Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity:

Citation for published version (APA):

Document status and date:
Published: 15/09/2018

DOI:
10.1016/j.jprot.2018.06.020

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.
Differential protein expression of hippocampal cells associated with heavy metals (Pb, As, and MeHg) neurotoxicity: Deepening into the molecular mechanism of neurodegenerative diseases

Venkatanaidu Karri, David Ramos, Julia Bauszá Martínez, Antonia Odén, Eliandre Oliveira, Susan L. Coort, Chris T. Evelo, Edwin C.M. Mariman, Marta Schuhmacher, Vikas Kumar

ARTICLE INFO

Keywords:
Metal exposure
Proteomics
Pathway visualization
Neurodegenerative diseases

ABSTRACT

Chronic exposure to heavy metals such as Pb, As, and MeHg can be associated with an increased risk of developing neurodegenerative diseases. Our in vitro bioassays results showed the potency of heavy metals in the order of Pb < As < MeHg on hippocampal cells. The main objective of this study was combining in vitro label free proteomics and systems biology approach for elucidating patterns of biological response, discovering underlying mechanisms of Pb, As, and MeHg toxicity in hippocampal cells. The omics data was refined by using different filters and normalization and multilevel analysis tools were employed to explore the data visualization. The functional and pathway visualization was performed by using Gene ontology and PathVisio tools. Using these all integrated approaches, we identified significant proteins across treatments within the mitochondrial dysfunction, oxidative stress, ubiquitin proteome dysfunction, and mRNA splicing related to neurodegenerative diseases. The systems biology analysis revealed significant alterations in proteins implicated in Parkinson’s disease (PD) and Alzheimer’s disease (AD). The current proteomics analysis of three metals support the insight into the proteins involved in neurodegeneration and the altered proteins can be useful for metal-specific biomarkers of exposure and its adverse effects.

Significance: The proteomics techniques have been claimed to be more sensitive than the conventional toxicological assays, facilitating the measurement of responses to heavy metals (Pb, As, and MeHg) exposure before obvious harm has occurred demonstrating their predictive value. Also, proteomics allows for the comparison of responses between Pb, As, and MeHg metals, permitting the evaluation of potency differences hippocampal cells of the brain. Hereby, the molecular information provided by pathway and gene functional analysis can be used to develop a more thorough understanding of each metal mechanism at the protein level for different neurological adverse outcomes (e.g. Parkinson’s disease, Alzheimer’s diseases). Efforts are put into developing proteomics based toxicity testing methods using in vitro models for improving human risk assessment. Some of the key proteins identified can also potentially be used as biomarkers in epidemiologic studies. These heavy metal response patterns shed new light on the mechanisms of mRNA splicing, ubiquitin pathway role in neurodegeneration, and can be useful for the development of molecular biomarkers of heavy metals exposure.
1. Introduction

Many environmental pollutants have been associated with human diseases [1]. Among various pollutants, heavy metals contribute to a great problem of air, soil and water pollution and cause major health problems to human beings [2–4]. An increased worldwide industrialisation [5] has led to higher levels of pollution by potent neurotoxins such as lead (Pb), arsenic (As), and methyl mercury (MeHg) [6]. Both environmental and occupational exposures to any of the three metals are of significant toxicological concern [7, 8]. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide spreading in the environment [9, 10]. Heavy metal exposure can occur through contaminated air, food, water, and/or hazardous occupations [11–14]. The toxicity of heavy metals depends on several factors including dosage, route of exposure and chemical species, as well as on the age, gender, genetics, and nutritional status of exposed individuals [15–17]. Human exposure to three heavy metals (Pb, As, and MeHg) can disrupt brain function [18, 19], and increase the risk of diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) [20–22].

These three heavy metals (Pb, As, and MeHg) are well known potent toxicants, and humans are exposed to each one of them via different routes [23, 24]. Firstly, the main routes of exposure for Pb are inhalation and ingestion [25, 26]. Inhalation exposure to Pb is a much more efficient route of absorption than ingestion [27, 28]. Pb metal is relatively common in the environment, and its toxicity impacts the children health [29]. Pb exposure in the workplace is responsible for a wide range of adverse effects, mainly on the brain [30]. Secondly, humans are exposed to various forms of As mainly via oral consumption of contaminated water, food or drugs [31, 32]. As metal can also enter the body via inhalation, which is particularly important for certain types of occupational exposure [33–35]. Also, As metal is rapidly absorbed, distributed and stored in different body organs such as liver, kidney, and lung. Moreover, it can easily cross the blood brain barrier (BBB) and accumulate in the brain [36, 37]. Reported studies state that As metal has been directly linked to neurodegenerative diseases [38]. These findings raised concern over As induced neurotoxicity in humans [39–41]. However, the underlying molecular mechanisms are not clear. Finally, MeHg contamination is possible through consumption of fish and other seafood [42, 43]. In humans, MeHg accumulates in kidneys and neurological tissues [44]. It is well known that ingested MeHg can interact with proteins due to its strong affinity to sulphur (-SH) containing functional groups, and cause organ dysfunction in the central nervous system [45, 46].

In the past few years, many studies have been conducted to understand the mechanisms underlying Pb, As and MeHg toxicity on the hippocampus region of the brain [47–49]. Exposure to Pb and MeHg have significant effects on the human brain [50, 51]. Many reported evidence linked As exposure with developmental neurotoxicity [52]. Recently, Karri et al. reported that Pb, As, and MeHg exposure induce damage to the hippocampus region of the brain [53]. However, the risk level depends on exposure intensity and metal nature in the brain [39, 54]. Bash a et al. observed that developmental exposure to Pb exhibits latent effects [20], through the epigenetic interaction of Pb with amyloid precursor protein (APP) gene causing neurodegeneration at an older age. As can disrupt the cognitive function of the brain in children [52]. MeHg directly disrupts the mitochondrial function by generating an uncontrolled release of Ca ^2+ [55], resulting in the dysregulation of the mitochondrial electron transport chain (ETC) [56] and causes the cell death. MeHg effect on mitochondria could be a potential cause of neurodegenerative diseases [57].

Most of the reported studies focused on the effects of metals on the brain in a generalized manner [46, 52, 58]. In the past few years, substantial improvements in toxicogenomics knowledge have led to an increase in the application of proteomics and systems biology knowledge to answer these mechanistic biological questions [59, 60]. To assess the biological effects of heavy metals, we are conducting studies engaging a systems toxicology approach that combines evaluation of classical toxicological endpoints with extensive molecular measurements and pathway analysis approaches [61–64]. The main goal of this project was taking advantage of high throughput proteomic technologies and systems biology tools for assessing the neurotoxicity mechanism of Pb, As, and MeHg on the hippocampal cells. We choose the mouse hippocampal HT-22 cell line due to the known sensitivity of chronic Pb, As, and MeHg exposure and relevant to the disease [65]. Here, a label-free quantitative proteomics approach [66] was used to detect the effects of Pb, As, and MeHg exposure at the protein level by using a non-cytotoxic dose (IC10) of each metal to avoid secondary cytotoxic responses. The differential protein expression patterns involved in the heavy metal toxic response were quantified to deeply reveal the integrative molecular network of protein response to heavy metal stress. The proteomics data were integrated with a systems biology approach [67], in which the analysis tools PathVisio, GO-elite, and Cytoscape were used to provide a more global view of the molecular changes elicited by heavy metals in hippocampal cells [68, 69].
of Mossman [71]. The HT-22 cells were seeded in 96-well plates. After 24 h, when the cells had reached a confluence of 70–80%, they were exposed for 8 days to various concentrations of Pb, As, and MeHg. After the incubation period, the medium was aspirated and MTT working solution of 0.5 mg/mL was added to each well. The absorbance of the solubilized reduced MTT was then measured in a microtiter plate spectrophotometer at a wavelength of 570 nm. The measured optical density (OD) values were converted to percent of cell viability (%) with respect to control. The cell viability results were used for calculating the sub-lethal dose (IC50) of each metal for apoptosis and proteomics studies.

