Childhood trauma- and cannabis-associated microstructural white matter changes in patients with psychotic disorder

Citation for published version (APA):

Document status and date:
Published: 01/03/2019

DOI:
10.1017/S0033291718001320

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:
repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 15 Sep. 2023
Childhood trauma- and cannabis-associated microstructural white matter changes in patients with psychotic disorder: a longitudinal family-based diffusion imaging study

Patrick Domen1, Stijn Michielse1, Sanne Peeters1,2, Wolfgang Viechtbauer1, Jim van Os1,3,4, Machteld Marcelis1,5, for Genetic Risk and Outcome of Psychosis (G.R.O.U.P.)

1Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; 2Faculty of Psychology and Educational Sciences, Open University of the Netherlands, Heerlen, The Netherlands; 3Department of Psychiatry Studies, Institute of Psychiatry, King’s College London, King’s Health Partners, London, UK; 4Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands and 5Institute for Mental Health Care Eindhoven (GGzE), Eindhoven, The Netherlands

Abstract

Background. Decreased white matter (WM) integrity in patients with psychotic disorder has been a consistent finding in diffusion tensor imaging (DTI) studies. However, the contribution of environmental risk factors to these WM alterations is rarely investigated. The current study examines whether individuals with (increased risk for) psychotic disorder will show increased WM integrity change over time with increasing levels of childhood trauma and cannabis exposure.

Methods. DTI scans were obtained from 85 patients with a psychotic disorder, 93 non-psychotic siblings and 80 healthy controls, of which 60% were rescanned 3 years later. In a whole-brain voxel-based analysis, associations between change in fractional anisotropy (ΔFA) and environmental exposures as well as interactions between group and environmental exposure in the model of FA and ΔFA were investigated. Analyses were adjusted for associations between ΔFA were found. Patients showed more FA decrease over time compared with controls and siblings when exposed to higher levels of cannabis or childhood trauma.

Conclusions. Higher levels of cannabis or childhood trauma may compromise connectivity over the course of the illness in patients, but not in individuals at low or higher than average genetic risk for psychotic disorder, suggesting interactions between the environment and illness-related factors.

Introduction

Reduced fractional anisotropy (FA), widely reported in patients with psychotic disorder (Ellison-Wright and Bullmore, 2009), but not in individuals at higher than average genetic risk (siblings of patients) may reflect disease-related dysconnectivity or disease-related differential sensitivity to the environment (Boos et al., 2013; Domen et al., 2013). The risk for psychosis, a condition with adolescent onset, has been related to environmental exposures such as pre- or postnatal birth complications, cannabis use, childhood trauma (Varese et al., 2012; Misiak et al., 2017), and growing up in an urban environment (van Os and Kapur, 2009). These environmental stressors may be the trigger (Cornblatt et al., 2003) or the ‘second hit’ (Maynard et al., 2001), contributing to the emergence of a psychotic illness. However, the potential impact of these environmental risks on white matter (WM) connectivity (Andreasen et al., 1998; Friston, 1998) has not been the subject of detailed investigation in patients with a psychotic disorder. Cross-sectional studies did explore genetic factors, showing a moderate-to-high heritability of WM FA, ranging from 0.4 to 0.7 (Voineskos, 2015). Also, several candidate genes for WM heritability have been proposed, such as neuregulin1-tyrosine kinase receptor ErbB4, involved in oligodendrocyte, myelin, and axonal development and maintenance (Wang et al., 2009). Various hypotheses have been postulated, associating environmental risk factors with WM alterations. Cannabis use may induce apoptosis of oligodendrocyte progenitors, affecting WM development (Molina-Holgado et al., 2002). In the
literature to date, there is evidence to suggest a negative association between cannabis use and WM volume in patients with schizophrenia (Cahn et al., 2004; Szoszko et al., 2007). Results from diffusion tensor imaging (DTI) studies are less clear and have shown increased as well as decreased FA in cannabis-using vs. non-using patients with schizophrenia (Peters et al., 2010; James et al., 2011). The same ambiguity is seen in samples of non-psychotic substance users compared with non-users, which, on the one hand, showed microstructural WM alterations in specific pathways (corpus callosum and superior longitudinal fascicules) (Baker et al., 2013) and the hippocampus (fimbriae), corpus callosum (splenium), commissural fibers (Zalesky et al., 2012), as well as, on the other hand, absence of FA differences (Arnone et al., 2008).

