Meal-derived glucagon responses are related to lower hepatic phosphate concentrations in obesity and type 2 diabetes

Citation for published version (APA):

Document status and date:
Published: 01/11/2018

DOI:
10.1016/j.diabet.2018.05.008

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 29 Mar. 2021
Short Report

Meal-derived glucagon responses are related to lower hepatic phosphate concentrations in obesity and type 2 diabetes

Aim. – Type 2 diabetes (T2D) alters glucagon, glucagon-like peptide (GLP)-1, glucose-dependent insulinotropic polypeptide (GIP) and hepatic energy metabolism, yet the possible relationships remain unclear.

Methods. – In this observational study, lean insulin-sensitive control subjects (BMI: 23.2 ± 1.5 kg/m²), age-matched insulin-resistant obese subjects (BMI: 34.3 ± 1.7 kg/m²) and similarly obese elderly T2D patients (BMI: 32.0 ± 2.4 kg/m²) underwent mixed-meal tolerance tests (MMTTs), and assessment of hepatic γATP, inorganic phosphate (Pi) and lipids using 31P/1H magnetic resonance spectroscopy. Meal-induced secretion of glucagon and incretins was calculated from incremental areas under the concentration–time curves (iAUCs). Peripheral and adipose tissue insulin sensitivity were assessed from time courses of circulating glucose, insulin and free fatty acids.

Results. – MMTT-derived peripheral insulin sensitivity was lowest in T2D patients (P < 0.001), while glucagon concentrations were comparable across all three groups. At 260 min, GLP-1 was lower in T2D patients than in controls, whereas GIP was lowest in obese individuals. Fasting glucagon concentrations correlated positively with fasting (r = 0.60) and postprandial hepatocellular lipid levels (160 min: r = 0.51, 240 min: r = 0.59), and negatively with adipose tissue insulin sensitivity (r = −0.73). Higher meal-induced glucagon release (iAUC0–260 min) correlated with lower fasting (r = −0.62) and postprandial Pi levels (160 min: r = −0.43, 240 min: r = −0.42; all P < 0.05). Higher meal-induced release of GIP (iAUC0–260 min) correlated positively with fasting (r = 0.54) and postprandial serum triglyceride concentrations (iAUC0–260 min, r = 0.54; all P < 0.01).

Conclusion. – Correlations between fasting glucagon and hepatic lipids and between meal-induced glucagon and hepatic Pi suggest a role for glucagon in hepatic energy metabolism.

© 2018 Elsevier Masson SAS. All rights reserved.
Introduction

In obese individuals with non-alcoholic fatty liver disease (NAFLD), postprandial adaptation of hepatic energy metabolism to higher substrate flux is enhanced, leading to hepatic oxidative stress, which may predispose to non-alcoholic steatohepatitis (NASH) [1,2]. Patients with type 2 diabetes (T2D) also frequently present with increased hepatocellular lipid (HCL) content, which is associated with hepatic insulin resistance, impaired energy metabolism and oxidative stress [3]. Of note, the ability of glucagon to stimulate hepatic gluconeogenesis is increased in progressive NAFLD (or, specifically, NASH) [4]. Glucagon-like peptide (GLP)-1 and glucose-dependent insulinogenic polypeptide (GIP) may also contribute to hepatic energy metabolism by modulating postprandial insulin and glucagon secretion. However, the role of glucagon and incretins in the control of postprandial hepatic energy metabolism in humans is as yet unclear.

Thus, the present study aimed to test the hypothesis that glucagon concentrations are inversely related to hepatic energy metabolism, and to assess the effects of fasting and mixed-meal tolerance test (MMTT)-induced changes to plasma glucagon concentrations on hepatic energy metabolism and tissue-specific insulin sensitivity in lean insulin-sensitive control subjects (CON), age-matched insulin-resistant but glucose-tolerant obese individuals (OBE) and elderly obese patients with T2D. The secondary aim of the study was to additionally assess these associations in relation to GLP-1 and GIP.

