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a b s t r a c t

In this paper we propose an autoregressive wild bootstrap method to construct con-
fidence bands around a smooth deterministic trend. The bootstrap method is easy to
implement and does not require any adjustments in the presence of missing data,
which makes it particularly suitable for climatological applications. We establish the
asymptotic validity of the bootstrap method for both pointwise and simultaneous
confidence bands under general conditions, allowing for general patterns of missing data,
serial dependence and heteroskedasticity. The finite sample properties of the method
are studied in a simulation study. We use the method to study the evolution of trends
in daily measurements of atmospheric ethane obtained from a weather station in the
Swiss Alps, where the method can easily deal with the many missing observations due
to adverse weather conditions.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of smoothly evolving trends is of interest in many fields such as economics and climatology. For instance,
trend analysis in environmental variables is of major importance, as it can often directly be linked to climate change.
Given that trends typically do not evolve in a linear way, fitting linear trends to the data does not uncover actual change
accurately. Instead, one would like to use more flexible trend models that avoid making parametric assumptions on the
form of the trend. A large body of statistical and econometric research therefore focuses on nonparametric trend modeling
and estimation.

In addition, when modeling trends in temperature and emission data, researchers also need to take into account
that serial dependence and heteroskedasticity may be present in the data, see for example Franses and Vogelsang
(2005) and McKitrick and Vogelsang (2014) who study parametric trend modeling in temperature series in the presence
of serial dependence. Bootstrap methods provide an easy and powerful way to account for heteroskedasticity and
autocorrelation. Bühlmann (1998) shows the validity of the autoregressive sieve bootstrap for nonparametric trend
modeling under general forms of dependence. Neumann (1998) uses a wild bootstrap method to achieve robustness
to heteroskedasticity for a similar model.

The wild bootstrap approach is also suitable for dealing with missing data, as advocated for example by Shao (2010b). It
does not require any resampling and therefore the missing data points can keep their original date in a bootstrap sample.
In particular in climatology, this feature of the wild bootstrap offers an important benefit over other methods, since there
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is no need of imputing missing data points. Missing data are a prominent feature in many climatological datasets due
to instrument failure or adverse weather and measurement conditions; for instance, in our application, data are missing
when cloud cover prevents measurements from being taken. The wild bootstrap, however, relies on independence of the
error terms, which is a situation rarely encountered in practice. To relax this strong assumption, dependent versions of
wild bootstrap methods have been proposed – see Shao (2010b), Leucht and Neumann (2013) and Smeekes and Urbain
(2014) – but not in the context of nonparametric trend estimation. Moreover, so far no theory exists on the validity of
such wild bootstrap methods in the presence of serial dependence, heteroskedasticity and missing data. In this paper
we address this issue and propose an autoregressive wild bootstrap method that provides valid inference under general
conditions for nonparametric trend modeling.

Next to the basic pointwise confidence intervals, we also study simultaneous confidence bands, which are often more
informative about trend shapes than pointwise confidence intervals. Research questions, like whether upward trends are
present over a certain period of time, should be addressed with simultaneous confidence bands as they involve multiple
points in time at once. Wu and Zhao (2007) derive such bands for the nonparametric trend model that have asymptotically
correct coverage probabilities, but do not consider bootstrap methods. Bühlmann (1998) proposes sieve bootstrap-based
simultaneous confidence bands that are not only asymptotically valid but also have good small sample performance.
They can, however, not easily be adjusted to be applicable to time series with missing data, as the autoregressive sieve
bootstrap requires imputation of the missing values through for instance the Kalman filter. While this is certainly possible,
it complicates implementation. One can also argue about how accurate imputation methods are when a majority of the
data are missing, as we face in our climatological application. Instead, we provide a much simpler alternative that requires
no adjustments at all in the presence of missing data.

To illustrate our methodology, we study a time series of atmospheric ethane emissions for which almost 70% of the
data points are missing. When weather conditions are unfavorable – in particular due to cloud cover – measurements
cannot be taken. The series has previously been investigated by Franco et al. (2015). Atmospheric ethane is an indirect
greenhouse gas which can be used as an indicator of atmospheric pollution and transport. It is emitted during shale gas
extraction and since shale gas has become more and more important as a source of natural gas, nonparametric trend
analysis in ethane data provides geophysicists and climatologists with a tool to link trend changes to shale gas extraction
activities, as well as study long-term climatological change.

The paper is organized as follows. In Section 2, our trend model is introduced along with the missing data generating
mechanism. Section 3 describes the estimation procedure and the construction of bootstrap confidence bands. Subse-
quently, Section 4 derives the asymptotic properties of our method. Finite sample performance is analyzed in Section 5
in a simulation study. Trends in atmospheric ethane are studied in Section 6. Section 7 concludes. All technical details
including proofs are given in Appendix A, while Supplementary Appendices B to D provide further results.

Finally, a word on notation. We denote by
d

−→ weak convergence and by
p

−→ convergence in probability. Whenever a
quantity has a subscript ∗, it denotes a bootstrap quantity, conditional on the original sample. For instance, bootstrap weak
convergence in probability is denoted by

d∗

−→p (cf. Giné and Zinn, 1990). ⌊x⌋ stands for the largest integer smaller than or
equal to x. For any functions f (x) and g(x), defined on the same domain, f (i)(x) =

di

dxi
f (x) and [fg](i) (x) =

di

dxi
f (x)g(x).

2. Trend model with missing data

Consider the following data generating process (DGP):

yt = m
(
t
n

)
+ zt t = 1, . . . , n,

where m (·) is a smooth deterministic trend function and zt = σtut is a weakly dependent stochastic component. σt
captures unconditional heteroskedasticity and {ut} is a linear process

ut =

∞∑
j=0

ψjϵt−j, ψ0 = 1, (1)

with autocovariance function RU (k) = Eutut+k and long-run variance

ΩU =

∞∑
k=−∞

Eutut+k =

∞∑
k=−∞

RU (k).

Not all observations y1, . . . , yn are observed in practice. For this purpose, define the process {Dt} as an indicator for
whether the observations at each time are observed:

Dt =

{
1 if yt is observed
0 if yt is missing t = 1, . . . , n,

Assumptions 1 to 4 contain the formal conditions that {yt} and {Dt} satisfy.
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Assumption 1. m : [0, 1] → R is a twice continuously differentiable deterministic function on (0, 1) with
sup0<τ<1

⏐⏐m(i)(τ )
⏐⏐ < ∞ for i = 0, 1, 2.

Assumption 2. σ : [0, 1] → R+ is a Lipschitz continuous deterministic function.

Assumption 3. {ut} is generated by (1), where

(i) {ϵt} is i.i.d. with E(ϵt ) = 0, E(ϵ2t ) = σ 2
ε =

(∑
∞

j=0 ψ
2
j

)−1, and E(ϵ4t ) < ∞.
(ii)

∑
∞

j=0 j|ψj| < ∞ and the lag polynomial Ψ (z) =
∑

∞

j=0 ψjz j ̸= 0 for all z ∈ C and |z| ≤ 1.

Assumption 4. For all t = 1, . . . , n, Dt satisfies the conditions:

(i) Let Et (·) = E(·|Ft ) where Ft = σ (. . . , (yt−1,Dt−1)′, (yt ,Dt )′). For all s ≤ t and i ≥ 0, E[Et−iDsDt − EDsDt ]
2

≤ ζ 2i ,
where

∑
∞

i=0 iζi < ∞.
(ii) EDt = P(Dt = 1) = p(t/n), where p : [0, 1] → [ϵ, 1], for some ϵ > 0, is a twice continuously differentiable function

on (0, 1) with sup0<τ<1

⏐⏐p(i)(τ )⏐⏐ < ∞ for i = 1, 2.
(iii) Cov(Dt ,Dt+i) = RD,i

( t
n ,

t+i
n

)
, where each function RD,i : [0, 1]2 → R, i ≥ 0, is Lipschitz continuous.

(iv) For all s1, s2 ∈ {1, . . . , n}, E(us1 |Dt ) = 0 and E(us1us2 |Dt ) = Eus1us2 .

Assumption 1 postulates that the trend m(·) is sufficiently smooth, which is the fundamental assumption for the
estimation method to work. While it rules out abrupt structural breaks, this does not appear to be particularly restrictive
for climatological applications, as many climatological processes tend to be such that change occurs gradually. In
particular, as many series are measured daily or even multiple times a day, only instantaneous breaks, which are extremely
unlikely in atmospheric processes, would not be covered by the smooth trend model.

Assumption 2 allows for a wide array of unconditional heteroskedasticity. While excluding abrupt breaks, these can be
allowed for by generalizing the function σ (·) to be piecewise Lipschitz as in Smeekes and Urbain (2014). However, given
the limited relevance of abrupt breaks for our climatological focus, we do not pursue this in the current paper.

Assumption 3 is a standard linear process assumption that ensures that sufficient moments of {ut} exist and {ut} is
weakly dependent and strictly stationary. These assumptions are satisfied by a large class of processes including, but not
limited to, all finite order stationary ARMA models. The assumption also implies that ΩU = σ 2

ε

∑
∞

i=−∞

∑
∞

j=0 ψjψj+|i| < ∞

(cf. Lemma A.1). While our current assumption does not allow for conditional heteroskedasticity, this could be relaxed
at the expense of increasing the complexity of the theoretical arguments, by allowing ϵt to be a martingale difference
sequence. Similarly, alternative dependence concepts such as mixing, which is considered in the same bootstrap context
by Smeekes and Urbain (2014), could be used as well. However, as conditional heteroskedasticity is not the focus of our
paper, we do not consider these extensions.

Assumption 4 allows the missing data generating mechanism to be weakly dependent and non-stationary. The mixin-
gale assumption (i) along with the summability condition on ζi assures weak dependence and summable autocovariances
(Lemma A.1). For technical reasons, we need to put the mixingale assumption on the product DsDt , but it directly implies
that Dt is a mixingale, as well, by setting s = t . By (ii) and (iii), the first two moments of the missing data process
are allowed to vary smoothly over time, which thereby allows for instance for smooth periodical changing probabilities
(e.g. due to seasonal variation), or long-term changes related to climate change. Smoothness is required as our estimator
performs an implicit nonparametric estimate of the missing probability, and thus must behave similarly smooth as the
trend function. Assumptions (i)–(iii) are met by a large class of generating processes, including many Markov chains with
smoothly varying transition probabilities.

Assumption (iv) can be interpreted as an exogeneity assumption on the missing data generating mechanism, which
for instance is satisfied if {Dt} is independent of {ut}. While this assumption could be argued to be restrictive, it does
not appear to be problematic for our focus. Though inconclusive, some recent research has found evidence of a relation
between greenhouse gases and the occurrence of cloud cover through climate change, see e.g. Norris et al. (2016). As cloud
cover may cause missing observations, our assumption might appear restrictive, but this kind of long-run dependence
can be accommodated through the slowly varying trend affecting both {yt} and {Dt}. As such, the exogeneity assumption
mostly rules out short-run effects of ethane on cloud cover and vice versa, which we argue is reasonable.

3. Inference on trends

Our goal is to conduct inference on the trend function m(·) defined in Section 2. We first describe point estimation of
m(·), followed by our bootstrap method, and finally treat the construction of the confidence bands.
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3.1. Estimation of the trend function

We consider local polynomial estimation which is common in the nonparametric regression literature. In particular,
we focus on the local constant or Nadaraya–Watson estimator (Nadaraya, 1964; Watson, 1964), defined as

m̂(τ ) = argmin
m(τ )

n∑
t=1

K
(
t/n − τ

h

)
Dt {yt − m(τ )}2

=

[
n∑

t=1

K
(
t/n − τ

h

)
Dt

]−1 n∑
t=1

K
(
t/n − τ

h

)
Dtyt , τ ∈ (0, 1) ,

(2)

where K (·) is a kernel function and h > 0 is a bandwidth, which should satisfy Assumptions 5 and 6 given below. Note
that by construction of the {Dt} series, the formulation in (2) implies that the estimator only depends on the actually
observed data.

Assumption 5. K (·) is a symmetric, Lipschitz continuous function with compact support, where we define κk =∫
R K (ω)k dω, κ(τ ) =

∫
R K (ω)K (ω − τ ) dω and µk =

∫
R ω

kK (ω) dω.

Assumption 6. The bandwidth h = h(n) satisfies nh7
→ 0 and nh2

→ ∞ as n → ∞.

Assumption 5 is a standard assumption in the nonparametric kernel smoother literature, and is satisfied by many
commonly used kernels. Assumption 6 provides the range in convergence rates allowed for h to ensure consistency and
asymptotic normality of the kernel estimator.

The bandwidth, or smoothing parameter h plays an important role. Large bandwidths produce a very smooth estimate,
while small bandwidths produce a rough, wiggly trend estimate. Although Assumption 6 gives some guidance, it does not
provide us with a practical bandwidth choice. Data-driven bandwidth selection is therefore important for implementation.
Leave-one-out cross-validation is the most popular data-based method for bandwidth selection, but it is designed for
independent observations and therefore inappropriate for time series data. Chu and Marron (1991) show that in the
presence of positive correlation, this criterion systematically selects very small bandwidths, producing estimates which
are too wiggly. With negative correlation, bandwidths will be large and the estimate too smooth. Therefore, Chu and
Marron (1991) propose to use a time series version of this criterion, called modified cross-validation (MCV). It is based
on minimizing the criterion function 1

n

∑n
t=1 Dt

(
m̂k,h

( t
n

)
− yt

)2 with respect to h, where

m̂k,h(τ ) =
(n − 2k − 1)−1∑

t:|t−τn|>k K
( t/n−τ

h

)
Dtyt

(n − 2k − 1)−1
∑

t:|t−τn|>k K
( t/n−τ

h

)
Dt

(3)

is a leave-(2k+1)-out version of the leave-one-out estimator of ordinary cross-validation, which leaves out the observation
receiving the highest weight. Next to formal selection methods, visual inspection of the estimated trend function for a
range of different bandwidths can help determining an appropriate bandwidth.

Remark 1. The assumption that p(·) is bounded away from zero implies that in every subinterval of (0, 1), we have
enough observed data points as n grows large. This assumption can be relaxed at the expense of more involved notation
by restricting our attention to those compact subsets of (0, 1), where the probability of observing data is larger than or
equal to some ϵ > 0.

In small samples, we may have points τ around which no data are observed in an h-neighborhood. As this is merely a
small sample issue, for the theoretical analysis we implicitly assume that n is large enough such that, for every τ ∈ (0, 1),∑n

t=1 K
( t/n−τ

h

)
Dt ≥ ϵ∗ for some ϵ∗ > 0. That is, sufficient data are available around τ . This is not restrictive, as by

Assumption 6, h decreases more slowly than n increases. In practice, the points around which insufficient data are available
simply have to be excluded from the set of τ values considered for inference.

Remark 2. While the Nadaraya–Watson estimator locally approximates the trend function by a constant function, the
local linear estimator locally fits a linear function to the data around a given point τ ∈ (0, 1):(

m̂ll(τ )
m̂(1)

ll (τ )

)
= argmin

(m(τ ),m(1)(τ ))

n∑
t=1

K
(
t/n − τ

h

)
Dt
{
yt − m(τ ) − m(1)(τ ) (t/n − τ)

}2
=

(
n∑

t=1

K
(
t/n − τ

h

)
xt (τ )xt (τ )′Dt

)−1 n∑
t=1

K
(
t/n − τ

h

)
xt (τ )Dtyt

(4)

where xt (τ ) ≡ (1, t/n − τ)′. The local linear estimator is more accurate than the local constant estimator at points which
are close to the boundaries of the sample. At these points, the local constant estimator suffers from boundary effects
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which the local linear estimator does not (Cai, 2007; Fan, 1992). Our analysis can be extended to the local linear estimator.
However, notation becomes significantly more cumbersome and therefore proofs more complicated, so we focus on the
local constant estimator in the theoretical part.

