. ((’Y = Visaw)Vit—1 + (B = Bioaw)Tit + 51’15)
= 11m
N N(T—1)
*2
= ot = (1=pi o, 7" (2.16)

The expression for 02 = 67,4, + (1= p2, )02 (Y1540 —7)? is then substituted into
equation (2.13) to arrive at an expression from which 4,. can be derived in one

*Equation (2.13) can be numerically solved as follows. Define C' = 02/(1 — p2, )o2_ and

take gy = ¥5av- The iterative procedure to converge towards the bias-corrected estimate (from
below) is §(j11) = Yisaw T Ch(¥(;), T)- In case the estimate becomes one or larger during this
procedure, the procedure has to be cancelled as there is no valid estimate.

4 Alternatively, the denominator could be taken to be NT — N — 2 to take into account that
two parameters are estimated next to the NV fixed effects.



step, i.e.

6twh(y, T .
isdu (Y 2) — Grage — 7)2R(,T). (2.17)

L- p-%yfl)o-yfl

f?lsdv =7
(

Using either the iterative procedure (2.13) or (2.17) results in the same bias-
corrected estimates 4., 3. and G7,.

3. Asymptotic properties of bias-corrected estimators

In this section we discuss the asymptotic properties of the proposed bias-corrected
LSDV-estimators. We will derive consistency and asymptotic normality for the
corrected estimators. We generalize the discussion to the case with K additional
exogenous variables xy;; through x g, and use matrix notation. Stacking the obser-
vations over time, i.e. ¥; = (Vi1, ..., ¥ir)’, Yi-1 = Wio, -, Yir—1)'s B = (B4, .-, Bk,
ei = (i1, ...,&ir) and X; a matrix with the (¢, k)-element equal to x;, we extend
(2.1) to

Yi = VYi—1+ XiB + v, + €4, 1=1,...,N, (3.1)

where v = (1,...,1) isa T'x 1 vector of ones. Stacking once more over individuals,

ie. y= (Y1, yn)s =1 = (-1, yn-1)s 1= (M1, -, nn)s € = (€1, ...,en)" and
X = (X, ..., Xy)', we have the following model

y = wWa+Xf+Un@ur)n+e
= W6+(1N®LT)T]+E, (32)

where we have defined the NT x (K + 1)-matrix W = [y_1:X] and the (K + 1)-

parameter-vector § = (v, 3')’. The LSDV-estimator for model (3.2) is equal to
S1san = (W AW) W' Ay = § + (W AW) "' W' Ae, (3.3)

where the NT' x NT idempotent matrix A = Iy ® (Ir — %) is the within
transformation matrix which eliminates the individual effects.

Define the inconsistency of the LSDV-estimator as 6™ = plimN_)oo(Slsdv — ).
We now introduce p?m . as the multiple correlation coefficient of the regression
of §;4—1 on &y through Zy; and ¢ = (4, ...,(x) as the corresponding vector of
regression coefficients. This allows us to generalize equation (2.12) and express
the inconsistency 6* = (v*, %)’ as

_O-g h(’}/, T)

(1= %, )02, e




Although inconsistent, the LSDV-estimator has a limiting distribution for
N — oo and fixed 7. Bun and Kiviet (2001) derive the limiting distribution
to be

VN (&m 5 5) 5 N[0, Vxl, (3.5)
where
Vx = ngﬁ}AW + Uﬁz(%T)Zﬁ/lAweKH@}(HZI}}AW (3~6)

with Yy aw = plimy_, %W’ AW, e the (K + 1)-vector with the first element
equal to one and the other elements equal to zero and z(y,T) equal to®
1+29" 2(1—9")  (1—9")?
(1=7)?  TA-9v)? T*(1-y)*

Using notation introduced above the variance-covariance matrix Vy of the limiting
distribution (3.5) of the LSDV-estimator can be expressed as

(VR VY ae otz(v,T) 1 -
VX_(V)? V)%2 _O-EEWAW+(1 —C CC/ (3-8)

_ 2 254
pr_l) O-y—1

2(7,T) = (3.7)

The result (3.5) of Bun and Kiviet (2001) shows that the LSDV-estimator has
a limiting normal distribution for finite 7" and N — oo, but it is not centered at
¢ and it has a non-standard asymptotic variance-covariance matrix.