2.4. Analysis of apoptosis by annexin V-FITC/propidium iodide (PI)

To evaluate the translocation of phosphatidylserine (PS) from inner leaflets to outer leaflets of the plasma membrane, annexin V-FITC apoptosis detection kit (BD Pharmingen, Poland) was utilized. In this kit, annexin V and propidium iodide (PI) were used to distinguish the apoptotic and necrotic cells from the viable cells. According to the manufacturer’s protocol, the exponentially proliferating cells were exposed to the IC50 to IC10 of heavy metals in culture plate at a density of 0.56 × 10^5/mL during 8 days; control cells were made without chemical. Cells were harvested by trypsinization, washed twice with ice cold PBS (pH = 7.4). Thereafter, cells were centrifuged at 1200 rpm for 5 min at 4 °C, resuspended in 1 mL 1× binding buffer and then 100 μL of the solution was transferred to a 5 mL culture tube, and 5 μL of both annexin-V and PI was added to the samples. After staining, cells were incubated for 15 min in the dark place at room temperature. Finally, cells were re-washed with 400 μL 1× binding buffer and analyzed by flow cytometry (Beckman coulter, Germany). Three independent experiments were performed.

2.5. Protein extraction and digestion

For the proteomics study, the exponentially proliferating HT-22 cells were exposed to the selected sub-lethal dose (IC50) of each heavy metal at a density of 0.025 × 10^6/mL during 8 days; control cells were made without chemical exposure. Pb, As, and MeHg treatment (and control culture) protein was extracted from HT-22 cells with 200 μL lysis buffer (8 M urea, 0.1% SDS, 50 mM ammonium bicarbonate [ABC]) and quantified using the Micro BCA™ Protein Assay Kit (Thermo Scientific). 30 μg of protein from each sample was digested in a filter assisted sample preparation (FASP) approach. The volume corresponding to 30 μg of protein was adjusted to 270 μL with 8 M Urea/50 mM ABC. The reduction was done with 20 mM dithiothreitol (DTT) treatment for 1 h 30 min at 32 °C. Samples were then alkylated using 30 mM of iodoacetamide (IAA) and incubated in the dark for 30 min at room temperature. Afterwards, samples were loaded in 10 kDa filters (Amicon) and centrifuged for 30 min, 12,000 g at room temperature followed by two washes with 300 μL 1 M urea/50 mM ABC by centrifugation (30 min, 12,000 g, room temperature) in order to remove interferents and establish optimal pH (7.5–8.5) and urea concentration for proteins to be denatured. The filter remaining material was re-suspended in 400 μL 1 M urea/50 mM ABC. Digestion was done in two steps: an initial digestion with 1:30 (w/w) porcine trypsin 0.25 μg/μL (Sequence grade modified trypsin, Promega) for 3 h at 32 °C followed by a digestion with 1:50 (w/w) trypsin 0.25 μg/μL for 16 h at 32 °C. Peptides were eluted by centrifugation (12,000 g for 15 min at room temperature) and the filters were cleaned with 200 μL 50 mM ABC by centrifugation at 12,000 g for 15 min at room temperature. Samples were prepared for chromatographic analysis. Briefly, peptides re-suspended in 100 μL of 1% formic acid (FA) were charged in the tip columns (previously washed with 70% acetonitrile [ACN] in 0.1% FA and equilibrated with 0.1% FA) by centrifugation (300 × g for 1 min 30 s). Columns were washed twice with 100 μL 0.1% FA by centrifugation (300 g for 1 min) and then peptides were eluted in 2 × 100 μL of 70% ACN / 0.1% FA by centrifugation (300 g for 1 min). The peptides were dried in speed vacuum (Eppendorf) and stored at 20 °C until LC-MS analysis.

2.6. LC-MS/MS analysis

The peptide mixtures were resuspended (1% FA, 2% ACN) and the volume corresponding to 500 ng of protein was analyzed by an LTQ-Orbitrap velos mass spectrometer (Thermo Fisher Scientific). Peptide mixtures were injected into the capillary column (75 μm × 25 cm) in full loop mode and separated by a 5 μm C18 column using a nano-acquity liquid chromatography system (Waters). Peptides were eluted with a linear gradient of 1–35% buffer B (0.1% FA, 100% ACN) for 150 min, followed by 35–45% buffer A for 20 min (0.1% A). The mass spectrometer was operated in positive ion mode (source voltage 2000 V) and data-dependent manner. The full MS scans were performed in the Orbitrap at the range of 300–1700 m/z at a resolution of 60,000. For MS/MS scans, the 15 most abundant ions with multiple charge states were selected for collision induced dissociation (CID) fragmentation following one MS full scan.

2.7. Label-free quantitative (LFQ) data analysis using Progenesis QI software

Proteomics quantitative data analysis was done by using Progenesis QI data analysis software v4 (Non-Linear Dynamics, Waters, U.S.). Ion feature matching was achieved by aligning consistent ion m/z and retention times. Peptide abundances were calculated as the area under the MS peak for every matched ion feature. Progenesis label free quantification (LFQ) was done using non-conflicting unique peptides and protein grouping, and the software normalization algorithm was applied to all proteins. Mascot search results were filtered based on peptide ion score ≥ 40 and contaminants were removed and abundances were normalized to all proteins. A total of 428,801 spectra were obtained from the LFQ LC–MS/MS proteomic analysis of samples including a control and test samples. After data filtering to eliminate low-scoring spectra 27,088 peptides were retained and used for protein identification. Total 3140 proteins were quantified from 27,088 peptide ions. Only the proteins quantified with minimal 2 peptides were included in the further statistical analysis.

2.8. Protein identification

Proteins identification was done using Mascot search engine (v. 2.3.01). All MS/MS spectra passing an arbitrary cut-off in the Progenesis software were included in the list used to perform the search against SwissProt Mouse database using the Mascot search program (Matrix Science, London, UK, www.matrixscience.com). The following criteria were applied: (1) trypsin as an enzyme; (2) allowed two missed cleavages; (3) variable modifications, acetyl (N-terminus, protein) and oxidation (M); Carbamidomethyl (C) fixed modification and (4). Peptide tolerance, ± 10 ppm (MS); MS/MS tolerance, ± 0.6 Da.