Remark 3. An alternative way to specify the estimators in the presence of missing data is to work with unequally spaced
data. Assuming we observe data on times ti for i = 1, . . . , n1, where n1 is the effective number of observations, the local
constant estimator can be written as

m̂(τ ) =

[ n1∑
i=1

K
(
(ti − t1)/(tn1 − t1) − τ

h

)]−1 n1∑
i=1

K
(
(ti − t1)/(tn1 − t1) − τ

h

)
yti .

This formulation has the advantage that it does not require an underlying regular frequency at which the data are
observed. However, in many applications it is not hard to define such an underlying frequency (days in our application),
and then the two formulations are equivalent.

In the remainder of the paper we will continue to work with the first formulation, which leads to clearer notation and
is easier to handle in the proofs, as the randomness in the missing data is modeled through the explicit Dt variable rather
than being ‘‘hidden’’ in the (now random) ti dates.

3.2. Autoregressive wild bootstrap

To construct confidence bands around the trend estimate, we modify the wild bootstrap, originally designed to handle
heteroskedastic data (Davidson and Flachaire, 2008), to account for serial dependence. The wild bootstrap generates
bootstrap errors as z∗

t = ξ ∗
t ẑt , where ẑt are residuals of the nonparametric trend regression. In the standard wild bootstrap,

the random variables
{
ξ ∗
t

}
are i.i.d. and thus, any dependence present in the data gets removed in the bootstrap errors.

To overcome this drawback, Shao (2010b) proposed the dependent wild bootstrap (DWB) in which
{
ξ ∗
t

}
are generated as

ℓ-dependent random variables with Cov(ξ ∗
s , ξ

∗
t ) = KDWB

( s−t
ℓ

)
, where KDWB(·) is a kernel function. As the tuning parameter

ℓ, it has to be selected by the user.
Building on this idea, Smeekes and Urbain (2014) propose the autoregressive wild bootstrap (AWB) where

{
ξ ∗
t

}
is

generated as an AR(1) process with parameter γ = γ (n). The AWB has as advantage over the DWB that it is easier
to implement and has a more intuitive interpretation. Moreover, as

{
ξ ∗
t

}
is not ℓ-dependent, the AWB has the potential

to capture more serial correlation and to be less sensitive to the choice of tuning parameter γ . In the context of unit root
testing, Smeekes and Urbain (2014) show that the AWB generally has a superior finite sample performance compared
to the DWB. For these reasons, we mainly focus on the AWB in the following, although we consider the DWB in our
simulation study as well. The AWB algorithm can be described as follows.

Algorithm 1 (Autoregressive Wild Bootstrap).

1. Let m̃(·) be defined as in (2), but using bandwidth h̃. Obtain residuals ẑt = Dt [yt − m̃(t/n)] for t = 1, . . . , n.
2. For 0 < γ < 1, generate ν∗

1 , . . . , ν
∗
n as i.i.d. N (0, 1−γ 2) and let ξ ∗

t = γ ξ ∗

t−1+ν∗
t for t = 2, . . . , n. Take ξ ∗

1 ∼ N (0, 1)
to ensure stationarity of {ξ ∗

t }.
3. Calculate the bootstrap errors z∗

t as z∗
t = Dtξ

∗
t ẑt and generate the bootstrap observations by y∗

t = Dt [m̃(t/n) + z∗
t ]

for t = 1, . . . , n, where m̃(·) is the same estimate as in the first step.
4. Obtain the bootstrap estimator m̂∗(·) as defined in (2) using the bootstrap series {y∗

t }, with the same bandwidth h
as used for the original estimate m̂(·).

5. Repeat Steps 2 to 4 B times, and let

q̂α(τ ) = inf
{
u ∈ R : P∗

[
m̂∗(τ ) − m̃(τ ) ≤ u

]
≥ α

}
(5)

denote the α-quantile of the B centered bootstrap statistics m̂∗(τ )− m̃(τ ). These bootstrap quantiles are then used
to construct confidence bands as described below.

Note that in Step 3 we only have to draw bootstrap observation for the dates where Dt = 1 and we observed the
realization yt ; in the description the missing ones are artificially set to zero, but they are actually not used anywhere.
In Step 2, we generate

{
ξ ∗
t

}
for all t = 1, . . . , n, although subsequently we only use the subset that corresponds to

the actually observed data points. The missing data structure is preserved in the bootstrap sample, while the correlation
between consecutive non-missing observations is determined only by their distance, which ensures a coherent bootstrap
sample. In this way, the missing data structure is automatically taken into account in the bootstrap without any need for
modifications.

Although we suggest to generate {ν∗
t } as a sequence of normally distributed random variables, inspection of the proofs

shows normality is not needed; all one needs is a sequence of i.i.d. random variables with E∗ν∗
t = 0, E∗ν∗2

t = 1 − γ 2

and E∗4ν∗4
t < ∞. Normality is simply a convenient option that is easy to implement; alternatively one could implement

a variant of the Rademacher distribution (corrected for the right variance), which for the independent wild bootstrap has
good properties (Davidson and Flachaire, 2008).
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For the tuning parameter γ , we follow Smeekes and Urbain (2014) and let γ = θ1/ℓ where ℓ is the ‘‘block length’’
parameter also found in the DWB and 0 < θ < 1 is a fixed parameter. This specification has the advantage that ℓ can
be interpreted in a similar way as the block length parameter in a block bootstrap; its choice constitutes a trade-off
between capturing more of the dependence with a large value of the tuning parameter, and allowing for more variation
in the bootstrap samples with a smaller value for ℓ. Additionally, it provides a convenient framework for studying the
theoretical properties of our method. Specifically, we need ℓ → ∞ as n → ∞, such that γ → 1. This is analogous to the
block (and dependent wild) bootstrap, where the block size must increase to capture more dependence when the sample
size increases. Assumption 7 postulates the formal conditions that ℓ needs to satisfy. They imply that γ → 1, but not too
fast.

Assumption 7. The bootstrap parameter ℓ = ℓ(n) satisfies ℓ → ∞ and ℓ/
√
nh → 0 as n → ∞.

Note that we propose to use a different bandwidth h̃ in Step 1 of the algorithm. This is a common feature in the
literature on bootstrap methods for nonparametric regression. By either selecting a larger (oversmoothing) or smaller
bandwidth (undersmoothing) than used for the estimator, one can account for the asymptotic bias that is present in
the local polynomial estimation, see Hall and Horowitz (2013, Section 1.4) for an extensive literature review. While
undersmoothing, such as used in the related paper by Neumann and Polzehl (1998), aims at making the bias asymptotically
negligible, oversmoothing aims at producing a consistent estimator of the (non-negligible) bias. Both have advantages
and disadvantages, see the extensive discussion in Hall and Horowitz (2013). We follow Bühlmann (1998) and consider
a solution based on oversmoothing, which we find to work well in practice; also see Härdle and Marron (1991). After
presenting our theoretical results in Section 4, Remark 8 provides an intuition of why oversmoothing allows to consistently
estimate the asymptotic bias.2 We now state the formal conditions that h̃ must satisfy in Assumption 8; one is that
h/h̃ → 0 as n → ∞, which ensures the oversmoothing.

Assumption 8. The oversmoothing bandwidth h̃ = h̃(n) satisfies max
{
h̃, h/h̃, nh5h̃4

}
→ 0 and ℓmax

{
h̃4, 1/nh̃

}
→ 0

as n → ∞.

Remark 4. There are a number of ways to choose the AWB parameter γ in practice. Using the relation γ = θ1/ℓ, one
can fix θ and choose ℓ as a deterministic function of the sample size. Smeekes and Urbain (2014) found that θ = 0.01
paired with ℓ = 1.75n1/3 performed well in their simulation study on AWB unit root testing; for the local polynomial
estimation we might adapt this to let ℓ be a function of nh, see also Remark 5. Alternatively, one may vary γ over a range
of reasonable values, choosing a value in the range where the bands are most stable (as a function of γ ), akin to the
minimum volatility method proposed by Politis et al. (1999). Ideally, one would like to have a data-driven method for
choosing an ‘‘optimal’’ γ . However, development of such a method requires a deeper study of higher-order asymptotic
properties, which is outside the scope of the paper.

Remark 5. To give some intuition for the interaction between the three tuning parameters h, h̃ and ℓ, consider taking
h = cn−p, for some c > 0 and 1

7 < p < 1
2 . This satisfies Assumption 6. Now let h̃ = cn−q, where p > q as h/h̃ → 0.

Furthermore, to satisfy nh5h̃4
→ 0, we need that 5p+ 4q > 1. For p ≥

1
5 this is satisfied for any q; with p approaching 1

7 ,
q > 1

14 suffices, which is not very strict.
Finally, take ℓ = cnr . From Assumption 7 we know that r < 1

2 − p/2, which for p approaching 1
2 means r < 1

4 ,
while for p approaching 1

7 , it implies that r < 3
7 . To satisfy the restrictions from Assumption 8, we need that r < 4q and

r < 1 − q. As q < p < 1
2 , the second condition is non-binding. The first condition is only restrictive when q is small, say

in the vicinity of 1
14 . Then r < 2

7 , which is stricter than the condition implied by Assumption 7. However, for q ≥
3
28 , this

restriction is not binding.
As an example, consider the ‘‘classical’’ rates p =

1
5 and q =

1
9 , cf. Bühlmann (1998). These are allowed under our

theory, and additionally imply that 0 < r < 2
5 , therefore also allowing for r =

1
3 as advocated in Smeekes and Urbain

(2014).

Remark 6. Instead of the autoregressive wild bootstrap, one could equally imagine a moving-average wild bootstrap
(MA-WB), where ξ ∗

t =
∑ℓ

j=0 ψn,jν
∗
t and ν∗

t are i.i.d. random variables as before. By letting ψn,j → 1, if n → ∞ and j fixed,
and ψn,j → 0, if n is fixed and j → ∞, one could show validity of such an MA-WB as well. For practical purposes, one
could take ψn,j = f (j/ℓ), for instance with f (x) = 1 − xr to simplify implementation.

Such a moving-average representation is closely related to the DWB, which can be seen as a two-sided MA process,
with both bootstrap methods delivering ℓ-dependent bootstrap samples. In his paper, Shao (2010b) shows the asymptotic
equivalence of the variance estimator of the DWB with the tapered block bootstrap (Paparoditis and Politis, 2002).
Similarly, one can show that the MA-WB has a close link to the extended tapered wild bootstrap of Shao (2010a), and

2 Hall and Horowitz (2013) propose an alternative bootstrap approach that requires neither under- nor oversmoothing, however their approach
only delivers pointwise intervals, and is therefore not considered in this paper.
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depending on the distribution chosen for {νt}, the smooth extended tapered block bootstrap of Gregory et al. (2015a,b).
If {νt} is drawn from a continuous distribution like the normal, we have an automatic smoothing in the wild bootstrap
variants. As Gregory et al. (2015a,b) show that smoothing helps in the context of the block bootstrap, it may similarly do
so for the wild bootstrap and provide a potential reason to prefer the normal distribution over discrete distributions like
the Rademacher distribution.

3.3. Bootstrap confidence bands

Pointwise bootstrap confidence intervals with a confidence level of (1 − α) for m(τ ), are denoted by I (p)n,α(τ ) and
constructed with the objective that

lim inf
n→∞

P
[(
m(τ ) ∈ I (p)n,α(τ )

)]
≥ 1 − α τ ∈ (0, 1). (6)

Using our bootstrap algorithm, we can construct such pointwise intervals as

I (p)n,α(τ ) =
[
m̂(τ ) − q̂1−α/2(τ ), m̂(τ ) − q̂α/2(τ )

]
.

As these intervals are constructed separately for each τ , links over time cannot be established with these intervals.
Therefore, we next consider how to construct simultaneous confidence bands. Let IGn,α(τ ), for τ ∈ G, denote a confidence
band that is simultaneous over the set G. Formally, we seek to construct IGn,α(τ ) such that

lim inf
n→∞

[
P
(
m(τ ) ∈ IGn,α(τ ) ∀τ ∈ G

)]
≥ 1 − α. (7)

Our practical implementation follows the three-step procedure proposed by Bühlmann (1998):

1. For all τ ∈ G, obtain pointwise quantiles q̂αp/2(τ ), q̂1−αp/2(τ ) for varying αp ∈ [1/B, α].
2. Choose αs = argminαp∈[1/B,α]

⏐⏐P∗
[
q̂αp/2(τ ) ≤ m̂∗(τ ) − m̃(τ ) ≤ q̂1−αp/2(τ ) ∀τ ∈ G

]
− (1 − α)

⏐⏐.
3. Construct the simultaneous confidence bands as

IGn,α(τ ) =
[
m̂(τ ) − q̂1−αs/2(τ ), m̂(τ ) − q̂αs/2(τ )

]
τ ∈ G.

In the second step, a pointwise error αs is found for which a fraction of approximately (1 − α) of all centered bootstrap
estimates falls within the resulting confidence intervals, for all points of the set G. As such, the confidence intervals with
pointwise coverage (1 − αs) become simultaneous confidence bands with coverage (1 − α).3

Remark 7. As an alternative to the variable-size bands proposed by Bühlmann (1998), one could consider Kolmogorov–
Smirnov-type simultaneous confidence bands of fixed size. They would be of the form I∗α(τ ) =

[
m̂(τ ) − t∗1−α, m̂(τ ) + t∗1−α

]
,

where the quantile t∗1−α is determined as the (1 − α)-quantile of the distribution of the quantity U∗
n = supτ∈G

{
|m̂∗(τ )−

m̃(τ )|
}
. Neumann and Polzehl (1998) establish the asymptotic validity of such simultaneous bands under serial indepen-

dence. We do not go in this direction, because we believe confidence bands with variable width to be more informative.
They have the feature of becoming wider at points with more variability and more narrow for periods with less variability.
To obtain variable width intervals with the Kolmogorov–Smirnov approach, one has to estimate the variance of the
estimator at each τ and bootstrap a pivotal quantity, see e.g. Neumann and Polzehl (1998, Section 2.2). This adds additional
complications in order to achieve consistent variance estimation.

4. Asymptotic theory

We first provide the pointwise limiting normal distribution of the local constant estimator m̂(·). Although the result
is similar to the non-bootstrap part of Theorem 3.1 in Bühlmann (1998), we extend the asymptotic theory for the local
constant estimator to allow for the presence of nonstationary volatility and missing data. As we feel this is a noteworthy
result in its own right, we present it in Theorem 1.

Theorem 1. Under Assumptions 1–6, for any τ ∈ (0, 1), we have as n → ∞:
√
nh
(
m̂(τ ) − m(τ ) − h2Bas(τ )

) d
−→ N

(
0, σ 2

as(τ )
)
,

where

Bas(τ ) = µ2p(τ )−1 [mp](2) (τ ) and σ 2
as(τ ) = p(τ )−1σ (τ )2ΩUκ2, (8)

3 We provide R code to implement the estimator and bootstrap confidence bands on www.stephansmeekes.nl.

http://www.stephansmeekes.nl
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The term Bas(τ ) reflects the familiar asymptotic bias generally found in local polynomial estimators, although the exact
form is different due the presence of the missing data parameter p(τ ). The asymptotic variance σ 2

as(τ ) is not only affected
by p(τ ), but also by the volatility process σ 2(τ ). If one were to use these distributions directly for inference, one would
need to plug in consistent estimators of these nuisance parameters. However, as we show next, in the bootstrap these
are automatically consistently estimated, and we have consistency of the autoregressive wild bootstrap method for the
local constant estimator.

Theorem 2. Under Assumptions 1–8, for any τ ∈ (0, 1), we have as n → ∞:
√
nh
(
m̂∗(τ ) − m̂(τ ) − h2Bas(τ )

) d∗

−→p N
(
0, σ 2

as(τ )
)
,

where Bas(τ ) and σ 2
as(τ ) are defined in (8).