We now turn to bias-corrected estimation of § = (v,3'). Generalizing the
results of section 2 (see equation (2.13)), using (3.4) the bias-corrected estimator
for « is that v which solves

lsdv — 2 5 .
(1 - pr—l)ay—1
SThe function z(y,T) is equal to tr(I1%) where Il = ArpLyIr with Ap = Ip —
00 - - 0 0]
1 00
1y, s . . o1o0 - - -
Firtp the within transformation matrix, Lr = o and I'r =
. 0 0
0 0 01 0|
1 0 0 0
~y 1 0 -
¥y 1
' |, see Bun and Kiviet (2001).
. -1 0
AT=1 T2 2oy



The resulting estimator can then be inserted into the second expression in (3.4)
to find the bias-corrected estimator for 3. In short, we solve 8,54, = g(8) for 6
with

v — O'gh(’}/)/(l - pg{yﬂ)(j;fl ) ] (3.10)

6) =0+06"=

o) (o S

Defining f(8) = g *(8) the expression for the bias-corrected estimator is
3bc = f(slsdv)- (311)

The function f is unknown but it can be evaluated numerically using a few lines
of computer code only, see for details section 2.
From (3.11) it is seen that

plim(ASbC = plimf(glsdv)

N—oxo N—xo
= gil (phm 3lsdv>
N—o0
= 67

hence the bias-corrected estimator is a consistent estimator of § for finite 7" and
N — oo. Furthermore, using the delta-method we have

J_@MM)—%NWFWF] (3.12)

where Fis the (K + 1) x (K + 1)-matrix of first partial derivatives of the vector
function f. Hence, the bias-corrected estimator (3.11) has a limiting normal dis-
tribution, which is centered at 6. Its asymptotic variance is depending on Vx and
F. The latter matrix is simply F' = G~! with

1— o2H()/(1 - gy )o%, O
G‘( 2CH /(L - iy Y02 f)’

as the Jacobian matrix of ¢(6) and

, (T=2)(1=7") =Ty(1—=+"?)
w) = T3(1 —7)? '

Using results on partitioned matrix inversion the matrix F' = G~! can be written
as

1 1 0
il ey |X< oK ()02 (1= o?H(y >/y1|X>I> (3.13)




2 . o . . ~ . 2 2 . . .
where o | is the conditional variance of §_1, i.e. (1= p%,_,)o,_,- This implies,

for example, that the first diagonal element of the asymptotic variance-covariance
matrix FVxF’', or N * var(¥,.), is simply equfﬂ to Vi'/(1 — a2h/(v)/o7_ x)*
The asymptotic variance-covariance matrix of . is a known function of 8, o2,
and Xy aw. Hence, it can be estimated consistently by %F Vx F" using the bias-
corrected estimators.

4. Bias-correction in the panel AR(1) model

In this section we apply the limiting distribution theory of the previous section to
a special case, i.e. the first-order dynamic panel data model without additional
exogenous variables. We analyze the following model

Yit = Vi1 + 1; + Eit, i1=1,..,.N; t=1,..,T. (4.1)

This model is a special case of equation (3.1) where # = 0. An important difference
with the previous sections is that we make an explicit assumption about the
distribution of the initial observations y;9. For the initial observations we assume
that the process (4.1) has been going on for a long time, i.e.

. 1 i &0
Yio 1— 7771 m’

with the same assumptions about ¢,y as for the other disturbance terms e;, t =
1,...,T (see section 2). Note that this specific assumption about y;o matches our
earlier assumption about the initial observations made in section 2, i.e. that all
N start-up observations y;o are uncorrelated with all £;; for ¢ > 0. However, the
additional assumptions about y;, enable us to derive explicit expressions for the
inconsistency of the LSDV-estimator and its asymptotic variance as a function of
~v and T, as we will see below. This makes it possible to analytically compute and
compare asymptotic efficiency of original and bias-corrected LSDV-estimators.
Stacking the observations over time and across individuals one gets

i=1,.., N, (4.2)

y=7y-1+ (In @ r)n+e. (4.3)

Focusing on the autoregressive parameter 7 estimation of model (4.3) by ordinary
least squares yields

Yisao = (Y1 Ay_1) 'y Ay = v + (v, Ay—1) 1y Ae. (4.4)

The inconsistency of the LSDV-estimator for v when N tends to infinity has
been named the ”Nickell-bias” (see Nickell, 1981, Hsiao, 1986, p.74). Under the

10



assumptions made it can be expressed as

7* = pth—>oo(:)/lsdv_7)
1 - 1
= (pim g 0di) ) plimr,49

- () (e ()

Note that the inconsistency of the LSDV-estimator is a function of ~ for fixed
T, ie. we have plimy_  (V4,) = 7 +7 = g(7) for given T. In the interval
[—1, 1] the function ¢ is a monotonically increasing function of v with minimum
value g(—1) = —1 and maximum value g(1) = 1 —3/(T + 1) of which the latter is
computed using I’Hopital’s rule. Hence, it is possible to invert the function g and
to express 7 as a function of plimy_,. (Ysa0), 1-€- ¥ = f(PIMy_ o0 (Visan)) With
f = g~!. Analogue to previous sections a consistent bias-corrected estimator can
thus be constructed as

fAch = f(?ylsd'u)' (46)

For example, when 7" = 2 we find from equation (4.5) that plimy_, . (Ye0) =
(v—1)/2. Hence, we use 29,,4, + 1 as bias-corrected estimator for 7. However, for
higher values of T the function f is unknown but it can be evaluated numerically
or approximated by a known function. In the latter case consistency is lost,
however, due to the approximation® and, hence, we do not pursue this approach
in this study.