2.9. Statistical analysis

Label free quantitative data was submitted to t-test method (p ≤ .05) using Microsoft excel in order to find out significant differences among the treatments and control. Data were further curated applying the following filters: minimum 1.2-fold change and p-value < .05. Meaboanalyst 3.0 (http://www.metaboanalyst.ca) programme was used for presenting the unsupervised data in the principal component analysis (PCA), volcano plot, and hierarchical clustering analysis.
2.10. Systems biology analysis

In our systems biology analysis three main steps were included for the quantitative functional interpretation of proteomics data. The first step was aimed to identify the statistically significant proteins by using the t-test method. The next step was to identify significantly altered functional Gene Ontology (GO) categories using GO analysis. The altered GO terms and the differentially expressed proteins in these GO terms were visualized in a network to identify the links between the terms. In the final step, the changes in protein expression were visualized in selected pathways related to neurodegenerative diseases.

2.10.1. Functional interpretation of significantly altered genes using GO analysis

GO-Elite (http://www.genmapp.org/go_elite/), a flexible and powerful tool for GO functional analysis [72] was used to find altered biological processes, molecular functions, and cellular components based on changes in proteins expression. GO-Elite performs an over-representation analysis (ORA) on any structured ontology annotations, or biological identifiers (e.g. gene, protein or metabolite) [73]. The program utilizes the structured nature of biological ontologies to report a minimal set of non-overlapping terms called as pruned terms. Pruning is the process of intelligently examining the hierarchical structure of ontology, such as GO, and comparing the ORA scores of enriched terms based on their relationships to each other. Highly related terms highlighted by ORA are considered to be redundant with each other. Hence, pruning is used to select the highest scoring term among a set of related terms, while retaining any distinct related terms. GO-Elite ranks each analyzed pruned GO term according to a Z-score along with a p-value [74]. Significantly altered categories were identified based on the p-value <.05, Z-score > 1.96, and a minimum of 3 proteins changed within each specific GO term. The results were visualized as networks linking the GO terms and differentially expressed proteins in the GO terms using the network analysis tool Cytoscape [75]. In addition, on the GO-protein network in Cytoscape, the log2 fold change (log2FC) between each metal exposure group and control were visualized.

2.10.2. Pathway visualization

PathVisio [76] is a commonly used pathway editor, visualization, and analysis software for omics based experiments. First, the required curated Mus musculus pathway collection was obtained from Wiki-pathways (http://www.wikipathways.org) [77]. Pathway analysis was performed in PathVisio version 3.2.4 (http://www.pathvisio.org) to interpret and visualize the molecular changes on a pathway level. In the present study, we visualized the changes in proteins after metal exposure in biological pathways relevant to neurodegeneration processes in which a minimum of 3 proteins was changed. The log2FC and p-value were shown on pathways using the visualization module in Path Visio. A flow chart of experimental label free proteomics and systems biology is shown in the Supplementary file 1 (Fig. 1).

3. Results and discussion

To characterize the proteomics changes of Pb, As, and MeHg individually on mouse hippocampal HT-22 cells during 8 days of exposure, firstly we performed cell viability studies by using the MTT assay. The cell confluence (80–85%) was stable until 8 days exposure; consequently, we considered the 8 days exposure as chronic for further mechanistic studies. As expected, all three metals showed concentration and time-dependent cytotoxic effect. Results and discussion for Pb, As and MeHg cytotoxicity experiments at chronic conditions were reported by Karri et al. [65]. Upon the Pb exposure (10–100 μM) cell death was significantly lower indicating that sensitivity of hippocampal cells towards Pb is relatively low. Previous studies reported that As showed cytotoxicity even at a micromolar concentration [78], and similar results were observed in HT-22 cells treated during 8 days. However, MeHg (IC50 = 0.6 μM) showed high potency in hippocampal cells (HT-22) compared to Pb (IC50 = 74.3 μM) and As (IC50 = 0.8 μM). The obtained MeHg results were consistent with previous studies in cerebellar granule cells [79].

The obtained 8 days exposure MTT results were useful for further mechanistic based assays such as apoptosis to know the chronic risk of heavy metals on HT-22 cells. For that purpose, in a previous study, cells were treated with a range of IC10 to IC50 concentrations (μM), and results were reported in Karri et al. [65]. This report confirmed that Pb induced apoptosis process was low in HT-22 cells and agreement with reported studies in (Fig. 1) [80]. The other two metals, As and MeHg, showed significant effects even at low concentration of exposure [81, 82]. The results of the present study show that non-cytotoxic (IC50) apoptosis mechanism also similar to cell viability in the potency of metal. The selecting sub lethal (non-cytotoxic) concentration effects suggest that for the three metals, the necrotic process was not initiated under mild stress conditions. The MTT and apoptosis results indicate that the toxicity potency of metals on hippocampal cell follows: MeHg > As > Pb. Fig. 1 shows the apoptosis effect of Pb, As, and MeHg on HT-22 cells after 8 days of exposure.

The findings from the MTT and apoptosis assay are interesting for extending further to mechanistic experiments to find the underlying molecular mechanisms. The high throughput label free omics analysis approach with sub lethal (IC10) concentration in 8 days exposure could be helpful for understanding the complete overview of metal induced stress in hippocampal cells and also validate the potency of metals in HT-22 cells by analysing the protein expression. Here, we selected the IC10/sub lethal concentration of Pb, As, and MeHg (63.50 μM, 0.09 μM, and 0.42 μM) on HT-22 cells for omics studies.

3.1. Identification and quantification of proteins in HT-22 cells by using the label free proteomic analysis

In order to identify new molecular pathways related to heavy metal neurotoxicity, we have used a proteomics label-free quantitative approach with sub lethal (IC10) concentration in 8 days exposure. The quantitative analysis was performed by Progenesis QI software as explained in the methods Section 2.7. In total 3140 proteins were quantified from 27,088 peptide ions. From them, 2161 proteins were identified with a minimum of 2 peptides. Only the proteins with at least two unique identified peptides were retained for further quantification analysis. The unsupervised PCA was performed by using the normalized proteins (≥ 2 unique peptide) that were present in all four (n = 4) replicates (Fig. 2A). The first principal component (PC1: 55.1%) describes the largest variation in the dataset in which the samples spread the most in the variable space. The second component (PC2: 13.2%) describes the next largest variation and is orthogonal to the first component. The third component describes the last largest variation (PC3: 6.3%). Fig. 2A highlights clustering or pattern formations in a three-dimensional space which provides a view of the similarities and dissimilarities among the samples. For each individual metal, we extracted the proteins showing significant changes in abundance when compared to control cells (547, 1249 and 1156 proteins for Pb, As, and MeHg, respectively). The resulting proteins of the three metal treatments were compared in a venn diagram and shown in Fig. 2B. We found that 373 proteins commonly altered due to metal exposure. Interestingly, some proteins were exclusively altered due to the exposure to each metal: 70 for Pb, 244 for As and 193 for MeHg. The experimental groups (control, Pb, As and MeHg) were clustered based on the log standard abundance of the unsupervised data with the ward’s hierarchical clustering algorithm. The clusters clearly separated according to the expression level in each replicate as shown in Fig. 2C, and the heat map of MeHg are distinguished the most from the other spot maps. Differences were also found between the controls, MeHg and As; Pb and Control were very close in the cluster. We can notice the clear presence of a group of proteins that are systematically upregulated (red) and down regulated (green) in treatment Vs control. Volcano plot presents the protein
expression response to Pb, As and MeHg, respectively (Fig. 3). The replicates for the four study groups were averaged and ratios for each metal treatment group to control were calculated. To ease visualization of proteome alterations, ratios (or fold change; FC) were log(2) transformed and plotted against $-\log(10)$ transformed ANOVA p-values (Fig. 3, A–C) The presented pink dots (log(2)FC ≥ 0.26 or ≤ 0.26 and p-value ≤ .05) were considered as differentially expressed among each metal treated and control comparison. A total of 547, 1249 and 1156 proteins were found to respond to Pb, As, and MeHg exposure respectively. Among them, 347, 563, 632 proteins were significantly down regulated, while 200, 686, 524 proteins were significantly upregulated by Pb, As, and MeHg respectively. (See Fig. 3.)