Studies on early-life stress in otherwise healthy children have shown associations between cortisol reactivity and possible alterations in hippocampal and amygdala volumes (Pagliaccio et al., 2014). Corticosteroids may suppress the final mitosis of glial cells necessary for myelination, influencing WM microstructure (liability for) psychotic disorder (Bendall et al., 2013; Reis Marques et al., 2014). While the use of corticosteroid medication is contraindicated in psychotic substance users compared with non-users, which, on the one hand, showed microstructural WM alterations in specific pathways (corpus callosum and superior longitudinal fascicules) (Baker et al., 2013), and the hippocampus (fimbriae), corpus callosum (splenium), commissural fibers (Zalesky et al., 2012), as well as, on the other hand, absence of FA differences (Arnone et al., 2008).

The standing ethics committee approved the study protocol, and all participants gave written informed consent in accordance with the committee’s guidelines.

Methods

Participants

Subjects were recruited in the context of a multicenter longitudinal study (Genetic Risk and Outcome of Psychosis, G.R.O.U.P.) in the Netherlands (Korver et al., 2012). At baseline, 300 participants were included of which 258 underwent a DTI scan. At follow-up, approximately 3 years later (mean: 3.3 years), DTI scans were acquired from a sample of 180 participants, of which 159 provided a valid pair of DTI scans for the longitudinal analysis (see Domen et al., 2013, 2017) and the Supplementary Method section for further information on inclusion and exclusion criteria, family composition and diagnostic assessments (Domen et al., 2013, 2017).

Measures

Level of psychotic symptomatology at the time of scanning was assessed with the Positive and Negative Symptom Scale (PANSS) (Kay et al., 1987).

Educational level was defined as highest accomplished level of education. Handedness was assessed using the Annett Handedness Scale (Annett, 1970).

Antipsychotic medication

The determination of (lifetime) antipsychotic (AP) medication use at baseline and cumulative AP exposure during the 3-year follow-up period has been described in the online Supplementary Method section based on Domen et al. (2013, 2017).

Substance use

Substance use was measured at both time points with the Composite International Diagnostic Interview (CIDI) sections B-J-L (WHO, 1990). As data of drug use over the last 3 years were not available, cannabis and other drug exposure was assessed as reported frequency of use during the last 12 months and lifetime use (mean number of times until baseline measurement). CIDI frequency data on alcohol (weekly consumptions), lifetime cannabis, and other drug use was available at follow-up for, respectively, 158 participants (1% missing data), 155 participants (3% missing data), and 157 participants (1% missing data). Despite the fact that the association between alcohol or other drugs and psychosis risk has been studied less than cannabis and provided a less clear picture, these substances may well contribute to some of the WM variation (Nesvåg et al., 2007; Willi et al., 2017), and were therefore considered potential confounders (see Statistical analyses).

Childhood trauma: Childhood trauma was assessed at baseline with the Dutch version of the Childhood Trauma Questionnaire Short Form (CTQ) (Thombs et al., 2009). The short CTQ consists of 25 items rated on a five-point Likert scale (1 = never true to 5 = very often true) inquiring about traumatic experiences in childhood. Five types of childhood maltreatment were assessed: emotional, physical and sexual abuse, and emotional and physical neglect, with five questions covering each type of trauma (Bernstein et al., 1997). The mean of these 25 items (range 5.0–25.0) created a general measure of childhood trauma. The CTQ data were missing for one patient.

Image acquisition

Magnetic resonance imaging scans were obtained at Maastricht University, the Netherlands, using an Allegra Magnetom MR (Siemens, Erlangen, Germany) operating at 3.0 Tesla. At both measurement points, microstructural anatomy was examined using DTI with an echo-planar-imaging sequence (field of view 230 mm × 230 mm, TR 10800 ms, TE 84 ms, voxel size 1.8 mm × 1.8 mm × 1.8 mm, b-value 1000 s/mm², 85 slices, no overlap). As a result of an update of the scanner software during baseline acquisition, two DTI sequences were used: one with 76 directions [of which four T2-weighted (B0) and 72 diffusion-
The consecutive processing steps are described in the online
dinal analysis (ated; for the cross-sectional analysis at baseline (2017). For the current study, three mean FA skeletons were cre-
In order to use a multilevel (mixed-effects) model and to be able
time points). As of the three-level grouping structure of the data, compromising
random effects (intercepts) were added for both subject and
childhood trauma exposure) were the independent variables and
mental exposures (lifetime and last year cannabis exposure,
egory, controls = 0, siblings = 1, patients = 2), and the environ-
mixing computing and graphics (Team, 2015). From the 38 labeled
WM tracts, skeleton mean FA values per participant per time
point were extracted and exported to R. Since the mean FA values
per subject were based on varying number of voxels, depending
on the region, we used a model in which the error variance for
a particular observation was inversely weighted by the number of
voxels within the corresponding region.