The pointwise validity of the bootstrap confidence intervals in the sense of (6) follows directly from this pointwise
convergence result. Note that, as the bias term Bas(τ ) is the same in both theorems, it is consistently estimated by the
bootstrap. As such, we do not need the bias to disappear, which happens when undersmoothing if nh5

→ 0, or to be
O(1), when nh5

→ c. Even if nh → ∞, and the asymptotic bias dominates the stochastic variation, the bootstrap correctly
mimics this and can be used for asymptotically valid inference. As such, we can relax the assumption in Bühlmann (1998,
p. 55) that h ∼ Cn−1/5 to allow for a wider range of bandwidths. In practice, this means that the bootstrap provides
additional protection against a misspecified bandwidth, by letting the widths of confidence bands automatically adapt.

Next, to study the validity of simultaneous confidence bands as in (7), we consider h-neighborhoods around time points
τ . We do so because estimates m̂(τ1) and m̂(τ2) are asymptotically independent for τ1 ̸= τ2 being two fixed distinct time
points. When the distance between τ1 and τ2 is of order h, the estimators show a non-zero correlation. Therefore a major
benefit of ‘‘zooming in’’ on local h-neighborhoods is that we can study how the bootstrap mimics the correlation between
close points, a feature which is lost when considering simultaneity globally.

Theorem 3. For any τ0 ∈ (0, 1), let

Zτ0,n(τ ) =
√
nh
(
m̂(τ0 + τh) − m(τ0 + τh)

)
, Z∗

τ0,n(τ ) =
√
nh
(
m̂∗(τ0 + τh) − m̃(τ0 + τh)

)
.

Then, under Assumptions 1–8, we have for all τ0 ∈ (0, 1){
Zτ0,n(τ ) − Bas(τ0)

}
τ∈[−1,1] ⇒ {W (τ )}τ∈[−1,1] ,{

Z∗

τ0,n(τ ) − Bas(τ0)
}
τ∈[−1,1]

⇒p {W (τ )}τ∈[−1,1] ,

where {W (τ )}τ∈[−1,1] is a Gaussian process with EW (τ ) = 0 and

Cov(W (τ1),W (τ2)) = σW ,τ0 (τ1, τ2) = p(τ0)−1σ (τ0)2ΩUκ(τ1 − τ2).

Here, ⇒ denotes weak convergence in the space of continuous real-valued functions on [−1, 1] endowed with the sup-norm.

Theorem 3 establishes the uniform validity of the bootstrap within an h-neighborhood around any point 0 < τ0 < 1,
where, since h = o(1), we assume without loss of generality thatm(τ0+τh) is always defined. Note that the interval [−1, 1]
is mainly chosen out of convenience, and the results can trivially be shown to hold over any interval [τ0 − ah, τ0 + bh]
with 0 < a, b < ∞. Moreover, it follows directly from Theorem 3 that the bootstrap will be valid uniformly on sets
that contain a union of any finite number of such h-neighborhoods, see e.g. Bühlmann (1998, Corollary 3.3). While, in
finite samples, one can always take h and the intervals such that the full sample is covered in G, this kind of ‘‘too large’’
simultaneity should be considered with caution, as this is not what the asymptotic analysis covers. Although simultaneity
over such local sets might appear less attractive than simultaneity over the whole sample, it can nevertheless be of
great interest in applications. For example, constructing confidence bands with simultaneous coverage over two time
periods – one located early in the sample and the other one at the end – is useful when judging if there was an upward
(or downward) movement of the trend at the end of the time period when compared to the beginning. This allows
the empirical researcher to draw conclusions about developments spanning time stretches, which is not possible with
pointwise confidence intervals.

Remark 8. To provide some intuition for the required oversmoothing with bandwidth h̃ in the bootstrap, note that
from Theorem 1 (or more formally Lemma A.6) we can deduce that the estimator used in the first step of the bootstrap
algorithm satisfies

m̃(τ ) − m(τ ) = h̃2Bas(τ ) + Zn(τ )/
√
nh̃ + op

(
1/
√
nh̃
)
, (9)

where Zn(τ )
d

−→ N(0, σ 2
as(τ )). Furthermore, letting wt,n(τ ) = K

( t/n−τ
h

)
Dt/
[∑n

t=1 K
( t/n−τ

h

)
Dt
]
, and using that y∗

t =

m̃(t/n) + z∗
t , we can write

m̂∗(τ ) − m̃(τ ) =

[
n∑

t=1

wt,n(τ )m̃(t/n) − m̃(τ )

]
+

n∑
t=1

wt,n(τ )z∗

t + op
(
1/
√
nh̃
)
.
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While the second term,
∑n

t=1wt,n(τ )z∗
t , mimics the stochastic variation in the trend estimation, and ensures the

asymptotic normality of the bootstrap trend estimator, the bias arises from the first term,
∑n

t=1wt,n(τ )m̃(t/n) − m̃(τ ).
Using (9), this term can be decomposed as

n∑
t=1

wt,n(τ )m̃(t/n) − m̃(τ ) =

[
n∑

t=1

wt,n(τ )m(t/n) − m(τ )

]
+ h̃2

[
n∑

t=1

wt,n(τ )Bas(t/n) − Bas(τ )

]

+

[
n∑

t=1

wt,n(τ )Zn(t/n) − Zn(τ )

]
/

√
nh̃ + op

(
1/
√
nh̃
)
.

The asymptotic bias arises, as for the original estimator, from the first term of the decomposition. As shown in the proof of
Lemma A.7, by the smoothness of Bas(τ ), the second term converges to zero, thus canceling out the bias in m̃(τ ). However,
to make the third, stochastic term vanish when multiplying by

√
nh, it must be that h/h̃ → 0, such that this term is of

small enough magnitude. This is achieved by oversmoothing.

Remark 9. Although it is not visible from the theorems – as we only consider pointwise τ (or τ0 in Theorem 3) – τ needs
to be bounded away from the boundaries (0 and 1) to make the results hold. As the estimator exhibits edge effects, the
quality of m̃(τ ) can only be guaranteed for τ away from 0 or 1. Formally, we need to take a small δ > 0 and then consider
τ ∈ [δ, 1−δ]. Consequently, in the bootstrap we then obtain the limit distribution in a slightly smaller set τ ∈ [δ∗, 1−δ∗

],
for some δ∗ > δ. However, as we can take δ and δ∗ as small as we like, this does not affect the pointwise statements of
the theorems.4

Because of the above reasons, Bühlmann (1998, p. 53) suggests in his bootstrap algorithm to obtain residuals ẑt =

Dt [yt − m̃(t/n)] for t = [nδ]+1, . . . , [n(1− δ)], as the residuals too close to the boundary may contaminate the bootstrap
sample when they are sampled. This is not a problem for our method, as the AWB does not involve resampling: boundary
residuals remain at the boundary in the bootstrap sample, and can therefore not affect results away from the boundaries.

5. Simulation study

For the simulation exercise, we simulate time series with a trending behavior in both mean and variance, inspired by
patterns observed in climatological time series, and allow for similar patterns of missing data. We will first describe the
setting and then present and discuss the results.

5.1. Simulation setup

We consider the following smooth transition model:

yt = m(t/n) + σtut , m(τ ) = β1τ + β2τG(τ , λ, c), (10)

where for λ > 0,

G(τ , λ, c) = (1 + exp {−λ(τ − c)})−1 . (11)

The error term {ut} follows an ARMA(1, 1) model

ut = φut−1 + ψϵt−1 + ϵt ϵt ∼ N
(
0,

(1 − φ2)/4
1 + ψ2 − 2φψ

)
, (12)

where we vary the parameters φ and ψ to investigate the impact of serial correlation on our method. The variance of
ϵt is normalized such that the signal to noise ratio does not depend on the specific choice of the AR and MA parameter.
Furthermore, we introduce heteroskedasticity with the process {σt}. We consider two scenarios, where σt is constant over
time or σt = σ (t/n), with the volatility process σ (τ ) given by

σ (τ ) = σ0 + (σ∗ − σ0)(τ ) + a cos (2πkτ) . (13)

Eq. (10) is a shifting mean model as considered by Gonzalés and Teräsvirta (2008), and can be seen as a smooth transition
version of a broken trend model with one break. The function G(τ , λ, c) as given in (11) is the transition function with time
as transition variable. Its inputs apart from time are the location of the shift – the parameter c – as well as the smoothness
of the shift, determined by λ. For large values of λ the shift happens almost instantaneous, while it is smoother for smaller
values of this parameter. In our simulations, we fix λ = 10. The other parameters of our DGP will be chosen in such a
way that the time series experiences a downward trend during the first three quarters which turns into a steeper upward
trend in the last quarter (see Fig. 1).

This mimics the general pattern which is expected to occur in atmospheric ethane time series and therefore fits our
application well. More specifically, this means we set the location of the shift to occur at c = 0.9. The slope of the trend

4 See Lemmas A.6 and A.7 in Appendix A for statements where these constants do appear.
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Fig. 1. Trends in mean and variance in the simulation DGP.

gradually changes from β1 = −1 before the shift to β2 = 2.5 after the shift. This is illustrated in Fig. 1(a). For the variance
process, inspired by the series considered in the empirical application, we consider a cyclical component with trend. We
have to choose four parameters in (13): the start and end point of the trend – σ0 and σ∗ – as well as the specifics of the
cyclical component. The parameter a fixes the amplitude of the cycle, while k determines how many cycles there are. We
set σ0 = 1, σ∗ = 2 and consider different combinations of values for a and k. We let a = 0.3, 0.5, 0.7 and k = 2, 3, 4. An
example of this process is displayed in Fig. 1(b).

We also consider different degrees of dependence by varying the AR and MA parameters. For the AR parameter we
take φ = 0, 0.2, 0.5,−0.5, while the MA parameter varies between ψ = 0, ψ = 0.2 and ψ = 0.5. We only look at
pure AR or MA processes with these coefficient values. The different specifications will be abbreviated in the tables with
self-explanatory names, e.g. we write AR−0.5 for φ = −0.5, ψ = 0 and use MA0.5 when φ = 0 and ψ = 0.5.

In addition, we consider cases of missing data for which we generate a missing pattern that is representative for the
ethane data. We implement a first-order Markov Chain for Dt with transition probabilities

(Dt = 0 Dt = 1
Dt−1 = 0 0.80 0.20
Dt−1 = 1 0.45 0.55

)
, (14)

which are estimated from the ethane time series considered in Section 6. This transition matrix results in an average
fraction of around 70% missing observations.

In the estimation step, we apply the local constant estimator based on the Epanechnikov kernel which is given by the
function K (x) =

3
4 (1 − x2)1{|x|≤1}. For the bandwidth parameter h we use h = 0.02, h = 0.04 and h = 0.06. In the first

step of the bootstrap procedure we follow the recommendation of Bühlmann (1998) to use h̃ = Ch5/9 with C = 2. In the
second step of the bootstrap, we consider different values for the AR parameter γ ; next to γ = 0, which reduces the AWB
to a standard wild bootstrap (WB), we also consider γ = 0.2, 0.4, 0.6.

For each specification, we run 5000 Monte Carlo simulations. We report average pointwise as well as simultaneous
coverage for a sample size of n = 200, based on B = 999 bootstrap replications. For ease of comparison, we choose
the sample size in cases with missing data such that we have approximately 200 data points remaining. Given the large
fraction of missing data, an expected effective sample size of 200 translates into an original sample size for our Markov
Chain of n = 666.

The nominal coverage in all cases is 95%. We also report the average median length of the confidence intervals
in parenthesis underneath the respective coverage. For simultaneous coverage, the trend curve has to lie within the
confidence bands for all points of the considered set G, for which we take the two sets Gsub and G considered by Bühlmann
(1998), where Gsub = U1(h) ∪ U4(h) and G =

⋃4
i=1 Ui(h), with Ui(h) = {(i/5) − h + j/100; j = 0, . . . , [200h]}.

To compare the performance of our AWB method to related bootstrap methods, we also implement the dependent
wild bootstrap (DWB) and the sieve wild bootstrap (SWB), with a standard normal distribution for generation of the wild
bootstrap errors. Since the SWB cannot easily be adapted to work with missing data, we provide results for this method
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Table 1
Pointwise coverage probabilities (average median interval length) for k = 4 and a = 0.5.
h DGP γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 −

WB AWB DWB AWB DWB AWB DWB SWB

0.02

0 0.946 0.952 0.946 0.942 0.945 0.905 0.945 0.925
(0.732) (0.715) (0.733) (0.658) (0.733) (0.555) (0.733) (0.719)

AR0.2 0.902 0.918 0.902 0.912 0.902 0.871 0.902 0.861
(0.710) (0.711) (0.711) (0.672) (0.711) (0.582) (0.711) (0.688)

AR0.5 0.778 0.818 0.776 0.828 0.778 0.791 0.777 0.672
(0.604) (0.630) (0.605) (0.621) (0.604) (0.562) (0.603) (0.536)

AR−0.5 0.989 0.988 0.989 0.982 0.989 0.958 0.989 0.960
(0.623) (0.575) (0.624) (0.499) (0.624) (0.397) (0.624) (0.552)

MA0.2 0.910 0.925 0.911 0.918 0.909 0.879 0.910 0.872
(0.712) (0.712) (0.712) (0.671) (0.712) (0.580) (0.712) (0.690)

MA0.5 0.864 0.891 0.864 0.891 0.864 0.854 0.864 0.773
(0.638) (0.657) (0.639) (0.636) (0.638) (0.564) (0.639) (0.571)

0.04

0 0.950 0.952 0.951 0.940 0.951 0.905 0.951 0.922
(0.567) (0.561) (0.568) (0.527) (0.568) (0.460) (0.568) (0.548)

AR0.2 0.903 0.911 0.901 0.905 0.901 0.872 0.902 0.862
(0.553) (0.563) (0.553) (0.544) (0.553) (0.487) (0.554) (0.525)

AR0.5 0.768 0.803 0.766 0.818 0.767 0.795 0.765 0.667
(0.478) (0.511) (0.479) (0.519) (0.478) (0.489) (0.477) (0.409)

AR−0.5 0.996 0.994 0.996 0.989 0.996 0.969 0.996 0.970
(0.492) (0.457) (0.492) (0.405) (0.492) (0.338) (0.493) (0.423)

MA0.2 0.912 0.922 0.913 0.913 0.912 0.880 0.912 0.873
(0.553) (0.563) (0.554) (0.542) (0.554) (0.485) (0.554) (0.526)

MA0.5 0.867 0.890 0.869 0.890 0.868 0.861 0.867 0.784
(0.501) (0.528) (0.503) (0.522) (0.502) (0.479) (0.503) (0.436)

0.06

0 0.955 0.957 0.956 0.946 0.956 0.917 0.956 0.925
(0.492) (0.492) (0.493) (0.471) (0.493) (0.422) (0.493) (0.465)

AR0.2 0.910 0.917 0.907 0.913 0.907 0.887 0.909 0.865
(0.480) (0.494) (0.481) (0.486) (0.480) (0.447) (0.481) (0.444)

AR0.5 0.781 0.814 0.777 0.831 0.779 0.815 0.776 0.669
(0.420) (0.455) (0.421) (0.468) (0.420) (0.453) (0.420) (0.347)

AR−0.5 0.997 0.996 0.997 0.992 0.997 0.977 0.997 0.979
(0.432) (0.408) (0.432) (0.373) (0.432) (0.325) (0.433) (0.358)

MA0.2 0.918 0.928 0.920 0.921 0.918 0.894 0.918 0.875
(0.480) (0.495) (0.481) (0.485) (0.481) (0.444) (0.481) (0.446)

MA0.5 0.878 0.900 0.879 0.901 0.878 0.878 0.878 0.789
(0.439) (0.467) (0.440) (0.470) (0.440) (0.441) (0.440) (0.370)

only for the cases with no missing data. For the DWB, we convert the γ parameter into the corresponding value for
the tuning parameter ℓ, using the formula γ = θ1/ℓ. Smeekes and Urbain (2014) found in their simulation study that
θ = 0.01 provides a sensible conversion between the AWB and DWB, in the sense of yielding comparable performance of
the two methods, therefore we use θ = 0.01 as well to convert the AWB parameter into the DWB parameter. This tuning
parameter does not exist in the case of the SWB; instead, the lag length has to be selected, for which we use AIC.