3.2. Functional classification and enrichment analysis of protein data by using GO – Elite

The functional interpretation and the pathway analysis of protein expression are always challenging. The application of GO mapping and pathway analysis with omics data to interpret the complex protein expression profiles in the context of the molecular pathways [83]. This study demonstrated that GO analysis by using GO–Elite method for the functional interpretation of proteomics data. Our GO results contain multiple files, in that over-representation analysis (ORA) pruned list are most informative to understand the GO terms and proteins functional relation (Supplementary file 1), which includes all summary term statistics and associated gene symbols. The ability to determine in which GO terms differentially expressed proteins are overrepresented provides an ideal model to gain an understanding of what GO classes are altered after metal exposure. The pruned ORA list contains the GO terms; i) are pruned to only include non-redundant information and ii) are significantly altered based on changes in protein expression. The GO-Elite results represent a global picture of biological processes, cellular components, and molecular functions that are significantly altered at the protein level after treatment of Pb, As and MeHg. Relationships between all regulated proteins and pruned terms can also be easily visualized as networks in cytoscape using the pruned sif file. We showed global networks (Supplementary file 2) of the all pruned GO terms with protein expression, which gives an overview of all the significantly expressed proteins and which can be helpful to determine the heavy metal’s impact on HT-22 cells proteome. For instance, by observing the GO terms and protein expression relation, we found that Pb metal impact was very low while As and MeHg showed a greater impact on HT-22 cells. A major challenge in the GO interpretation of omics data is the functional interpretation and the linking of potentially altered proteins to most relevant disease processes. However, from the overview of the network file, it was difficult to relate the results to specific
neurodegeneration processes.

Using the GO hierarchical classification system, we identified enriched processes within the collection of genes identified as significantly altered by Pb, As, and MeHg exposure. Generally, ORA GO terms are crucial to evaluate the significant GO processes with respect to metal exposure. We observed that the obtained GO processes were different for each metal exposure; although few of them were linked to neurodegenerative diseases. Table 1 shows the different GO processes for Pb, As and MeHg related to neurotoxicity in HT-22 cells. Regarding Pb, proteins related to cysteine-type endopeptidase inhibitor activity involved in the regulation of caspase related apoptosis are downregulated after Pb exposure, which indicates that the apoptosis process was initiated by Pb in HT-22 cells. Some studies suggested the importance of the JAK/STAT pathway for the survival of neurons [84]. This pathway has a pro-apoptotic nature in cerebellar granule neurons [85]. Thus, the Pb exposure in HT-22 cells initiated the cell death through apoptosis. In relation to As metal (Table 1), oxidative stress and transition metal ion homeostasis GO processes are critically acclaimed to metal toxicity. The regulation of oxidative stress is indicated by the upregulation of antioxidant proteins, super oxide dismutase 1 (SOD1), reduced glutathione (GSH) and the neuronal part GO term are indicated by the amyloid precursor protein (APP), and parkin7 (PARK7) protein expression that is critical for the neurodegenerative diseases. Most enriched and relevant to neurotoxicity in MeHg are the GO terms:

Fig. 2. A. Diagram presenting the principle component analysis (PCA) score plot (PC1, PC2, and PC3) of the unsupervised proteomic profiles of HT-22 cell B. Venn diagram showing the overlap between significantly changed ($p < .05$) proteins in Pb, As, and MeHg metals. C. Heat map for hierarchical Euclidean clustering of normalized protein expression of the experimental groups (control, Pb, As, and MeHg).
pyruvate metabolic process, spliceosomal and transition metal ion homeostasis. In AD, the process of β-amyloid (Aβ) misfolding and plaque aggregation is greatly influenced by alterations in the transition metal ion homeostasis [86]. Transition metal ions can influence the APP metabolism [87]. We found in relation to the transition metal ion homeostasis GO term, that APP protein expression is differently altered by MeHg (down regulated) than by As (up regulated), which indicates that heavy metal exposure controls the APP expression but in opposite ways best supporting the underlying mechanism of the AD by As.

Our data demonstrate that GO analysis constitutes a powerful unbiased approach to define the biological pathways altered in mice HT-22 hippocampal cells in response to heavy metals exposure. The GO processes shown in Table 1 for the three metals (Pb, As, and MeHg) suggests that the involved proteins are sensitive indicators of metal induced response in association with neurotoxicity. GO based omics data analysis can provide profoundly important and novel information in toxicity mechanism. However, we are currently facing the difficult challenge of how quantitatively to interpret the differentially expressed proteins. As presented in Table 1, the conventional GO process terms do not provide any quantitative information about current data on metal-

Table 1
Statistically significantly changed GO terms related to neurotoxicity in HT-22 cells for Pb, As and MeHg.

<table>
<thead>
<tr>
<th>Ontology-ID</th>
<th>Ontology Name</th>
<th>Ontology Type</th>
<th>Changed genes</th>
<th>Measured</th>
<th>Ontology</th>
<th>Z Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>Cysteine-type endopeptidase regulator activity involved in apoptotic process</td>
<td>Molecular function</td>
<td>5</td>
<td>5</td>
<td>36</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>GO:0046426 Negative regulation of JAK-STAT cascade</td>
<td>Biological process</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>GO:0045738 Negative regulation of DNA repair</td>
<td>Biological process</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>GO:0034719 SMN-Sm protein complex</td>
<td>Cellular component</td>
<td>6</td>
<td>11</td>
<td>17</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>GO:0097458 Neuron part</td>
<td>Cellular component</td>
<td>46</td>
<td>141</td>
<td>927</td>
<td>2.0</td>
</tr>
<tr>
<td>As</td>
<td>Negative regulation of NF-kappaβ transcription factor activity</td>
<td>Biological process</td>
<td>8</td>
<td>8</td>
<td>63</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>GO:0002882 Regulation of response to oxidative stress</td>
<td>Biological process</td>
<td>7</td>
<td>7</td>
<td>27</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>GO:0007265 Ras protein signal transduction</td>
<td>Biological process</td>
<td>19</td>
<td>24</td>
<td>99</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>GO:005076 Transition metal ion homeostasis</td>
<td>Biological process</td>
<td>12</td>
<td>14</td>
<td>99</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>GO:0097458 Neuron part</td>
<td>Cellular component</td>
<td>95</td>
<td>141</td>
<td>927</td>
<td>2.3</td>
</tr>
<tr>
<td>MeHg</td>
<td>Pyruvate metabolic process</td>
<td>Biological process</td>
<td>18</td>
<td>21</td>
<td>55</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>GO:0050877 Neurological system process</td>
<td>Biological process</td>
<td>31</td>
<td>43</td>
<td>1863</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>GO:005076 Transition metal ion homeostasis</td>
<td>Biological process</td>
<td>12</td>
<td>14</td>
<td>99</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>GO:0043028 Cysteine-type endopeptidase regulator activity involved in apoptotic process</td>
<td>Molecular function</td>
<td>5</td>
<td>5</td>
<td>36</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>GO:0008302 Negative regulation of NF-kappaβ transcription factor activity</td>
<td>Biological process</td>
<td>5</td>
<td>5</td>
<td>36</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>GO:0005683 U7 snRNP</td>
<td>Cellular component</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>GO:0005689 U12-type spliceosome complex</td>
<td>Cellular component</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>GO:0005689 U12-type spliceosome complex</td>
<td>Cellular component</td>
<td>13</td>
<td>13</td>
<td>25</td>
<td>3.3</td>
</tr>
</tbody>
</table>
induced neurotoxicity. Thus, we integrated the selected pruned GO processes in a Cytoscape framework to evaluate functional relations between the proteins, as illustrated in Figs. 4, 5, and 6 for Pb, As, and MeHg, respectively. This analysis can useful to visualize how each protein with its significant change in expression connects to the neurotoxicity GO terms. In particular, we were able to show the effects of the metal on the protein expression profiles in HT-22 cells as presented by Pb, As, and MeHg networks. We quantitatively assessed the absolute magnitude of change in expression levels associated with significant proteins within enriched GO terms at IC10. It was observed that MeHg caused the most prominent changes in protein abundance than other two metals. So that, here we will mainly focus on the MeHg induced damage in HT-22 cells which is critical to evaluate the relationship between the protein expression and AD and PD; the other two metals (Pb and As) are discussed in a comparative manner.