We now turn to limiting distributions of the LSDV-estimator and the proposed
bias-corrected estimator. Exploiting (3.5) the limiting distribution for 4,,,, for
finite T" and N large is

VN (Blage =7 —7) == N[0, V], (4.7)

N—oo

where V = 02X + 0tz(y,T)%, 3, and By 4 = Elim%(y’_lAy_l) and z(v,T) as

in (3.7). For given T this limiting distribution depends only on v as the factor o2

6Carree (2002) proposed to approximate the function f by a linear specification. His estimate
is easy to calculate, but requires the use of a table to obtain values for the intercept and
slope. Furthermore, the estimator is inconsistent for N — oo due to the approximation. These
properties make the estimator less appealing to use.

11



in V cancels out. We find

(1 29(1-77) 7
Vo= (1—’72 (1—~)2 +T(1—’72)(1—’7)2> (4.8)

T 1 2’7(1_’7T) -

Regarding the bias-corrected estimator (4.6) we find using (3.12)

- d V

VF (=) 7 N (0 ) (4.9
The asymptotic variance is depending on V' and the first derivative of the func-
tion g. Evaluating the latter factor analytically is cumbersome, but it can be
approximated numerically. In fact, to compute the variance of 4,. we insert this
estimate into equation (4.8) to find V. We then approximate the first deriva-
tive of g using the expression for v*(y) as given in equation (4.5) by ¢'(§,.) =
L+ [ (Ape) — 7 (Ape — )] /1 with g a small number, say 0.001. One may also ac-
tually derive the analytic first derivative from (4.5), but this fails to be an elegant
expression.

For the dynamic panel data model without additional exogenous regressors
(4.1) other estimators can be used that are not consistent for fixed 7', but are
simple to compute being linear functions of the LSDV-estimator. It is interesting
to compare their asymptotic efficiency with the 4,.-estimator. A first estimator
emerges from taking a linear approximation to (4.5). When we insert in (4.5)
values for 7 equal to zero and one (using ’'Hopital’s rule) we find for v = 0 that
plimN%oo(fA}/lsdv) = _1/T and for 7 1 that plimN—»oo(fA}/lsdv) =1- 3/(T + 1)
A linear approximation for the function f in the v € [0, 1)-interval is found by
connecting the points (—1/7,0) and (1 — 3/(T" + 1),1). Hence, the proposed
estimator is

T +T T+1

= —_— 4.10
Ve TQ_T+17lsdv+T2_T+1 ( )

The estimator in (4.10) resembles strongly an estimator proposed by Hahn and
Kuersteiner (2002, p.1645), i.e.

. T+1, 1
Tnk = o Visdo + T (4.11)

Although the estimator (4.10) is also inconsistent for finite 7" the leading bias
term of order O(T!) has been accounted for, hence this estimator may perform
reasonably well for moderate T .
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Each of the three estimators (4.6), (4.10) and (4.11) are functions of 9,4,
of which we know the limiting distribution (4.7), which is dependent on ~ and
T. This makes it possible to analytically compute asymptotic bias and variance
of the estimators. These are presented in Table 1 for values of T' equal to 3, 6
and 10 and values of v equal to 0, 0.4 and 0.8. The bias-corrected estimator ..
has (by definition) the lowest bias while the Hahn and Kuersteiner estimator has
considerable bias for small 7.7 The latter estimator has the lowest asymptotic
variance of the three estimators, though. In terms of mean squared error 4,
will be preferable if we have small 7" and N large because the extent of bias will
dominate this measure for such dimensions.

5. Monte Carlo experiments

In this section we compare the performance of the bias-corrected estimator (3.11)
(labelled be) with some alternative estimators in a first-order dynamic panel model
with an additional exogenous regressor. We compare it with (i) the original LSDV-
estimator (Isdv), (ii) an additive bias-corrected estimator (ac)® and (iii) the so-
called system GMM-estimator (gmm) by Blundell and Bond (1998). The GMM-
estimator is consistent for finite 7" and N large and its favorable finite sample
properties over other GMM implementations have been established by simulation
(Blundell and Bond, 1998; Kitazawa, 2001), hence it is a reasonable benchmark
for evaluating the various corrected LSDV variants.

The simulation design for the model with an additional explanatory variable
is basically the same as in Kiviet (1995), although different values for some of
the parameters have been chosen. Data for y have been generated according to
equation (2.1) with n; ~ N0, 02] and €;; ~ N[0, 0%]. The generating equation for
the explanatory variable z is

Tip = pTig—1 + &y, 1=1,..,.N; t=1,..,T, (5.1)

where £;, ~ TZN[0, o7]. We use three different research designs. In the first design
we choose 8 =1 and 0, = 0. = 0¢ = 1. We use two different values for v, viz.
0.4 and 0.8. We assume that the panel data set has 600 observations and conduct
experiments for several combinations of 7" and N for which NT = 600. The
second design is equal to the first design except that we allow for cross-sectional

"It can easily be shown that Monte Carlo experiments (with sizeable N) confirm the asymp-
totic results, see e.g. Hahn and Kuersteiner (2002, p.1648).