5.2. Simulation results

First, we report results for equally spaced data with no missing observations and a variance process with the same
specifications (k = 4 and a = 0.5) as displayed in Fig. 1(b). The results on pointwise coverage are given in Table 1,
while Tables 2 and 3 show simultaneous coverage probabilities for the two sets G.sub and G, respectively. The tables
consist of three main blocks, one for each bandwidth. Within each block, the individual rows contain results for different
combinations of AR and MA parameters. Results for other choices of the variance parameters k and a, including the
homoskedastic case, are available in Supplementary Appendix C. Qualitatively, these settings yield the same conclusions
as the ones considered here.

Table 1 shows that the autoregressive wild bootstrap provides confidence intervals with good pointwise coverage in
the presence of heteroskedasticity and mild autocorrelation. For the independent case and the cases with negative or
small positive correlation, the coverage probabilities are close to the nominal level. The only specifications for which the
coverage lies below the nominal level are when φ = 0.5 and ψ = 0.5. In these cases, the data deviate from the trend line
in clusters due to the strong positive correlation. This causes the nonparametric estimate to go through these clusters and
thus, to deviate significantly from the true trend. The confidence bands are in these situations not wide enough to cover
the true trend, resulting in too low coverage. Interestingly, all methods/tuning parameters are similarly affected.

Concerning the autoregressive parameter of the wild bootstrap, we can observe that whenever the data are serially
correlated, the autoregressive wild bootstrap (γ ̸= 0) provides better coverage than the standard wild bootstrap (γ = 0).
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Table 2
Simultaneous coverage probabilities (average median interval length) over Gsub for k = 4 and a = 0.5.
h DGP γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 −

WB AWB DWB AWB DWB AWB DWB SWB

0.02

0 0.941 0.944 0.936 0.934 0.935 0.870 0.937 0.917
(0.672) (0.656) (0.673) (0.604) (0.672) (0.510) (0.673) (0.661)

AR0.2 0.884 0.908 0.883 0.888 0.879 0.822 0.884 0.805
(0.652) (0.653) (0.653) (0.617) (0.653) (0.534) (0.653) (0.632)

AR0.5 0.700 0.759 0.689 0.769 0.700 0.687 0.700 0.427
(0.555) (0.578) (0.556) (0.570) (0.555) (0.515) (0.553) (0.493)

AR−0.5 0.982 0.981 0.983 0.974 0.987 0.920 0.984 0.985
(0.572) (0.528) (0.573) (0.459) (0.573) (0.365) (0.573) (0.507)

MA0.2 0.899 0.913 0.891 0.900 0.888 0.835 0.895 0.820
(0.654) (0.653) (0.654) (0.616) (0.654) (0.533) (0.654) (0.634)

MA0.5 0.830 0.860 0.821 0.853 0.810 0.792 0.821 0.619
(0.586) (0.604) (0.587) (0.584) (0.586) (0.518) (0.587) (0.524)

0.04

0 0.930 0.931 0.929 0.907 0.932 0.818 0.933 0.902
(0.521) (0.516) (0.522) (0.484) (0.522) (0.423) (0.522) (0.504)

AR0.2 0.849 0.858 0.836 0.834 0.835 0.759 0.848 0.774
(0.508) (0.517) (0.508) (0.500) (0.508) (0.448) (0.509) (0.483)

AR0.5 0.592 0.648 0.564 0.685 0.577 0.604 0.573 0.376
(0.439) (0.470) (0.440) (0.476) (0.440) (0.449) (0.439) (0.376)

AR−0.5 0.997 0.991 0.995 0.980 0.994 0.917 0.995 0.993
(0.452) (0.420) (0.453) (0.373) (0.452) (0.310) (0.453) (0.390)

MA0.2 0.859 0.877 0.857 0.860 0.864 0.774 0.863 0.790
(0.508) (0.517) (0.509) (0.498) (0.509) (0.446) (0.510) (0.483)

MA0.5 0.767 0.814 0.770 0.807 0.771 0.733 0.766 0.594
(0.461) (0.485) (0.462) (0.480) (0.461) (0.440) (0.462) (0.401)

0.06

0 0.930 0.929 0.931 0.907 0.939 0.819 0.936 0.906
(0.452) (0.453) (0.453) (0.433) (0.453) (0.388) (0.453) (0.428)

AR0.2 0.852 0.845 0.832 0.835 0.840 0.757 0.851 0.783
(0.441) (0.455) (0.442) (0.447) (0.442) (0.411) (0.442) (0.409)

AR0.5 0.564 0.624 0.554 0.663 0.565 0.594 0.537 0.366
(0.386) (0.418) (0.387) (0.431) (0.387) (0.416) (0.386) (0.319)

AR−0.5 0.998 0.995 0.998 0.987 0.998 0.937 0.998 0.995
(0.397) (0.376) (0.398) (0.343) (0.397) (0.299) (0.398) (0.330)

MA0.2 0.862 0.870 0.857 0.856 0.865 0.771 0.862 0.796
(0.442) (0.455) (0.443) (0.446) (0.443) (0.409) (0.443) (0.410)

MA0.5 0.768 0.801 0.761 0.811 0.773 0.732 0.762 0.611
(0.404) (0.430) (0.405) (0.432) (0.404) (0.405) (0.405) (0.341)

In addition, with stronger correlation, a larger value for γ should be preferred, except that the case γ = 0.6 provides
consistently lower coverage, indicating that simply going for a very large value of γ is not sensible in practice. However,
even if we do see these patterns, in general, the coverage probabilities do not vary substantially with the autoregressive
parameter and therefore, the sensitivity to this parameter appears to be fairly limited.

When we look at the different blocks of Table 1, the bootstrap shows a similar overall performance regardless of
the value we select for the bandwidth parameter. Since the bandwidth plays such an important role in nonparametric
estimation, yet there are no fully satisfactory ways to select optimal bandwidth from the data in most applications,
robustness to bandwidth ‘‘misspecification’’ is an important finding. This implies that the bootstrap can correct for poorly
chosen bandwidths.

We observe similar patterns in Tables 2 and 3, while overall coverage is lower for the set G than for Gsub. This is
not surprising, since the former set covers twice as many points as the latter. Interestingly, the confidence bands are
consistently more narrow with G than they are with Gsub. This appears counterintuitive at first, as G is twice as large as
Gsub. However, while Gsub is made up entirely of points relatively close to the boundaries, for which estimation is more
variable, G additionally contains ‘‘stable’’ regions closer to the center. It may be that the stability of these regions has an
offsetting effect compared with the boundary regions, reducing the size of the intervals. As a side effect, overall coverage
is also reduced. As such, if one is only interested in coverage near the beginning and the end of the sample, it may be
wiser to only attempt to achieve uniformity over these regions, rather than over the full sample.

Similar to the pointwise coverage results, the simultaneous coverage is close to the nominal level for the case with
negative correlation as well as the independent case. Weak positive correlation can also be handled decently. The cases
φ = 0.5 and ψ = 0.5 are more problematic, as coverage drops to around 60% for G and 70% for Gsub. In these cases, the
smallest bandwidth h = 0.02 seems to be preferred.

Comparing the AWB to the other two bootstrap methods, we can see that in almost all cases, AWB and DWB show
similar results and they outperform the sieve version. Often, the AWB results in slightly higher coverage with shorter
intervals. Only when γ = 0.6, the DWB displays better coverage. Further increases of this parameter did not lead to
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Table 3
Simultaneous coverage probabilities (average median interval length) over G for k = 4 and a = 0.5.
h DGP γ = 0 γ = 0.2 γ = 0.4 γ = 0.6 −

WB AWB DWB AWB DWB AWB DWB SWB

0.02

0 0.925 0.939 0.925 0.919 0.926 0.845 0.925 0.894
(0.527) (0.515) (0.528) (0.474) (0.528) (0.400) (0.528) (0.518)

AR0.2 0.855 0.887 0.855 0.863 0.853 0.768 0.866 0.738
(0.512) (0.513) (0.512) (0.485) (0.512) (0.420) (0.513) (0.496)

AR0.5 0.608 0.690 0.604 0.691 0.602 0.590 0.606 0.266
(0.435) (0.454) (0.435) (0.449) (0.435) (0.407) (0.434) (0.386)

AR−0.5 0.982 0.979 0.979 0.972 0.986 0.915 0.984 0.984
(0.448) (0.413) (0.449) (0.359) (0.449) (0.285) (0.449) (0.398)

MA0.2 0.874 0.896 0.869 0.876 0.865 0.792 0.870 0.770
(0.513) (0.513) (0.513) (0.484) (0.513) (0.419) (0.513) (0.497)

MA0.5 0.780 0.833 0.779 0.812 0.764 0.728 0.776 0.498
(0.459) (0.474) (0.460) (0.459) (0.460) (0.408) (0.460) (0.411)

0.04

0 0.914 0.915 0.915 0.882 0.917 0.762 0.917 0.875
(0.401) (0.397) (0.402) (0.373) (0.402) (0.326) (0.402) (0.388)

AR0.2 0.812 0.822 0.793 0.798 0.799 0.688 0.806 0.697
(0.391) (0.398) (0.391) (0.385) (0.391) (0.345) (0.392) (0.372)

AR0.5 0.461 0.544 0.439 0.571 0.435 0.480 0.441 0.206
(0.338) (0.362) (0.339) (0.368) (0.338) (0.347) (0.338) (0.289)

AR−0.5 0.996 0.991 0.995 0.981 0.995 0.907 0.995 0.993
(0.348) (0.323) (0.348) (0.287) (0.348) (0.239) (0.349) (0.300)

MA0.2 0.824 0.848 0.824 0.818 0.824 0.705 0.832 0.718
(0.391) (0.398) (0.392) (0.384) (0.392) (0.344) (0.392) (0.372)

MA0.5 0.694 0.755 0.700 0.743 0.692 0.646 0.697 0.464
(0.355) (0.374) (0.356) (0.370) (0.355) (0.339) (0.356) (0.309)

0.06

0 0.913 0.911 0.912 0.881 0.922 0.761 0.922 0.884
(0.345) (0.346) (0.346) (0.331) (0.346) (0.297) (0.346) (0.327)

AR0.2 0.794 0.804 0.781 0.776 0.784 0.663 0.790 0.705
(0.337) (0.348) (0.338) (0.342) (0.338) (0.315) (0.338) (0.313)

AR0.5 0.415 0.497 0.395 0.529 0.396 0.450 0.390 0.196
(0.295) (0.320) (0.296) (0.330) (0.295) (0.319) (0.295) (0.244)

AR−0.5 0.999 0.995 0.997 0.988 0.998 0.932 0.998 0.996
(0.304) (0.287) (0.304) (0.262) (0.304) (0.228) (0.304) (0.252)

MA0.2 0.815 0.835 0.817 0.807 0.827 0.682 0.826 0.740
(0.338) (0.348) (0.339) (0.341) (0.338) (0.313) (0.338) (0.313)

MA0.5 0.680 0.740 0.686 0.729 0.683 0.632 0.683 0.480
(0.308) (0.329) (0.310) (0.331) (0.309) (0.310) (0.309) (0.260)

improvements. An exception is the DGP with negative correlation, where the DWB displays coverage that is too high,
independent of the choice of γ . In such cases, the AWB is often more accurate for γ = 0.4. In all other cases, we see that
for both methods, the best performance is similar in magnitude but obtained at a different value of the tuning parameter.
Since the tuning parameters do not have exactly the same meaning in both methods, there is no reason to expect identical
variation. We chose θ = 0.01 to link the two methods; changing this value will likely change the relation between the
methods as well.

Next, we consider the setting with missing data. Given the previous findings, we restrict ourselves to one bandwidth
(h = 0.06) but consider all AR and MA models. The results for pointwise as well as simultaneous coverage probabilities
are given in Table 4; further results, with similar conclusions, are available in Supplementary Appendix C.

The first block presents pointwise coverage, while the second and third blocks show results for the sets Gsub and G.
The AWB performs well even if a significant proportion of the data are missing, as both pointwise and simultaneous
coverage is close to the nominal level for almost all models. There is a significant increase in pointwise coverage for the
cases with strong positive correlation, which is now close to 90%. The same increase is visible for both Gsub and G. This
phenomenon does not come as a surprise, as the missing data points create space between consecutive observations, thus
effectively reducing the serial dependence between observed points. Comparing the AWB with the DWB, we can see that
the coverage is slightly closer to 95% for the AWB in many cases. As before, the best performance is obtained at different
values of γ for the AWB and the DWB. The general pattern, however, is as in the previous setting. The DWB outperforms
the AWB for higher values of γ , while the AWB obtains the most accurate coverage for smaller values of this parameter. A
notable exception is again the DGP with negative autocorrelation. Results for other bandwidths are similar, and presented
in Supplementary Appendix C.

Overall, this simulation study indicates that the autoregressive wild bootstrap performs well in most of our considered
scenarios. The pointwise confidence intervals show coverage close to the nominal level in the presence of heteroskedas-
ticity and serial correlation. In addition, the method still performs well in the presence of missing data. The AWB provides
simultaneous confidence bands with good coverage as long as the correlation does not become too strong. It outperforms
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Table 4
Coverage probabilities (average median interval length) with missing data (h = 0.06).

DGP γ = 0 γ = 0.2 γ = 0.4 γ = 0.6

WB AWB DWB AWB DWB AWB DWB

pw

0 0.960 0.959 0.960 0.949 0.960 0.923 0.961
(0.303) (0.303) (0.303) (0.290) (0.303) (0.264) (0.304)

AR0.2 0.939 0.940 0.937 0.933 0.939 0.906 0.938
(0.297) (0.302) (0.297) (0.295) (0.298) (0.272) (0.298)

AR0.5 0.885 0.897 0.884 0.894 0.883 0.874 0.883
(0.267) (0.280) (0.267) (0.280) (0.267) (0.266) (0.268)

AR−0.5 0.989 0.986 0.989 0.978 0.989 0.957 0.989
(0.271) (0.263) (0.272) (0.246) (0.272) (0.221) (0.272)

MA0.2 0.942 0.945 0.942 0.936 0.943 0.911 0.943
(0.298) (0.302) (0.298) (0.294) (0.297) (0.271) (0.298)

MA0.5 0.924 0.931 0.925 0.926 0.924 0.903 0.924
(0.276) (0.285) (0.275) (0.282) (0.275) (0.263) (0.276)

G

0 0.937 0.936 0.941 0.906 0.937 0.844 0.943
(0.237) (0.237) (0.237) (0.227) (0.237) (0.207) (0.238)

AR0.2 0.898 0.899 0.903 0.863 0.885 0.797 0.888
(0.233) (0.236) (0.233) (0.231) (0.233) (0.213) (0.233)

AR0.5 0.769 0.797 0.773 0.782 0.767 0.716 0.766
(0.209) (0.219) (0.209) (0.219) (0.209) (0.208) (0.209)

AR−0.5 0.988 0.981 0.985 0.968 0.987 0.918 0.985
(0.212) (0.206) (0.213) (0.192) (0.213) (0.173) (0.213)

MA0.2 0.900 0.903 0.901 0.875 0.899 0.813 0.911
(0.233) (0.236) (0.233) (0.230) (0.233) (0.212) (0.233)

MA0.5 0.856 0.873 0.862 0.852 0.861 0.793 0.868
(0.216) (0.223) (0.216) (0.221) (0.215) (0.206) (0.216)

Gsub

0 0.945 0.949 0.953 0.923 0.942 0.890 0.951
(0.273) (0.273) (0.273) (0.262) (0.273) (0.238) (0.274)

AR0.2 0.923 0.919 0.917 0.899 0.911 0.858 0.913
(0.268) (0.273) (0.268) (0.266) (0.268) (0.245) (0.269)

AR0.5 0.828 0.855 0.843 0.844 0.835 0.809 0.834
(0.241) (0.252) (0.241) (0.253) (0.241) (0.240) (0.241)

AR−0.5 0.987 0.982 0.985 0.972 0.985 0.946 0.987
(0.245) (0.237) (0.245) (0.222) (0.245) (0.199) (0.245)

MA0.2 0.918 0.928 0.927 0.903 0.918 0.868 0.926
(0.268) (0.272) (0.268) (0.265) (0.268) (0.244) (0.268)

MA0.5 0.891 0.910 0.904 0.890 0.893 0.857 0.902
(0.248) (0.257) (0.248) (0.254) (0.248) (0.237) (0.249)

the sieve wild bootstrap whenever we could compare results. In comparison to the dependent wild bootstrap, we saw
that both methods provide very similar coverage probabilities, while the DWB produces slightly wider intervals.