3.3. Pathway analysis: visualization of pathways relevant to heavy metal (Pb, As, and MeHg) induced neurodegeneration in HT-22 cells

Pathway analysis was used to further explore the complex interactions in a biological system and to discover the relations between differentially expressed proteins and their relevance to (AD, and PD. In general, toxicological studies related to Pb, As and MeHg have proposed few common predominant mechanisms that relate to neurotoxicity. The obtained results suggest that for AD and PD the pathways: mRNA regulation/splicing, ubiquitin proteasome system (UPS), oxidative stress, electron transport chain (ETC) dysfunction, are the most affected by MeHg and As exposure; however, the Pb metal impact was low. Notable proteins found in the ETC dysfunction, oxidative stress, mRNA splicing process, and UPS degradation also relate to AD and PD. Table 2 shows the pathways that significantly changed proteins relevant to neurodegeneration process in HT-22 cells.

3.3.1. Effect of Pb, As and MeHg on mitochondrial electron transport chain (ETC) dysfunction

The mitochondrion is a critical regulator of neuronal cell death [88]; a failure of one or more of the mitochondrial ETC enzymes generates reactive oxygen species (ROS), and leads to neuronal death [89]. It is a tempting to speculate that the modification of ETC proteins leads to depletion of ATP production in HT-22 cells. We found protein dysregulation in all complexes of the ETC, which is critical to evaluate the relationship between the protein expression and AD and PD; the other two metals (Pb and As) are discussed in a comparative manner.
reported results in AD patients from post mortem hippocampus [91]. The reduced activity of F1 F0-ATPase (complex-V) could compromise the ATP production and induce the generation of ROS leading to neuronal cell death [92]. The ETC dysfunction after metal exposure in HT-22 cells seems to correlate with the previously reported findings of Valla et al. [93]. Reported studies for deficiency in the activity of the mitochondrial ETC NADH dehydrogenase (complex I) in PD [94], which is in agreement with ETC dysfunction in the HT-22 cells. Our findings confirm that the metals disrupt the ETC function in HT-22 cell, and that may relate to energy deficiency, a characteristic feature of both AD and PD [95]. The observed ETC changes raise further questions [96]. Not only direct effects of ETC function, but also other proteins...
The present oxidative stress pathway gives an adaptive response in HT-22 cells to maintain redox homeostasis to fight against the heavy metal induced stress. We found that MAO-A protein expression in HT-22 cells in the all three metals, MAO-A participates in the degradation of amines and thereby controls neurotransmitter levels in the brain [99]. In the present study, MAO-A expression changed in a contradictory manner among three metals; As (downregulation) while Pb and MeHg (upregulation), which indicates that Pb and MeHg might be enhancing the monoamine metabolism in HT-22 cells. The obtained MAO-A expression in MeHg is in disagreement with reported MeHg effect in vitro embryo culture experiments [100]. As metal also showed that MAO-A expression was opposite to reported studies, instead of upregulation the effect was downregulated [101]. Pb altered mitogen-activated protein kinase (MAPK) functions leading to the production of ROS causing neuronal cell death [102]. The relationship between AD and increased enzyme activity for MAO has been known for a long time; MAO-A protein activity levels are elevated in the AD [103]. The MAO-A elevated AD brain is subjected to increased oxidative stress resulting from ROS [104]. Thus, the MAO-A activity could be altered by Pb, As and MeHg indirectly through the changes in -SH groups [105]. The results support that MAO-A may be a useful biomarker for Pb, As and MeHg on the hippocampal cells. The MAPKs plays an important role in the cascades of cellular responses evoked by extracellular stimuli such as the heavy metal exposure [106]. Our results demonstrated a significant alteration in MAPKs mediated oxidative stress response (Fig. 8). The induction of antioxidant and phase II detoxifying enzymes acts as an important defensive mechanism against heavy metal induced stress in HT-22 cells.

Table 2

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Measured (n)</th>
<th>Positive (r)</th>
<th>Positive (r)</th>
<th>Positive (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron transport chain</td>
<td>31</td>
<td>12</td>
<td>17</td>
<td>21</td>
</tr>
<tr>
<td>mRNA processing</td>
<td>191</td>
<td>51</td>
<td>104</td>
<td>115</td>
</tr>
<tr>
<td>Proteasome degradation</td>
<td>40</td>
<td>9</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>Alzheimer's disease path</td>
<td>17</td>
<td>3</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>Parkinson's disease path</td>
<td>10</td>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Oxidative stress</td>
<td>12</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>

*Measured (n) is the number of gene products in the pathways that are measured in the Pb, As and MeHg data sets; positive (r) is the number of differentially expressed proteins in the presented pathway for each metal.

3.3.2. Effect of Pb, As, and MeHg on ROS mediated oxidative stress

The present results (Fig. 8) indicate that generation of ROS can relate to ETC damage and monoamine oxidase A (MAO-A) elevation in the HT-22 cells.