8We use a slightly different version of Kiviet’s (1995) estimator, i.e. there is bias correction of
the first-order term only. Bun and Kiviet (2002a) show that this first-order term is responsible
for the majority of the finite sample bias in the LSDV estimator. The GMM-estimate is used
as the first step consistent estimate.
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heteroscedasticity in the general error term ¢;;. In this design o2 is varying across
individuals, i.e. we specify 02, ~ xi. This implies that the mean of the variances
is one. The third research design is identical to parameter settings used in Kiviet
(1995, Table 1). In all his experiments the long-run effect 3/(1 — ) of z on y
has been set equal to unity, hence the impact multiplier § varies with the chosen
values for 7. Cross-sectional homoscedasticity is assumed and the value of o2 is set
equal to one, but the values of the variances (7727 and ag differ across experiments.
By varying 0727 the relative impact on y of the two error components 7 and ¢ is
changed, while the parameter (72 determines the signal-to-noise ratio of the model
(see for details Kiviet, 1995). For each experiment we performed 1000 Monte
Carlo replications.

Selected simulation results for the first, second and third design are presented
in Tables 2, 3 and 4 respectively. Regarding coefficient estimators we present in
these tables the bias in estimating v and 3 together with the root mean squared
error (RMSE). In calculating the RMSE of coefficient estimators we use the vari-
ance as estimated from the Monte Carlo as a measure of true variance. This
measure has been used also when calculating the bias of variance estimators. Re-
garding these variance estimators’ we present the relative bias in estimating the
standard deviation of the various coefficient estimators, i.e. as percentage of the
true standard deviation as estimated from the Monte Carlo. Finally, in the tables
we indicate for each estimator for each experiment the percentage of estimates in
which v was estimated to be larger than one. Although we choose in all exper-
iments v < 1 it can happen that estimates exceed one. Replications, in which
any of the estimators has an estimate of v larger than one, have been skipped
completely. This will happen quite frequently for very small T', as we shall see.

Regarding the first design in Table 2 the results for v = 0.8 are presented. The
results for v = 0.4 are similar and, hence, are deleted to save space. We observe the
following patterns in the simulation results for the coefficient estimators. First,
bias in estimating the autoregressive parameter v is always negative for lsdwv,
while positive bias has been found for ac and gmm. Second, regarding these
estimators bias in estimating both v and [ decreases for larger 7' (and smaller
N). This is a somewhat surprising finite sample result for gmm, which one should
expect to perform well especially for 7" small and N large. Third, especially
for v bias in gmm carries over to bias in ac showing the detrimental effect of
the dependence of additive bias-correction on preliminary consistent estimators.
Fourth, in estimating both v and 3 bc is virtually unbiased. Finally, based on a
mean squared error criterion be is never beaten by the other coefficient estimators.

YRegarding the Isdv and ac estimators we use the standard variance expression, i.e.
62(W'AW)~1. For bc the expression in (3.12) has been used, while for gmm so-called one-
step estimates have been exploited.
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Regarding the variance estimators we observe that for larger T' relative bias in
estimating standard deviations is less than around 10%. However, gmm is found
to have substantial relative bias in estimating standard errors when 7" = 2.

For the second design with cross-sectional heteroscedasticity the simulation
results are presented in Table 3. Again we show the results for v = 0.8 only. In
general, results for coefficient estimators are similar to the case of homoscedas-
ticity. This is a somewhat surprising result because bias-corrected estimators are
not consistent in case of heteroscedasticity. Nevertheless, violation of this assump-
tion does not seem to have substantial impact on the finite sample properties of
coefficient estimators. Regarding variance estimators, however, the performance
of most estimators deteriorate, especially those in estimating standard errors of
coefficient estimators for . This result is not surprising as the aymptotic results
of the previous sections are not valid in case of cross-sectional heteroscedasticity.

Finally, we turn to simulation results using the third design, i.e. the parametriza-
tions used by Kiviet (1995). The simulation results for a selection of parametriza-
tions are presented in Table 4. The first panel of this table gives the parametriza-
tions used. Several points can be made before discussing the simulation results.
First, the relative impact on y of the two error components 1 and ¢ is 1 in exper-
iments I-VIII, but raised to 5 in IX and X. Hence, the individual specific effect is
relatively strong in IX and X. Second, the signal-to-noise ratio corresponds with
an expected R? of 2/3 in all experiments except VIII and X where it is raised to
8/9.