6. Trends in atmospheric ethane

We use our methodology to investigate the trending behavior of a time series of atmospheric ethane emissions which
is derived from observations performed at the Jungfraujoch station in the Swiss Alps. This station can be found on
the saddle between the Jungfrau and the Mönch, located at 46.55◦ N, 7.98◦ E, 3580 m altitude. Ethane is the most
abundant hydrocarbon gas in the atmosphere after methane and it is used as a measure of atmospheric pollution. It
contributes to the formation of ground-level ozone and it influences the lifetime of methane which classifies it as an
indirect greenhouse gas. This series, which has been studied by Franco et al. (2015), is available from the Network for the
Detection of Atmospheric Composition Change website at ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/jungfrau/hdf/ftir/. It is
argued in Franco et al. (2015) that the measurement conditions are very favorable at the Jungfraujoch location due to high
dryness and low local pollution. Further details on the ground-based station and on how the measurements are obtained
can be found in the aforementioned reference. It is a time series consisting of daily ethane columns (i.e. the number of
molecules integrated between the ground and the top of the atmosphere) recorded under clear-sky conditions between
September 1994 and August 2014 with a total of 2260 data points. Whenever more than one measurement is taken on
one day, a daily mean is considered.

The average number of data points per year is 112.6 — giving an indication of the severity of the missing data problem
present in this series. This shows that, in line with the above discussion, it is of major importance to use a bootstrap
method which can replicate the missing data pattern correctly. The estimated transition probabilities of a first order
Markov Chain reported in (14) already indicated the presence of (weak) serial dependence in the missing data generating
mechanism. As a further exploration of this mechanism, note that the local constant estimator implicitly provides an

ftp://ftp.cpc.ncep.noaa.gov/ndacc/station/jungfrau/hdf/ftir/
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Fig. 2. Time-varying proportion of non-missing data p̂.

estimator for the smoothly varying proportion of non-missing data p(τ ). We can write (2) as

m̂(τ ) = p̂(τ )−1 1
nh

n∑
t=1

K
(
t/n − τ

h

)
Dtyt , where p̂(τ ) =

1
nh

n∑
t=1

K
(
t/n − τ

h

)
Dt ,

and p̂(τ ) can be seen as an estimator of p(τ ).5 In Fig. 2, we plot p̂(·) as a diagnostic tool to investigate how data availability
evolves over time. It fluctuates around the average proportion of 0.3, with a maximum of almost 0.4 and a minimum of
0.2. Although no overall trend appears to be present, the fluctuations are serious enough to cast doubt on the stationarity
of the missing data generating mechanism; however, our method can handle this without problems.

In addition, the data exhibit strong seasonality, as ethane degrades faster in summer than it does in winter, causing
the series to display peaks during winter and troughs during summer. Franco et al. (2015) take care of this seasonality
with the help of Fourier terms by fitting the following model to ethane measurements xt :

xt =

M∑
j=1

aj cos(2jπ t) + bj sin(2jπ t) + yt . (15)

They continue their analysis with the residuals from this estimation, where M = 3 is selected by inspecting the residual
variance. To investigate the sensitivity of the choice of M , we perform a frequency domain analysis to give more insight
about the form of the periodic pattern present in our data. Due to the missing data, we use the Lomb–Scargle periodogram,
which is suitable in this situation (see Lomb (1976), Scargle (1982)). Fig. 3 plots the periodogram of the Jungfraujoch series
with the frequency, rescaled to years, on the horizontal axis.

The peaks around zero are the smooth long-run trend we model with our trend estimator. The present seasonality
induces additional peaks at higher frequencies. There is a large peak at 1, representing an annual periodicity, which is
so pronounced that it obscures peaks at other frequencies. Therefore, the right panel displays the same spectrum as the
left panel, but with a smaller vertical axis such that other peaks are observed more clearly. Moreover, we can observe
that there are peaks at 2 and 3. They are, however, not as clear-cut as the peak at 1 and might not contribute as much
to the seasonality, yet provide further justification for the choice M = 3. In Supplementary Appendix D, we consider
the periodograms of the residuals of the regression on 1 up to 4 Fourier terms. These show that while inclusion of one
term is clearly needed, including more terms does indeed further reduce periodicity, although for increasing M , the effect
becomes less pronounced.

To corroborate our results and to be able to compare our findings to Franco et al. (2015), we additionally look at the
Akaike and Bayesian information criteria as well as the residual variance (MSE in Franco et al. (2015)) from the above
regression for different values of M . The results are summarized in Table 5. While the Akaike criterion (AIC) is indifferent
between adding 4 or 5 Fourier terms, BIC selects 2. The residual variance (MSE) decreases by only small increments when
more than 3 terms are included. Based on our analysis, it is not clear how many Fourier terms we should include; any
value of M between 1 and 4 seems reasonable. In the following, we report results for applying the trend estimation on
the residuals of the regression with M = 3 Fourier terms, as in Franco et al. (2015). In Supplementary Appendix D we
perform the same analysis with M varying between 1 and 4, with hardly any difference in the results.

We next investigate bandwidth selection. As suggested in Section 3.1, we determine a possible bandwidth using
modified cross-validation. In line with the discussion in Chu and Marron (1991), for our series, the ordinary leave-one-out
cross-validation criterion selects a bandwidth which is too small (hcv = 0.0006). This value for the bandwidth parameter
gives almost no smoothing of the data and the resulting trend curve is too wiggly. Leaving out k = 5 observations on each
side of any point, the modified criterion yields a value of hmcv = 0.03. Albeit a still small bandwidth, this value gives a
much more reasonable picture of the trend estimate. The resulting nonparametric estimate as well as 95% simultaneous

5 Lemma A.4 establishes the consistency of this estimator.
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Fig. 3. The Lomb–Scargle periodogram of the ethane series.

Table 5
Fourier term investigation.
M AIC BIC MSE

1 158447.5 158464.6 2.79909×1030

2 158420.0 158448.6* 2.76038×1030

3 158413.4 158453.5 2.74750×1030

4 158411.3* 158462.8 2.74010×1030

5 158411.3* 158474.3 2.73521×1030

6 158413.7 158488.1 2.73329×1030

7 158416.8 158502.7 2.73219×1030

confidence bands are depicted in Fig. 4. The confidence bands are simultaneous over the whole sample. Although the
validity has not been established, the algorithm works when we cover the whole sample and the results are easier to
interpret. The bands are obtained using B = 999 replications of the bootstrap procedure and an autoregressive parameter
of γ = 0.5.

As a robustness check, we also applied the trend estimation to the data without explicitly modeling the seasonality
using Fourier terms. The nonparametric kernel estimator can be interpreted as a low pass filter which suppresses high
frequency oscillations. A sufficiently large bandwidth should introduce enough smoothing to provide a trend curve which
is not driven by the seasonal component. The bandwidth selected by MCV is too small for this effect to appear in our data.
When we increase the bandwidth to h = 0.06, the resulting trend shows the same pattern as the one in Fig. 4. This analysis
shows that when strong seasonality is present in the data, the nonparametric kernel estimator can be used to filter out
the seasonality if the bandwidth is large enough. In this case, however, bandwidth selection becomes a critical issue and
the proposed MCV criterion should be applied with care. Further details can be found in Supplementary Appendix D.

We observe a slight downward trend of the ethane time series until around 2009, with local peaks in 1998 and 2002–
2003, and an upward trend thereafter. This general development of the trend supports the findings in Franco et al. (2015)
who estimate a linear trend model with a break at the beginning of 2009. They find a negative slope of the trend line
before the break and a positive slope after the break. As mentioned by Franco et al. (2015), the initial downward trend can
be explained by a general emission reduction since the mid 1980s, of the fossil fuel sources in the Northern Hemisphere.
This has also been reported by Simpson et al. (2012). The upward trend seems to be a more recent phenomenon. Studies
attribute it to the recent growth in the exploitation of shale gas and tight oil reservoirs, taking place in North America, see
e.g. Vinciguerra et al. (2015) and Franco et al. (2016). Since previous studies have mainly used methods based on linear
trends, the two local peaks have to our knowledge not yet been analyzed. They can potentially be explained by boreal
forest fires which were taking place mainly in Russia during both periods. Geophysical studies have investigated these
events in association with anomalies in carbon monoxide emissions (Yurganov et al., 2004, 2005). In such fires, carbon
monoxide is co-emitted with ethane, such that these events are likely explanations for the peaks we observe.

As a final step, we look at the standard deviation of the residuals. When estimating it with a nonparametric kernel
smoother, we see a cyclical pattern with upward trend, similar to the process we generate in our simulations. We plot the
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Fig. 4. Trend estimate with uniform 95% confidence bands for ethane concentration at the Jungfraujoch (with bandwidth selected by MCV).

Fig. 5. Estimate of the standard deviation of the residuals, obtained using the local constant kernel smoother with Epanechnikov kernel and h = 0.04.

estimated standard deviation in Fig. 5. This clearly shows that the residuals are heteroskedastic which further underlines
the importance of a flexible bootstrap method.

7. Conclusion

In this paper we have proposed a dependent version of the wild bootstrap, the autoregressive wild bootstrap,
to construct confidence intervals around a nonparametrically estimated trend. Consistency of the bootstrap has been
established such that it can be used to construct pointwise and simultaneous confidence bands. While the pointwise
intervals always show good coverage in finite samples, simulation results for the simultaneous bands indicate that strong
positive autocorrelation leads to a drop in coverage whenever simultaneous confidence bands are considered. However,
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other bootstrap methods such as the dependent wild bootstrap and the sieve bootstrap are equally affected, and overall
the autoregressive wild bootstrap performs at least on par with these other methods, and often outperforms them.

One major advantage of the proposed approach is its broad applicability as it can be used under general forms of
serial dependence and heteroskedasticity. Furthermore, it can be applied without further adjustments when data points
are missing. This feature of the autoregressive wild bootstrap is particularly relevant in economic and climatological
applications where the problem of missing data is often encountered. In addition to simulation results, we provide
a rigorous asymptotic analysis where asymptotically pervasive missing data are allowed for. While the missing data
generating mechanism affects the asymptotic distribution of the estimator, our bootstrap method correctly mimics this
and is therefore valid in the presence of general forms of missing data patterns.

An application to atmospheric ethane measurements from Switzerland demonstrates our methodology. An upward
trend in this time series is an indication of increasing atmospheric pollution and it has been visible in the data for the
last quarter. This finding is in line with previous studies in geophysics and provides further evidence that an increased
activity in shale gas extraction might have caused an increase in the ethane burden measured over the Jungfraujoch. In
addition, we find two local peaks in the ethane series, which can be explained by boreal forest fires. Natural limitations
of linear trend estimation have prevented these peaks from being discovered in previous research. This underlines the
flexibility of our approach compared to parametric methods.

An open end to our analysis is the choice of the autoregressive parameter in the autoregressive wild bootstrap. Although
our simulation results suggest that a range of values for this parameter perform adequately, its selection in practice
remains an open issue. Theoretical results on the choice of this parameter are not trivial; moreover, such theoretical
results do not translate directly into selection methods with good properties in small samples. This issue therefore merits
deeper study and is left as an exercise for future research.
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Appendix A. Technical results

For the remainder of this appendix, we define some further notation that will help lighten the notational load. Define
kt (τ ) = K

( t/n−τ
h

)
and k̃t (τ ) = K

(
t/n−τ

h̃

)
. For any random variable X , let EDX = E(X |{Dt}

n
t=1) and VarDX = ED[X−(EDX)2]2.

Furthermore, let ∥X∥p = (E |X |
p)1/p denote the Lp-norm of X , where we use ∥X∥ as short-hand notation for ∥X∥2, and

define the bootstrap equivalent as ∥X∗∥
∗

p = (E∗ |X∗|
p)1/p. Finally, C, C1, C2, . . . denote arbitrary fixed positive constants

not depending on n or h, whose value can change each line, while φn denotes a generic deterministic sequence with the
property that limn→∞ φn = 0.

A.1. Auxiliary lemmas

We first establish some auxiliary lemmas with basic results that will be needed in the proofs of our main results. The
proofs of these auxiliary lemmas are relegated to Supplementary Appendix B.

Lemma A.1. Let Assumptions 3–4 hold. Then for all n ≥ 1,

(i)
n−1∑
i=0

i max
1≤t≤n−i

Cov(Dt ,Dt+i) ≤ C1;

(ii)
n−1∑
i=0

i max
1≤t≤n−i

Cov(ut , ut+i) ≤ C2;

(iii)
n−1∑
i=0

i max
1≤t≤n−i

Cov(Dtut ,Dt+iut+i) ≤ C3.

Proof of Lemma A.1. See Supplementary Appendix B. □
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Lemma A.2. Under Assumption 5, we have for any δ > 0 that

sup
τ∈[δ,1−δ]

max
0≤i≤n

1
nh

n−i∑
t=1

kt (τ )kt+i(τ ) < ∞.

Proof of Lemma A.2. See Supplementary Appendix B. □

Lemma A.3. Let fn(·) : [0, 1] → R satisfy Assumption 1, and let g(·, ·) : [0, 1]2 → R2 be a Lipschitz continuous function with
Lipschitz constant Cg = sup(τ1,τ2)∈[0,1]2 |gn(τ1, τ2)|. Let Assumption 5 be satisfied. Then, there exists some N > 0, such that for
any 0 < δ < 1/2, all n > N and all i = 0, 1, . . . , n, we have that

(i) sup
τ∈[δ,1−δ]

⏐⏐⏐⏐⏐ 1nh
n∑

t=1

f
(
t
n

)
kt (τ ) − f (τ )κ1 −

1
2
h2f (2)(τ )µ2

⏐⏐⏐⏐⏐ ≤ C max
{
h3,

1
nh

}
;

(ii) sup
τ0∈[δ,1−δ]

sup
τ1,τ2∈[−1,1]

⏐⏐⏐⏐⏐ 1nh
n−i∑
t=1

g
(
t
n
,
t + i
n

)
kt (τ0 + τ1h)kt+i(τ0 + τ2h) − g(τ0, τ0)κ(τ1 − τ2)

⏐⏐⏐⏐⏐
≤ Cg

[
C1i
nh

+ C2 max
{
h,

1
nh2

}
+ Sn(i)

]
,

where, for any sequence {βi}
∞

i=0 with
∑

∞

i=1 |βi| < ∞, we have that
∑

∞

i=1 |βi| Sn,i ≤ φn, where limn→∞ φn = 0.