Cross-sectional analysis at baseline and follow-up
As of the three-level grouping structure of the data, compromising
statistical independence of the observations, a multilevel
(mixed-effects) model was fitted. FA was the dependent variable,
group (dummy variable) was created with controls as the reference cat-
control, controls = 0, siblings = 1, patients = 2), and the environ-
mental exposures (lifetime and last year cannabis exposure,
childhood trauma exposure) were the independent variables and
random effects (intercepts) were added for both subject and family.

The statistical basic model was: \[FA = \beta_0 + \beta_1 \text{(group)} + \beta_2 \text{(environmental exposure)} + \beta_3 \text{(group \times environmental exposure)} \].
This model included the \textit{a priori} hypothesized confounding variables
age, sex, and level of education as fixed effects. In case of
significant findings, additional covariates [i.e. alcohol consump-
tion, lifetime other drug use, and body mass index (BMI)] were
separately added to the model.

Main effects of the environmental exposures (controlled for
group), as well as group \times environmental exposures interactions in the model of FA were examined. The environmental exposures were entered both as linear and as factored variables (i.e. repre-
senting the distribution of scores divided by its tertiles: lifetime
 cannabis use: no, moderate, or heavy cannabis use; childhood
trauma exposure: low, moderate, or high trauma exposure), allowing
visualization of dose-response. In case of significant
interaction effects, stratified analyses were conducted in order to
quantify whether the association between environmental exposure
and FA differed between the three groups.

To examine whether childhood trauma and lifetime cannabis
use contributed independent effects, planned sensitivity analyses
were performed with both environmental exposures in the model.
To examine whether the scanner software update at baseline
affected the results, the interaction analyses at baseline were
repeated in subgroups stratified by the number of scan directions: 76 (n = 191) v. 81 (n = 67) directions.

Longitudinal analysis
A mean FA ‘change’ (delta, \(\Delta \)) per participant per region (n = 159) was calculated by subtracting mean FA at baseline from mean FA
at follow-up. The same analyses were carried out as described in the
cross-sectional part, now using AFA as the dependent variable
and group and the environmental exposures (lifetime and last
year cannabis exposure, childhood trauma exposure) as the inde-
pendent variables.

In addition, to control for a potential effect of depression on
\(\Delta \text{FA} \), the main longitudinal analysis was repeated with exclusion of the subgroup of participants in the control (n = 11) and sibling
\textit{group} (n = 15) with a history of a depressive disorder.

Since our previous study showed a small effect of last 3-year
and lifetime AP use on \(\Delta \text{FA} \) (Domen et al., 2017), planned sensi-
tivity analyses were performed to rule out potential AP effects,
using patient subgroups [with low, moderate, and high AP expo-
sure (for the number of participants per subgroup see online
Supplementary Table)]. Thus, the group \times environmental expos-
ure interactions in the model of \(\Delta \text{FA} \) were examined in three
AP subgroups to ascertain whether a potential effect remained
significant in the respective subgroups.

Results

Demographics
The patients represented a relatively stable population (not in
need of inpatient care or intensive treatment), as reflected by
the low PANSS scores and the number of patients that fulfilled
the remission criteria (Table 1). The gender distribution in the
samples was skewed, showing more male patients and male sib-
lings as heavy cannabis users and more male patients and female
controls exposed to high levels of childhood trauma at follow-up
(Table 2). The mean current dosage of AP medication in terms of
standard haloperidol equivalents was 5.5 milligrams (mg)
(S.D. = 4.6) at baseline and 4.7 mg (S.D. = 5.1) at follow-up (over
the last 3 years). The proportion of baseline scans with 76 direc-
tions did not differ between the groups (84% in controls, 82% in
siblings, and 71% in patients: \(\chi^2 = 3.02, df = 2, p = 0.22 \)).