Methods

The study design and population have already been described in detail elsewhere [1]. The trial was registered at https://clinicaltrials.gov (NCT01229059). Briefly, between March 2012 and October 2013, 10 CON, 10 age-matched OBE and 10 elderly obese patients with T2D (Table S1) underwent a standardized liquid MMTT (2728 kJ, 83.6 g of carbohydrates, 23.2 g of protein, 240 g of fat), with blood samples taken under fasting and postprandial conditions. Composition of the MMTT was 23.2 g of protein, 24.0 g of fat), with blood samples taken under fasting and postprandial conditions. Composition of the MMTT was identical to that of a previous study, which demonstrated higher fasting and postprandial concentrations. The trial was registered at https://clinicaltrials.gov (NCT01229059). Briefly, between March 2012 and October 2013, 10 CON, 10 age-matched OBE and 10 elderly obese patients with T2D. The secondary aim of the study was to additionally assess these associations in relation to GLP-1 and GIP.

Results

MMTT-derived peripheral insulin sensitivity (OGIS) was lowest in T2D patients and highest in CON, whereas adipose tissue insulin sensitivity was comparable between groups (Table S1). In addition, after MMTT ingestion, GIP and GLP-1 concentrations increased in all groups, while glucagon levels increased only in patients with T2D, from 90.7 ± 1.5 pg/mL to a maximum of 111.1 ± 1.5 pg/mL at 30 min (all P < 0.004). When comparing hormone levels among the CON, OBE and T2D at a single time point during the MMTT, glucagon levels did not differ across groups (Fig. S1A, B), whereas GLP-1 levels at fasting and at 260 min were lower in T2D compared with CON (Fig. S1G, H). GLP-1, 111.1/C0 and 90.7/C0 were independent of age, gender and BMI, and there were no significant interactions between groups. Partial Pearson correlation coefficients (r) and corresponding P values were calculated based on the entire study sample, and adjusted for group effect, age, gender and body mass index (BMI). Interactions between groups were analyzed by two-way analysis of covariance (ANCOVA).

GIP-derived peripheral insulin sensitivity (OGIS) was lowest in T2D patients and highest in CON, whereas adipose tissue insulin sensitivity was comparable between groups (Table S1). In addition, after MMTT ingestion, GIP and GLP-1 concentrations increased in all groups, while glucagon levels increased only in patients with T2D, from 90.7 ± 1.5 pg/mL to a maximum of 111.1 ± 1.5 pg/mL at 30 min (all P < 0.004). When comparing hormone levels among the CON, OBE and T2D at a single time point during the MMTT, glucagon levels did not differ across groups (Fig. S1A, B), whereas GLP-1 levels at fasting and at 260 min were lower in T2D compared with CON (Fig. S1G, H). GLP-1, 111.1/C0 and 90.7/C0 were independent of age, gender and BMI, and there were no significant interactions between groups. Partial Pearson correlation coefficients (r) and corresponding P values were calculated based on the entire study sample, and adjusted for group effect, age, gender and body mass index (BMI). Interactions between groups were analyzed by two-way analysis of covariance (ANCOVA).
Discussion

The present study results indicate that:

- higher meal-induced glucagon secretion correlates with lower fasting and postprandial hepatic phosphate concentrations;
- higher fasting glucagon concentrations correlate with lower adipose tissue insulin sensitivity, but also with higher fasting and postprandial HCL;
- postprandial GIP secretion directly correlates with fasting and postprandial serum triglyceride concentrations.

Glucagon is known to inhibit glycolysis [8]. However, lower glycolytic ATP production is partially balanced by a glucagon-induced increase in mitochondrial oxidative phosphorylation [8]. In mice, the stimulatory effect of glucagon on hepatic mitochondrial oxidation has been shown to be mediated by calcium signalling through inositol 1,4,5-trisphosphate receptor-1 [9]. Calcium has, in addition, long been known to be essential for glucagon-induced stimulation of gluconeogenesis [10]. Moreover, calcium stimulation of the murine mitochondrial ATP-Mg/P, small calcium-binding mitochondrial carrier (SCaMC)-3 has been described to couple...
respiration and oxidative phosphorylation in response to glucagon [8]. The inverse correlation between glucagon secretion and hepatic Pa concentrations observed in the present study suggests that glucagon might be decreasing mitochondrial oxidative phosphorylation instead of mitochondrial coupling.