Regarding the third design we observe the following patterns for the coefficient
estimators. First, except for ac bias in estimating the autoregressive parameter
~ increases with ~ for all estimators. Second, [sdv and bc are invariant with
respect to the relative strength of the error components, but gmm and ac are not.
Increasing the relative strength of the individual-specific effect leads to large biases
in both gmm and ac. Third, increasing the signal-to-noise ratio leads in most cases
to more accurate estimates. Fourth, there is no estimation method with lowest
RMSE across all parametrizations. The bias-corrected estimator performs very
well in all of the designs except for designs III and VI. In the latter two designs
there is a relatively high value for v combined with a relatively low signal-to-noise
ratio. The bias-corrected estimator fails to converge to an estimate less than
one in about one quarter of the simulations in these two designs. Regarding the
variance estimators in the third design we observe that relative bias in estimating
standard deviations is in many cases less than around 10%.

Summarizing, regarding coefficient estimators we find large bias for lsdv, mod-
erate bias for ac and gmm and little bias for bc. Regarding variance estimators we
find small to moderate biases for all estimators. Finally, the invariance of bc to the
individual specific effects seems to be an important advantage over ac and gmm.
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The Monte Carlo results do not suggest that there is one estimation technique
superior for all parameter combinations. Hence, in empirical applications it may
be advisable to compare results using different (consistent) estimation techniques.

6. Empirical application: unemployment dynamics at the
U.S. state level

In this section we apply the bias-corrected estimation procedure (labelled bc) to a
model of unemployment dynamics at the U.S. state level. We compare the coeffi-
cient estimates and estimated standard errors with those of the LSDV-, additive
bias-corrected LSDV-, and GMM(SYS)-estimators (labelled [sdv, ac and gmm
respectively). The model relates the current unemployment rate (U;;) to the un-
employment rate and economic growth rate (G;;) in the previous year. The model
has fixed effects (n,) included and is as follows

Uit =1; + VUip—1+ BGig—1 + €. (6.1)
Equation (6.1) can be rewritten in a form which is more easy to interpret, i.e.
AUy = (v = D)(Uig-1 — i) + B(Gig-1— 6) + €ar, (6.2)

where (1 — v)a; — 36 = n,. Equation (6.2) indicates that the change in the
unemployment rate is determined by an adjustment of the unemployment rate
towards a ”natural” or ”equilibrium” rate of unemployment «; which may be
different across the states and by the previous economic growth rate. The speed
of adjustment of the unemployment rate towards the ”natural” or ”equilibrium”
rate is equal to 1 — ~. It is to be expected that there is partial adjustment:
1 >~ > 0. A state which shows relatively high economic growth is more likely to
show reduced unemployment rates when compared to states in which the economy
is growing more slowly. This would imply 3 < 0.

The data for the unemployment rate for the 1991-2000 period are from the U.S.
Bureau of Labor Statistics and data for the (current dollar) gross state product
are from the U.S. Bureau of Economic Analysis. The economic growth rate is
taken to be the relative growth of the gross state product. Data are available
for all U.S. states and Washington D.C. (N=51). The number of time periods in
estimation is 1" = 9 because the year 1991 is taken as starting observation.

The various coefficient estimates and their estimated standard deviations are
presented in Table 5. The value of the LSDV-estimate of v is 0.805 which would
imply an adjustment rate of almost 20% per year. In contrast, the bias-corrected
estimate (bc) is equal to 0.943 which implies an adjustment rate of less than
6%. Hence, the speed of adjustment towards a ”"natural rate of unemployment”
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is not as large as the original LSDV-estimator would suggest. The value of the
LSDV-estimate of 3 equals -0.083 while the value of the bias-corrected estimate
is -0.071. It implies a somewhat smaller effect of economic growth on the change
in unemployment than indicated by the traditional within estimate. The results
for additive bias-corrected estimator (ac) are not very different from those of
the bias-corrected estimator introduced in this paper. However, the results for
the GMM-estimator (gmm) are remarkably different. The GMM-estimates are
estimated to have much lower standard deviations than the other estimators.

A restrictive assumption of bias-corrected LSDV-estimators is that consistency
depends on strict exogeneity of the lagged growth rate (G;;—1). As we have as-
sumed strict exogeneity of G;; 1 in GMM-estimation we can test against exo-
geneity using the Sargan test. It has a value of 46.90 (p-value is 0.23), hence
the validity of the moment conditions is not rejected. Hence, we conclude that a
problem of G ;_; being only weakly exogenous is not an issue in this particular
application.

7. Extensions and concluding remarks

This papers developes a new bias-corrected estimator for dynamic panel data
models. The proposed estimator has desirable asymptotic properties for finite T’
and N large but they have been derived under certain restrictive assumptions: (1)
strict exogeneity of regressors in x;; (2) homoscedasticity of the disturbances; (3)
balanced panels. In this final section we will discuss the limitations and possible
extensions of our approach with respect to each of these assumptions.