Cross-sectional analysis of FA and environmental risk factors at baseline
There were no significant associations between cannabis exposure and
FA (lifetime: \(B = 0.002, p = 0.24 \), last year: \(B = 1.0 \times 10^{-5}, p =
0.43 \)) or between childhood trauma exposure and FA (\(B = -0.001, p
= 0.60 \)). In addition, no significant interactions were found
between cannabis exposure and group in the model of FA (life-
time: \(\chi^2 = 1.3, df = 2, p = 0.52 \), last year: \(\chi^2 = 0.1, df = 2, p = 0.93 \)
and between childhood trauma and group in the model of FA

Downloaded from https://www.cambridge.org/core. Universiteit Maastricht, on 09 Oct 2020 at 13:04:15, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033291718001320
The results did not change after stratification by number of scan directions (76 directions: cannabis exposure; lifetime: \(\chi^2 = 1.4, \text{df} = 2, p = 0.49\), last year: \(\chi^2 = 0.2, \text{df} = 2, p = 0.89\), childhood trauma exposure: \(\chi^2 = 2.3, \text{df} = 2, p = 0.31\); and 81 directions: cannabis exposure; lifetime: \(\chi^2 = 1.2, \text{df} = 2, p = 0.56\), last year: \(\chi^2 = 1.5, \text{df} = 2, p = 0.48\), childhood trauma exposure: \(\chi^2 = 0.2, \text{df} = 2, p = 0.93\)).

Cross-sectional analysis of FA and environmental risk factors at follow-up

No significant associations between cannabis exposure (linear variable) and FA (lifetime: \(B = 1.0 \times 10^{-4}, p = 0.95\), last year: \(B = -3.0 \times 10^{-4}, p = 0.88\)) or between childhood trauma exposure (linear variable) and FA (\(B = -0.001, p = 0.67\)) were found at follow-up.
No significant interaction was found between last year cannabis use and group in the model of FA ($\chi^2 = 0.88$, df = 2, $p = 0.66$). A significant interaction was found between, respectively, lifetime cannabis exposure ($\chi^2 = 9.3$, df = 2, $p = 0.01$) and group in the model of FA. This interaction remained significant after controlling for childhood trauma ($\chi^2 = 9.6$, df = 2, $p = 0.008$), BMI ($\chi^2 = 9.7$, df = 2, $p = 0.008$), alcohol use ($\chi^2 = 9.8$, df = 2, $p = 0.008$), and other drug use ($\chi^2 = 7.6$, df = 2, $p = 0.02$) (all linear variables).

Stratified analyses showed a mean FA decrease in the heavy cannabis using patients, which was significantly different from the controls and the siblings. An association in opposite direction was found in cannabis-using siblings, but only for the moderate cannabis exposure level and not for the highest exposure level (see Table 3).

Longitudinal analysis of ΔFA and environmental risk factors
In the whole group, there was no significant association between, respectively, lifetime cannabis exposure ($B = -3.0 \times 10^{-3}$, $p = 0.16$), last year cannabis exposure ($B = -1.0 \times 10^{-5}$, $p = 0.45$), or childhood trauma exposure (all linear variables) and ΔFA ($B = -7.0 \times 10^{-4}$, $p = 0.13$).

Cannabis
No significant interaction was found between last year cannabis use and group in the model of FA ($\chi^2 = 0.88$, df = 2, $p = 0.66$). A significant interaction was found between, respectively, lifetime cannabis exposure ($\chi^2 = 9.3$, df = 2, $p = 0.01$) and group in the model of FA. This interaction remained significant after controlling for childhood trauma ($\chi^2 = 9.6$, df = 2, $p = 0.008$), BMI ($\chi^2 = 9.7$, df = 2, $p = 0.008$), alcohol use ($\chi^2 = 9.8$, df = 2, $p = 0.008$), and other drug use ($\chi^2 = 7.6$, df = 2, $p = 0.02$) (all linear variables).

Stratified analyses showed a mean FA decrease in the heavy cannabis using patients, which was significantly different from the controls and the siblings. An association in opposite direction was found in cannabis-using siblings, but only for the moderate cannabis exposure level and not for the highest exposure level (see Table 3).

Childhood trauma
A significant interaction between childhood trauma exposure and group in the model of FA ($\chi^2 = 6.1$, df = 2, $p = 0.05$) was found. The interaction remained significant after controlling for alcohol use ($\chi^2 = 8.8$, df = 2, $p = 0.01$), inconclusive for lifetime cannabis use ($\chi^2 = 4.9$, df = 2, $p = 0.09$) and BMI ($\chi^2 = 5.5$, df = 2, $p = 0.06$), however not significant anymore with addition of other drug use ($\chi^2 = 4.4$, df = 2, $p = 0.11$) (all linear variables).