Proof of Lemma A.3. See Supplementary Appendix B. □

Lemma A.4. Let Assumptions 2–5 be satisfied. Define

Zn,D,f ,q(τ ) =
1

√
nh

n∑
t=1

kt (τ )
[
f
(
t
n

)
− qn(τ )

][
Dt − p

(
t
n

)]
, (A.1)

where f (·) satisfies Assumption 1 and qn(·) : [0, 1] → R is a sequence of deterministic functions with supτ∈[0,1] |qn(τ )| < ∞

for all n. Then, there exists some N > 0, such that for any 0 < δ < 1/2 and all n > N the following hold:
(i) EZn,D,f ,q(τ ) = 0 and

sup
τ∈[δ,1−δ]

⏐⏐EZn,D,f ,l(τ )2 − [f (τ ) − qn(τ )]2ΩD(τ )κ2
⏐⏐ ≤ C max

{
h,

1
nh2 , φn

}
,

where ΩD(τ ) = RD,0(τ , τ ) + 2
∑

∞

i=1 RD,i(τ , τ ) and limn→∞ φn = 0.
(ii) For all τ ∈ (0, 1),

1
nh

n∑
t=1

f
(
t
n

)
kt (τ )Dt − p(τ )f (τ ) −

1
2
h2

[fp](2)(τ )µ2 =
Zn,D,f ,0(τ )

√
nh

+ Rn,D(τ ),

where Zn,D,f ,0(τ ) is defined as in (A.1) with qn(·) = 0 and supτ∈[δ,1−δ]

⏐⏐Rn,D(τ )
⏐⏐ < C max

{
h3, 1

nh

}
.

(iii) Let g̃i(·, ·) be a Lipschitz continuous function with Lipschitz constant Cg (i) = sup(τ1,τ2)∈[0,1]2
⏐⏐g̃i(τ1, τ2)⏐⏐. Then for all

i = 0, 1, . . . , n − 1,

sup
τ∈[δ,1−δ]

sup
τ1,τ2∈[−1,1]

E

⏐⏐⏐⏐⏐ 1nh
n∑

t=1

g̃i

(
t
n
,
t + i
n

)
kt (τ0 + τ1h)kt+i(τ0 + τ2h)DtDt+i − p(τ0)g̃(τ0, τ0)κ(τ1 − τ2)

⏐⏐⏐⏐⏐
≤ Cg (i)

[
C1

√
nh

+ C2 max
{
h,

1
nh2

}
+ Sn(i)

]
,

where Sn(i) is defined in Lemma A.3.

Proof of Lemma A.4. See Supplementary Appendix B. □

Lemma A.5. Let Assumptions 1–6 hold. Then, for all 0 ≤ i ≤ n − 1 and any 0 < δ < 1/2,

sup
τ∈[δ,1−δ]

E

⏐⏐⏐⏐⏐ 1nh
n−i∑
t=1

kt (τ )kt+i(τ )σtσt+iDtDt+i [utut+i − Eutut+i]

⏐⏐⏐⏐⏐ ≤ βiφn +
ηn

√
nh
,

where
∑

∞

i=1 βi < ∞, limn→∞ φn = 0 and lim supn→∞ ηn < ∞.

Proof of Lemma A.5. See Supplementary Appendix B. □
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A.2. Pointwise results

Lemmas A.6 and A.7 decompose the (bootstrap) estimator in the relevant components, establishing not only consis-
tency but also providing the necessary building blocks towards asymptotic normality. We therefore present these lemmas
and their proofs together with the proofs of Theorems 1 and 2.

Lemma A.6. Let Assumptions 1–6 be satisfied. Then, for some N > 0 and any 0 < δ < 1/2, we have for all τ ∈ (0, 1) and
n > N that

√
nh
[
m̂(τ ) − m(τ ) − h2Bas(τ )

]
= p(τ )−1Zn,U (τ ) + Rn(τ ),

where Bas(τ ) is defined in (8),

Zn,U (τ ) =
1

√
nh

n∑
t=1

kt (τ )Dtσtut , (A.2a)

σ 2
Z (τ ) = plim

n→∞

Var
[
Zn,U (τ )

⏐⏐{Dt}
n
t=1

]
= p(τ )σ (τ )2ΩUκ2, (A.2b)

sup
τ∈[δ,1−δ]

∥Rn(τ )∥ ≤ C max
{
h2,

√

nh7,
1

√
nh

}
. (A.2c)

Proof of Lemma A.6. Defining

p̂(τ ) =
1
nh

n∑
t=1

kt (τ )Dt , m̆(τ ) =
1
nh

n∑
t=1

kt (τ )Dtyt ,

mD(τ ) =
1
nh

n∑
t=1

kt (τ )Dtm(t/n) mp(τ ) =
1
nh

n∑
t=1

kt (τ )p(t/n)m(t/n),

and realizing that Zn,U (τ ) =
√
nh
[
m̆(τ ) − mD(τ )

]
, we can write

√
nh
[
m̂(τ ) − m(τ ) − h2Bas(τ )

]
= p(τ )−1Zn,U (τ ) + [p̂(τ )−1

− p(τ )−1
]Zn,U (τ )/

√
nh

+
√
nh
{
p̂(τ )−1mD(τ ) − p(τ )−1mp(τ )

}
+

√
nh
{
p(τ )−1mp(τ ) − m(τ ) − h2Bas(τ )

}
= p(τ )−1Zn,U (τ ) + In(τ ) + IIn(τ ) + IIIn(τ ).

(A.3)

We first derive σ 2
Z (τ ). Let ED(·) = E(·|{Dt}

n
t=1). Then EDZn,U (τ ) = 0 and

EDZn,U (τ )2 =
1
nh

n∑
s=1

n∑
t=1

ks(τ )kt (τ )DsDtσsσtEusut

=
1
nh

n−1∑
i=−n+1

RU (i)
n−|i|∑
t=1

kt (τ )kt+|i|(τ )σtσt+|i|DtDt+|i|.

Using Lemma A.4(iii) with g̃i(τ1, τ2) = σ (τ1)σ (τ2), we find that

sup
τ∈[δ,1−δ]

E

⏐⏐⏐⏐⏐
n−1∑

i=−n+1

RU (i)
1
nh

n−|i|∑
t=1

kt (τ )kt+|i|(τ )σtσt+|i|DtDt+|i| − p(τ )σ (τ )2κ2ΩU

⏐⏐⏐⏐⏐
≤ 2

n−1∑
i=0

|RU (i)|
[

C1
√
nh

+ C2 max
{
h,

1
nh2

}
+ Sn(i)

]
+ 2

∞∑
i=n

|RU (i)| ,

≤
C3

√
nh

+ C4 max
{
h,

1
nh2

}
+ C5φn.

where limn→∞ φn = 0, from which it follows that, for τ ∈ (0, 1), E
⏐⏐EDZn,U (τ )2 − σ 2

Z (τ )
⏐⏐ ≤ C max{(nh)−1/2, h, n−1h2, φn} =

o(1), where σ 2
Z (τ ) is defined in (A.2b).

Furthermore, by the arguments used above it follows that supτ∈[δ,1−δ]

Zn,U (τ ) ≤ C , while by Lemma A.4(i)p̂(τ ) − p(τ )
 ≤

1
√
nh

Zn,D(τ )+ C1h2
+ C2 max

{
h3,

1
nh

}
≤ C3 max

{
1

√
nh
, h2
}
.
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By combining these results with the fact that
p̂(τ )−1

≤ 1/ϵ∗ by Assumption 6, we find that

sup
τ∈[δ,1−δ]

∥In(τ )∥ ≤ sup
τ∈[δ,1−δ]

p̂(τ ) − p(τ )
 p̂(τ )−2

 ⏐⏐p(τ )−2
⏐⏐ Zn,U (τ ) ≤ C4 max

{
1

√
nh
, h2
}
.

For IIn(τ ) we note that

p̂(τ )−1
− p(τ )−1

= p(τ )−2 {p(τ ) − p̂(τ )
}

+ p̂(τ )−1p(τ )−2 {p(τ ) − p̂(τ )
}2
, (A.4)

such that we can rewrite IIn(τ ) as

IIn(τ )/
√
nh = p(τ )−1 {mD(τ ) − mp(τ )

}
+
{
p̂(τ )−1

− p(τ )−1}mp(τ )

+
{
p̂(τ )−1

− p(τ )−1} {mD(τ ) − mp(τ )
}

= p(τ )−1 {mD(τ ) − mp(τ )
}

− p(τ )−2 {p̂(τ ) − p(τ )
}
mp(τ )

+ p̂(τ )−1p(τ )−2 {p̂(τ ) − p(τ )
}2 mp(τ ) +

{
p̂(τ )−1

− p(τ )−1} {mD(τ ) − mp(τ )
}

=
[
IIn,11(τ ) − IIn,12(τ ) + IIn,2(τ ) + IIn,3(τ )

]
/
√
nh.

As IIn,11(τ ) = p(τ )−1 1
√
nh

∑n
t=1 kt (τ )m(t/n) [Dt − p(t/n)] and IIn,12(τ ) = p(τ )−2mp(τ ) 1

√
nh

∑n
t=1 kt (τ ) × [Dt − p(t/n)], we

can write

IIn,1(τ ) = IIn,11(τ ) − IIn,12(τ ) = p(τ )−1 1
√
nh

n∑
t=1

kt (τ )
[
m(t/n) − p(τ )−1mp(τ )

]
[Dt − p(t/n)]

= p(τ )−1Zn,D(τ ),

where Zn,D(τ ) is defined as Zn,D,f ,q(τ ) in Lemma A.4(i) with f (·) = m(·) and qn(·) = p(·)−1mp(·). Applying this lemma we
find that

sup
τ∈[δ,1−δ]

⏐⏐⏐EZn,D(τ )2 −
[
m(τ ) − p(τ )−1mp(τ )

]2
ΩD(τ )κ2

⏐⏐⏐ ≤ C max{h, n−1h2
} + φn.

As
⏐⏐x2 − y2

⏐⏐ ≤ |x − y| (|x − y| + 2 |y|), it follows from Lemma A.3(i) that⏐⏐⏐[m(τ ) − p(τ )−1mp(τ )
]2

− h4Bas(τ )2
⏐⏐⏐ ≤ C max{h3, (nh)−1

}
[
C max{h3, (nh)−1

} + 2h2Bas(τ )
]

≤ C1 max{h5, n−1h, (nh)−2
},

and therefore, with σ 2
D (τ ) = h4Bas(τ )2ΩD(τ )κ2,

sup
τ∈[δ,1−δ]

⏐⏐EZn,D(τ )2 − σ 2
D (τ )

⏐⏐ ≤ C1 max{h5, n−1h, (nh)−2
} + C2φn.

It then follows directly that

sup
τ∈[δ,1−δ]

IIn,1(τ ) ≤
1
ϵ∗

(
sup

τ∈[δ,1−δ]

⏐⏐EZn,D(τ )2 − σ 2
D (τ )

⏐⏐1/2 + sup
τ∈[δ,1−δ]

|σD(τ )|
)

≤ C max

{
h2,

√
h
n
,
1
nh

}
.

As supτ∈[δ,1−δ]

p̂(τ ) − p(τ )
 ≤ C max

{
h2, 1

√
nh

}
, it follows that supτ∈[δ,1−δ]

IIn,2(τ ) ≤ C max
{√

nh9, 1
√
nh

}
. Further-

more, by Lemma A.4(i),
mD(τ ) − mp(τ )

 ≤
1

√
nh

Zn,D,m,0(τ ) ≤
C

√
nh
, such that it also follows that

sup
τ∈[δ,1−δ]

IIn,3(τ ) ≤ C sup
τ∈[δ,1−δ]

p̂(τ ) − p(τ )
 m|D(τ ) − mp(τ )

 ≤ C max
{
h2,

1
√
nh

}
.

Finally, it follows directly from Lemma A.3(i) that supτ∈[δ,1−δ] |IIIn(τ )| ≤ C max
{√

nh7, 1
√
nh

}
. Collecting all remainder

terms in Rn(τ ) = In,1(τ ) + IIn,2(τ ) + IIn,3(τ ) + IIIn(τ ), we find that supτ∈[δ,1−δ] ∥Rn(τ )∥ ≤ C max
{
h2,

√
nh7, 1

√
nh

}
. □

Proof of Theorem 1. Given Lemma A.6, we only have to prove asymptotic normality of Zn,U (τ ) =
1

√
nh

∑n
t=1 kt (τ )Dtσtut .

To simplify the proofs, we first condition on {Dt}
n
t=1 and thus prove conditional asymptotic normality of Zn,U (τ ) =

1
√
nh

∑n
t=1 kt (τ )Dtσtut . As before, let ED(·) = E(·|{Dt}

∞

t=1). As the limit results do not depend on {Dt}
n
t=1, the results then

directly hold unconditionally as well.
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Take an M such that M → ∞ as n → ∞, and truncate the MA(∞) representation of ut at M lags, say ut,M =∑M
j=1 ψjϵt−j. Then we can write

Zn(τ ) =
1

√
nh

n∑
t=1

kt (τ )Dtσtut,M +
1

√
nh

n∑
t=1

kt (τ )Dtσt

∞∑
j=M+1

ψjϵt−j

= Zn,M (τ ) + W n,M (τ ).

Let RW (k) = E
(∑

∞

j=M+1 ψjϵt−j
) (∑

∞

j=M+1 ψjϵt+k−j
)

= σ 2
ε

∑
∞

j=M+1 ψjψj+|k|. Then

EDW
2
n,M = (nh)−1

n∑
t=1

n∑
s=1

DtDsσtσskt (τ )ks(τ )RW (t − s)

≤ 2(nh)−1 sup
τ∈[0,1]

σ (τ )2
n∑

i=0

n−i∑
t=1

kt (τ )kt+i(τ ) |RW (i)|

≤ 2C sup
τ∈[0,1]

σ (τ )2
∞∑
i=0

⏐⏐⏐⏐⏐⏐
∞∑

j=M+1

ψjψj+i

⏐⏐⏐⏐⏐⏐ ≤ 2C sup
τ∈[0,1]

σ (τ )2

⎛⎝ ∞∑
j=M+1

⏐⏐ψj
⏐⏐⎞⎠2

= o(M−2),

which follows as 0 ≤ DtDt+i ≤ 1, by Lemma A.2 and the fact that the summability condition in Assumption 3 implies that∑
∞

j=M+1

⏐⏐ψj
⏐⏐ = o(M−1). As EDW n,M = 0, the Markov inequality implies that the truncation is asymptotically negligible.

We next split Zn,M (τ ) into two sequences of blocks: one with small, negligible blocks Yn,j(τ ) and one with dominating
blocks Xn,j(τ ). Define Bj = (j − 1)(a + b), then

Xn,j(τ ) =
1

√
nh

Bj+a∑
t=Bj+1

kt (τ )Dtσtut,M , Yn,j(τ ) =
1

√
nh

Bj+a+b∑
t=Bj+a+1

kt (τ )Dtσtut,M ,

such that Zn,M (τ ) =
∑k

j=1 Xn,i(τ ) +
∑k

i=1 Yn,i(τ ), where k = ⌈n/(a + b)⌉, and the final block is truncated to have n
observations in total. Now take sequences a = a(n) and b = b(n) → ∞ such that a/(nh)+M/a → 0 and b/a+M/b → 0
as n → ∞.