Fig. 7. Changes in protein expression in electron transport chain (ETC) pathway in response to Pb, As and MeHg in HT-22 cells. The pathway changes in protein expression are visualized as log2 fold change comparing treatment with control expression. In addition, the significance level of these changes is indicated by p values. Red indicates a higher level of expression in the treatment. The changes in protein expression are coloured as a gradient going from blue (=downregulated) over white (unchanged) to red (=upregulated) and p values <.05 are coloured in green and p values ≥0.05 are in white. Grey indicates that the selection criteria were not met, but the protein is measured. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Pb, As and MeHg in HT-22 cell line induced significant effects in MAPKs mediated oxidative stress response such as anti-oxidant proteins, hemeoxygenase1 (HMOX1), NAD (P)-H dehydrogenasequinone1 (NQO1), glutathione disulfide reductase (GSR), superoxidedismutase1 (SOD1), superoxide dismutase2 (SOD2), catalase (CAT), thioredoxin reductase1 (TXNRD1), glutamate cysteine ligase catalytic (GCLC) subunit, and metallothionein1-1M1 (MT1). All proteins are involved in the activation of antioxidant activity in HT-22 cells supporting the heavy metals stress. The increase in the antioxidant proteins is a compensating activation of antioxidant activity in HT-22 cells supporting the heavy metals stress. The changes in protein expression are coloured as a gradient going from blue (= downregulated) over white (unchanged) to red (= upregulated) and p values < .05 are in green and p values ≥ .05 are in white. Grey indicates that the selection criteria were not met, but the protein is measured. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

3.3.3. Effect of Pb, As, and MeHg on UPS pathway

In addition to selective damage of ETC and oxidative stress in HT-22 cells, UPS may also contribute to neurodegeneration processes [117]. The UPS is essential for the non-lysosomal degradation and clearance of short-lived, misfolded, mutant, and damaged proteins in eukaryotic cells. Structural and functional deficits in the 26/20S proteasome can lead to AD, and PD [118, 119]. The UPS is a highly conserved cellular pathway that plays an important role in the selective degradation of cellular proteins that are essential for the regulation of a variety of vital cellular functions [120]. Disruption of this system can have significant downstream effects on critical cellular functions. In Fig. 9, Pb, As and MeHg metal showed nonspecific proteasome alterations of proteasome subunits of the 20S catalytic core and the 26S (PA700) regulatory complex. The pattern of expression in UPS is metal specific with relevance for neurodegeneration. For instance, ubiquitin carboxyl-terminal esterase L3 (UCHL3) expressions were upregulated in the As exposure, although the other two metals (Pb and MeHg) had no effect. UCHL3 is a deubiquitinating enzyme that is involved in the pathogenesis of both AD and PD [121]. Recently, an increased amount of oxidatively modified UCHL3 in the brains of the AD and PD patients, compared to normal brains was reported [122]. Ubiquitin-like modifier activating enzyme 1 (UBA1) is a key regulator of protein homeostasis and expression of UBA1 is essential for cell survival. Our results suggest that Pb, As, and MeHg metal upregulates the UBA1 expression in HT-22 cells. Moreover, UBA1 can be sequestered into PD disease associated protein aggregates [123]. Additionally, for MeHg, we observed down-regulation of the NEDD4 (ubiquitin E3 ligase/ parkin), which indicates that MeHg has a significant impact on the number of protein targets in HT-22 cells. In contrast, Pb and As metal upregulates the NEDD4 protein in UPS pathway. NEDD4 plays a crucial role in ubiquitination; this
enzyme enhances the cell survivability by decreasing the apoptosis process in HT-22 cells. We found that the expression was down-regulated during MeHg exposure, which indicates the UPS dysfunction. The accumulation of parkin specific substrates, as a consequence of the loss of NEDD4 activity, might underlie the damage of dopaminergic neurons [124]. Other proteins in the PD pathway (Fig. 12) such as SEPT-5 and ATAXIN-2 have interaction/connection with NEDD4 function and also play a key role in PD (both proteins are upregulated in PD pathway). This upregulation process can decrease the NEDD4 activity of the proteasome after MeHg exposure in the hippocampal cell line. We found the bunch of proteins dysregulation in the proteasome 26 subunit, in which the PSMC5 protein has a critical role in the degradation of unfolded proteins. The expression was downregulated in HT-22 cells after MeHg exposure but upregulated with Pb and As.

Overall, the UPS pathway disruption shows that most of the protein expression was similar for all three metals (except NEDD4 expression). The findings with the UPS pathway clearly show that the potency and molecular mechanism related to PD is different for the three metals. For instance, comparisons of the protease activity level between the three metals by omics data revealed the common targets in the UPS of the HT-22 cells but the way of influence/interaction on the protein is different. Pb, As and MeHg treatment in HT-22 cells induced significant alteration of UPS pathway proteins, including the significant alterations in the proteasome 26S regulatory and 20S catalytic core unit and in the ubiquitin enzyme system (UBA1, NEDD4, and UCHL3), which are highly essential for protein quality control during normal cell function. MeHg effect on E3 ligase enzyme was reported in human cell lines [125, 126]. This report suggests that MeHg induces the cellular accumulation of certain proteins that cause neurodegeneration. Mouse neuronal HT4 cells treated with toxic metals have been reported to induce accumulation of ubiquitination with a decrease in cell viability [127]. This report also shows the critical role of the UPS in the removal of proteins that are oxidatively modified and suggests that accumulation of ubiquitinated proteins in the HT-22 cells contributes to an overall toxicity.

In Fig. 9, the comparison of alterations in protein expression between the metals Pb, As, and MeHg revealed both common and unique targets in the UPS. Although the involvement of the UPS pathway might be different among various cell types, results from this omics data strongly support that the disruption of the UPS function is involved in metal-induced neurotoxic effects and denotes the potential protein targets in this pathway. Several studies have identified the critical role of the UPS in the metal induced toxicity [128–132]. It is clear that alterations in UPS function are key factors in the final development of AD and PD; more research is needed to elucidate the exact mechanisms and order of events concerning the role of the UPS in neurodegenerative diseases.

3.3.4. Effect of Pb, As, and MeHg on mRNA splicing pathway

Alternative splicing is one of the most important mechanisms to generate a large number of mRNA and protein isoforms from the low number of human genes [133]. It is a widespread gene regulatory
process by which exons of primary transcripts (pre-mRNAs) are spliced into different arrangements to produce structurally distinct mRNA variants [134]. This mechanism of gene product plays a critical role in cell function [135]. It is estimated that > 75% of genes in the human genome are alternatively spliced in the central nervous system [136]. Dysregulation of alternative splicing has been linked to the number of human diseases including neurodegenerative diseases [137]. The spliceosome is a complex of five small nuclear ribonucleoprotein particles (snRNP: U1, U2, U4, U5, and U6) and numerous protein factors. In Fig. 10 showed snRNP bind to the pre-mRNA in a sequential manner, following the binding of U4/U6, U5 tri-snRNP, the spliceosome undergoes extensive structural remodelling leading to the release of U1, U2 subunits, and activation of the spliceosome [138–140]. In Fig. 10, we addressed the impact of Pb, As and MeHg on splicing and the relationship between neurological disease and the regulation of alternative splicing. Alternative splicing is particularly applicable in the present results, because of the great number of protein changes observed in the mRNA processing. In addition, we identified several components of the U1 small nuclear ribonucleoprotein (U1 snRNP) alterations in HT-22 cells. Our findings demonstrated a unique damage of splicing in HT-22 cells. The functional consequences of these observations can reflect the neurodegeneration processes [141]. We found that U1snrp70K (U1 small nuclear ribonucleoprotein 70 kDa) protein expression was upregulated in As metal exposure; the other two metals have no significant effect. This protein has a critical role in the APP protein metabolism [142]. The alterations of U1snRNP are in agreement with discovered U1 snRNP defect in the AD brain [143]. We found U2 snRNP protein dysregulation with all three metal exposures. A reported study denoted that the mutation in U2 snRNP genes causes defects in pre-mRNA splicing, leading to neurodegeneration [144]. Our results showed a high number of altered proteins in the U2snRNP unit, and U2 snRNP plays an essential role in the formation of the catalytically active spliceosome by base pairing with both the intron branch point and the U6 snRNA [145]. The last functional tri-protein (U4, U5, and U6) system function was downregulated in HT-22 cells, which indicates the mechanism of splicing is completely altered by heavy metal exposure. Additionally, we found abnormal changes in the serine/arginine rich proteins (SR) Sfrs1, Sfrs2, Sfrs3, Sfr5, and Sfr6; SR proteins are one family of splicing factors involved in the alternative splicing of tau protein. The changes in SR proteins probably influence the regulation of the alternative splicing of the tau gene [146]. In that way, heavy metal induced protein alterations in SR proteins may contribute to the AD by controlling the tau protein expression [147]. The present findings enable mechanistic insight into how aberrant changes in alternative transcript expression occur in the AD and highlight the susceptibility network of splice-regulatory proteins which can potentially link the number of susceptibility pathways [148]. Taken together, these observations imply that alterations in snRNP accumulation and consequently pre-mRNA splicing can contribute to the etiology of multiple neurodegenerative disorders [149]. Alternative splicing is tissue specific and especially important for brain tissue, thus the metal disrupted spliceosome has a big impact in HT-22 cells.