Stratified analyses showed a mean FA decrease in patients exposed to a high childhood trauma level, which was significantly different from the siblings and inconclusive from the controls (see Table 3).

Table 2. Within-group distribution of the environmental exposures

<table>
<thead>
<tr>
<th></th>
<th>Controls m/f ratio</th>
<th>Siblings m/f ratio</th>
<th>Patients m/f ratio</th>
<th>χ^2</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cannabis use (baseline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>58 (73%)</td>
<td>34/66</td>
<td>59 (64%)</td>
<td>47/53</td>
<td>31 (39%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>8 (10%)</td>
<td>38/62</td>
<td>11 (12%)</td>
<td>36/64</td>
<td>6 (8%)</td>
</tr>
<tr>
<td>Heavy</td>
<td>13 (17%)</td>
<td>46/54</td>
<td>22 (24%)</td>
<td>73/27</td>
<td>43 (53%)</td>
</tr>
<tr>
<td>Cannabis use (follow-up)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>37 (76%)</td>
<td>38/62</td>
<td>35 (64%)</td>
<td>49/51</td>
<td>20 (39%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>5 (10%)</td>
<td>40/60</td>
<td>6 (11%)</td>
<td>33/67</td>
<td>5 (10%)</td>
</tr>
<tr>
<td>Heavy</td>
<td>7 (14%)</td>
<td>43/57</td>
<td>14 (25%)</td>
<td>71/29</td>
<td>26 (51%)</td>
</tr>
<tr>
<td>Childhood trauma (baseline)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>38 (48%)</td>
<td>41/53</td>
<td>36 (39%)</td>
<td>50/50</td>
<td>21 (25%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>26 (32%)</td>
<td>27/73</td>
<td>34 (36%)</td>
<td>50/50</td>
<td>22 (26%)</td>
</tr>
<tr>
<td>Heavy</td>
<td>16 (20%)</td>
<td>25/75</td>
<td>23 (25%)</td>
<td>61/39</td>
<td>41 (49%)</td>
</tr>
<tr>
<td>Childhood trauma (follow-up)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>21 (43%)</td>
<td>52/48</td>
<td>23 (42%)</td>
<td>52/48</td>
<td>17 (31%)</td>
</tr>
<tr>
<td>Moderate</td>
<td>18 (37%)</td>
<td>28/72</td>
<td>18 (33%)</td>
<td>59/41</td>
<td>15 (27%)</td>
</tr>
<tr>
<td>Heavy</td>
<td>10 (20%)</td>
<td>30/70</td>
<td>14 (25%)</td>
<td>43/57</td>
<td>23 (42%)</td>
</tr>
</tbody>
</table>

The number of subjects per group (and proportion of total group) for the baseline ($n = 258$) and longitudinal analysis (follow-up, $n = 159$) per environmental stress factor. The difference between groups in proportion of high, medium, and low cannabis use was analyzed with the Pearson’s χ^2. m/f ratio, male/female ratio.
use ($\chi^2 = 12.3, df = 2, p = 0.005$), BMI ($\chi^2 = 10.5, df = 2, p = 0.005$), alcohol use ($\chi^2 = 12.0, df = 2, p = 0.003$), other drug use ($\chi^2 = 14.6, df = 2, p = 0.0007$), and scan type ($\chi^2 = 11.5, df = 2, p = 0.003$). The interaction was inconclusive after exclusion of the 26 participants with a history of depression ($\chi^2 = 5.6, df = 2, p = 0.06$). (all linear variables).

Stratified analysis revealed a significant negative association between childhood trauma and ΔFA in patients, resulting in a significant patient–control and patient–sibling difference. Compared with low trauma exposure, patients exposed to high trauma levels had significantly more FA decrease over time. This was not the case for moderate compared with low trauma exposure (Table 4, Fig. 1).

Sensitivity analyses in AP medication subgroups

In the AP medication subgroup analyses (with smaller N), interactions between both environmental risk factors and group in the model of ΔFA remained largely significant, most prominent in patients with the lowest AP exposure levels (lifetime and 3-year interval). Wald tests showed that the significant negative associations between the environmental factor and ΔFA in the low AP subgroups were significantly different for the patient–control and the patient–sibling comparison (see online Supplementary Table S1).