We first show that the small blocks are asymptotically negligible. First note that ED

(∑k
i=1 Yn,i(τ )

)
= 0. Consider

n large enough such that a > M and the blocks Yn,i are mutually independent conditionally on {Dt}
n
t=1. Then, with

RM (i) = Eut,Mut+i,M , where
∑

∞

i=0 |RM (i)| < ∞ by Assumption 3, we have that

ED

⎛⎝ k∑
j=1

Yn,j(τ )

⎞⎠2

=

k∑
j=1

EDYn,j(τ )2 =
1
nh

k∑
j=1

Bj+a+b∑
s,t=Bj+a+1

ks(τ )kt (τ )DsDtσsσtRM (s − t)

≤ 2C
1
nh

b−1∑
i=0

|RM (i)|
k∑

j=1

Bj+a+b−i∑
t=Bj+a+1

kt (τ )kt+i(τ ) ≤ C1
1
nh

max
0≤i≤b−1

k∑
j=1

Bi+a+b−i∑
t=Bi+a+1

kt (τ )kt+i(τ )

≤ C2
kbh
nh

≤ C3
b
a

= o(1),

where we use that
∑k

j=1
∑Bi+a+b−i

t=Bi+a+1 kt (τ )kt+i(τ ) ≤ Ckbh and k ∼ an.

We next employ the Lindeberg central limit theorem (see e.g. Davidson, 2002, Thm 23.6) to show that
∑k

j=1 Xn,j(τ )
d

−→

N (0, p(τ )2σ 2
as(τ )). Consider again n sufficiently large such that b > M and the blocks Xn,i(τ ) are conditionally independent.

Then ED
∑k

j=1 Xn,j(τ ) = 0 and

ED

⎛⎝ k∑
j=1

Xn,j(τ )

⎞⎠2

=

k∑
j=1

EDXn,j(τ )2 =
1
nh

k∑
i=1

Bj+a∑
s,t=Bj+1

ks(τ )kt (τ )DsDtσsσtRM (s − t)

=
1
nh

k∑
j=1

a−1∑
i=−a+1

RM (i)
Bj+a−|i|∑
t=Bj+1

kt (τ )kt+|i|(τ )σtσt+|i|DtDt+|i|.

As M → ∞, RM (k) → RU (k). A straightforward extension of Lemma A.4 then shows that ED

(∑k
j=1 Xn,j(τ )

)2 p
−→

p(τ )σ (τ )2Ωκ2.
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The final step is to verify the Lindeberg condition, that is, we verify that, for every κ > 0,
∑k

j=1 ED

[
Xn,j(τ )2

ω2
n

1

(⏐⏐⏐ Xn,i(τ )ωn

⏐⏐⏐
> κ)] = op(1), with ω2

n = ED

(∑k
j=1 Xn,j(τ )

)2
. Note that

k∑
j=1

ED

[
Xn,j(τ )2

ω2
n

1

(⏐⏐⏐⏐Xn,i(τ )
ωn

⏐⏐⏐⏐ > κ

)]
≤

1
κ2ω4

n

k∑
j=1

EDXn,j(τ )4

and define X̃t (τ ) = Dtkt (τ )σtut,M , which, due to the M-dependence of ut,M , is an L4-mixingale with EDX̃4
t ≤ Ckt (τ )4Eu4

t,M ,
where it follows from Minkowski’s inequality that

Eu4
t,M ≤

⎛⎝ M∑
j=0

(
E
⏐⏐ψjεt−j

⏐⏐4)1/4⎞⎠4

≤ CEε4t

⎛⎝ M∑
j=0

ψj

⎞⎠4

< ∞, (A.5)

by stationarity of {εt} and Eε4t < ∞. Lemma 2 of Hansen (1991) then implies that

EDXn,j(τ )4 = ED

⏐⏐⏐⏐⏐⏐ 1
√
nh

Bj+a∑
t=Bj+1

X̃t (τ )

⏐⏐⏐⏐⏐⏐
4

≤ C
1

(nh)2

⎛⎝ Bj+a∑
t=Bj+1

kt (τ )2

⎞⎠2

.

As the blocks are non-overlapping, it follows from the properties of the kernel function and the cr -inequality that

k∑
j=1

⎛⎝ Bj+a∑
t=Bj+1

kt (τ )2

⎞⎠2

≤ a
k∑

j=1

Bj+a∑
t=Bj+1

kt (τ )4 ≤ Cnha.

Therefore, with ω−2
n = O(1) and a = o(nh),

∑k
i=1 ED

[
Xn,i(τ )2

ω2
n

1

(⏐⏐⏐ Xn,i(τ )ωn

⏐⏐⏐ > κ

)]
≤

Ca
ω4
nnh

= o(1). □

Lemma A.7. Let Assumptions 1–8 hold. Then, for any 0 < δ < δ∗ < 1
2 and some N > 0, it holds for all τ ∈ [δ∗, 1 − δ∗

] and
n > N that

√
nh
[
m̂∗(τ ) − m̃(τ ) − h2Bas(τ )

]
= p(τ )−1Z∗

n,U (τ ) + R∗

n(τ ),

where

Z∗

n,U (τ ) =
1

√
nh

n∑
t=1

kt (τ )Dtztξ ∗

t (A.6a)

plim
n→∞

Var∗Z∗

n,U (τ ) = σ 2
Z (τ ) (A.6b)

sup
τ∈[δ∗,1−δ∗]

E
R∗

n(τ )
∗

≤ C max

{
1

√
nh
,
√

nh7,

√
hh̃−1,

√
nh5h̃4, h̃2,

√
ℓh̃4,

√
ℓ

nh̃

}
, (A.6c)

and Bas(τ ) and σ 2
Z (τ ) are defined in (8) and (A.2b) respectively.

Proof of Lemma A.7. Analogously to the proof of Lemma A.6, we define

m̆∗(τ ) =
1
nh

n∑
t=1

kt (τ )Dty∗

t , m∗

D(τ ) =
1
nh

n∑
t=1

kt (τ )Dtm̃
(
t
n

)

m∗

p(τ ) =
1
nh

n∑
t=1

p
(
t
n

)
kt (τ )m̃

(
t
n

)
,

such that we can write
√
nh
[
m̂∗(τ ) − m̃(τ ) − h2Bas(τ )

]
=

√
nhp̂(τ )−1 {m̆∗(τ ) − m∗

D(τ )
}

+
{
p̂(τ )−1m∗

D(τ ) − p(τ )−1m∗

p(τ )
}

+
√
nh
{
p(τ )−1m∗

p(τ ) − m̃(τ ) − h2Bas(τ )
}

= p(τ )−1Z∗

n,U (τ ) + I∗n (τ ) + II∗n (τ ) + III∗n (τ )

(A.7)

As a general observation, note that taking the sums in the expressions above from t = 1 to n appears to include
the boundary points for m̃(·), for which the properties of the estimator are not satisfied. However, as we consider
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τ ∈ [δ∗, 1 − δ∗
] and m̃

( t
n

)
is always multiplied by kt (τ ), kt (τ ) = 0 at all points t

n < δ and t
n > 1 − δ for large enough n,

and therefore

1
nh

n∑
t=1

kt (τ )m̃
(
t
n

)
=

1
nh

[n(1−δ)]∑
t=[nδ]+1

kt (τ )m̃
(
t
n

)
,

and analogously for all related sums. Hence, in the following we simply take sums from t = 1 to n, under the implicit
assumption that n is large enough to do so.

We now first derive (A.6b). With E∗Z∗

n,U (τ )
2

=
1
nh

∑n−1
i=−n+1

∑n−|i|
t=1 kt (τ )kt+|i|(τ )DtDt+|i|ztzt+|i|γ

|i|, it follows from
Lemma A.5 and the fact that

∑
∞

i=0 γ
i
=

1
1−θ1/ℓ

= −ℓ/ln θ + o(ℓ),

E
⏐⏐E∗Z∗

n,U (τ )
2
− EDE∗Z∗

n,U (τ )
2
⏐⏐ ≤ φn

∞∑
i=0

γ iβi +
ηn

√
nh

∞∑
i=0

γ i
≤

Cℓ
√
nh

= o(1).

Furthermore

EDE∗Z∗

n,U (τ )
2

=
1
nh

n−1∑
i=−n+1

RU (i)
n−|i|∑
t=1

kt (τ )kt+|i|(τ )DtDt+|i|σtσt+|i|γ
|i|

= EDZ2
n,U +

1
nh

n−1∑
i=−n+1

RU (i)
n−|i|∑
t=1

kt (τ )kt+|i|(τ )σtσt+|i|DtDt+|i|(γ |i|
− 1)

where Zn,U is defined in Lemma A.6. For the second term, take M = M(n) such that 1/M + M2/ℓ → 0 as n → ∞, then
we have that

sup
τ∈[δ∗,1−δ∗]

⏐⏐⏐⏐⏐ 1nh
n−1∑

i=−n+1

RU (i)(γ |i|
− 1)

n−|i|∑
t=1

kt (τ )kt+|i|(τ )σtσt+|i|DtDt+|i|

⏐⏐⏐⏐⏐
≤ C

M∑
i=1

RU (i)
⏐⏐θ i/ℓ − 1

⏐⏐+ C
n−1∑

i=M+1

RU (i)
⏐⏐θ i/ℓ − 1

⏐⏐
≤ C1

M∑
i=1

(1 − θ i/ℓ) + C2

∞∑
i=M+1

RU (i) = o(1),

as
∑M

i=1(1 − θ i/ℓ) ≤ C
∑M

i=1(− ln θ )i/ℓ ≤ C1M2/ℓ = o(1) and
∑

∞

i=M+1 RU (i) = o(M−1). It then follows directly from the
proof of Lemma A.6 that plimn→∞ Var∗Z∗

n,U (τ ) = σ 2
Z (τ ) for all τ ∈ [δ∗, 1 − δ∗

].
Now consider I∗n (τ ), which we write as

I∗n (τ ) =
[
p̂(τ )−1

− p(τ )−1] Z∗

n,U (τ ) +
1

√
nh

n∑
t=1

kt (τ )
[
m
(
t
n

)
− m̃

(
t
n

)]
Dtξ

∗

t

= I∗n,1(τ ) + I∗n,2(τ ).

It follows directly as in the proof of Lemma A.6 and using Jensen’s inequality that supτ∈[δ∗,1−δ∗] E
I∗n,1(τ )∗

≤ C max
{
h2,

1
√
nh

}
. Furthermore, as

E∗I∗n,2(τ )
2

=
1

(nh)2

n∑
s=1

n∑
t=1

ks(τ )kt (τ )
[
m̃
( s
n

)
− m

(
t
n

)][
m̃
(
t
n

)
− m

(
t
n

)]
γ |s−t|DsDt ,

it follows from Jensen’s and the Cauchy–Schwarz inequality that

E
I∗n,2(τ )∗

≤

[
2
nh

n−1∑
i=0

γ i
n−i∑
t=1

kt (τ )kt+i(τ )
m̃( t

n

)
− m

(
t
n

) m̃( t + i
n

)
− m

(
t + i
n

)
]1/2

≤ C

[
sup

supτ∈[δ,1−δ]

m̃(τ ) − m(τ )
2 ∞∑

i=0

γ i

]1/2

≤ C1
√
ℓmax

{
h̃2,

1√
nh̃

}
,
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as, using Lemma A.6,

sup
τ∈[δ,1−δ]

m̃(τ ) − m(τ )
 ≤ h̃2 sup

τ∈[δ,1−δ]
|Bas(τ )| +

1√
nh̃

sup
τ∈[δ,1−δ]

Zn,U (τ )
+

1√
nh̃

sup
τ∈[δ,1−δ]

∥Rn(τ )∥ ≤ C max

{
h̃2,

1√
nh̃

}
.

(A.8)

As in the proof of Lemma A.6, write II∗n (τ ) as

II∗n (τ ) = p(τ )−1 {m∗

D(τ ) − p(τ )−1p̂(τ )m∗

p(τ )
}

+ p̂(τ )−1p(τ )−2 {p̂(τ ) − p(τ )
}2 m∗

p(τ )

+
{
p̂(τ )−1

− p(τ )−1} {m∗

D(τ ) − m∗

p(τ )
}

= II∗n,1(τ ) + II∗n,2(τ ) + II∗n,3(τ ),

where II∗n,1(τ ) = p(τ )−1Z∗

n,D(τ ) and Z∗

n,D(τ ) =
1

√
nh

∑n
t=1 kt (τ )

[
m̃
( t
n

)
− p(τ )−1m∗

p(τ )
] [

Dt − p
( t
n

)]
. Define Zn,D(τ ) =

1
√
nh

∑n
t=1 kt (τ )

[
m
( t
n

)
− p(τ )−1mp(τ )

] [
Dt − p

( t
n

)]
. Then

Z∗

n,D(τ ) − Zn,D(τ ) =
1

√
nh

n∑
t=1

kt (τ )
[
m̃
(
t
n

)
− m

(
t
n

)][
Dt − p

(
t
n

)]

+
1

√
nh

p(τ )−1 [m∗

p(τ ) − mp(τ )
] n∑

t=1

kt (τ )
[
Dt − p

(
t
n

)]
= II∗n,11(τ ) + II∗n,12(τ ).

(A.9)

It follows directly by (A.8) that

II∗n,11(τ ) ≤

(
sup

τ∈[δ∗,1−δ∗]

m̃(τ ) − m(τ )
2 n−1∑

i=−n+1

1
nh

n−|i|∑
t=1

kt (τ )kt+|i|(τ )
⏐⏐Cov(Dt ,Dt+|i|)

⏐⏐)1/2

≤ C max

{
h̃2,

1√
nh̃

}
.

Furthermore, as

sup
τ∈[δ∗,1−δ∗]

m∗

p(τ ) − mp(τ )
 ≤ sup

τ∈[δ∗,1−δ∗]

m̃n(τ ) − m(τ )
 sup
τ∈[δ∗,1−δ∗]

1
nh

n∑
t=1

p
(
t
n

)
kt (τ )

≤ C max

{
h̃2,

1√
nh̃

}

and 1
√
nh

∑n
t=1 kt (τ )

[
Dt − p

( t
n

)] ≤ C1 by Lemma A.4(i), it follows that supτ∈[δ∗,1−δ∗]

II∗n,12(τ ) ≤ C max
{
h̃2, 1√

nh̃

}
as

well. As it was shown in Lemma A.6 that
Zn,D(τ ) ≤ Ch2, it follows that

II∗n,1(τ ) ≤ C max
{
h̃2, 1√

nh̃

}
.

As supτ∈[δ,1−δ]

m∗

p(τ ) − mp(τ )
 ≤ C max

{
h̃2, 1√

nh̃

}
, it follows as in the proof of IIn,2(τ ) in Lemma A.6 that

supτ∈[δ∗,1−δ∗]II∗n,2(τ ) ≤ C max
{√

nh9, 1
√
nh

}
, while m∗

D(τ ) − m∗

p(τ ) = mD(τ ) − mp(τ ) + II∗n,11(τ ), and II∗n,11(τ ) is defined in (A.9).

Therefore it follows directly as in the proof of IIn,3(τ ) in Lemma A.6 that supτ∈[δ,1−δ]

II∗n,3(τ ) ≤ C max
{
h̃2, 1

√
nh

}
.

It follows from Lemma A.6 that m̃(τ ) = m(τ )+ h̃2Bas + R̃n(τ ), where supτ∈[δ,1−δ]

R̃n(τ )
 ≤

C√
nh̃
. Substituting this into

III∗n (τ ) we find that

III∗n (τ ) =

[
p(τ )−1 1

√
nh

n∑
t=1

p
(
t
n

)
kt (τ )m

(
t
n

)
− m(τ ) − h2Bas(τ )

]

+ h̃2

[
p(τ )−1 1

√
nh

n∑
t=1

p
(
t
n

)
kt (τ )Bas

(
t
n

)
− Bas(τ )

]
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+

[
p(τ )−1 1

√
nh

n∑
t=1

p
(
t
n

)
kt (τ )R̃n

(
t
n

)
− R̃n(τ )

]
= III∗n,1(τ ) + III∗n,2(τ ) + III∗n,3(τ ).