Regarding the exogeneity assumption, some regressors in z;; could be prede-
termined as well. Inconsistencies originating from this source is not accounted for
in the current bias corrections. It can be shown that the order of magnitude of
such inconsistency terms is equal to that of lagged dependent variable regressors,
i.e. of order O(T'). Addressing the importance of this source of bias, however,
requires a full specification of the marginal process of the regressors xz;;, which is a
major complication in practice. Simulation evidence for the dynamic panel data
model with predetermined or endogenous regressors x;; can be found in Bun and
Kiviet (2002b) and Blundell et al. (2000) respectively. In general, these simulation
results show that lack of strict exogeneity of z;; does influence the finite sample
properties of estimators and, hence, it is expected that in practice estimators will
be affected also. Note, however, that in the current application on unemployment
dynamics strict exogeneity of the additional regressor (lagged growth rate) is not
rejected.

Regarding homoscedasticity of the disturbances we provided some simulation
results allowing for cross-sectional heteroscedasticity. From the simulation results
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it is seen that coefficient estimators behave reasonably well, while variance esti-
mators are biased. The bias-corrected estimator may be extended to incorporate
some types of heteroskedasticity, e.g. heteroskedasticity over time or heteroskedas-
ticity as a function of the exogenous variables.

Finally, the proposed method in this study can be extended to unbalanced
panels. In this case not all time observations are available for each individual .
That is, the data may be observed for certain individuals ¢ only from a certain
date on or the data may be observed for other individuals only up till a certain
date. It implies that the starting date and ending date of the data are individual-
specific. We denote the begin of the data period by B; and the final time period
of observation by T;. That is, we have 1 < B; < T; < T. The individuals are
then ordered in terms of the length of the time period T; — B; + 1. The largest
value for this length of time period is 7" while the smallest value is 2. Denote
by ¢, the fraction of individuals with period of time length ¢t = 2, ...,T". That is,
ST, ¢, = 1. Then we should replace the function h(v) in sections 2 and 3 with

ha(y) = t}; o ;21()1__?)_; 1l (7.1)

and likewise derive expressions for the limiting distribution of the estimator.
Note that we do not take possible sample selection issues into account in this
way. '

The bias-corrected estimator has been shown to perform well when 7" is small
and N is large. Simulation results on various designs show that based on a root
mean squared criterion bias-corrected LSDV-estimators perform well against sys-
tem GMM-estimators. An important advantage of the bias-corrected estimator
developed in this study is its invariance with respect to the individual specific
effects. Varying the relative strength of the error components in the simulations
clearly shows the potential detrimental effects on the accuracy of estimators that
do not share this property. In case both 7" and N are small the limiting distri-
butions for the estimators may have little to say about the actual distribution
(especially when v is close to unity). However, given the strong (relative) per-
formance of the bias-corrected estimator in the Monte Carlo exercises in case T’
is as small as two or three, it appears suitable for research efforts with samples
with a large number of individuals/firms and a (very) small number of time pe-

10Research into problems of sample selection in dynamic panel data models has started only
recently. Kyriazidou (2001) has provided a first contribution in this area. However, the selection
equation in that paper does not contain the lagged continuous endogenous variable or other
predetermined variables, limiting its applicability.
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riods. Many data sets, especially when data is collected yearly, have these panel
dimensions.

Recently, new estimators for the dynamic panel data model have been intro-
duced. Each of these estimators have their advantages and disadvantages and
it is not clear that any of these would uniformly outperform the bias-corrected
estimator. Hahn and Kuersteiner (2002) introduced an estimator that requires
the number of time periods to be at least moderate. Their paper also pays most
of its attention to the case of no exogenous variables. Pesaran et al. (2002) intro-
duced a (computationally complicated) maximum likelihood estimator which is
based upon first differencing the dynamic panel data model to get rid of the unob-
served individual effects. Methods based upon first differencing are conceptually
different from methods based upon removing unobserved effects by subtracting
the individual-specific means.!! Alvarez and Arellano (1998) introduced a ran-
dom effects maximum likelihood estimator. However, they do not consider the
case of exogenous variables included and they assume in deriving the asymptotic
distribution that both N and 7T tend to infinity. Finally, Lancaster (2001) takes a
Bayesian approach to dynamic panel data models. He finds a relatively simple set
of K + 2 first-order conditions for the maximum of the posterior. However, the
paper still has some unresolved issues concerning priors and its inference may not
be completely comparable to the classic inference used in the current paper. Nev-
ertheless, research into these and other newly developed estimators for dynamic
panel data models remains a very vivid and important area for theoreticians and
practitioners.
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Table 1: Asymptotic bias and variance for the panel AR(1) model