Discussion

Despite the absence of cross-sectional associations between environmental risk factors and WM FA at baseline, there were significant interactions between group and cannabis and childhood trauma exposure in models of FA at follow-up and FA change over a 3-year time period. Patients exposed to the highest levels of cannabis or childhood trauma had a greater FA decrease over time compared with controls and siblings.

Cannabis exposure and WM alterations

Higher levels of (lifetime) cannabis exposure in patients with psychotic disorder were not associated with FA alterations at baseline, but with significant FA reduction over a 3-year period compared with siblings and healthy controls. This is the first

Table 3. Mean FA as a function of group status and environmental exposure at follow-up

<table>
<thead>
<tr>
<th>Environmental exposure</th>
<th>Patients</th>
<th>Siblings</th>
<th>Controls</th>
<th>Group differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>B</td>
<td>p</td>
<td>N</td>
</tr>
<tr>
<td>Lifetime cannabis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannabis (linear)</td>
<td>−0.005</td>
<td>0.02*</td>
<td>0.004</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No cannabis use</td>
<td>21</td>
<td>39</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Moderate cannabis use</td>
<td>5</td>
<td>−0.01</td>
<td>0.29</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy cannabis use</td>
<td>31</td>
<td>−0.01</td>
<td>0.02*</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childhood trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma (linear)</td>
<td>−0.006</td>
<td>0.03*</td>
<td>0.002</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low trauma</td>
<td>18</td>
<td>28</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Medium trauma</td>
<td>24</td>
<td>−0.009</td>
<td>0.09</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High trauma</td>
<td>18</td>
<td>−0.01</td>
<td>0.03*</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N, number of participants; P v. C, patients v. controls; P v. S, patients v. siblings; S v. C, siblings v. controls.

Results from the interaction: environmental exposure \times group in the model of FA. The B’s represent the stratified group effect sizes. Group differences are displayed with χ^2, and the p value ($<0.05*$).

$*$Reference level.
Table 4. Mean ΔFA as a function of group status and environmental exposure

<table>
<thead>
<tr>
<th>Environmental exposure</th>
<th>Patients</th>
<th>Siblings</th>
<th>Controls</th>
<th>Group differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lifetime cannabis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cannabis (linear)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.003 ± 0.03</td>
<td>0.02*</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No cannabis use*</td>
<td>35</td>
<td>−0.0040 ± 0.03</td>
<td></td>
<td>37</td>
</tr>
<tr>
<td>Moderate cannabis use</td>
<td>5</td>
<td>0.0038 ± 0.03</td>
<td>0.002</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy cannabis use</td>
<td>26</td>
<td>−0.0041 ± 0.03</td>
<td>−0.006</td>
<td>0.02*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Childhood trauma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trauma (linear)</td>
<td></td>
<td>−0.004</td>
<td>0.0005*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low trauma*</td>
<td>17</td>
<td>0.0034 ± 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium trauma</td>
<td>15</td>
<td>0.0016 ± 0.03</td>
<td>−0.002</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High trauma</td>
<td>23</td>
<td>−0.0060 ± 0.03</td>
<td>−0.009</td>
<td>0.0005*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N, number of participants; P v. C, patients v. controls; P v. S, patients v. siblings; S v. C, siblings v. controls.
Results from the interaction: environmental exposure × group in the model of ΔFA. The B’s represent the stratified group effect sizes. Group differences are displayed with χ², and the p value (<0.05*).

aReference level.
longitudinal study examining the effect of cannabis on WM FA in relation to (familial risk for) psychotic disorder, suggesting that the extent of WM alterations is conditional on the level of cannabis exposure in patients with the disorder. Especially, cannabis use before or at disease onset may cause an additional reduction in WM FA, given the absence of an interaction between group and last year cannabis use in the model of ΔFA. This finding comports with other structural imaging findings of more severe WM deficits in young adults exposed to cannabis prior to the age of 16 (Cookey et al., 2014). It strengthens the evidence, from both preclinical human and animal models, for a neurotoxic effect of cannabis in adolescence (Rubino and Parolaro, 2014); a sensitive age period for the neuronal maturation of the endocannabinoid system, possibly resulting in disrupted network connectivity of various brain areas.