Fig. 10. Changes in mRNA splicing in response to Pb, As and MeHg in HT-22 cells. In the pathway, changes in protein expression are visualized as log2 fold change comparing treatment with control expression. In addition, the significance level of these changes is indicated with p values. Red indicates a higher level of expression in the treatment. The changes in protein expression are coloured as a gradient going from blue (= downregulated) over white (unchanged) to red (= upregulated) and p values < .05 are coloured in green and p values ≥ .05 are white. Grey indicates that the selection criteria were not met, but the protein is measured. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
3.3.5. Effect of Pb, As, and MeHg on Alzheimer disease (AD) pathway

The AD is a complex, irreversible neurodegenerative disease characterized by the impairment of cognitive function. In the present study, it is conceivable that the observed alterations in the AD specific proteome of HT-22 cells could cause the alterations in the APP. Our findings in Pb and As comply with a previous study that showed an increased hippocampal and cortical APP protein processing causing cognitive dysfunction [150]. Also, we observed significant changes in CAPN1 and CAPN2 (calcium-dependent, and non-lysosomal cysteine proteases). It’s known that calpains is implicated in neuronal cell death and long term potentiation (LTP) in the hippocampus [151]. In our study, CAPN2 expression was upregulated by MeHg and As, which clearly suggests the AD relationship with heavy metals exposure. Previously it has been reported that CAPN2 can improve survival of hippocampal neurons [152]. The other protein, low-density lipoprotein receptor-related protein1 (LRP1 protein) was upregulated with As and MeHg. LRP1 is implicated in the effective clearance of Aβ from the brain. It indicates that HT-22 cells compensate for the Aβ clearance through the LRP1 protein [153]. NEDD8-activating enzyme E1 regulatory subunit (NAE1/APPBP1) expression was found in As exposure, that binds to the APP protein carboxyl-terminal domain [154], results in neuronal cell death [155]. The AD is also characterized by the activation of apoptotic pathways. However, the hypothesis that apoptosis plays a role in AD neurodegeneration remains controversial. Caspase activation can occur independent of cell death and may be neuroprotective [156, 157]. CASP8 expression was found altered after the As exposure, which leads to the receptor mediated apoptotic pathway to activate CASP3 within neurons of the AD brain [158]. We found that expression of CASP3 that indicates that HT-22 cell death may be initiated in an apoptosis-dependent manner. Generally, Pb, As and MeHg predominantly induce CASP3 like protease activity in brain cell culture [159–161] The activation of CASP3 is known to an enhanced generation of alternative presenilin cleavage fragments in the AD, but exactly not clear [162]. Here, we found CASP3 expression in relation to tau protein in the AD pathway (Fig. 11) which is entirely different from the metal induced apoptosis assumption [163] and thus, may contribute to cellular demise in a different manner [164]. We also found that heavy metals induced AD in relation to other pathways. For instance, APP dysregulation can be possibly due to mitochondrial ETC, oxidative stress, transition metal ion homeostasis, and mRNA splicing. These AD related a protein has been previously discussed in other pathways Sections 3.3.1, 2, 3, and 4. For instance, the impairment of mitochondrial function has been well known in AD patients [165]. ETC dysfunction (Fig. 7) and reduced ATP have an immense impact on brain metabolism [166]. PCR analysis revealed that the downregulation of mitochondrial proteins of complex I in AD brain, suggesting energy deficits in AD brains [167]. In addition, several in vitro studies of APP and mitochondrial function have reported that APP expression affects the mitochondrial DNA and proteins, leading to impairments of the ETC [168, 169]. With As and MeHg we found that the transition metal ion homeostasis GO term represents a process necessary for the correct functioning of antioxidant systems in the cell [170]. Biometals such as iron (Fe), zinc (Zn) and copper (Cu) play an important role in several neurodegenerative disorders [171]. As and MeHg are such toxic metal...
which influences the essential metal transportation that relates to Aβ aggregation [172], and also Fe, Pb and Mn and their mixture may raise the risk of PD [173]. The expression of APP in the brain suggests these metals could have a direct or indirect role in neuronal metal homeostasis [174], for instance, Cu deficiency downregulates APP transcription [175]. The association between APP and transition metals such as Fe and Cu lead to the generation of hydrogen peroxide, exacerbating the oxidative damage [176]. Few studies have investigated the link between alternative splicing dysregulation, and AD progression [177]. Evidence of abnormal mitochondrial ETC gene expressions from our studies suggests that APP in AD pathway may affect mitochondrial function, which generates ROS, ultimately leading to oxidative damage [176]. Few studies have investigated the link between alternative splicing dysregulation, and AD progression [177]. Evidence of abnormal mitochondrial ETC gene expressions from our studies suggests that APP in AD pathway may affect mitochondrial function, which generates ROS, ultimately leading to oxidative damage [176].