T v g V. Ntvar(fy) bias(ye) N*var(y.) bias(ypy) N*var(ypuy)
3 0 -0333 0.611 0.611 1.637 0 1.796 -0.111 1.086
3 04 -0494 0.587 1.427 4.141 0.010 4.194 -0.192 2.537
3 08 -0.663 0.569 14.61 45.13 0.006 42.94 -0.284 25.97
6 0 -0.167 0.811 0.188 0.286 0 0.345 -0.028 0.256
6 04 -0.251 0.762 0.202 0.348 0.028 0.371 -0.059 0.275
6 08 -0.361 0.684 0.535 1.144 0.020 0.982 -0.121 0.728
10 0 -0.100 0.891 0.104 0.131 0 0.152 -0.010 0.126
10 04 -0.148 0.864 0.093 0.125 0.026 0.136 -0.023 0.113
10 08 -0.218 0.768 0.087 0.148 0.024 0.127 -0.060 0.105

Note: The asymptotic bias(’?bc) is always equal to zero. The value for V is N*Val"(’s/lsdv).
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Table 2: Cross-sectional homoscedasticity, v = 0.8 and g =1
(N, T) (300,2) (200,3) (150,4) (100,6) (60,10) (40,15)
% 7y estimates outside unit interval
lsdv 0 0 0 0 0 0
ac 44 8 0 0 0 0
be 1 0 0 0 0 0
gmm 9 3 0 0 0 0
bias 7y
Isdv -0.377 -0.215 -0.143 -0.080 -0.037 -0.021
ac 0.100 0.088 0.060 0.032 0.015 0.008
be -0.014 -0.001 0.001 -0.000 0.000 -0.000
gmm 0.064 0.028 0.024 0.019 0.016 0.012
RMSE vy
Isdv 0.379 0.218 0.146 0.083 0.041 0.025
ac 0.113 0.101 0.069 0.038 0.022 0.015
be 0.060 0.042 0.032 0.024 0.017 0.014
gmm 0.089 0.081 0.069 0.049 0.035 0.026
bias (3
Isdv -0.096 -0.031 -0.003 0.014 0.022 0.017
ac 0.032 0.014 0.001 -0.008 -0.007 -0.009
be 0.002 0.001 0.000 -0.002 0.001 -0.001
gmm -0.116 -0.048 -0.038 -0.031 -0.023 -0.021
RMSE 3
Isdv 0.119 0.067 0.051 0.047 0.042 0.037
ac 0.088 0.063 0.053 0.046 0.036 0.034
be 0.078 0.059 0.052 0.045 0.036 0.033
gmm 0.165 0.139 0.119 0.088 0.067 0.056
% bias std 7y
lsdv 17.74 -2.25 -5.89 -9.97 -11.63 -7.89
ac -1.06 -25.97 -16.60 -0.73 -0.56 -2.19
be -8.94 -10.55 -7.14 -7.35 -5.73 -4.83
gmm 122.64 20.59 2.73 0.07 -3.56 -1.27
% bias std 3
lsdv 1.05 -3.94 -2.32 -4.41 3.20 3.80
ac 2.47 1.81 -0.05 -1.48 5.19 5.48
be 1.30 0.90 -0.14 -2.27 3.53 3.56
gmm 111.30 21.59 2.38 -1.37 -2.66 1.35

2

Note: For the variances we assume O'? = 0'7] = O'g =1



Table 3: Cross-sectional heteroscedasticity, v = 0.8 and § =1

(N,T) (300,2) (200,3) (150,4) (100,6) (60,10) (40,15)

% -y estimates outside unit interval

Isdv 0 0 0 0 0 0
ac 54 13 0 0 0 0
be 2 0 0 0 0 0

gmm 13 6 2 0 0 0

bias 7y

lsdv -0.383 -0.215 -0.144 -0.080 -0.037 -0.021
ac 0.093 0.092 0.064 0.034 0.015 0.008
be -0.015 -0.001 0.000 0.000 -0.000 -0.000

gmm 0.070 0.026 0.017 0.015 0.006 0.006

RMSE 7y

lsdv 0.386 0.219 0.148 0.084 0.041 0.025
ac 0.112 0.106 0.076 0.042 0.023 0.016
be 0.077 0.049 0.038 0.026 0.018 0.014

gmm 0.097 0.086 0.081 0.056 0.037 0.028

bias (3

lsdv -0.103 -0.030 -0.005 0.015 0.020 0.020
ac 0.027 0.014 0.001 -0.007 -0.009 -0.006
be -0.002 0.001 -0.001 -0.001 -0.000 0.002

gmm -0.127 -0.043 -0.027 -0.022 -0.009 -0.008

RMSE f3

lsdv 0.126 0.063 0.052 0.047 0.044 0.041
ac 0.089 0.062 0.055 0.046 0.040 0.036
be 0.080 0.057 0.053 0.045 0.039 0.035

gmm 0.177 0.148 0.141 0.099 0.074 0.063
% bias std 7y

lIsdv -9.50 -23.73 -26.84 -24.19 -18.81 -11.61
ac -15.90 -32.85 -32.00 -16.90 -12.80 -7.98
bc -28.53 -23.88 -20.63 -15.37 -11.30 -5.67