Note that III∗n,1(τ ) is equal to IIIn(τ ) defined in Lemma A.6, such that supτ∈[δ∗,1−δ∗]

⏐⏐III∗n,1(τ )⏐⏐ ≤ C max
{√

nh7, 1
√
nh

}
.

Furthermore, using the definition of Bas(τ ) in (8), we can write

1
√
nh

n∑
t=1

p
(
t
n

)
kt (τ )Bas

(
t
n

)
=

1
2
µ2

1
√
nh

n∑
t=1

kt (τ )f
(
t
n

)
,

where f (τ ) = p(τ )−1 [mp](2) (τ ) is Lipschitz continuous. Then, by Lemma A.3(i) it follows that⏐⏐III∗n,2(τ )⏐⏐ ≤ C
√
nhh̃2

⏐⏐⏐⏐⏐ 1nh
n∑

t=1

kt (τ )f
(
t
n

)
− f (τ )

⏐⏐⏐⏐⏐ ≤ C1 max

{
h̃2

√
nh
,

√
nh5h̃4

}
.

Finally, for III∗n,3(τ ) we have

III∗n (τ ) ≤ C
√
nh sup

τ∈[δ,1−δ]

R̃n(τ )
 1
nh

n∑
t=1

k2t (τ ) +

R̃n(τ )
 ≤ C1

√
h

h̃
+

C2√
nh̃
.

Collecting all remainder terms, it then follows that

sup
τ∈[δ∗,1−δ∗]

E
R∗

n(τ )
∗

≤ C max

{
1

√
nh
,
√

nh7,

√
h

h̃
,

√
nh5h̃4, h̃2,

√
ℓh̃4,

√
ℓ

nh̃

}
. □ □

Proof of Theorem 2. Given Lemma A.7, we only have to prove asymptotic normality of Z∗

n,U (τ ). As in the proof of
Theorem 1, we establish asymptotic normality of the bootstrap process using a blocking technique. By the stationarity of
ξ ∗
t , we can write ξ ∗

t =
∑

∞

j=0 γ
jν∗

t−j with ν∗
t for t ≤ 1 defined analogously as for t > 1. Take an M such that M/ℓ → ∞ as

n → ∞, and truncate the MA(∞) representation of ξ ∗
t at M lags to define ξ ∗

t,M =
∑M

j=0 γ
jν∗

t−j. Then we write

Z∗

n,U (τ ) =
1

√
nh

n∑
t=1

kt (τ )Dtztξ ∗

t,M +
1

√
nh

n∑
t=1

kt (τ )Dtzt

⎛⎝ ∞∑
j=M+1

γ jν∗

t−j

⎞⎠
= Z

∗

n,M (τ ) + W
∗

n,M (τ ).

Applying Markov’s inequality twice, we have that

EE∗W
∗

n,M (τ )2 ≤
2
nh

(1 − γ 2)
n−1∑
i=0

|RU (i)|
n−i∑
t=1

kt (τ )kt+i(τ )

⎛⎝ ∞∑
j=M+1

γ 2j+i

⎞⎠
≤ Cγ 2M

∞∑
i=0

γ i
|RU (i)| = Cθ2M/ℓ

∞∑
i=0

θ i/ℓ |RU (i)| ≤ C1θ
2M/ℓ

= o(1),

as M/ℓ → ∞. It then follows that W
∗

n,M (τ ) = o∗
p(1) for all τ ∈ [δ∗, 1 − δ∗

].
Now let Z t,M (τ ) =

∑k
j=1 X

∗

n,j(τ ) +
∑k

j=1 Yn,j(τ ), where

X∗

n,j(τ ) =
1

√
nh

Bj+a∑
t=Bj+1

kt (τ )Dtztξ ∗

t,M , Yn,j(τ ) =
1

√
nh

Bj+a+b∑
t=Bj+a+1

kt (τ )Dtztξ ∗

t,M ,

with Bj = (j − 1)(a + b) and k = ⌈n/(a + b)⌉. Take sequences a = a(n) and b = b(n) such that a/(nh) + M/a → 0 and
b/a + M/b → 0 as n → ∞.

We first show that
∑k

j=1 Y
∗

n,i(τ ) = o∗
p(1). Consider n large enough such that a(n) > M and the blocks Yn,i are mutually

independent conditionally on the original data. Then, with

R∗

M (i) = E∗ξ ∗

t ξ
∗

t+|i| = (1 − γ 2)
M∑
j=0

γ jγ j+|i|
= θ |i|/ℓ(1 − θ2(M+1)/ℓ) ≤ θ |i|/ℓ
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for |i| ≤ M − 1, we have that

EE∗

⎛⎝ k∑
j=1

Y ∗

n,j(τ )

⎞⎠2

=

k∑
j=1

E∗Yn,j(τ )2 ≤
1
nh

b−1∑
i=−b+1

θ i/ℓRU (i)
k∑

j=1

Bj+a+b−|i|∑
t=Bj+a+1

kt (τ )kt+|i|(τ )

≤ C1
b
a

= o(1).

As in the proof of Theorem 1, we employ the Lindeberg CLT to establish asymptotic normality of
∑k

j=1 X
∗

n,j(τ ), as for
n sufficiently large, b > M and the blocks X∗

n,j(τ ) are independent. First we show that the asymptotic variance is equal to
p(τ )2σ 2

as(τ ). Note that E∗
∑k

j=1 X
∗

n,j(τ ) = 0 and

E∗

⎛⎝ k∑
j=1

X∗

n,j(τ )

⎞⎠2

=
1
nh

a−1∑
i=−a+1

R∗

M (i)RU (i)
k∑

j=1

Bj+a−|i|∑
t=Bj+1

kt (τ )kt+|i|(τ )DtDt+|i|σtσt+|i|

+
1
nh

a−1∑
i=−a+1

k∑
j=1

Bj+a−|i|∑
t=Bj+1

kt (τ )kt+|i|(τ )DtDt+|i|σtσt+|i|R∗

M (i)
[
utut+|i| − RU (i)

]
= A∗

X,n(τ ) + B∗

X,n(τ ).

By adapting Lemma A.5, we find that

E
⏐⏐B∗

X,n(τ )
⏐⏐ ≤ 2

a−1∑
i=0

E

⏐⏐⏐⏐⏐⏐
k∑

j=1

Bj+a−|i|∑
t=Bj+1

kt (τ )kt+|i|(τ )DtDt+|i|σtσt+|i|
[
utut+|i| − RU (i)

]⏐⏐⏐⏐⏐⏐
≤ φn

a−1∑
i=0

βi +
ηn

√
nh

= o(1).

Furthermore, the arguments used to prove (A.6b) in Lemma A.7 show that A∗

X,n(τ )
p

−→ p(τ )2σ 2
as(τ ).

The final step is to verify that, for every κ > 0,
∑k

j=1 E
∗

[
X∗
n,j(τ )

2

ω∗2
n

1

(⏐⏐⏐⏐ X∗
n,j(τ )

2

ω∗2
n

⏐⏐⏐⏐ > κ

)]
= op(1), where ω∗2

n =

E∗

(∑k
j=1 X

∗

n,j(τ )
)2

. Similarly as in the proof of Theorem 1, we define X̃∗
t (τ ) = Dtkt (τ )σtutξ

∗

t,M , as an L4-mixingale

conditionally on the original data, with
X̃t

∗

4
≤ C |ut | kt (τ ), such that Lemma 2 of Hansen (1991) then implies that

E∗Xn,i(τ )4 ≤
C

(nh)2

(∑Bj+a
t=Bj+1 kt (τ )

2u2
t

)2
, and therefore

k∑
j=1

E∗

[
X∗

n,j(τ )
2

ω∗2
n

1

(⏐⏐⏐⏐⏐X∗

n,j(τ )
2

ω∗2
n

⏐⏐⏐⏐⏐ > κ

)]
≤

C
(nh)2ω∗4

k∑
j=1

⎛⎝ Bj+a∑
t=Bj+1

kt (τ )2u2
t ,

⎞⎠2

,

where ω∗−4
n = Op(1). By Minkowski’s inequality, stationarity of ut , and Eu4

t < ∞ – let M → ∞ in (A.5) – we have that

1
(nh)2

k∑
j=1

E

⎛⎝ Bj+a∑
t=Bj+1

kt (τ )2u2
t

⎞⎠2

≤
1

(nh)2
(Eu4

t )
k∑

i=1

⎛⎝ Bj+a∑
t=Bj+1

kt (τ )2

⎞⎠2

≤
C1a
nh

= o(1). □ □

A.3. Uniform results

Before deriving Theorem 3, we propose a few auxiliary lemmas aimed at establishing stochastic equicontinuity, which
will be needed to extend the pointwise results to uniformity.

Lemma A.8. Let {Xt}
n
t=1 be a stochastic process with lim supn→∞

∑n−1
i=1 max1≤t≤n−i |EXtXt+i| < ∞. Then, for any τ0 ∈ (0, 1)

and τ1, τ2 ∈ [−1, 1], there exists an N > 0 such that for all n > N⏐⏐⏐⏐⏐ 1
√
nh

n∑
t=1

[kt (τ0 + τ1h) − kt (τ0 + τ2h)] Xt

⏐⏐⏐⏐⏐ ≤ Bn |τ1 − τ2| ,

where Bn is a random variable such that supn>N,τ1,τ2∈[−1,1] EB2
n < ∞.
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Proof of Lemma A.8. See Supplementary Appendix B. □

Lemma A.9. Let {X∗
t }

n
t=1 be a bootstrap process defined conditionally on a process {Xt}

n
t=1 with lim supn→∞

∑n−1
i=1 sup1≤t≤n−i⏐⏐EE∗X∗

t X
∗

t+i

⏐⏐ < ∞. Then, for any τ0 ∈ (0, 1) and τ1, τ2 ∈ [−1, 1], there exists an N > 0 such that for all n > N⏐⏐⏐⏐⏐ 1
√
nh

n∑
t=1

[kt (τ0 + τ1h) − kt (τ0 + τ2h)] X∗

t

⏐⏐⏐⏐⏐ ≤ B∗

n |τ1 − τ2| ,

where B∗
n is a random variable such that supn>N,τ1,τ2∈[−1,1] EE∗B∗2

n < ∞.

Proof of Lemma A.9. See Supplementary Appendix B. □

Lemma A.10. Let Rn(τ ) and R∗
n(τ ) be defined as in Lemmas A.6 and A.7 respectively. Then we have, for all τ0 ∈ (0, 1), that

supτ∈[−1,1] |Rn(τ0 + τ1h)| = op(1) and supτ∈[−1,1]

⏐⏐R∗
n(τ0 + τ1h)

⏐⏐ = o∗
p(1).

Proof of Lemma A.10. See Supplementary Appendix B. □

Proof of Theorem 3. It follows directly from Lemma A.10 that

sup
τ∈[−1,1]

⏐⏐Zτ0,n(τ ) − p(τ0 + τh)−1Zn,U (τ0 + τh) − Bas(τ0)
⏐⏐ ≤ sup

τ∈[−1,1]
|Rn(τ0 + τh)| = op(1),

sup
τ∈[−1,1]

⏐⏐Z∗

τ0,n(τ ) − p(τ0 + τh)−1Z∗

n,U (τ0 + τh) − Bas(τ0)
⏐⏐ ≤ sup

τ∈[−1,1]

⏐⏐R∗

n(τ0 + τh)
⏐⏐ = o∗

p(1),

such that we only have to consider p(τ0 + τh)−1Zn,U (τ ) and p(τ0 + τh)−1Z∗

n,U (τ ) in the following.
We next establish the asymptotic covariances. With

EDZn,U (τ0 + τ1h)Zn,U (τ0 + τ2h) =
1
nh

n−1∑
i=−n+1

RU (i)
n−|i|∑
t=1

kt (τ0 + τ1h)kt+|i|(τ0 + τ2h)σtσt+|i|DtDt+|i|,

we apply Lemma A.4(iii) with g̃i(τ1, τ2) = σ (τ1)σ (τ2) to find that

sup
τ0∈[δ,1−δ]

sup
τ1,τ2∈[−1,1]

EDZn,U (τ0 + τ1h)Zn,U (τ0 + τ2h) − p(τ0)σ 2(τ0)κ(τ1 − τ2)ΩU


≤

n−1∑
i=−n+1

|RU (i)|
[

C1
√
nh

+
C2

√
nh

max
{
h,

1
nh2

}
+ Sn(i)

]
+

∞∑
i=−∞

1(|i| ≥ n) |RU (i)| ,

≤
C3

√
nh

+
C3

√
nh

max
{
h,

1
nh2

}
+ φn,

from which it follows by the law of iterated expectations that

sup
τ∈[δ,1−δ]

sup
τ1,τ2∈[−1,1]

⏐⏐EZn,U (τ0 + τ1h)Zn,U (τ0 + τ2h) − p(τ0)σW ,τ0 (τ1, τ2)
⏐⏐ = o(1).

It then follows that

sup
τ∈[δ,1−δ]

sup
τ1,τ2∈[−1,1]

⏐⏐EZτ0,n(τ1)Zτ0,n(τ2) − σW ,τ0 (τ1, τ2)
⏐⏐

≤ sup
τ∈[δ,1−δ]

sup
τ1,τ2∈[−1,1]

⏐⏐EZτ0,n(τ1)Zτ0,n(τ2) − p(τ0 + τh)−1p(τ0 + τ2h)−1p(τ0)2σW ,τ0 (τ1, τ2)
⏐⏐

+ sup
τ∈[δ,1−δ]

sup
τ1,τ2∈[−1,1]

⏐⏐p(τ0 + τ1h)−1p(τ0 + τ2h)−1p(τ0)2 − 1
⏐⏐ σW ,τ0 (τ1, τ2) ≤ o(1) + o(h) = o(1).

We follow the same steps as in the proof of the asymptotic bootstrap variance in Lemma A.7 for the bootstrap
covariances. Note that

E∗Z∗

n,U (τ0 + τ1h)Z∗

n,U (τ0 + τ2h) =
1
nh

n−1∑
i=1−n

n−|i|∑
t=1

kt (τ0 + τ1h)kt+i(τ0 + τ2h)DtDt+iztzt+iγ
i,

where it follows from a straightforward adaptation of Lemma A.5 allowing for different τ ’s that

E
⏐⏐E∗Z∗

n,U (τ0 + τ1h)Z∗

n,U (τ0 + τ2h) − EDE∗Z∗

n,U (τ0 + τ1h)Z∗

n,U (τ0 + τ2h)
⏐⏐ = o(1).

To conclude this part, we can show as in Lemma A.7 that

sup
τ0∈[δ∗,1−δ∗]

sup
τ1,τ2∈[−1,1]

⏐⏐EDE∗Z∗

n,U (τ0 + τ1h)Z∗

n,U (τ0 + τ2h) − EDZn,U (τ0 + τ1h)Zn,U (τ0 + τ2h)
⏐⏐ = op(1).
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Finite-dimensional convergence of the vectors
(
Zτ0,n(τ1), . . . , Zτ0,n(τm)

)′ and (Z∗
τ0,n(τ1), . . . , Z

∗
τ0,n(τm)

)′ for (τ1, . . . , τm)′ ∈

[−1, 1]m follows from Theorems 1 and 2 and the Cramér–Wold device; it remains to show tightness. By applying
Lemma A.8 with Xt = Dtzt and Lemma A.9 with X∗

t = Dtztξ ∗
t , it follows directly that

E
(
Zτ0,n(τ1) − Zτ0,n(τ2)

)2
≤ EB2

n |τ1 − τ2|
2 and EE∗

(
Zτ0,n(τ1) − Zτ0,n(τ2)

)2
≤ EE∗B∗2

n (τ1 − τ2)2,

where EB2
n ≤ C and EE∗B∗2

n ≤ C and tightness follows by Theorem 12.3 of Billingsley (1968). □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2019.05.006.
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