The reduced adipose tissue insulin sensitivity under conditions of higher fasting glucagon concentrations might also have contributed to higher levels of circulating triglycerides and free fatty acids by augmented lipid flux to the liver [11], an idea supported by the observed direct correlation between fasting glucagon and HCL. Elevated plasma free fatty acid concentrations have been also shown to cause hepatic insulin resistance and to stimulate gluconeogenesis [11], which might lower hepatic ATP and Pa concentrations.

Of note, although glucagon increased from 90.7 ± 1.5 pg/mL to only 111.1 ± 1.5 pg/mL in our T2D patients, it has previously been shown that even minor changes in glucagon can significantly affect hepatic glucose metabolism and, thus, are of physiological relevance [12]. Furthermore, the comparable glucagon concentrations between those with and without T2D in our study were somewhat unexpected, as inappropriate hyperglucagonaemia has been described as a common feature of T2D [13]. However, such similar glucagon concentrations have been reported previously [14] and could be due to the rather short duration (5.7 years) of known diabetes [1] and relatively good glucometabolic control of the T2D patients in our study (Table S1).

Although glucose concentrations were higher in both OBE and T2D groups compared with CON after MMTT, insulin secretion was increased only in the OBE while remaining comparable between the T2D and CON [1], most likely due to impaired incretin secretion and/or efficacy in T2D. While fasting GIP concentrations have previously been shown to have links with both fasting and meal-stimulated serum triglycerides in individuals with normal/impaired glucagon tolerance or T2D [15], the present results indicate that meal-stimulated rather than fasting GIP secretion influences circulating triglycerides.

The strengths of our present study are, first, the inclusion of insulin-sensitive subjects, glucose-tolerant yet insulin-resistant individuals and T2D patients, thereby allowing direct comparisons of these metabolic states. Second, hepatic energy metabolism was monitored non-invasively by absolute quantification of hepatic ATP concentrations using in-vivo 31P MRS, which reflects unidirectional flux through hepatic ATP synthase [3]. Third, covariance pattern analyses, which fully explore time effects, were applied for comparisons of incretin and glucagon responses to MMTT between groups.

On the other hand, one study limitation is the small number of participants in each of our three heterogeneous groups. It should be noted that a sample size of 30 ensures that an association between adipose tissue insulin sensitivity, HCL, Pa, serum triglyceride and hormone concentrations can be detected with a power of 80% if the corresponding partial correlation, adjusted for up to four potential confounders, is ≥ 0.52. Thus, our present results require confirmation in studies with larger sample sizes and more homogeneous groups of OBE and T2D patients. Another limitation is that hepatic ATP concentrations represent only one feature of hepatic energy metabolism [4].

In conclusion, meal-stimulated glucagon and GIP secretion may play a role in postprandial regulation of hepatic energy metabolism and circulating triglycerides. Further research is now warranted to determine the molecular mechanisms by which glucagon and incretins act on hepatic energy metabolism and NAFLD.

Funding

This study was supported in part by the Ministry of Innovation, Science and Research of North Rhine-Westphalia (MIWF NRW), German Federal Ministry of Health (BMG), a grant from the Federal Ministry of Education and Research (BMBF) to the German Centre for Diabetes Research (DZD e.V.), the German Research Foundation (DFG; SFB 1116, to M.R. and J.S.), the Schmutzler-Stiftung (to M.R.) and a European Society of Paediatric Endocrinology research fellowship sponsored by Novo Nordisk A/S (to M.F.).

Acknowledgements

We thank Daniela Seeger, Kai Tinnes, Myrko Esser, Andrea Nagel and Nicole Achterath for their excellent technical assistance with measurements of incretin and glucagon levels and MRS studies.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at Supplementary materials (Tables S1, Table S2 and Fig. S1) associated with this article can be found at http://www.sciencedirect.com and https://doi.org/10.1016/j.diabet.2018.05.008.

References