To date, three longitudinal DTI studies examined substance abuse in non-psychotic populations. A lower rate of change in FA was found in adolescent cannabis users (n = 23) in five clusters of fronto-parietal association fibers over a 2-year interval (Becker et al., 2015). Moreover, a significant FA decrease over time in the left ILF in adolescents with cannabis use disorder (n = 19), associated with more cannabis exposure, compared with healthy controls (Epstein and Kumra, 2015). A third study showed poorer WM integrity after an 18-month follow-up, although mainly predicted by alcohol, not marijuana, in seven fronto-parietal tracts in adolescent substance users (n = 41) (Bava et al., 2013).

In previous cross-sectional studies, positive as well as negative associations between FA and cannabis use in patients with schizophrenia have been reported. James et al. (2011) revealed associations between early cannabis use and decreased FA in, e.g. the internal capsule, corona radiata, superior and ILF, in patients with adolescent-onset schizophrenia (James et al., 2011). In contrast, Peters et al. (2009) found FA increases in the bilateral uncinate fasciculus, anterior internal capsule, and frontal WM in

![Fig. 1. The association between, respectively, cannabis (a) and childhood trauma (b) (dummy variables) and ΔFA, stratified per group. The effect of high cannabis exposure v. no cannabis exposure and high trauma exposure v. low trauma exposure on mean whole-brain ΔFA was significantly different for patients compared with controls (cannabis; $\chi^2 = 3.7, p = 0.05$, trauma; $\chi^2 = 10.0, p = 0.002$) and for patients compared with siblings (cannabis; $\chi^2 = 4.3, p = 0.04$, trauma; $\chi^2 = 7.2, p = 0.007$) (*$p < 0.05$).]
patients with recent-onset schizophrenia who had started using cannabis before the age of 17 years, compared with a similar group with no history of cannabis use (Peters et al., 2009). Reduced FA has also been found in the splenium of the corpus callosum in non-cannabis using patients with schizophrenia compared with patients with schizophrenia and early-onset cannabis use (before age 15 years) (Dekker et al., 2010). It has been shown that cannabis use may have different effects at various neurodevelopmental stages of life (Jakabek et al., 2016). In the present study, absence of a significant cross-sectional association between FA and lifetime cannabis exposure at baseline in contrast to significant associations at follow-up between, respectively, high and moderate cannabis exposure and FA in patients and siblings compared with controls may imply an age-related effect. The effect of cannabis on brain WM may only be visible after many years, depending on the WM developmental curvature of the specific subject and the timing of the measurement.

The opposite direction of effect, i.e. the FA increases in relatives with increasing lifetime cannabis exposure may suggest a delayed maturation, an imaging artifact or even a protective effect of a small amount of cannabis. A cannabinoid neuroprotective effect on brain matter with improvement in WM efficiency (Westlye et al., 2010) has been proposed by recent in vitro studies (Sarne and Mechoulam, 2005).

The negative association between especially the heavy cannabis using patients with psychotic disorder and FA may fit with the hypothesis that heavy cannabis use at a young age may have altered the normal trajectory of WM brain maturation. Interference on the extensive pruning and myelination processes in an already vulnerable adolescent brain (Lubman et al., 2015) may have caused additional reduction in WM FA later on in life. Whether this has clinical implications or influences on long-term prognosis needs further investigation.

Methodological considerations

Apart from the strength of this study – a relatively large longitudinal imaging design with a gene–environment approach – some limitations need to be addressed.

The sample size of some longitudinal subgroup analyses was only modest or small, resulting in loss of power (and thus weak statistical effects) and increased likelihood of false-negative results. Taken together with a rather skewed gender distribution in our sample, gender-specific sub-analyses were not considered feasible although it is known that several WM tracts show gender-specific FA differences (Menzler et al., 2011; Kanaan et al., 2014).

A full understanding of the biological and clinical relevance of the reported small changes in FA is hampered. Nevertheless, one can imagine that disproportionally higher changes may arise due to stronger regional effects, either or not in combination with higher mean trauma levels. Future studies with larger sample sizes may provide more precise estimates of regional FA effect sizes associated with these environmental exposures.

Conform the various results across studies on the association between AP use and WM alterations (Szeszko et al., 2008; Ozcelik-Eroglu et al., 2014; Reis Marques et al., 2014), and the small effect of last 3-year and lifetime AP use on ΔFA found in our previous analyses (Domen et al., 2017), the current results suggest a minor confounding effect of AP use as not all the G × E interactions remained significant in different AP subgroups. However, the results of these sensitivity analyses must be viewed with caution given the sizable lack of power (patient–AP subgroup comprised one-third of the sample).