gmm 166.69 35.11 4.69 0.58 -6.67 -8.96

% bias std 3

lIsdv -1.51 1.13 -3.03 -4.76 -6.22 -4.54
ac -0.51 4.26 -2.53 -2.01 -4.06 -2.75
bc -0.80 3.86 -2.05 -2.90 -5.53 -3.76

gmm 156.58 33.98 3.03 -0.99 -6.98 -8.17

. 2 2 2 __ 2 __
Note: For the variances we assume 05,1’ ~ Xl’ 0'77 = 0'5 =1
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Table 4: Simulation results for selected designs from Kiviet (1995)
design nr. 1 I 111 v \Y% VI VII VIII IX X
T 6 6 6 6 6 6 3 3 3 3
y 0 0.4 0.8 0 0.4 0.8 0.4 0.4 0.4 0.4
P 0.8 0.8 0.8 0.99 0.99 0.99 0.8 0.8 0.8 0.8
Oy 1 0.6 0.2 1 0.6 0.2 0.6 0.6 3 3
O¢ 0.85 0.88 0.4 0.2 0.19 0.07 0.88 1.84 0.88 1.84
% -y estimates outside unit interval
lsdv 0 0 0 0 0 0 0 0 0 0
ac 0 0 0 0 0 0 0 0 49 9
bc 0 0 24 0 0 25 1 0 1 0
gmm 0 0 0 0 0 0 0 0 3 4
bias 7y
lsdv -0.104 -0.177 -0.367 -0.164 -0.249 -0.376 -0.381 -0.215 -0.374 -0.214
ac 0.042 0.034 0.003 0.066 0.047 0.002 0.081 0.052 0.415 0.331
be -0.001 0.001 -0.033 -0.002 -0.001 -0.037 0.007 0.002 0.008 0.004
gmm 0.001 -0.007 -0.029 0.002 -0.006 -0.029 -0.008 -0.012 0.329 0.240
RMSE 7y
lsdv 0.110 0.181 0370 0.169 0.253 0378 0.386 0.221 0379 0.219
ac 0.057 0.054 0.040 0.080 0.067 0.040 0.106 0.074 0.430 0.350
be 0.039 0.047 0.081 0.049 0.060 0.084 0.111 0.063 0.111 0.063
gmm 0.062 0.077 0.081 0.064 0.074 0.081 0.135 0.154 0.345 0.295
bias (3
lsdv 0.043 0.045 0.011 0.081 0.090 0.025 0.014 0.008 0.014 0.008
ac -0.021 -0.011 -0.003 -0.045 -0.027 -0.027 -0.003 -0.002 -0.025 -0.012
be -0.002 -0.002 -0.001 -0.008 -0.009 -0.025 0.000 0.000 -0.005 -0.001
gmm -0.002  0.003 0.008 -0.004 0.004 0.021 0.004 0.006 -0.180 -0.131
RMSE 3
Isdv 0.070  0.069 0.118 0.238 0.254 0.658 0.090 0.044 0.090 0.044
ac 0.089 0.052 0.113 0.217 0.224 0.621 0.092 0.044 0.111 0.053
be 0.055 0.052 0.112 0.215 0.224 0.619 0.090 0.043 0.090 0.044
gmm 0.071  0.062 0.088 0.112 0.101 0.172 0.094 0.089 0.213 0.173
% bias std 7y
Isdv -0.26  -4.11  -1.67 8.68 4.70 -1.04 0.78 0.06 -1.04  -0.52
ac -6.16  -7.84 6.43 -4.08  -3.77 7.68 5.09 0.66 -25.71 -45.31
be -6.27  -9.37 -10.60 -394 -947 -10.15 -25.58 -9.67 -23.59 -7.72
gmm -435 -5.03 -190 -337 -2.8 -2.23 -0.73 0.59 43.10  33.93
% bias std 3
Isdv -3.71 -6.08 -14.10 -7.33 -10.37 -14.15 -0.54 2.09 -0.54 2.54
ac -230 -1.51  -3.05 0.77 0.12 -1.10 7.99 7.24 10.36 8.81
be -439 433 -430 -215 -2.15 -2.38 7.00 6.70 6.87 6.00
gmm -3.75 462 240 -235  -3.05 -2.61 0.38 1.23 12.03 22.21

=T
Note: We assume O'g = 1, N = 100 and ﬁ =1- 7Y in all experiments.



Table 5: Empirical results for the unemployment-growth model

Isdv ac bc gmm
o 0.805 0.920 0.943 0.892
sd(7) 0.027 0.028 0.037 0.017
B -0.083 -0.073 -0.071 -0.070
bd(B) 0.014 0.015 0.015 0.010

Note: The number of time periods is 9 and the number of U.S. states is 51.
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