3.3.6. Effect of Pb, As, and MeHg on Parkinson disease (PD) pathway

PD is the second most prevalent progressive neurodegenerative disease [180]. In this study, several proteins are showed differential expression relates to PD. The pathway analysis of metal exposure on HT-22 cells proved particularly valuable for PD because we found significantly changed proteins belonging to the PD pathway. These PD related proteins also appeared in other pathways, for instance, ETC dysfunction, oxidative stress, UPS pathway, and mRNA splicing. A detailed study of the PD pathway (Fig. 12) made it plausible that the observed alterations at the protein level in HT-22 cells could be related to PD such as PARK7, CYCS (cytochrome c, somatic), and CASP3 as key regulators of proteins for cell homeostasis. We found that the expression was upregulated by the three metals treatment, which clearly shows that HT-22 cells are under stress. Also, other proteins such as UBE2L3 (Ubiquitin-conjugating enzyme E2 L3), SEPT-5 (septin), and ATAXIN-2 protein expression was altered in the PD pathway. SEPT-5 protein interacts with NEED4 in PD. Indeed, we found that As and MeHg altered UBA1 and NEDD4 (Fig. 9) expression, respectively, in the UPS pathway. This SEPT-5 upregulation in MeHg can decrease the activity of NEDD4 resulting in lower ubiquitin proteasome degradation in the hippocampal cell line. In As exposure, the interaction mechanism between NEDD4 and SEPT-5 proteins is entirely opposite to MeHg. NEDD4 has been intimately linked to mitochondrial quality control, which evidence suggests that PARK7, ATP13A2, and FBX07 may also be involved [181]. In our data, the expression of CYCS and CASP3 were upregulated by the three metals. The loss of mitochondrial membrane potential and translocation of CYCS into the cytosol lead to cell death [182]. In parallel, PARK7 protein is upregulated, which will protect the cells.
from the apoptosis stress. PARK7 has been thought as an endogenous redox sensor, which prevents the cell from stress-induced apoptosis [183]. Thus, PARK7 is believed to be protective against oxidative stress in PD brains [184]. PARK7 expression in HT-22 cells was suggested to be related to the oxidative stress and dopaminergic neurodegeneration [185] (Fig. 12).

The expression pattern of PARK7, CYCS and CASP3 supports that the three metals affect mitochondrial function which is relevant to PD, with the potency in order of Pb < As < MeHg. The pattern of expression of interlinked proteins in the PD and UPS pathways of the MeHg and As metal exposures is somehow different. As metal significantly upregulates the UBA1 and NEDD4 and downregulates SEPT-5 in HT-22 cells. Thus, UBA1 might be sequestered into disease associated protein aggregates, also shown for lewy bodies in As exposure models of PD [186]. For MeHg, we observed downregulation of NEDD4 (Fig. 9). NEDD4 has a role of the E3 ubiquitin ligase, participating in the proteasome degradation system [187], of which the loss of function allows the formation of these toxic aggregates in neurons. Target proteins of MeHg treatment in HT-22 cells related to PD suggest a direct relation to the UPS pathway. The downregulated NEDD4 proteins during MeHg exposure is critical for inducing the indirect way of PD by affecting the UPS function. The results of our proteomics analysis using hippocampal HT-22 cells strongly suggest that the disruption of UPS function is an important mechanism in metal induced neurotoxicity. Moreover, additional evidence supports not only the important role of NEDD4 as an E3 ligase in PD but also this protein can lead to mitochondrial impairment in the brain [188]. Our findings comply with the previous report that NEDD4 protein expression can correlate to alternative splicing defects, which is one of the reasons for PD [189].

The heavy metal induced PD is likely to be multifactorial; ETC dysfunction, oxidative stress, and the impairment of UPS dependent protein degradation have been identified as the main processes associated with PD [190]. Our findings confirm that the metals disrupt the ETC pathway in HT-22 cell and influence the PARK7, and NEDD4 expression [191]. We found that NEDD4 expression was downregulated in the MeHg exposure, which correlates with previously reported alternative splicing defects and PD [188] (Tan et al., 2005). We also found that the heavy metal induces oxidative stress and mitochondrial dysfunction, which is directly or indirectly related to PD [192, 193]. Our results also support that As and MeHg treatments highly influence the ETC, oxidative stress and UPS pathway which are relevant to the PD pathway [194] (Fig. 13). Finally, PD is associated with a number of biochemical abnormalities, in which the UPS and ETC plays a major role. Indeed, inhibition of proteasomal function has been shown to cause oxidative stress and mitochondrial dysfunction [195–199].

4. Conclusions and future directions

Chronic exposure to the toxic metals Pb, As, and MeHg has been associated with the neurological degeneration. Nowadays, knowledge of neurodegenerative diseases has advanced rapidly, and the field holds great promise for improving the understanding and the eventual treatment of disease. To date, this study is the first report of comparative heavy metals neurotoxicity assessment by using the omics and systems biology tools. For the proteomics analyses, we selected sub lethal toxic concentrations (IC10) of each metal on HT-22 cells on 8 days exposure as a chronic. Omics based analysis concentration of testing chemical has had a critical role for the success of this study. If the chemical concentration is too high, the secondary effects could mask the primary response. Thus, preliminary cytotoxicity, genotoxicity, and apoptosis observations were used to select the defined concentration. The functional interpretation of protein expressions is always challenging. In this study, we employed both GO analysis and PathVisio approaches for systems biology analysis. Using these integrated tools, we identified significant protein expression changes across treatments related to AD, PD pathways. Our results confirmed that GO and PathVisio analysis is a powerful approach to generate an unbiased view of the functional protein alterations by heavy metals. The application of such quantitative interpretation of toxicogenomics data is likely to become increasingly useful for evaluating the mechanistic similarity of novel chemicals.

The current study describes toxicity profile in the form of protein expression that is observed in response to toxic metals exposure. These changes may provide further insight into mechanisms underlying the development of metal-induced diseases. These proteins are also candidate biomarkers of metal exposure that could potentially be used...
diagonally in molecular and epidemiologic studies. The findings from our results have greatly expanded understanding of the role of mitochondria in the pathogenesis of neurodegenerative diseases. Mitochondrial ETC dysfunction, oxidative stress, UPS dysfunction and mRNA splicing changes occur early in all major neurodegenerative diseases, and there is strong evidence that this dysfunction has a causal role in disease pathogenesis. Greater improvement of these pathways will be required to understand fully the pathogenesis of neurodegenerative disorders. Both PathVisio and GO interpretation integrated systems biology supports that the potency of heavy metals is as follows: Pb < As < MeHg. In summary, the comparison of protein expression among Pb, As and MeHg revealed both common and unique protein targets that relate to neurodegenerative diseases. The involvement of mRNA splicing and the UPS pathway are new findings. The results of our proteomics analysis strongly suggest that the disruption of mRNA splicing, UPS, ETC and oxidative stress plays a crucial role in metal induced neurodegenerative diseases. Obviously, the utility of toxicogenomics has promising advantages on assistance and refinement of the risk assessment process, particularly the dose response analysis.

Future work will focus on using these data to explore basic neurodegeneration mechanisms of metals and the toxicity of their mixtures to generate new hypotheses. Although relatively less toxic doses (IC10) were used in the current analysis, a wide dose range study including an environment relevant dose is needed to further examine the association of metal exposure and its neurodegeneration. These heavy metal response patterns may shed new light on the mechanisms of toxic metal induced neurodegeneration, and may also be useful for the development of molecular biomarkers of exposure in mechanistic studies and risk assessment.

Acknowledgements

Preparation of this manuscript was supported in part by European Union’s projects, HEALS by the FP7 Programme under grant agreement No. 603946 (Health and environment-wide Associations via Large Population Surveys (HEALS)). Venkatakanaidu Karri has been funded by AGAUR (Commissioner for Universities and Research of the Department of Innovation, Universities, and Enterprise of the “Generalitat de Catalunya”) and the European Social Fund. V. Kumar has received funds from Health Department of Catalonia Government trough “Pla Estratègic de Recerca i Innovació en salut” (PERIS 2016-2020). This publication reflects only the authors’ views. The Community and other funding organizations are not liable for any use made of the information contained therein.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jprot.2018.06.020.

References