It is unlikely that the two DTI sequences used at baseline would have contributed to a systematic bias, as the proportions of the two sequences were almost equal between the groups. In addition, stratified analyses (by number of scan directions) and adjustment for scanning sequence did not change the results, fitting the suggestion that the variation in tensor estimation is negligible with more than 30 diffusion directions (Jones, 2004). Extracting mean FA values from the TBSS skeleton has the disadvantage of only examining the central portion of the WM tract, but will procure that WM was indeed examined. This is in line

Childhood trauma exposure and WM alterations

The present study examined the association between childhood trauma and FA in individuals with (risk for) psychotic disorder. At baseline, neither a significant interaction between childhood trauma exposure and group in the model of FA was found, nor a main effect of childhood trauma in any of the groups. However, at follow-up, a significant (dose–response) negative association between childhood trauma exposure and group in the model of FA was found in patients with psychotic disorder. In other words, higher exposure to childhood trauma is associated with lower whole-brain mean FA later in life. As with cannabis, differences in baseline and follow-up results may be explained by the timing of genetic and environmental influences (and their interactions) impacting cerebral plasticity during the life span.

The follow-up findings are in line with several studies that show reduced FA in non-psychotic traumatized subjects (Choi et al., 2012; Daniels et al., 2013) in stress-processing-related areas, such as the corpus callosum (Jackowski et al., 2008; Paul et al., 2008) and the cingulum bundle (Wang et al., 2010; Zhang et al., 2011). Thus, cross-sectional studies indicate that the FA reductions in traumatized populations may show overlap with the WM abnormalities in schizophrenia (Kubicki et al., 2007; Ellison-Wright and Bullmore, 2009), suggesting that (part of) the WM tract alterations may be non-specific, contributing to different phenotypes.

The current study did also find a greater FA decline over a 3-year period in the patients with the highest level of childhood trauma exposure with respect tosiblings and healthy controls. This significant FA decline over time associated with higher levels of childhood trauma may fit with the literature describing the neurotoxic impact of childhood trauma on WM development at a sensitive age period (Heim and Binder, 2012).

The patient-specific finding with regard to childhood trauma may refer to a complicated interplay between trauma-related factors and psychosis-related factors to account for the more pronounced WM alterations, predominantly in the group with the highest trauma exposure. Although a causal relationship between childhood trauma and WM decreases cannot be determined from these data, experiencing severe childhood trauma may cause an additive effect on already disrupted WM development. Alternatively, illness-related factors such as disadvantageous life style and health issues (e.g. reduced physical activity, social deprivation, smoking) (von Hausswolff-Juhlin et al., 2009) may have contributed to increased cerebral vulnerability in patients, either or not in interaction with the environmental exposures under investigation.
with more recent cannabis – diffusion studies that took a distance from a voxel-based comparison approach (Jakabek et al., 2016).

Lastly, FA is a rather non-specific diffusion measure, containing information on myelination, fiber organization, and number of axons, and therefore not completely synonymous to ‘WM integrity’, so that the current findings must be interpreted with caution (O’Donnell and Pasternak, 2015). Nonetheless, a whole-brain, hypothesis-generating approach was chosen, as studies investigating the influence of environmental risk factors on WM alterations in patients with psychotic disorder are scarce and ambiguous.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/S0033291718001320

Acknowledgements. The authors thank Truda Driesen and Inge Crolla for their coordinating roles in the data collection, as well as the G.R.O.U.P. investigators: Richard Bruggeman, Wiepke Cahn, Lieuwe de Haan, René S. Kahn, Carin Meijer, Inez Myin-Germeys, Jim van Os, and Durk Wiersma.

Financial support. This work was supported by the Dutch organization for scientific research NWO [Genetic Risk and Outcome of Psychosis (G.R.O.U.P)] and the European Community’s Seventh Framework Programme under Grant Agreement No. HEALTH-F2-2009-241909 (European Network of National Schizophrenia Networks Studying Gene-Environment Interactions Consortium).

Both funding sources had no further role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Conflict of interest. Jim van Os is or has been, in the last 3 years, an unrestricted research grant holder with, or has received financial compensation as an independent symposium speaker from Lundbeck and Janssen. Machted Marcelis has received, in the last 3 years, financial compensation as an independent symposium speaker from Lundbeck and Jannsen. All other authors report no biomedical financial interests or potential conflicts of interest.

Ethical standards. The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.

References

